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Abstract

Using the game-theoretic framework for probability (as formulated in our 2001
book), we derive a capital asset pricing model from an efficient market hypoth-
esis, with no assumptions about the beliefs or preferences of investors. Our
efficient market hypothesis says that a speculator with limited means cannot
beat a particular index by a substantial factor. The model we derive says that
the difference between the average returns of a portfolio and the index should
approximate, with high lower probability, the difference between the portfolio’s
covariance with the index and the index’s variance. This leads to interesting
new ways to evaluate the past performance of portfolios and funds.

The journal version of this article has been published in International Journal
of Approximate Reasoning 49 175–197 (2008). For continuous-time versions of
its results, see [8] (based on non-standard analysis), [9], and [10]; these versions
are simpler but less informative than the discrete-time results of this article.
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The established general theory of capital asset pricing combines stochastic
models for asset returns with economic ideas, especially marginal utilities for
current and future consumption [1, 3]. Twenty years of work have demonstrated
the power and flexibility of the combination; many different stochastic models
and many different models for investors’ marginal utility have been introduced
and used. There is little consensus, however, concerning the empirical validity
of these different instantiations of the theory.

In this article, we take a more parsimonious approach to capital asset pric-
ing, using the game-theoretic framework advanced in [6]. In its simplest form,
this framework uses a two-player perfect-information sequential game. In each
round, Player I can buy uncertain payoffs at given prices, and then Player II de-
termines the values of the payoffs. The game, a precise and purely mathematical
object, is connected to the world by an auxiliary nonmathematical hypothesis,
Cournot’s principle. Cournot’s principle says that if Player I avoids risking
bankruptcy, then he cannot multiply his initial capital in the game by a large
factor. This principle gives empirical meaning to the game-theoretic forms of the
classical limit theorems of probability, which say that certain approximations or
limits hold unless Player I is allowed to become very rich.

Upper and lower probabilities arise naturally and play an important role in
the game-theoretic framework. The prices offered to Player I at the beginning
of a round may fall short of determining probabilities for Player II’s move,
but they always determine upper and lower probabilities. Markov’s inequality
of probability theory says that a gambler’s chance of multiplying the amount
he risks by 1/α is never more than α, so that when a strategy guarantees
multiplying one’s capital by 1/α provided an event A happens, the probability
of A must be α or less. The intuition associated with Markov’s inequality is
available even when there are no probabilities in our picture, and it leads us
to define the upper probability PA for a set A of possible values for Player
II’s move as the reciprocal of the greatest factor by which Player I can be
sure of multiplying his capital without risking bankruptcy if A happens ([6],
p. 187). Lower probabilities are then defined by PA = 1−PAc, where Ac is the
complement of A. When enough payoffs are priced to determine a probability
for A, PA and PA both equal this probability ([6], p. 181). The same principles
lead to upper and lower probabilities for the whole sequence of Player II’s moves
if prices for all rounds are specified in advance. If prices are given by a player in
the game as the game proceeds, we obtain upper and lower joint probabilities
for the prices and Player II’s moves ([6], p. 70).

A financial market provides a game of the required form: Player I is a
speculator, who may buy various securities at set prices at the beginning of
each trading period, and Player II is the market, which determines the securities’
returns at the end of the period. If we measure Player I’s capital relative to a
particular market index, then Cournot’s principle becomes an efficient market
hypothesis: Player I cannot beat the index by a large factor while avoiding risk
of bankruptcy. In this article, we show that this efficient market hypothesis gives
a high lower probability to an approximate relation between an investor’s actual
returns and the index’s actual returns (Eq. (6) in Section 1.4) that resembles
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the equation for the security market line (an exact relation between theoretical
quantities) in the classical Sharpe-Lintner capital asset pricing model [7, 5, 4].
Because of the resemblance, we call our model the game-theoretic CAPM.

While not contradicting the Sharpe-Lintner CAPM, the game-theoretic
CAPM differs from it radically in spirit. To avoid confusion, we need to keep
three important aspects of the difference in view:

1. We make no assumptions whatsoever about the preferences or beliefs of
investors.

2. We do not assume that asset returns are determined by a stochastic pro-
cess. These returns are determined by the market, a player in our game.
The market may act as it pleases, except that our efficient market hy-
pothesis predicts it will not allow spectacular success for any particular
investment strategy that does not risk bankruptcy.

3. The predictions of our model concern the relation between the actual
returns of an investor (or the actual returns of a security or portfolio) and
the actual returns of an index. These predictions are precise enough to be
confirmed or falsified by the actual returns, without any further modeling
assumptions.

In this article, we check the predictions for several securities, and we find that
they are usually correct.

The empirical success of our predictions, though modest, constitutes a chal-
lenge to the established theory. In spite of its parsimony, the game-theoretic
CAPM can make reasonably precise and reasonably correct predictions concern-
ing the relation between average return and empirical volatility and covariance.
Can the established theory deliver enough more to give credibility to its much
stronger assumptions?

Our results can also be seen as a clarification of the roles of investors and
speculators. An investor balances risk and return in an effort to balance present
and future consumption, while a speculator is intent on beating the market.
The established theory emphasizes the role of investors, but the efficient mar-
ket hypothesis is usually justified by the presumed effectiveness of speculators.
Speculators have already put so much effort into beating the market, the argu-
ment goes, that no opportunities remain for a new speculator who has no private
information. The classical CAPM, still the most widely used instantiation of
the established theory, bases its security market line, a relationship between
expected return and covariance with the market, on the investor’s effort to bal-
ance return with volatility, perceived as a measure of risk. Our game-theoretic
CAPM, in contrast, shows that this relationship between return and covariance
arises already from the speculator’s elimination of opportunities to beat the
market. So the relationship by itself does not provide any evidence that volatil-
ity measures risk, that it is perceived by the investor as doing so, or even that
it can be predicted by the investor in advance.

In addition to providing an alternative understanding of the security market
line, our results also lead to something entirely new: a new way of evaluating
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the past performance of portfolios and investors. According to our theory, the
underperformance of a portfolio relative to the market index should be approxi-
mated by one-half the empirical variance of the difference between the return for
the portfolio and the return for the index. We call this quantity the theoretical
performance deficit (see Eq. (8)). In the case of an investor or fund whose strat-
egy cannot be sold short because it is not public information, the theoretical
performance deficit should be a lower bound on the underperformance. Because
a variance can be decomposed in many ways, the identification of the theoret-
ical performance deficit opens the door to a plethora of new ways to analyze
underperformance.

Because the game-theoretic apparatus in which our formal mathematical
results are stated will be unfamiliar to most readers, and because these results
include necessarily messy bounds on the errors in our approximations, we devote
most of this article to informal statements and explanations. We state our
results informally in Section 1, and we explain the geometric intuition underlying
them in Section 2. We introduce our game-theoretic framework only in Section 3.
We state our results precisely in that framework in Section 4, illustrate how they
can be applied to data in Section 5, and summarize their potential importance in
Section 6. Appendix A provides more information about game-theoretic upper
and lower probability, and Appendix B provides proofs of the propositions stated
in Section 4.

For brevity, we avoid using upper and lower probabilities explicitly in the
propositions stated in Section 4. Instead we express the inequality P(A) ≥ 1−α
(or P(Ac) ≤ α) by saying that “A is predicted at level α”. But we do use lower
probability in one of the proofs in Appendix B, because this allows us to use a
simple result from [6].

1 An Informal First Look

In this section we state the game-theoretic CAPM informally, say a few words
about its derivation and its resemblance to the classical CAPM, and then explain
how it leads to the theoretical performance deficit.

1.1 Average Return and Covariance

Consider a particular financial market and a particular market index m in which
investors and speculators can trade. We assume that a speculator with limited
means cannot beat the performance of m by a substantial factor; this is our
efficient market hypothesis for m.

The game-theoretic CAPM for m, which follows from this hypothesis, says
that if s is a security (or portfolio or other trading strategy) that can be sold
short, then its average simple return, say µs, is approximated by

µs ≈ µm − σ2
m + σsm, (1)
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where µm is the average simple return for the index m, σ2
m is the uncentered

empirical variance of m’s simple returns, and σsm is the uncentered empirical
covariance of s’s and m’s simple returns. In order to make (1) into a mathemat-
ically precise statement, we must, of course, spell out just how close together
µs and µm − σ2

m + σsm will be. We do this in Proposition 3.
If s cannot be sold short, then we obtain only

µs / µm − σ2
m + σsm. (2)

This approximate inequality is made precise by Proposition 1. We call (1) the
long-short game-theoretic CAPM, and we also call (2) the long game-theoretic
CAPM.

We can also write (1) in the form

µs ≈ (µm − σ2
m) + σ2

mβs, (3)

where βs represents the ratio σsm/σ
2
m. We call the line µ = (µm−σ2

m)+σ2
mβ in

the (β, µ)-plane the security market line for the game-theoretic CAPM. We call
βs the sensitivity of s to m; it is the slope of the empirical regression through
the origin of s’s returns on m’s returns.

1.2 The Empirical Nature of the Model

All the quantities in (1) are empirical: we are considering N trading periods,
during which s has returns s1, . . . , sN and m has returns m1, . . . ,mN , and we
have set

µs :=
1

N

N∑
n=1

sn, µm :=
1

N

N∑
n=1

mn,

σ2
m :=

1

N

N∑
n=1

m2
n, σsm :=

1

N

N∑
n=1

snmn.

(4)

The sn and mn are simple returns; sn is the total gain or loss (capital gain
or loss plus dividends and redistributions) during period n from investing one
monetary unit in s at the beginning of that period, and mn is similarly the total
gain or loss for m.

Our theory does not posit the existence of theoretical quantities that are
estimated by the empirical quantities µs, µm, σ2

m, and σsm, and there is noth-
ing in our theory that requires these empirical quantities to be predictable in
advance or stable over time.

Mathematical convenience in the development of our theory dictates that we
use the uncentered definitions in (4) for σ2

m and σsm, so that βs is the slope of
the empirical linear regression through the origin. Numerically, however, we can
expect (3) to remain valid if we use the centered counterparts of σ2

m and σsm,
so that βs is the slope of the usual empirical linear regression with a constant
term, because there is usually little numerical difference between uncentered and
centered empirical moments in the case of returns. The uncentered empirical
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variance σ2
m is related to its centered counterpart, 1

N

∑
n(mn − µm)2, by the

identity
1

N

∑
n

(mn − µm)2 = σ2
m − µ2

m.

Because µm is usually of the same order of magnitude as σ2
m (see Section 5),

and because both are usually small, µ2
m will usually be much smaller and hence

negligible compared to σ2
m. Similarly,

1

N

∑
n

(sn − µs)(mn − µm) = σsm − µsµm,

and µsµm will also be negligible compared to σ2
m. So a shift to the centered

quantities will also make little difference in the ratio σsm/σ
2
m.

1.3 Why?

Proofs of Propositions 1 and 3 are provided in Appendix B, and the geometric
intuition underlying them is explained in Section 2. It may be helpful, however,
to say a word here about the main idea.

Our starting point is the fact that the growth of an investment in s is best
gauged not by its simple returns sn but by its logarithmic returns ln(1 + sn)
(see, e.g., [2], p. 11). If we invest one unit in s at the beginning of the N periods,
reinvest all dividends as we proceed, and write Ws for the resulting wealth at
the end of N periods, then

1

N
lnWs =

1

N
ln

N∏
n=1

(1 + sn) =
1

N

N∑
n=1

ln(1 + sn).

So the Taylor expansion ln(1 + x) ≈ x− 1
2x

2 yields

1

N
lnWs ≈

1

N

N∑
n=1

(
sn −

1

2
s2n

)
= µs −

1

2
σ2
s . (5)

We call 1
N lnW ≈ µ − 1

2σ
2 the fundamental approximation of asset pricing. It

shows us that investors and speculators should be concerned with volatility even
if volatility does not measure risk, for volatility diminishes the final wealth that
one might expect from a given average simple return. Moreover, it establishes
approximate indifference curves in the (σ, µ)-plane for a speculator who is con-
cerned only with final wealth. As we explain in Subsections 2.2 and 2.4, we can
reason about these indifference curves in much the same way as the classical
CAPM reasons about an investor’s mean-variance indifference curves (see, e.g.,
[4], pp. 195–198), with similar results.

The imprecision of the approximations (1) and (2) arises partly from the
imprecision of the fundamental approximation and partly from the imprecision
of our efficient market hypothesis. We assume only that the market cannot be
beat by a substantial factor, not that it cannot be beat at all.
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1.4 Resemblance to the Classical CAPM

If we set µf := µm − σ2
m, then we can rewrite (1) in the form

µs ≈ µf + (µm − µf )
σsm
σ2
m

. (6)

This resembles the classical CAPM, which can be written as

E(R̃s) = Rf + (E(R̃m)−Rf )
Cov(R̃s, R̃m)

Var(R̃m)
, (7)

where Rf is the risk-free rate of return, and R̃s and R̃m are random vari-
ables whose realizations are the simple returns sn and mn, respectively (see [4],
Eq. (7.9) on p. 197). But it differs from the classical CAPM in three ways:

1. It replaces theoretical expected values, variances, and covariances with
empirical quantities. (The game-theoretic model has no probability mea-
sure and therefore no such theoretical quantities.)

2. It replaces an exact equation between theoretical quantities with an ap-
proximate equation between empirical quantities, with a precise error
bound derived from the fundamental approximation and an efficient mar-
ket hypothesis.

3. It replaces the risk-free rate of return with µm − σ2
m.

The two equations also differ fundamentally in what they can claim to ac-
complish. Because the left-hand side of the classical equation, Eq. (7), is the
expected value of s’s future return, we might imagine an investor using this
equation to predict s’s future price. This is a fantasy, because the theoretical
expected value, variance, and covariance on the right hand side of the equation
are not known to the investor (one could question whether they even exist in any
useful sense), but this fantasy motivates some of the interest in the equation; it
may even be responsible for the name “capital asset pricing model”. In contrast,
Eq. (6) clearly does not predict individual prices. It predicts only how s’s price
changes over time will be related, on average, to those for the market. It tells
how the average of s’s returns will be related to their empirical covariance with
returns on the market.

1.5 The Theoretical Performance Deficit

If we write Wm for the final wealth resulting from an initial investment of one
unit in the index m and Ws for the final wealth of a particular investor who
also begins with one unit capital, then

1

N
lnWm −

1

N
lnWs

FA

≈
(
µm −

1

2
σ2
m

)
−
(
µs −

1

2
σ2
s

)
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CAPM

≈ 1

2
σ2
s − σsm +

1

2
σ2
m =

1

2
σ2
s−m.

Here FA indicates use of the fundamental approximation, 1
N lnW ≈ µ − 1

2σ
2,

and CAPM indicates use of the game-theoretic CAPM, µs − µm ≈ σsm − σ2
m.

The final step uses the identity σ2
s−m = σ2

s − 2σsm + σ2
m, where s −m is the

vector of differences in the returns: s−m = (s1 −m1, . . . , sN −mN ).
So when an investor holds a fixed portfolio or follows some other strategy

that can be sold short, we should expect

1

N
lnWm −

1

N
lnWs ≈

1

2
σ2
s−m, (8)

and even when s cannot be sold short, we should expect

1

N
lnWm −

1

N
lnWs '

1

2
σ2
s−m. (9)

In words: s’s average logarithmic return can be expected to fall short of m’s by
approximately σ2

s−m/2, or by even more if there are difficulties in short selling.
The approximation (8) is made precise by Proposition 4, and the approximate
inequality (9) is made precise by Proposition 2.

We call σ2
s−m/2 the theoretical performance deficit for s. If we consider the

market index m a maximally diversified portfolio, then s’s theoretical perfor-
mance deficit can be attributed to insufficient diversification.

It is natural to decompose the vector of simple returns s into a part in the
direction of the vector m and a part orthogonal to m: s = βsm + e. Then we
have s−m = (βs − 1)m+ e, and

σ2
s−m = (βs − 1)2σ2

m + σ2
e .

Thus s’s theoretical performance deficit, σ2
s−m/2, decomposes into two parts:

deficit due to nonunit sensitivity to m:
1

2
(βs − 1)2σ2

m, (10)

and

deficit due to volatility orthogonal to m:
1

2
σ2
e . (11)

These two parts of the deficit represent two aspects of insufficient diversification.
Many other decompositions of σ2

s−m/2 are possible, corresponding to events
inside and outside the market. Such decompositions may be useful for analyzing
and comparing the performance of different mutual funds, especially funds that
do try to track the market.

There is nothing in our theory that would require the theoretical performance
deficit of a particular security or portfolio to persist from one period of time to
another. On the contrary, a persistence that is too predictable and substantial
would give a speculator an opportunity to beat the market by shorting that
security or portfolio, thus contradicting our efficient market hypothesis. But
in the case of an investor or fund whose strategy cannot be shorted because it
is not public information, persistence of the theoretical performance deficit or
certain components of that deficit cannot be ruled out. It would be interesting
to study the extent to which such persistence occurs.
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2 The Geometric Intuition

In this section, we explain the geometric intuition that underlies the game-
theoretic CAPM. This explanation will be repeated in a terser and more formal
way in the proofs in Appendix B.

We begin with what we call the capital market parabola for m: the curve in
the (σ, µ)-plane consisting of all volatility-return pairs that yield approximately
the same final wealth as m. The efficient market hypothesis for m says that
the volatility-return pair for the simple returns s achieved by any given investor
should fall under the capital market parabola for m, as should the volatility-
return pair for any particular mixture of m and s. In order for this to be true
for mixtures that contain mostly m and only a little s, the trajectory traced
by the volatility-return pair as s’s share in the mixture approaches zero must
be approximately tangent to the parabola. The formula that expresses this
conclusion is our CAPM: µs ≈ µm − σ2

m + σsm. The conclusion requires that
short selling of s be possible, so that the mixture can include a negative amount
of s; otherwise we can conclude only that the trajectory cannot approach the
parabola from above, and this yields only µs / µm − σ2

m + σsm.
There are two sources of inexactness. First, the capital market parabola is

only approximately an indifference curve for total wealth; this is the fundamental
approximation. Second, the efficient market hypothesis for m is itself only
approximately correct.

2.1 The Capital Market Parabola

As we saw in Subsection 1.3, a speculator who is concerned only with his final
wealth will be roughly indifferent between volatility-return pairs that have the
same value of µ− 1

2σ
2—i.e., volatility-return pairs that lie on the same parabola

µ = 1
2σ

2+c. Fig. 1 depicts two parabolas of this form in the half-plane consisting
of (σ, µ) with σ > 0. The parabola that lies higher in the figure corresponds to
a higher level of final wealth.

The efficient market hypothesis for the market index m implies that the
volatility-return pair achieved by a particular investor should lie approximately
on or below the final wealth parabola on which (σm, µm) lies. This is the
parabola

µ =
1

2
σ2 +

(
µm −

1

2
σ2
m

)
,

the capital market parabola (CMP) for m.
In general, the parabola that goes through the volatility-return pair for a

particular security or portfolio s,

µ =
1

2
σ2 +

(
µs −

1

2
σ2
s

)
, (12)

intersects the µ-axis at µs − 1
2σ

2
s . Because this is the constant simple return

that gives approximately the same final wealth as s, we call it s’s volatility-free
equivalent.
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6
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�
�
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�
�
�
�
��

E
E
E

(0, 0)

µs − 1
2σ

2
s

µm − 1
2σ

2
m r

(σs, µs)

r
(σm, µm)

µ = −σ

µ = σ

µ = 1
2σ

2 + (µs − 1
2σ

2
s)

CMP: µ = 1
2σ

2 + (µm − 1
2σ

2
m)

Figure 1: Indifference curves in the (σ, µ)-plane. Each curve is a parabola
of the form µ = 1

2σ
2+c for some constant c. A speculator who is concerned only

with final wealth will be approximately indifferent between two portfolios whose
volatility-return pairs lie on the same such parabola. This figure also illustrates
two additional points: (1) The indifference curve on which the market index
m lies is called the capital market parabola (CMP). (2) Because the minimum
uncentered volatility σ compatible with a positive average return µ is µ, the line
µ = σ represents the left-most boundary of the indifference curves in the positive
quadrant. This line appears almost vertical because µ and σ are measured on
very different scales; for a typical pair (σ, µ), σ2 and µ are of the same order of
magnitude, and so σ is much larger than µ.
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- σ

6
µ

(0, 0)

µm − 1
2σ

2
m

r(σm, µm)

r
(σs, µs)

CMP

Figure 2: Mixing m with an underperforming portfolio s. The curve
joining (σm, µm) and (σs, µs) is the trajectory traced by the volatility-return
pair for the portfolio εs+ (1− ε)m as ε varies from 0 to 1.

Strictly speaking, a constant simple return µ does not have zero volatility
when we use the uncentered definition; its volatility is

σ :=

√√√√ 1

N

N∑
n=1

µ2 = |µ|.

This is why the indifference curves in Fig. 1 do not quite reach the µ-axis; they
stop at the line µ = σ above the σ-axis and at the line µ = −σ below the σ-axis.
But the height of parabola (12)’s intersection with this line will be practically
the same as the height of its intersection with the µ-axis.

2.2 Mixing s and m: The Long CAPM

Suppose the speculator maintains a portfolio p that mixes s and m, say ε of s
and (1 − ε) of m, where 0 ≤ ε ≤ 1. (He rebalances at the beginning of every
period so that s always accounts for the fraction ε of p’s capital.) Under our
efficient market hypothesis, the volatility-return pair for p lies approximately
on or below the CMP no matter what the value of ε is. As ε varies between 0
and 1, (σp, µp) traces a trajectory, perhaps as indicated in Fig. 2. We have

µp = εµs + (1− ε)µm (13)

and
σp =

√
ε2σ2

s + 2ε(1− ε)σsm + (1− ε)2σ2
m. (14)
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Hence
∂µp
∂ε

∣∣∣
ε=0

= µs−µm and
∂σp
∂ε

∣∣∣
ε=0

=
σsm−σ2

m

σm
. (Cf. [4], p. 197.) If the second

of these two derivatives is nonzero, then their ratio,

µs − µm
(σsm − σ2

m)/σm
, (15)

is the slope of the tangent to the trajectory at (σm, µm).
Our goal here is to give a preliminary informal proof of the long CAPM—i.e.,

to understand why
µs − µm ≤ σsm − σ2

m (16)

should hold approximately. To this end, we consider four cases:

1. µs − µm ≤ 0 and σsm − σ2
m ≥ 0;

2. µs − µm ≥ 0 and σsm − σ2
m ≤ 0, but not both are equal to 0;

3. µs − µm > 0 and σsm − σ2
m > 0;

4. µs − µm < 0 and σsm − σ2
m < 0.

Any two real numbers are related to each other in one of these four ways.
In Case 1, we obtain (16) immediately: a nonpositive quantity cannot exceed

a nonnegative one. Fig. 2 is an example of this case. We see from the figure
that µs is below µm, and that the trajectory approaches (σm, µm) from the
southeast. So µs − µm is strictly negative and the slope (15) is negative; it
follows that σsm − σ2

m is positive.
Case 2 is ruled out by the efficient market hypothesis for m. It tells us that

µs is at least as large as µm, and because µp changes monotonically with ε, this
means that the trajectory must approach (σm, µm) from above or the side. It
also tells us that the slope (15) is negative unless one of the quantities is zero.
So the trajectory approaches (σm, µm) from the northwest (directly from the
west if µs − µm = 0, directly from the north if σsm − σ2

m = 0). This means
approaching (σm, µm) from above the CMP, in contradiction to our efficient
market hypothesis.

In Case 3, the slope of the trajectory at (σm, µm) is positive, and the tra-
jectory approaches (σm, µm) from the northeast. Because the trajectory must
lie under the CMP, its slope at (σm, µm) cannot exceed the CMP’s slope at
(σm, µm), which is σm:

µs − µm
(σsm − σ2

m)/σm
≤ σm.

Multiplying both sides by the denominator, we obtain (16).
Case 4 is similar to Case 3; the slope is again positive, but now the approach

is from the southwest, and so staying under the CMP requires that the slope be
at least as great:

µs − µm
(σsm − σ2

m)/σm
≥ σm.

This time the denominator is negative, and so multiplying both sides by it again
yields (16).
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µm − σ2
m
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(σm, µm)

CMP

CML: µ = (µm − σ2
m) + σmσ

Figure 3: The capital market line (CML). This is the line tangent to the
capital market parabola at (σm, µm). Our efficient market hypothesis implies
that the volatility-return pair for a particular security or portfolio s should fall
approximately on or below this line, even when a speculator cannot sell s short.

2.3 The Capital Market Line

We should pause to note that the approximate inequality that we have just
argued for,

µs / µm − σ2
m + σsm, (17)

implies a strengthening of the statement that (σs, µs) should be approximately
on or below the capital market parabola in the (σ, µ)-plane. This pair should
also be approximately on or below the line tangent to this parabola at (σm, µm).
(See Fig. 3.)

To see this, it suffices to rewrite (17) in the form

µs / µm − σ2
m + ρsmσmσs,

where ρsm is the uncentered correlation coefficient between s and m. Because
ρsm ≤ 1, this implies

µs / µm − σ2
m + σmσs. (18)

In other words, (σs, µs) must lie approximately on or below the line

µ = (µm − σ2
m) + σmσ. (19)

This line, which we call the capital market line (CML), is the tangent to the
CMP at (σm, µm).
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Figure 4: A trajectory for the long-short case. In the long-short case, the
trajectory traced by the volatility-return pair for εs+(1−ε)m as ε varies from 0
to 1 must (1) approach (σm, µm) directly from the east, or (2) be tangent to the
CMP (and therefore also to the CML) at (σm, µm). In this figure, it is tangent
and approaches from the northeast. It could also approach from the southwest.

2.4 Shorting s to Go Longer in m: The Long-Short CAPM

If our speculator is allowed to short s in order to go longer in m, then he can
take ε past zero into negative territory. This means extending the trajectory in
the direction it is pointing as it approaches (σm, µm).

We evidently have a problem if the trajectory approaches the CMP as in
Fig. 2. In such a case, extending the trajectory past (σm, µm) by going short
in s a small amount ε means extending the trajectory above the CMP, in con-
tradiction to our efficient market hypothesis. So such trajectories are ruled out
when the speculator is allowed to sell s short.

There are only two conditions under which selling s short by a small amount
ε will not move the speculator above the CMP:

1. If the partial derivatives (13) and (14) are both zero, then selling s short
by a small amount ε will have no first-order effect; the pair (σp, µp) will
remain approximately equal to (σm, µm).

2. If the trajectory is approximately tangent to the CMP at (σm, µm), as
in Fig. 4, then the speculator will remain under the CMP even if he can
extend the trajectory a small amount past (σm, µm).
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The long-short CAPM,
µs ≈ µm − σ2

m + σsm,

holds under both conditions. It holds under the first condition because µs−µm
and σsm − σ2

m are both zero. It holds under the second condition because the
slope (15) is approximately σm.

It may be helpful to elaborate some further implications of the first of the
two conditions. From µs − µm = 0, we find that µp is constant: µp = µs = µm.
From σsm−σ2

m = 0, we find that s = m+e, where e is orthogonal to m, so that
p = m+ εe and σ2

p = σ2
m + ε2σ2

e . Geometrically, this means that the trajectory
approaches (σm, µm) directly from the east as ε moves from 1 down to 0, and
then eventually moves directly back east as ε moves substantially into negative
territory.

3 Quantifying Our Efficient Market Hypotheses

No matter what market, what period of time, and what index m we choose, we
can retrospectively find strategies and perhaps even securities that do beat m
by a substantial factor. A strategy that shifts at the beginning of each day to
those securities that increase in price the most that day will usually beat any
index spectacularly. So what do we mean when we say that a speculator cannot
beat m by a substantial factor? We mean that we do not expect any particular
speculator (or any particular security, portfolio, or strategy selected in advance)
to do much better than the market. We do not expect the speculator’s final
wealth to exceed by a large factor the final wealth that he would have achieved
simply by investing his initial wealth in the market index m. The larger the
factor, the stronger our expectation. If α is a positive number very close to zero,
and the speculator starts with initial wealth equal to one monetary unit, then
we strongly expect his final wealth will be less than 1

αWm, where Wm is the
final wealth obtained by investing one monetary unit in m at the outset. This
is an expectation about the market’s behavior: the market will follow a course
that makes the speculator’s wealth less than 1

αWm.
In this section, we review some ideas from [6], where this way of quantify-

ing efficient market hypotheses is given a natural game-theoretic foundation. In
Subsection 3.1, we formulate the basic capital asset pricing game (basic CAPG).
In Subsections 3.2 and 3.3, we discuss how this game, in itself only a mathemati-
cal object, can be used to model securities markets. In Subsection 3.4, we define
two variations on the basic CAPG, which provide the settings for the precise
mathematical formulations of the long CAPM and the long-short CAPM that
we present later, in Section 4.

3.1 The Basic Capital Asset Pricing Game

The capital asset pricing game has two principal players, Speculator and
Market, who alternate play. In each round, Speculator decides how much
of each security in the market to hold (and possibly short), and then Market
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determines Speculator’s gain by deciding how the prices of the securities
change. Allied with Market is a third player, Investor, who also invests
each day. The game is a perfect-information game: each player sees the others’
moves.

We assume that there are K + 1 securities in the market and N rounds
(trading periods) in the game. We number the securities from 0 to K and the
rounds from 1 to N , and we write xkn for the simple return on security k in
round n. For simplicity, we assume that −1 < xkn < ∞ for all k and n; a
security price never becomes zero. We write xn for the vector (x0n, . . . , x

K
n ),

which lies in (−1,∞)K+1. Market determines the returns; xn is his move in
the nth round. We assume that the first security, indexed by 0, is our market
index m; thus x0n is the same as mn, the simple return of the market index m
in round n. If m is a portfolio formed from the other securities, then x0n is an
average of the x1n, . . . , x

K
n , but we do not insist on this.

We write Mn for the wealth at the end of round n resulting from investing
one monetary unit in m at the beginning of the game:

Mn :=

n∏
i=1

(1 + x0i ) =

n∏
i=1

(1 +mi).

ThusMN is the final wealth resulting from this investment. This is the quantity
we earlier designated by Wm.

Investor begins with capital equal to one monetary unit and is allowed to
redistribute his current capital across all K + 1 securities in each round. If we
write Gn for his wealth at the end of the nth round, then

Gn :=

n∏
i=1

K∑
k=0

gki (1 + xki ),

where gki is the fraction of his wealth he holds in security k during the ith
round. This is negative if he is selling k short. The gki must sum to 1 over k.
Investor’s final wealth is GN . Thus GN is the same as what we earlier called
Ws. We will also write sn for Investor’s simple return in round n:

sn :=
Gn − Gn−1
Gn−1

=
∑
k

gknx
k
n. (20)

We call the set of all possible sequences (g1, x1, . . . , gN , xN ) the sample space
of the game, and we designate it by Ω. We call any subset of Ω an event.
Any statement about Investor’s returns determines an event, as does any
comparison of Investor’s and Market’s returns.

Speculator also starts with one monetary unit and is allowed to redis-
tribute his current capital across all K + 1 securities in each round. We write
Hn for his wealth at the end of the nth round:

Hn :=

n∏
i=1

K∑
k=0

hki (1 + xki ),
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where hki is the fraction of his wealth he holds in security k during the ith round.
The moves by Speculator are not recorded in the sample space; they do not
define events.

To complete the specification of the game, we select a number α and an
event A, and we agree that Speculator will win the game if he beats the
index by the factor 1

α or if A happens. The number α is our significance level,
and the event A is Speculator’s auxiliary goal. This auxiliary goal might, for
example, be the event that Investor’s average simple return µs approximates
µm − σ2

m + σsm to some specified accuracy.

Basic Capital Asset Pricing Game (Basic CAPG)
Players: Investor, Market, Speculator
Parameters:

Natural number K (number of non-index securities in the market)
Natural number N (number of rounds or trading periods)
Real number α satisfying 0 < α ≤ 1 (significance level)
A ⊆ Ω (auxiliary goal)

Protocol:
G0 := 1.
H0 := 1.
M0 := 1.
FOR n = 1, 2, . . . , N :

Investor selects gn ∈ RK+1 such that
∑K
k=0 g

k
n = 1.

Speculator selects hn ∈ RK+1 such that
∑K
k=0 h

k
n = 1.

Market selects xn ∈ (−1,∞)K+1.

Gn := Gn−1
∑K
k=0 g

k
n(1 + xkn).

Hn := Hn−1
∑K
k=0 h

k
n(1 + xkn).

Mn :=Mn−1(1 + x0n).
Winner: Speculator wins if Hn ≥ 0 for n = 1, . . . , N and either (1) HN ≥
1
αMN or (2) (g1, x1, . . . , gN , xN ) ∈ A. Otherwise Investor and Market win.

The requirement that Speculator keep Hn nonnegative in order to win
formalizes the idea that he has limited means. It ensures that when HN ≥
1
αMN , he really has turned an initial capital of only one monetary unit into
1
αMN . If he were allowed to continue on to the (n+ 1)st round when Hn < 0,
he would be borrowing money—i.e., drawing on a larger capital—and if he then
finally achieved HN ≥ 1

αMN , it would not be fair to credit him with doing so
with his limited initial means of only one monetary unit. Because Speculator
must keep Hn always nonnegative in order to win, a strategy for Speculator
cannot guarantee his winning if it permits the other players to force Hn < 0
for some n. In other words, a winning strategy for Speculator cannot risk
bankruptcy.

Formally, the basic CAPG allows Speculator to sell securities short. How-
ever, if Speculator sells security k short in round n, then Market has the
option of making the return xkn so large that Hn becomes negative, resulting
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in Speculator’s immediately losing the game. So no winning strategy for
Speculator can involve short selling. In Subsection 3.4, we discuss how the
rules of the game can be modified to make short selling a real possibility for
Speculator.

3.2 Predictions from the Efficient Market Hypothesis

In order for Speculator to win our game, either he must become very rich
relative to the market index m (he beats m by the factor 1

α ) or else the event A
must happen. In the next section, we will show that for certain choices of A and
α, Speculator can win—he has a winning strategy. But our efficient market
hypothesis predicts that the market will not allow him to become very rich
relative to m, and this implies that A will happen. In this sense, our efficient
market hypothesis predicts that A will happen.

To formalize this idea, we make the following definition: The efficient market
hypothesis for m predicts the event A at level α if Speculator has a winning
strategy in the basic CAPG with A as the auxiliary goal and α as the significance
level.

As we explained earlier, our confidence that Speculator will not beat the
market by 1

α is greater for smaller α. So a prediction of A at level α becomes
more emphatic as α decreases.

3.3 Is the Game Realistic?

We relate the game to an actual securities market by thinking of Investor
as a particular individual investor or fund. Investor may do whatever a real
investor may do: he may follow some particular static strategy (hold only a
particular security or portfolio); he may follow some particular dynamic strat-
egy; or he may play opportunistically, without any strategy chosen in advance.
Market represents all the other participants in the market. Because Market
and Investor play the game as a team against Speculator, we can even
think of Market as representing all the participants in the market, including
Investor.

Speculator need not represent a real investor. He represents the hypothet-
ical investor referred to by our efficient market hypothesis: he cannot multiply
his initial capital by a substantial factor relative to the index m. We have Spec-
ulator move after Investor so that he knows what Investor is doing with
his capital and can replicate it with part of his own capital.

The winning strategies for Speculator that we construct to prove our
propositions are simple: Speculator mixes Investor’s moves with m, per-
haps going short in Investor’s moves to go longer in m. Because these simple
strategies are sufficient, the efficient market hypothesis that we need in order
to draw our practical conclusions from the propositions is sometimes relatively
weak. Instead of assuming that no speculator can beat the market by a large
factor, no matter how smart and imaginative he is, it is enough to assume that
no speculator can beat m by a large factor using strategies at most slightly more
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complicated than those used by the investors or funds whose performance we
are studying.

3.4 The Long and Long-Short Capital Asset Pricing
Games

We do not actually use the basic CAPG for our mathematical work in the next
section. Instead, we use two variations, which we call the long CAPG and the
long-short CAPG.

Both the long CAPG and the long-short CAPG are obtained from the basic
CAPG by restricting how the players can move:

• The long CAPG is obtained by replacing the condition gn ∈ RK+1 in the
protocol for the basic CAPG by the condition gn ∈ [0,∞)K+1. In other
words, Investor is forbidden to sell securities short.

• The long-short CAPG has two extra parameters: a positive constant C
(perhaps very large), and a constant δ ∈ (0, 1) (perhaps very small). It
is obtained by replacing the condition gn ∈ RK+1 in the protocol for the
basic CAPG by the condition gn ∈ [0,∞)K+1 and replacing the condition
xn ∈ (−1,∞)K+1 by the conditions xn ∈ (−1, C]K+1 and mn ≥ −1 + δ.
(Remember that mn = x0n.) In other words, Investor is not allowed
to sell short, and Market is constrained so that an individual security
cannot increase too much in value in a single round and the market index
m cannot lose too much of its value in a single round. These constraints
on Investor and Market make it possible for Speculator to go short
in Investor’s moves, at least a bit, without risking bankruptcy.

The concept of prediction is defined for these games just as for the basic CAPG:
The efficient market hypothesis for m predicts A at level α for one of the games
if Speculator has a winning strategy in that game with A as the auxiliary
goal and α as the significance level. In Subsections 4.1 and 4.2 we show that
certain events are predicted at level α in the long CAPG. In Subsections 4.3
and 4.4 we show that certain events are predicted at level α in the long-short
CAPG.

Because Market remains unconstrained in the long CAPG, the lesson we
learned for the basic CAPG at the end of Section 3.1 applies: No winning
strategy for Speculator can go short, because Market can bankrupt him
whenever he does go short. This will be confirmed in Subsections 4.1 and 4.2;
the strategies for Speculator used there never go short. These strategies
do need to go long in Investor’s move, and this is why the condition that
Investor not sell short is needed as a rule of the long game. An alternative
way of making sure that Speculator can go long in Investor’s move without
risking bankruptcy would be to make it a rule of the game that Investor and
Market must move so that Investor never goes bankrupt: they would be
required to choose gn and xn so that sn > −1 (see Eq. (20)).
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We can similarly weaken the constraints on Investor and Market in the
long-short CAPG: Require only that (1) mn ≥ −1 + δ (the market index never
drops too much in a single round) and (2) −1 < sn ≤ C (Investor never
becomes bankrupt and never makes too great a return in a single round).

4 Precise Mathematical Results

We now state four propositions that express precisely, within the game-theoretic
framework, the assertions that we outlined informally in Section 1. Proofs of
these propositions are provided in Appendix B.

To simplify the statement of the propositions, we define functions Φ and φ
by

Φ(x) :=
1

3
x3 and φ(x) :=

1

3

(
x

1 + x

)3

.

4.1 The Long CAPM

Our first proposition translates the approximate inequality that we call the long
CAPM, Eq. (2), into a precise inequality.

Proposition 1. For any α ∈ (0, 1] and any ε ∈ (0, 1], the efficient market
hypothesis for m predicts

µs − µm + σ2
m − σsm <

E

ε
+

ln 1
α

Nε
+
εσ2
s−m
2

(21)

at level α in the long CAPG, where

E :=
1

N

N∑
n=1

(
Φ(mn)− φ((1− ε)mn + εsn)

)
. (22)

The quantity E bounds the accuracy of the fundamental approximation. It
is awkwardly complicated because we have made the bound as tight as possible.
In theory, E can be negative, but it is typically positive, and certainly the
right-hand side of (21) as a whole is typically positive.

Although Proposition 1 is valid as stated, for any natural number N , any
α ∈ (0, 1], and any ε ∈ (0, 1], its theoretical significance is greatest when these
parameters are chosen so that the right-hand side of (21) is small in absolute
value relative to the typical size of the individual terms on the left-hand side,
µs, µm, σ2

m, and σsm. When this is so, (21) can be read roughly as µs − µm +
σ2
m − σsm / 0, or µs / µm − σ2

m + σsm.
In this paragraph, we will use the phrase relatively small to mean “small in

absolute value relative to the typical size of µs, µm, σ2
m, and σsm”. In order for

the right-hand side of (21) to be relatively small, we need all three of its terms
to be relatively small. To see what this involves, let us look at these three terms
individually:
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• The theoretical performance deficit σ2
s−m/2, which measures s’s lack of

diversification, is typically of the same order of magnitude as µs, µm, σ2
m,

and σsm. So we need to make ε small.

• To make our efficient market hypothesis realistic, we must choose α sig-

nificantly less than one. So in order to make the term ln(1/α)
Nε relatively

small, we must make the number of rounds N large even relative to 1/ε.
Because the typical size of µs, µm, σ2

m, and σsm decrease when the time
period for each round is made shorter, it is not enough to make N large
by making these individual time periods short. We must make the total
period of time studied long.

• Once we have chosen a small ε, we must make E extremely small in order to
make E/ε relatively small. Because E is essentially the difference between
two averages of the third moments of the returns, we can make it extremely
small by making the individual trading periods sufficiently short.

To summarize, we can hope to get a tight bound in (21) only if we choose ε
small and consider frequent returns (perhaps daily returns) over a long period
of time.

These points can be made much more clearly by a more formal analysis of
the asymptotics. Fix arbitrarily small α > 0 and ε > 0. (We make ε small
because we need it small; we make α small to show that we can tolerate it
small.) Suppose trading happens during an interval of time [0, T ] that is split
into N subintervals of length dt = T/N , and let T → ∞ and dt → 0. We can
expect that sn and mn will have the order of magnitude (dt)1/2, E will have the
order of magnitude (dt)3/2, and µs, µm, σ2

m, σsm, σ2
s−m will all have the order of

magnitude dt; this holds both in the usual theory of diffusion processes and in
the game-theoretic framework (for a partial explanation, see [6], Chapter 9). So

the right-hand side of (21) will not exceed O
(
(dt)3/2 + dt

T

)
+

εσ2
s−m
2 . For small

enough ε, this should be much less than dt, the typical order of magnitude for
µs, µm, σ2

m, and σsm.
The data we consider in Section 5 are only monthly and cover only a few

decades, and so they do not allow us to achieve the happy results suggested by
these extreme asymptotics. In fact, the tightest bounds we can achieve with
these data occur when we choose ε relatively large.

4.2 The Theoretical Performance Deficit for Long Mar-
kets

The next proposition is a precise statement about the theoretical performance
deficit σ2

s−m/2.

Proposition 2. For any α ∈ (0, 1] and any ε ∈ (0, 1], the efficient market
hypothesis for m predicts that

1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m <

E1

ε
+ E2 +

ln 1
α

Nε
+
ε

2
σ2
s−m
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at level α in the long CAPG, where

E1 :=
1

N

N∑
n=1

(
Φ(mn)− φ((1− ε)mn + εsn)

)
and

E2 :=
1

N

N∑
n=1

(
Φ(sn)− φ(mn)

)
.

This time we have broken the error stemming from the fundamental approx-
imation into two parts. The first part, E1/ε, usually increases as ε is made
smaller, while the second part, E2, is not affected by ε.

Again, we aim to choose α and ε so that α defines a reasonable efficient
market hypothesis but the total error, in this case

E1

ε
+ E2 +

ln 1
α

Nε
+
ε

2
σ2
s−m, (23)

is small. When this is achieved, the proposition says that 1
N lnWs− 1

N lnWm +
1
2σ

2
s−m / 0, or

1

N
lnWm −

1

N
lnWs '

1

2
σ2
s−m.

In order for this to validate the theoretical performance deficit σ2
s−m/2 as a

measure of s’s performance, we need the error (23) to be small relative to all
three terms in this approximate inequality. This evidently requires ε itself to be
small. When ε = 1, (23) is larger than σ2

s−m/2.

4.3 The Long-Short CAPM

Now we turn to the long-short case.

Proposition 3. For any ε ∈
(

0, δ
1+C

)
and α ∈ (0, 1], the efficient market

hypothesis for m predicts that∣∣µs − µm + σ2
m − σsm

∣∣ < E

ε
+

ln 2
α

Nε
+
ε

2
σ2
s−m

at level α in the long-short CAPG with parameters C and δ, where

E := max
j∈{−1,1}

1

N

N∑
n=1

(
Φ(mn)− φ((1− jε)mn + jεsn)

)
.

4.4 The Theoretical Performance Deficit for Long-Short
Markets

Proposition 4. For any α ∈ (0, 1] and any ε ∈
(

0, δ
1+C

)
, the efficient market

hypothesis for m predicts∣∣∣∣ 1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m

∣∣∣∣ < E1

ε
+ E2 +

ln 2
α

Nε
+
ε

2
σ2
s−m
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at level α in the long-short CAPG, where

E1 := max
j∈{−1,1}

1

N

N∑
n=1

(
Φ(mn)− φ((1− jε)mn + jεsn)

)
and

E2 := max

(
1

N

N∑
n=1

(
Φ(sn)− φ(mn)

)
,

1

N

N∑
n=1

(
Φ(mn)− φ(sn)

))
.

5 Some Empirical Examples

In this section, we check the game-theoretic CAPM’s predictions against data
on returns over three or four decades for a few well known stocks. We also
investigate what the game-theoretic CAPM says about the equity premium by
looking at two much longer sequences of returns for government and commer-
cial bonds, one for the United States and one for Britain. All our tests use
monthly data, with significance level α = 0.5, corresponding to the hypothesis
that Speculator cannot do twice as well as the market index m, and mixing
coefficient ε = 1.

Empirical tests of the classical CAPM do not emphasize returns on individ-
ual stocks. The classical CAPM cannot be tested at all until it is combined
with additional hypotheses about the variability of individual securities, and
in order to avoid putting the weight of a test on these additional hypotheses,
one emphasizes portfolios, sometimes across entire industries, instead of indi-
vidual securities. Moreover, even studies on returns from portfolios tend to be
inconclusive, because of the substantial remaining variability orthogonal to the
market and because the additional hypotheses still play a large role. Because
the efficient market hypothesis is much weaker than the assumptions that go
into the classical CAPM, we do not expect the game-theoretic CAPM to provide
tighter bounds than the classical CAPM. So in order to find examples where
the game-theoretic CAPM provides reasonably tight bounds on the relation be-
tween average return and volatility, or where the theoretical performance deficit
provides an interesting bound on performance, we will probably need to look at
large portfolios.

Moreover, the asymptotic analysis in Section 4.1 suggests that we will need
to look at longer periods of time, perhaps with data sampled daily, in order
to get tight bounds. And even a good understanding of how often the efficient
market hypothesis at a given significance level is valid for individual securities
in a given market would require a comprehensive and careful study, with due
attention to survivorship bias and other biases.

This section should, however, make clear how our results can be applied to
data. It shows the kinds of bounds that the game-theoretic CAPM can achieve
with no assumptions beyond the level α for the efficient market hypothesis.
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Table 1: The Twelve Stocks. The number N , the number of monthly returns,
is one less than the number of months for which we have data.

Company Ticker Code Time Period N

IBM IBM January 1962–June 2001 473

General Electric GE January 1962–June 2001 473

Microsoft MSFT March 1986–June 2001 183

Boeing BA January 1970–June 2001 377

Du Pont (E.I.) de Nemours DD January 1970–June 2001 377

Consolidated Edison ED January 1970–June 2001 377

Eastman Kodak EK January 1970–June 2001 377

General Motors GM January 1970–June 2001 377

Procter and Gamble PG January 1970–June 2001 377

Sears/Roebuck S January 1970–June 2001 377

AT&T T January 1970–June 2001 377

Texaco TX January 1970–June 2001 377

5.1 Twelve Stocks

The twelve stocks we now consider are listed in Table 1. They are hardly a
random or representative sample. We chose them because of their familiarity.
We did choose them, however, before making the calculations shown here; no
other companies were chosen and then omitted because of the results they gave.
As the market index m, we use the S&P 500. Our data are from Yahoo.

As we have already mentioned, we use α = 0.5 and ε = 1. The rationale for
this choice in the long-short case is slightly different than in the long case.

• In the long-short case, the choice ε = 1 is theoretically problematic, be-
cause Propositions 3 and 4 require ε < δ

1+C , while the values of δ and C
for which the returns from the companies would satisfy the conditions of
the long-short game would make δ

1+C less than one. But it is nevertheless
the most informative choice: (1) it gives tighter bounds than any other
ε ∈ (0, 1] for all twelve companies, and (2) these tightest bounds are sat-
isfied by most of the twelve companies, and this makes it clear that they
are also satisfied for other choices of ε. It is also true that δ can be chosen
close enough to 1 and C close enough to 0 that ε can be made close enough
to 1 as to produce legitimate bounds approximately equal to the ones we
obtain for ε = 1.

• In the long case, the choice ε = 1 is theoretically allowed. It does not
always produce the tightest bounds, but the difference is never very great,
and there is no clear rationale for choosing any other particular value of ε
in advance of seeing the data.

With α = 0.5 and ε = 1, the CAPM inequalities are:

• Long-Short CAPM Inequality (Proposition 3) with α = 0.5 and
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Table 2: CAPM Empirical Results. This table gives numerical values for
the twelve stocks discussed in Subsection 5.1 and the two bond series discussed
in Subsection 5.2. In parentheses after the ticker code for the stock (or the
abbreviation USA or UK) we give the ratio Ws/Wm, a direct measure of per-
formance. All other numerical values are in basis points (1bp = 0.0001). The
numbers not in parentheses are for the long-short inequality (Proposition 3).
LHS, with the minus signs removed, is the left-hand side of that inequality;
RHS is the right-hand side. For the long inequality (Proposition 1), use the
values in parentheses for RHS and E, halve the value of 2 ln 2

N , and restore the
minus sign on the LHS.

Code (Ws/Wm) µs µm σ2m σsm LHS RHS E 1
N

2 ln 2 1
2
σ2s−m

IBM (0.23) 83.1 99.4 19.6 18.7 −15.4 46.2 (31.4) 0.6 (0.4) 29.3 16.3

GE (0.91) 108.9 99.4 19.6 22.6 6.4 38.6 (23.5) 0.4 (0.0) 29.3 8.9

MSFT (50.3) 401.8 121.7 21.6 35.1 266.6 142.9 (97.1) 8.1 (0.2) 75.8 59.0

BA (1.7) 161.8 110.6 21.2 24.1 48.2 76.6 (54.9) 4.4 (1.1) 36.8 35.4

DD (0.76) 116.9 110.6 21.2 20.1 7.4 53.0 (33.9) 1.2 (0.4) 36.8 15.0

ED (1.3) 133.2 110.6 21.2 10.3 33.5 77.0 (54.9) 15.4 (11.7) 36.8 24.8

EK (0.12) 67.2 110.6 21.2 16.2 −38.4 56.7 (38.3) 1.6 (1.6) 36.8 18.4

GM (0.32) 97.6 110.6 21.2 19.0 −10.8 57.6 (39.2) 1.1 (1.1) 36.8 19.7

PG (0.43) 97.3 110.6 21.2 15.3 −7.4 53.1 (34.8) 1.5 (1.5) 36.8 14.8

S (0.032) 42.2 110.6 21.2 20.7 −68.0 65.5 (47.1) 6.4 (6.4) 36.8 22.3

T (0.016) 31.1 110.6 21.2 15.3 −73.6 280.8 (262.5) 217.3 (217.3) 36.8 26.7

TX (0.84) 117.2 110.6 21.2 14.9 12.9 56.6 (36.5) 1.5 (−0.1) 36.8 18.2

USA (0.0031) 36.2 84.7 23.7 0.3 −25.1 35.6 (16.4) 15.0 (0.3) 8.9 11.7

UK (0.0097) 41.7 55.7 11.3 4.5 −7.3 13.2 (8.0) 5.4 (0.2) 3.8 5.9

ε = 1 ∣∣µs − µm + σ2
m − σsm

∣∣ < E +
2 ln 2

N
+

1

2
σ2
s−m.

• Long CAPM Inequality (Proposition 1) with α = 0.5 and ε = 1

µs − µm + σ2
m − σsm < E +

ln 2

N
+

1

2
σ2
s−m.

(Remember that both E and N depend on the stock, and E is not the same in
the long as in the long-short case.) In Table 2, we report numerical values for
these inequalities for our twelve companies.

Microsoft and Sears are the only stocks for which our bounds do not hold.
Microsoft’s spectacular performance violated both the long-short inequality
(which reduces to 266.6 < 142.9 in this case) and the long inequality (which
reduces to 266.6 < 97.1). Sears’s impressive underperformance violated the
long-short inequality (68.0 < 65.5) but not, of course, the long inequality
(−68.0 < 47.1). Both performances can reasonably be put into the category
of unusual events that could not have been anticipated, and for this reason the
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violations do not make us uncomfortable with our efficient market hypothesis.
One other stock, AT&T, also falls outside our expectations. Our bounds hold
for this stock, but the error in the fundamental approximation (E = 217.3) is
so great that these bounds are uninteresting; this error seems to be the result
of a fall in share price from 32.52 to 8.34 in a single month, February 1984.

The information in Table 2 is sufficient to enable the reader to calculate our
bounds for any other significance level α and for any other mixing coefficient ε.

Now we consider how well the twelve companies satisfy the bounds our the-
ory gives for the theoretical performance deficit (TPD). In this case, we are
considering the following inequalities:

• Long-Short TPD Inequality (Proposition 4) with α = 0.5 and
ε = 1 ∣∣∣∣ 1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m

∣∣∣∣ < E1 + E2 +
2 ln 2

N
+

1

2
σ2
s−m.

• Long TPD Inequality (Proposition 2) with α = 0.5 and ε = 1

1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m < E1 + E2 +

ln 2

N
+

1

2
σ2
s−m.

As we noted in the preceding section, we do not get interesting bounds for the
theoretical performance deficit when ε = 1, and this is evident here from the fact
that the deficit appears on both sides of each inequality. We can nevertheless
look at the bounds as a check on our efficient market hypothesis. Table 3 reports
results for the same companies and the same periods as Table 2. On the whole,
the numbers are quite close to those in Table 2, but this time only Microsoft
violates the bounds.

5.2 The Equity Premium

We can apply the game-theoretic CAPM to bonds as well as to stocks, provided
that we adopt the appropriate efficient market hypothesis: a speculator cannot
substantially beat the index m when he is allowed to hold (and also short, if we
want to apply the long-short CAPM) both m and the bonds. We now report on
the results of applying the model to two series of bond returns, one American
and one British. The sources of our data are listed in Table 4, and our results
are summarized in the last two rows of Tables 2 and 3.

The numbers in Table 2 confirm the usual result that bonds fall below the
security market line: µs − µm + σ2

m − σsm is negative for both series. For the
American series, this CAPM deficit is −25.1bp, and for the British series, it is
−7.3bp. Because these values are negative, the long CAPM is automatically
satisfied.

The long-short CAPM is also satisfied for both series (25.1 < 35.6 and 7.3 <
13.2). These are only the results for α = 0.5 and ε = 1, but because the error
E in the fundamental approximation is substantial, changing these parameters
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Table 3: TPD Empirical Results. The same conventions are used as in the
preceding table.

Code 1
N

lnWs
1
N

lnWm
1
2
σ2s−m LHS RHS E1 + E2

1
N

2 ln 2 1
2
σ2s−m

IBM 58.3 89.6 16.3 −15.0 47.0 (32.2) 1.4 (1.2) 29.3 16.3

GE 87.7 89.6 8.9 7.0 39.4 (24.4) 1.3 (0.8) 29.3 8.9

MSFT 324.9 110.8 59.0 273.2 152.4 (106.6) 17.6 (9.7) 75.8 59.0

BA 114.7 100.1 35.4 50.0 79.6 (57.9) 7.4 (4.1) 36.8 35.4

DD 92.8 100.1 15.0 7.7 53.8 (34.6) 2.0 (1.2) 36.8 15.0

ED 107.7 100.1 24.8 32.5 88.7 (55.3) 27.1 (12.1) 36.8 24.8

EK 43.0 100.1 18.4 −38.7 58.2 (38.6) 3.1 (1.8) 36.8 18.4

GM 69.6 100.1 19.7 −10.7 58.7 (39.9) 2.2 (1.8) 36.8 19.7

PG 77.6 100.1 14.8 −7.7 54.7 (34.9) 3.1 (1.7) 36.8 14.8

S 8.4 100.1 22.3 −69.3 71.8 (46.7) 12.8 (6.0) 36.8 22.3

T −9.4 100.1 26.7 −82.7 498.2 (259.4) 434.7 (214.3) 36.8 26.7

TX 95.6 100.1 18.2 13.8 57.9 (37.9) 2.9 (1.2) 36.8 18.2

USA 36.1 73.0 11.7 −25.3 35.9 (16.8) 15.4 (0.7) 8.9 11.7

UK 37.4 50.2 6.0 −6.9 16.0 (8.9) 6.3 (1.1) 3.8 5.9

will not make much difference. Table 3 shows that the TPD inequalities are
also satisfied by both series.

The amount by which bonds fall below the security market line can be
thought of as the equity premium—a premium paid for holding equity that
has the same covariance with the market as bond. Our results show that an
equity premium may exist but that it remains within the bounds of our model
and hence does not violate our efficient market hypothesis.

6 Discussion

The purpose of this article is to introduce, as clearly as possible, a completely
game-theoretic capital asset pricing model, derived from an efficient market
hypothesis alone, with no assumptions about the beliefs or preferences of in-
vestors. The efficient market hypothesis is very weak; as we have seen, it really
says only that a speculator cannot beat the market by a substantial factor using
some rather obvious strategies. The predictions of this game-theoretic model
are loose, in the sense that they give fairly wide bounds on the relation between
average return and covariance with the market. But these bounds are them-
selves quite precise and can therefore be tested with no auxiliary stochastic
model for individual returns. Because of this precision, the new game-theoretic
model compares favorably with the classical CAPM, raising the question of
whether the classical model’s much stronger assumptions give it any greater
predictive power. It also raises the question of whether the established general-
izations of the classical CAPM, which also rely on stochastic assumptions and
on assumptions about the beliefs and preferences of investors, are headed in the
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Table 4: The Two Bond Series. These two series of bond returns were obtained
from Global Financial Data (GFD). In the case of the British series, the GFD
files listed were supplemented by earlier data provided to us directly by GFD’s
Bryan Taylor. Once again, the number N of monthly returns is one less than
the number of months for which we have data.

American Series British Series

Code USA UK

Time Period January 1871–June 2001 June 1700–June 2001

N 1565 3612

s Name

USA Total Return

Commercial/T-bill

Index

United Kingdom 10-year

Government Bond

Total Return Index

GFD File TRUSABIM.csv TRGBRGVM.csv

m Name
S&P 500 Composite

Total Return Index

UK FT-Actuaries All-Share

Total Return Index

GFD File TRSPXM.csv TFTASM.csv

right direction. The game-theoretic approach, which begins with an appropri-
ate recognition of the role of speculation in governing the market, may be more
fruitful.
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A Lower and Upper Probability

Starting with our notion of prediction at level α, we can recover the definitions
of upper and lower probability mentioned in the introduction.

Prediction at level α being more emphatic when α is smaller, it is natural
to code prediction at level α as belief of strength 1−α. For example, when A is
predicted at the 5% level, we might assert 95% belief in A’s happening. Taking
lower probability to be strength of belief in this sense leads to PA = 1 − αA,
where

αA := inf
{
α | 0 < α ≤ 1 and EMH predicts A at level α

}
, (24)

EMH being our efficient market hypothesis. Roughly speaking (because the
infimum in (24) might not be attained), this says that PA is the degree of belief
corresponding to the smallest α such that A is predicted at level α. Because
Speculator has a winning strategy for the goal A when α = 1 (buy and hold
security 0), we always have 0 ≤ αA ≤ 1 and hence 0 ≤ PA ≤ 1.

The relationship PA = 1− PAc gives

PA = inf
{
α | 0 < α ≤ 1 and EMH predicts Ac at level α

}
= inf

{
α | 0 < α ≤ 1 and Speculator can multiply his capital by

1

α

without risking bankruptcy if A happens
}
. (25)
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This agrees with the definition of upper probability in the introduction. It can
be shown, using the fact that Speculator cannot make money for sure in the
game, that PA ≤ PA (see [6], pp. 14–15).

We can restate Propositions 1–4 in terms of lower probability as follows:

Corollary 1. In the long CAPG,

P
{
µs − µm + σ2

m − σsm <
E

ε
+

ln 1
α

Nε
+
εσ2
s−m
2

}
≥ 1− α

and

P
{

1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m <

E1

ε
+ E2 +

ln 1
α

Nε
+
ε

2
σ2
s−m

}
≥ 1− α,

for any α ∈ (0, 1] and any ε ∈ (0, 1], where E, E1, and E2 are defined as in the
statements of Propositions 1 and 2. In the long-short CAPG with parameters
C and δ,

P
{∣∣µs − µm + σ2

m − σsm
∣∣ < E

ε
+

ln 2
α

Nε
+
εσ2
s−m
2

}
≥ 1− α

and

P
{∣∣∣∣ 1

N
lnWs −

1

N
lnWm +

1

2
σ2
s−m

∣∣∣∣ < E1

ε
+ E2 +

ln 2
α

Nε
+
ε

2
σ2
s−m

}
≥ 1− α,

for any α ∈ (0, 1] and any ε ∈
(

0, δ
1+C

)
, where E, E1, and E2 are defined as in

the statements of Propositions 3 and 4.

These lower probability statements say exactly the same thing as Proposi-
tions 1–4: Speculator has a winning strategy in certain games.

B Proofs

Proof of Proposition 1. First we study the accuracy of the fundamental approx-
imation. When x > −1, we can expand ln(1 + x) in a Taylor’s series with
remainder:

ln(1 + x) = x− 1

2
x2 +

1

3
x3

1

(1 + θx)3
, (26)

where θ, which depends on x, satisfies 0 ≤ θ ≤ 1. Since

φ(x) ≤ 1

3
x3

1

(1 + θx)3
≤ Φ(x),

we can see that (26) implies

ln(1 + x) ≤ x− 1

2
x2 + Φ(x) (27)
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and

ln(1 + x) ≥ x− 1

2
x2 + φ(x). (28)

Notice that the functions Φ and φ are monotonically increasing.
Speculator has a trivial winning strategy in the long CAPG with any

significance level α and the auxiliary goal

N∏
n=1

(1 + εsn + (1− ε)mn) <
1

α

N∏
n=1

(1 +mn) .

In each round, he invests ε of his capital in s and 1− ε of his capital in m. But
we can rewrite this auxiliary goal as

N∑
n=1

(
ln (1 + εsn + (1− ε)mn)− ln (1 +mn)

)
< ln

1

α
.

This implies

N∑
n=1

(
εsn + (1− ε)mn −

1

2
ε2s2n −

1

2
(1− ε)2m2

n − ε(1− ε)snmn

+ φ(εsn + (1− ε)mn)−mn +
1

2
m2
n − Φ(mn)

)
< ln

1

α

or

N∑
n=1

(
ε
(
sn −mn +m2

n − snmn

)
− 1

2
ε2
(
s2n +m2

n − 2snmn

)
+ φ(εsn + (1− ε)mn)− Φ(mn)

)
< ln

1

α
.

This completes the proof.

Proof of Proposition 2. Add the equality

σ2
s−m
2

=
σ2
s

2
+
σ2
m

2
− σsm (29)

and the inequality

1

N
lnWs −

1

N
lnWm

≤

(
µs −

1

2
σ2
s +

1

N

N∑
n=1

Φ(sn)

)
−

(
µm −

1

2
σ2
m +

1

N

N∑
n=1

φ(mn)

)

to the inequality in Proposition 1.
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Proof of Proposition 3. We know from Proposition 1 (see Corollary 1) that

P
{
µs − µm + σ2

m − σsm <
E

ε
+

ln 2
α

Nε
+
εσ2
s−m
2

}
≥ 1− α

2
; (30)

therefore, it remains to prove

P
{
µs − µm + σ2

m − σsm >
E

−ε
+

ln 2
α

−Nε
+
−εσ2

s−m
2

}
≥ 1− α

2
. (31)

(Proposition 3 follows from (30), (31), and the inequality

P(A ∩B) ≥ P(A) + P(B)− 1

from [6], Proposition 8.10.3 on p. 186.)
Consider a strategy for Speculator in the long-short CAPG that calls for

investing −ε of his capital in s and investing 1 + ε of his capital in m in every
round. This strategy’s return in round n is

−εsn + (1 + ε)mn ≥ −εC + (1 + ε)(−1 + δ) = −1 + δ + ε(−C − 1 + δ)

> −1 + δ +
δ

1 + C
(−C − 1) = −1

(remember that ε < δ
1+C ) and so it does not risk bankruptcy for Speculator.

It wins the game with the significance level α2 and auxiliary goal

N∏
n=1

(1− εsn + (1 + ε)mn) <
2

α

N∏
n=1

(1 +mn) ,

and the auxiliary goal can be transformed as follows (this is similar to the
calculations in the proof of Proposition 1, with ε replaced by −ε):

N∑
n=1

(
ln (1− εsn + (1 + ε)mn)− ln (1 +mn)

)
< ln

2

α
;

N∑
n=1

(
−εsn + (1 + ε)mn −

1

2
ε2s2n −

1

2
(1 + ε)2m2

n + ε(1 + ε)snmn

+ φ(−εsn + (1 + ε)mn)−mn +
1

2
m2
n − Φ(mn)

)
< ln

2

α
;

N∑
n=1

(
−ε
(
sn −mn +m2

n − snmn

)
− 1

2
ε2
(
s2n +m2

n − 2snmn

)
+ φ((1 + ε)mn − εsn)− Φ(mn)

)
< ln

2

α
.

This proves (31).
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Proof of Proposition 4. One half of this proposition is Proposition 2 (with α
replaced by α

2 ), and the other half is obtained by adding (29) and

1

N
lnWs −

1

N
lnWm

≥

(
µs −

1

2
σ2
s +

1

N

N∑
n=1

φ(sn)

)
−

(
µm −

1

2
σ2
m +

1

N

N∑
n=1

Φ(mn)

)

to the inner inequality in (31).
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