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ABSTRACT

This article introduces a new way of understanding subjective
probability and its generalization to lower and upper prevision.
Instead of asking whether a person is willing to pay given prices
for given risky payoffs, we ask whether the person believes he
can make a lot of money at those prices. If not—if the person is
convinced that no strategy for exploiting the prices can make him
very rich in the long run—then the prices measure his subjective
uncertainty about the events involved.

This new understanding justifies Peter Walley’s updating princi-
ple, which applies when new information is anticipated exactly.
It also justifies a weaker principle that is more useful for planning
because it applies even when new information is not anticipated
exactly. This weaker principle can serve as a basis for flexible
probabilistic planning in event trees.
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This article introduces a new way of understanding subjective probabil-
ity and its generalization to lower and upper prevision. Instead of asking
whether a person is willing to pay given prices for given risky payoffs, as
it is conventional to do [30, 33, 5], we ask whether the person believes he
can make a lot of money at those prices. If not—if the person is convinced
that no strategy for exploiting the prices can make him very rich in the long
run—then the prices measure his subjective uncertainty about the events
involved.

This new understanding justifies Peter Walley’s updating principle, which
applies when new information is anticipated exactly [33]. It also justifies a
weaker principle that is more useful for planning because it applies even when
new information is not anticipated exactly.

Our analysis relies on Shafer and Vovk’s work on the foundations of proba-
bility [26] and on Shafer’s work on event trees [22]. Shafer and Vovk’s explicit
game-theoretic protocols impose our distinction between a player who offers
prices and a player who tries to beat them, and their version of Cournot’s
principle provides the basis for our analysis of updating. But event trees are
more general and more flexible than Shafer and Vovk’s protocols, and their
generality and flexibility are needed in planning.

We begin, in §1, by using Shafer and Vovk’s protocols and Cournot’s prin-
ciple to study subjective probabilities. In §2, we turn to the more general
and more complex theory of subjective lower and upper previsions derived
from limited gambling offers. Readers familiar with subjective probability
and with Walley’s theory of lower and upper previsions will find that these
sections cover much familiar ground. This replowing of well-tilled fields has
proven necessary for a clear presentation of the differences between our un-
derstanding of subjective probability and prevision and the established un-
derstanding.

In §3, we generalize lower and upper prevision from Shafer and Vovk’s
protocols to event trees. In §4, we summarize the message of this article
and touch on some other perspectives on that message. Three appendixes
deal with some tangential topics: the origin of Cournot’s principle, Walley’s
own presentation of his updating principle, and “incoherence” as a technical
term.

Although we state a few mathematical results and point towards practical
problems of planning, the purpose of this article is conceptual. It clarifies
the informational assumptions that underlie current theories of subjective
probability, and it shows how these assumptions can be relaxed and adapted

3



to accommodate tasks where we can foresee only some of the new information
that will come our way.

1 Subjective Probability

According to the established understanding of subjective probability, set out
by Bruno de Finetti [7] and his followers, a person’s beliefs are revealed by
the bets he is willing to make. The odds at which he is willing to bet define
his probabilities. As time passes, these probabilities change according to the
rule of conditional probability: his later probability for an event is his initial
conditional probability for it—the condition being what he has learned in
the interim.

In this section, we develop a somewhat different understanding of subjec-
tive probability, using Shafer and Vovk’s game-theoretic framework [26]. In
this framework, probability is understood in terms of two players: one who
offers bets, and one to whom the bets are offered. We call these two players
House and Gambler, respectively. The established understanding seems to
be concerned with House’s uncertainty, since he is the one stating odds and
offering to bet. But following Shafer and Vovk, we take Gambler’s point
of view. Gambler is trying to beat the odds, and Shafer and Vovk’s work
suggests that what makes odds expressions of a person’s uncertainty is his
conviction that he cannot beat them.

To forestall confusion, we hasten to add that Shafer and Vovk name the
two players differently than we do here. In the first part of their book, where
they are primarily concerned with an objective conception of probability,
Shafer and Vovk call the player who offers bets Forecaster and the player to
whom the offers are made Skeptic. Skeptic’s role is to test putative objective
probabilities put forward by a theory or a forecasting method. In the second
part of their book, where they are concerned with applications to finance,
Shafer and Vovk call the player who offers bets Market and the player who
to whom the offers are made Investor. Our names, House and Gambler,
are tailored more to the subjective conception of probability with which we
are concerned in this article. Shafer and Vovk do not discuss this subjective
conception of probability, and they do not use the names House and Gambler.

We begin this section by reviewing the established understanding (§1.1)
and restating it in terms of explicit protocols (§1.2). As we explain, the
established understanding relies heavily on de Finetti’s principle that House
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should avoid sure loss to Gambler.
We then turn to Cournot’s principle, which Shafer and Vovk use to give

empirical content to their protocols. Roughly speaking, Cournot’s principle
asserts that Gambler does not have a chance of winning heavily over the
long run. As we explain in §1.3, this principle can be used as the basis for
both objective and subjective interpretations of probabilities. An objective
interpretation is set up by claiming that Gambler cannot win heavily over
the long run no matter what he knows. A subjective interpretation is set up
by claiming that Gambler is convinced that he cannot win heavily over the
long run with the information he actually has.

In §1.4, we turn to the rule of conditional probability. We explain how it is
easily justified by the principle that House should avoid sure loss in a protocol
in which House must state in advance a rule for changing his probabilities
(§1.5) and then why this easy justification fails if no such advance statement
is required (§1.6). Then we explain how Cournot’s principle can be used
to justify the use of conditional probability for updating exactly anticipated
new information (§1.7). The new information here is Gambler’s, not House’s.
We show that if Gambler can beat conditional probabilities with his new
information, then he would have been able to beat initial probabilities with
his initial information. Thus the assumption that initial probabilities are
valid (Gambler cannot beat them) implies that the conditional probabilities
become equally valid when the new information is received.

In a concluding subsection (§1.8), we summarize our new understanding
of subjective probability.

1.1 Offering to Bet

Suppose House announces a subjective probability p for an event E. What
does this announcement mean? De Finetti’s answer is that House is willing,
or at least disposed, to take either side of a bet on E at the odds p : (1− p).

Suppose House does state the odds p : (1−p) and does offer Gambler the
opportunity to bet any amount he chooses for or against E at these odds.
This means that House offers Gambler the payoff

{
α(1− p) if E happens
−αp if E fails

(1)

for any real number α, which Gambler must choose immediately, before any
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other information becomes available. The absolute value of α is the total
stakes for the bet, and the sign of α indicates which side Gambler is taking:

• If α is positive, then Gambler is betting on E happening. Gambler
puts up αp, which he loses to House if E fails, while House puts up
α(1−p), which he loses to Gambler if E happens. The total stakes are
αp+ α(1− p), or α.

• If α is negative, then Gambler is betting against E happening. Gambler
puts up −α(1− p), which he loses to House if E happens, while House
puts up −αp, which he loses to Gambler if E happens. The total stakes
are −α(1− p)− αp, or −α.

No principle of logic requires House to state odds at which Gambler can
take either side. But mathematical probability has earned our attention by
its practical successes over several centuries, and if we follow de Finetti in
rejecting as defective all past attempts to provide objective interpretations
of probability, then we seem to be left with (1) as the only viable way of
interpreting this successful mathematical theory.

In his publications, spanning more than five decades in the middle of the
twentieth century, de Finetti developed this interpretation from the viewpoint
of the player we are calling House. The principle that House should avoid
sure loss to Gambler was fundamental to this development.

If we agree that House should offer Gambler (1) for some p, then the
principle that House should avoid sure loss leads immediately to the conclu-
sion that p should be unique. If House offers (1) for both p1 and p2, where
p1 < p2, then Gambler can accept the p1-offer with α = 1 and the p2-offer
with α = −1, and this produces a sure gain of p2−p1 for Gambler, no matter
whether E happens or fails.

Before turning to our alternative understanding of subjective probability,
we will further explore, within the Shafer-Vovk formalism, the implications
of de Finetti’s principle that House should avoid sure loss.

1.2 Protocols

From a thoroughly game-theoretic point of view, the game between House
and Gambler also involves a third player, who decides the outcomes on which
they are betting. Calling this third player Reality, we can lay out an explicit
protocol for the game in the style of Shafer and Vovk [26].
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Probability Forecasting

House announces p ∈ [0, 1].
Gambler announces α ∈ R.
Reality announces x ∈ {0, 1}.
K1 := K0 + α(x − p).

This is a perfect-information protocol; the players move in the order indicated
(not simultaneously), and each player sees the other players’ moves as they
are made. We have written K0 for Gambler’s initial capital and K1 for his
final capital. Reality’s announcement indicates the happening or failure of
E: x = 1 means E happens, and x = 0 means E fails. Thus α(x − p) is the
same as (1). This is Gambler’s net gain, which we can think of as the result
of his paying αp for αx ; Gambler buys α units of x for p per unit.

Perfect-information protocols facilitate the exposition of some standard
arguments in de Finetti’s theory of subjective probability. We now illustrate
this point with two of these arguments: de Finetti’s argument for the addi-
tivity of probability, and an argument for the rule that relates the expected
value of a payoff to the probabilities of events that determine the payoff.
In both cases, we use de Finetti’s principle of House’s avoiding sure loss:
House should choose his probabilities and other prices so that no strategy for
Gambler guarantees Gambler a strictly positive gain no matter how Reality
moves.

1.2.1 De Finetti’s Argument for Additivity

Consider the following protocol, where House gives probabilities for the three
events E, F , and E ∪ F :

Multiple Probability Forecasting

House announces pE , pF , pE∪F ∈ [0, 1].
Gambler announces αE , αF , αE∪F ∈ R.
Reality announces xE , xF , xE∪F ∈ {0, 1}.
K1 := K0 + αE(xE − pE) + αF (xF − pF ) + αE∪F (xE∪F − pE∪F ).

Constraint on Reality: Reality must make xE∪F = xE+xF (this expresses
the assumptions that E and F are disjoint and that E∪F is their disjunction).

The constraint on Reality is part of the rules of the game. Like the other
rules, it is known to the players at the outset.
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To see that House must make pE∪F = pE + pF in order to avoid sure loss
in this protocol, set

δ :=




1 if pE∪F > pE + pF

0 if pE∪F = pE + pF

−1 if pE∪F < pE + pF

and consider the strategy for Gambler in which αE and αF are equal to δ
and αE∪F is equal to −δ. Gambler’s net gain with this strategy is

δ(xE − pE) + δ(xF − pF )− δ(xE∪F − pE∪F ) = δ(pE∪F − (pE + pF )),

which is positive unless pE + pF = pE∪F .

1.2.2 Expected Value

The preceding argument generalizes to an argument for determining prices
for payoffs. Suppose E1, . . . , En are disjoint events, and suppose x is a payoff
that depends on the outcomes of these events. We write E0 for the event
that none of the E1, . . . , En happen, so that

x =
n∑

j=0

ajxj ,

where xj is the indicator variable for Ej , and aj is the value of x when Ej

happens.
The following protocol says that House announces probabilities for E0, E1, . . . , En

and also a price at which Gambler can buy or sell x:

Pricing a Payoff

House announces p0, p1, . . . , pn ∈ [0, 1] and p ∈ R.
Gambler announces α0, α1, . . . , αn ∈ R and α ∈ R.
Reality announces x0, x1, . . . , xn ∈ {0, 1} and x ∈ R.
K1 := K0 +

∑n
j=0 αj(xj − pj) + α(x − p).

Constraint on Reality: Reality must make x =
∑n

j=0 ajxj .

In this protocol, House must satisfy

p =

n∑
j=0

ajpj (2)
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in order to avoid sure loss. To state the strategy for Gambler that will make
money for sure if House violates (2), we set

δ :=




1 if p >
∑n

j=0 ajpj

0 if p =
∑n

j=0 ajpj

−1 if p <
∑n

j=0 ajpj .

Setting each αj equal to δaj and α equal to −δ, we obtain

n∑
j=0

δaj(xj − pj)− δ(x − p) = δ(p −
n∑

j=0

ajpj),

as Gambler’s net gain, and this is positive unless (2) holds.
The number p, the price at which Gambler can buy or sell x, is called the

expected value or the prevision of x. Equation (2) tells us how this price is
determined by the probabilities of the disjoint events E0, E1, . . . , En.

1.3 Trying to Beat the Odds

Shafer and Vovk argue that perfect-information protocols provide a frame-
work in which to understand a broad range of applications of mathematical
probability. In many of these applications, the role of House is played by a
theory or a model, which gives probabilities that should hold in various sit-
uations. A statistician or scientist who wants to test the theory can play the
role of Gambler, trying to find a strategy that refutes the theory by making
a lot of money.

At first glance, this kind of testing by Gambler might seem relevant only
to an objective concept of probability. Indeed, our review of de Finetti’s
theory suggests that subjective probability is probability from the viewpoint
of House, not Gambler. The rules of probability result, it would seem, from
House’s motivation to avoid sure loss. But as we now show, a clear under-
standing of how probabilities should change over time requires that we shift
to Gambler’s viewpoint and invoke Cournot’s principle, thus bringing our
concept of subjective probability closer to the concept of objective probabil-
ity. When we assert that certain numbers are valid as objective probabilities,
we are asserting that they do not offer anyone any opportunity to get very
rich. When we advance them as our subjective probabilities, we are saying
something only a little different: we are asserting that they do not offer us,
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with the knowledge we have, any opportunity to get very rich. When we say
this, we put ourselves in the role of Gambler, not in the role of House. The
point is not how we got the numbers; perhaps we got them from a theory or
from a different person. The point is what we think we can do with them.

1.3.1 Cournot’s Principle

We now consider in more detail how Gambler can test probabilities.
A probability for a single event, if it is not equal to 0 or 1, can hardly be

refuted. Even if Gambler chooses the winning side, with stakes high enough
to make a lot of money, we will hesitate to conclude that the probability was
wrong. Gambler may simply have been lucky. On the other hand, if House
announces probabilities for a sequence of events, and Gambler consistently
manages to make money, then the validity of the probabilities will be cast in
doubt.

Shafer and Vovk [26] have shown that we can make this notion of testing
precise within the following protocol, where House announces probabilities
p1, p2, . . . for a series of events E1, E2, . . . with indicator variables x1, x2, . . . :

Sequential Probability Forecasting

K0 := 1.
For n = 1, 2, . . . :

House announces pn ∈ [0, 1].
Gambler announces αn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + αn(xn − pn).

In this protocol, Gambler can test House’s probabilities by trying to get
infinitely rich (limn→∞Kn = ∞) without ever risking bankruptcy (without
giving Reality an opportunity to make Kn negative for any n). If Gambler
succeeds in doing this, he has refuted the probabilities.

We ask the reader not to take the infinitary aspects of this formulation
too seriously. Instead of talking about Gambler multiplying his capital by an
infinite factor in an infinite number of trials, we can instead talk about his
multiplying it by a large factor in a large number of trials. Because the details
of the finitary formulation are relatively complicated ([26], Chapter 1), we
leave them aside here. But we will sometimes speak of Gambler “winning
heavily” or “becoming very rich” instead of “becoming infinitely rich”.
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Why do we insist that Gambler begin with limited initial capital K0 (it
is important only that K0 be positive and finite, not that it have the partic-
ular positive value 1) and require that he avoid risking bankruptcy in order
for his getting very rich to be a refutation of House? One reason for this
formulation is to rule out Gambler’s consistently making money by doubling
his bet following every loss until he scores a large gain ([26], p. 51). But
its real justification is Shafer and Vovk’s demonstration that it provides a
new and more general foundation for the classical limit theorems of prob-
ability. For example, instead of proving that the convergence of empirical
frequency to probability occurs “except on a set of measure zero” (this is the
textbook formulation of the law of large numbers), Shafer and Vovk prove
that the convergence occurs unless Reality permits Gambler (or Skeptic, as
they call him) to become infinitely rich without risking bankruptcy. More
precisely, Gambler has a strategy (a rule for moving based on House’s and
Reality’s previous moves) that does make him infinitely rich without risking
bankruptcy unless Reality’s moves converge as required.

Shafer and Vovk use the name Cournot’s principle for the hypothesis
that Reality will not allow Gambler to become infinitely rich without risking
bankruptcy (see Appendix A). This principle says that no matter what
bankruptcy-free strategy for Gambler we specify (in addition to House’s and
Reality’s previous moves, such a strategy may also use other information
available to Gambler), we can be confident that Reality will move in such
a way that the strategy will not make Gambler infinitely rich. This is an
empirical hypothesis—a hypothesis about how Reality will behave, not a
rule of the game.

If given probabilities satisfy Cournot’s principle for any potential gam-
bler, no matter how much information that gambler has, then we might call
them objective or causal probabilities [22, 24]. On the other hand, if they
satisfy Cournot’s principle only for gamblers with a certain level of informa-
tion, then we might call them subjective probabilities for that level of infor-
mation. An individual who believes that given probabilities do not permit
any bankruptcy-free strategy to make him very rich—whether he made up
the probabilities or obtained them from a theory or another person—might
reasonably call them his personal subjective probabilities.

Under this interpretation, a person with subjective probabilities is not
merely saying that he does not know how to get very rich betting at these
probabilities. He is saying much more. He is saying that he is convinced that
no bankruptcy-free strategy that he might try can make him very rich. He

11



will at best more or less break even.
The appeal of Cournot’s principle is strengthened by a result of A. P.

Dawid, which he calls Jeffreys’s Law in honor of the applied mathematician
and probabilist Harold Jeffreys. Roughly speaking, Jeffreys’s Law says that
if two different systems of probabilities satisfy Cournot’s principle, then they
will be asymptotically equal [4].

1.3.2 Suppressing House

A person might have a rule for determining his subjective probabilities based
on what has happened in the world so far. In this case, the person can express
the meaning of his probabilities by putting himself in the role of Gambler in
a game in which the rule replaces House.

Suppose the rule gives pn as a function of Reality’s moves so far:

pn := P(x1, . . . , xn−1),

where P is a function that assigns a number in the interval [0, 1] to every
finite sequence of 0s and 1s, including the empty sequence. Such a function
P can be thought of as a strategy for House in the sequential probability
forecasting protocol. Once it is fixed, House has no decisions to make, and
we no longer need to consider him as a player in the game. Writing {0, 1}∗ for
the set of all finite sequences of 0s and 1, we can then describe the protocol
like this:

Sequential Probability Without House

Parameter: P : {0, 1}∗ �→ [0, 1]
K0 := 1.
For n = 1, 2, . . . :

Gambler announces αn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + αn(xn − P(x1, . . . , xn−1)).

The parameter P, being part of the rules of the game, is known to both
players at the outset.

Our discussion of Cournot’s principle applies to this simplified protocol
just as well as to the protocol in which House plays a free role. See Chapter 3
of [26].
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In the context of Shafer and Vovk’s general theory, the protocol with-
out House is fairly special. It moves us closer, however, to the problem of
planning using subjective probabilities. Planning requires that we have some
advance information about how future events will affect future possibilities
and probabilities.

1.3.3 Generalizing to Event Trees

For clarity, we have introduced Cournot’s principle using a relatively simple
protocol, in which Reality has a binary choice at each step. The principle
can also be adopted, however, when Reality sometimes has more than two
choices, and when the choices available to her may depend on what she has
done previously. This brings us to the generality of an event tree [19].

Figure 1 illustrates the idea of an event tree, which we study in more
detail in §3. In this example, Gambler is watching the actions of a youngster.
The youngster may deliberate about his actions, but from Gambler’s point
of view, these actions are moves by Reality. Gambler somehow knows in
advance that the youngster will first either watch television, call a friend, or
play his saxophone. What the youngster may do next depends on this first
choice.

Gambler may have at the outset probabilities for each step, as indicated
on the right-hand side of the figure. In this case, he is playing a game with
Reality without House. Alternatively, he may wait until the first step is taken
before finding out or deciding his probabilities for the next step; in this case,
House is in the game. In either case, Gambler may adopt the probabilities as
his subjective probabilities by subscribing to Cournot’s principle, provided
only that the tree actually continues indefinitely rather than ending after two
steps as in the figure.

1.3.4 Summary

The established understanding of subjective probability, associated with the
name of Bruno de Finetti, attributes subjective probabilities to a person
when he is willing to bet at those probabilities. But we attribute subjective
probabilities to a person when he believes that he cannot win heavily when he
has the opportunity to use them as betting rates. We formalize this idea by
putting the person in the role of Gambler, who plays a game against Reality.
The person’s belief about his own inability to beat the probabilities is then
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Figure 1: An event tree. The steps are possible moves by Reality. On the
right, probabilities are assigned to Reality’s moves, making the event tree into
a probability tree. The probabilities shown are probabilities for steps. Later
we discuss also probabilities for histories. The probability for the history
“watch TV, then go to bed”, for example, is 0.5× 0.1, or 0.05.

formalized by Cournot’s principle, which states expectations about Reality’s
behavior.

There are many ways a person might obtain the numbers he adopts as
subjective probabilities. He may have a rule for calculating these numbers.
He may rely on someone else, such as a weather forecaster, to provide them.
Or he may make them up himself as he goes along. Our sequential protocol
without House formalizes the case where he has a rule. Our sequential pro-
tocol with House formalizes the case where someone chooses and announces
the numbers as events proceed. Both types of protocol generalize to event
trees. The protocol without House is the most interesting for planning; it
generalizes to probability trees—event trees with probabilities assigned to
the steps.
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1.4 Conditional Probability

The usual mathematical theory of probability [2, 8, 10, 11, 27] uses the con-
cept of conditional probability to deal with changes in probability over time.
If we write P0 for probabilities at time 0 and Pt for probabilities at time t,
then the theory says that

P0[At ∩ E] = P0[At]Pt[E], (3)

where At represents what has happened by time t. Equation (3) is often
called the rule of compound probability.

Although our notation does not make the dependence explicit, the prob-
ability Pt[E] depends on At (what has happened by time t), not merely on
t. It is the conditional probability of E given At. If P0[At] �= 0, then we can
rewrite (3) to express Pt[E] in terms of probabilities at time 0:

Pt[E] =
P0[At ∩ E]

P0[At]
. (4)

This equation, the rule of conditional probability, is a rule of updating: it
tells us how probabilities at time t are determined by initial probabilities
and what has happened by time t.

The rule of conditional probability plays a particularly important role in
the theory of subjective probability. It seems quite remarkable, in fact, that a
rule of this type exists for subjective probabilities. Its existence suggests that
once a person has announced a complete set of initial subjective probabilities,
he has no future work to do; his future subjective probabilities are determined
for him. We might be able to wiggle out of this conclusion when P0[At] = 0
[3], but most scholars who study subjective probability do not try to do so;
instead, they glory in the coherence of new with old beliefs represented by (3)
and (4) [1, 13, 18].

Why should (3) hold for subjective probabilities? The usual answer to
this question, which goes back to the eighteenth-century work of De Moivre
and Bayes [20, 21], relies on constructing a bet on E at time t from bets on
At and At ∩ E at time 0. The probability (4), it is argued, can be justified
by the cost of this construction. Spelling this argument out in detail involves
dealing with the question of timing. When does House offer bets, and when
does Gambler have to accept them? Different assumptions about the timing
lead to different versions of the argument, some more convincing than others.
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We now take a careful look at several of the different versions. First (§1.5
and §1.6) we look at what can be said when we take House’s point of view
and rely only on de Finetti’s principle that House should avoid sure loss, and
then (§1.7) we look at what can be said when we shift to Gambler’s point of
view and invoke Cournot’s principle.

1.5 Announcing Future Probabilities in Advance

Updating by conditional probability is most inescapable under the assump-
tion that House announces at time 0 how the probability he will announce
for E at time t depends on what happens by then.

Say A1
t , . . . , A

k
t are the possibilities House foresees for what will happen

by time t. In order to write protocols that make assumptions about timing
explicit, we adopt the following notation:

• pj is House’s probability for Aj
t at time 0,

• qj is House’s probability for E at time t if Aj
t happens,

• rj is House’s probability for Aj
t ∩ E at time 0,

• i is the index for which Ai
t actually happens, and

• x is 1 if E happens and 0 if it fails.

In the following protocol, House commits himself to the qj in advance.

Advance Probability Forecasting

At time 0:
House announces p1, . . . , pk, r1, . . . , rk, q1, . . . , qk ∈ [0, 1].
Gambler announces α1, . . . , αk, β1, . . . , βk ∈ R.
Reality announces i ∈ {1, 2, . . . , k}.

At time t:
Gambler announces γ ∈ R.
Reality announces x ∈ {0, 1}.

Kt := K0 + (αi −
∑k

j=1 αjpj) + (βix −
∑k

j=1 βjrj) + γ(x − qi).

As usual, the Greek letters represent stakes for the different bets: αj is the
total stakes for Aj

t , βj the total stakes for Aj
t ∩ E, and γ the total stakes for

E.
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Gambler’s net gain, Kt −K0, can be written in the form

(αi − γqi) + x(βi + γ)−
k∑

j=1

(αjpj + βjrj). (5)

This expression makes it easy to show that House must obey (3) in order to
avoid sure loss. First we set

δj :=




1 if rj > pjqj

0 if rj = pjqj

−1 if rj < pjqj .

for j = 1, . . . , k. Then we prescribe for Gambler the strategy given by

αj := δjqj , βj := −δj , and γ := δi. (6)

With this strategy, Gambler’s net gain, (5), becomes

(δiqi − δiqi) + x(−δi + δi)−
k∑

j=1

(δjqjpj − δjrj) =
k∑

j=1

δj(rj − pjqj).

By the definition of δj , the product δj(rj − pjqj) is always nonnegative and
is positive unless rj = pjqj . So House must make rj = pjqj for all j in order
to keep Gambler from making a sure gain with this strategy. In particular,
he must make ri = piqi hold, and this is merely another way of writing (3),
the rule of compound probability.

Let us summarize. We made these assumptions:

1. House knows at time 0 the possibilities for what he will have learned
by time t.

2. House announces at time 0 joint probabilities for these possibilities and
the event E.

3. House also announces at time 0 how his new probability for E at time
t will depend on how what he has learned by then.

We deduced from these assumptions that House’s advance announcements
must conform with (3), the rule of compound probability, if he is to avoid sure
loss. Assuming further that House did not assign probability zero at time
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0 to what actually happened by time t, it follows that his announcements
must also conform with (4), the rule of conditional probability. If House
announces in advance a rule for updating his probabilities, then he can avoid
sure loss only if it is the usual rule of conditional probability.

This argument generalizes readily to an event tree. If Gambler is given at
the outset probabilities for each step in the tree (this gives him a probability
tree, as in Figure 1) and also initial probabilities for histories (sequences of
steps), then the probabilities for the steps should be related to the probabili-
ties for the histories by the rule of conditional probability; otherwise Gambler
will have a way to make money for sure.

In another important direction, however, the argument does not general-
ize. It depends crucially on the assumption that Gambler can freely switch
the sign of any payoff he is offered—i.e., that he can take either side of any
bet he is offered. When we drop this assumption, so that we have only lower
and upper probabilities and previsions instead of subjective probabilities and
exact expected values, we will have to turn to an alternative argument based
on Cournot’s principle (see §2.4).

1.6 Updating When the Time Comes

The preceding argument does not apply when House does not announce a
rule of updating in advance. This becomes clear when we think about the
following protocol, in which House announces only at time t what he is willing
to do at time t:

Two-Stage Probability Forecasting

At time 0:
House announces p1, . . . , pk, r1, . . . , rk ∈ [0, 1].
Gambler announces α1, . . . , αk, β1, . . . , βk ∈ R.
Reality announces i ∈ {1, 2, . . . , k}.

At time t:
House announces q ∈ [0, 1].
Gambler announces γ ∈ R.
Reality announces x ∈ {0, 1}.

Kt := K0 + (αi −
∑k

j=1 αjpj) + (βix −
∑k

j=1 βjrj) + γ(x − q).

The symbols in this protocol are the same as in the protocol for advance
probability forecasting, except that we now write simply q for House’s prob-
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ability for E at time t; he does not announce probabilities that he would
have had at time t had events gone differently between time 0 and time t.

It is intuitively clear that House’s announcement of q at time t in this
two-stage protocol should not be constrained by his earlier announcements
at time 0. In addition to Reality’s announcement of i, House and Gambler
might learn any number of things between time 0 and time t, and so there is
no reason to suppose that House’s new probability for E should depend only
on i and his own previous announcements. This intuition is confirmed by the
fact that the strategy (6), which enforces the rule of conditional probability in
the advance protocol, is not available to Gambler in the two-stage protocol.
House does not announce probabilities qj at time 0 in the two-stage protocol,
and (6) depends on having such announcements.

1.6.1 Advance Offers

Although House can do what he wants at time t without risking sure loss, it
remains true that his offers at time 0 include what can be interpreted as offers
to agree at time 0 to bets at time t. Indeed, from the offers House makes at
time 0, Gambler can construct a payoff that will come out the same as the
payoff of a bet on E made at time t. To do this, Gambler fixes α and sets

αj := −rj

pj
α and βj := α (7)

for j = 1, . . . , k. Gambler’s net gain from these moves will be

α(x − ri

pi
), (8)

where i is Reality’s announcement. This is the same as the net gain Gambler
would have on a bet on E at probability ri/pi and total stakes α, made at
time t after Reality announces i.

If House’s announcement q at time t is different from ri/pi, we can say he
has changed his mind about offering (8). He offered (8) at time 0, but now
he is offering α(x−q). But because Gambler did not know at time 0 whether
q would be greater than ri/pi or less than ri/pi, Gambler cannot exploit this
change to inflict a sure loss on House.

1.6.2 A Single Advance Offer

Gambler can also choose a particular value j0 at time 0 and construct a payoff
that looks like a bet on E at time t only if Reality chooses j0. To do this, he
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fixes α, sets

αj0 := −rj0

pj0

α and βj0 := α, (9)

and sets αj = βj = 0 for j �= j0. His net gain from these moves will be

{
α(x − rj0

pj0
) if i = j0

0 if i �= j0.
(10)

This is the same as the payoff from a contingent bet on E made at time
0—an agreement to bet with stakes α on E at the conditional probability if
Reality chooses j0 at time t but not to bet at all if Reality does not choose
j0.

1.6.3 Walley’s Updating Principle

In his treatise Statistical Reasoning with Imprecise Probabilities [33], Peter
Walley states a general principle about how a person’s betting offers should
change when he obtains new information. Using our own terminology rather
than Walley’s, we may state his principle by saying that House should offer
at time 0 a particular payoff that pays nothing when B fails if and only
if he intends to continue to offer this payoff if and when he learns of B’s
happening and nothing more. We state the principle more carefully in §2.3,
and we quote Walley’s own statement of it in Appendix B. Here we merely
note that in the case at hand, where House is offering (10) at time 0, the
principle implies that at time 0 House should intend to offer at time t to
pay rj0/pj0 for x—i.e., to use rj0/pj0 as his new probability for E—if Reality
announces j0 and this is House’s only new information.

Aside from observing that the payoff (10) is the same whether one bets at
time 0 or time t, Walley gives little argument for his principle. He appears to
regard it as a relatively self-evident principle of rationality that underlies the
widespread acceptance of conditional probability. As we will now explain,
Cournot’s principle leads to a clear argument for Walley’s principle, an argu-
ment that makes clear why the caveat “this is House’s only new information”
is needed.

1.7 Updating with Exact Information

So far (§1.5–§1.6), our attempts to justify the rule of conditional probability
have remained within de Finetti’s understanding, which attributes subjec-
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tive probabilities to House, the player who announces them. We have been
looking for arguments that constrain House to obey the rule of conditional
probability. We now turn to look at the matter from the viewpoint we de-
veloped in §1.3—the viewpoint of Gambler, who thinks he cannot beat the
probabilities. It is this viewpoint that permits a clear argument for Walley’s
updating principle.

Consider a sequence of events E1, E2, . . . . These events may be substan-
tively very different, but for simplicity let us suppose that House makes an-
nouncements about each of them as in the two-stage protocol of §1.6. First,
at time n, House announces probabilities for k events and for their conjunc-
tions with En, and Reality decides which of the k events happens. A little
later, say at time n+1/2, House gives a new probability for En, and Reality
decides whether En happens. This produces the following protocol:

Sequential Two-Stage Probability Forecasting

K0 := 1.
For n = 1, 2, . . .

At time n:
House announces pn1, . . . , pnk ∈ (0, 1] and rn1, . . . , rnk ∈ [0, 1].
Gambler announces αn1, . . . , αnk, βn1, . . . , βnk ∈ R.
Reality announces in ∈ {1, 2, . . . , k}.

At time n + 1/2:
House announces qn ∈ [0, 1].
Gambler announces γn ∈ R.
Reality announces xn ∈ {0, 1}.

Kn := Kn−1+(αnin−
∑k

j=1 αnjpnj)+(βninxn−
∑k

j=1 βnjrnj)+γn(xn−qn).

For simplicity, we have required House to make the pni nonzero, so that we
can freely use them as divisors.

Let us make the following assumptions:

1. House’s first-stage announcements (his pn1, . . . , pnk and rn1, . . . , rnk for
n = 1, 2, . . . ) satisfy Cournot’s principle: Reality will not allow Gam-
bler to become infinitely rich following a bankruptcy-free strategy for
betting at these probabilities.

2. House agrees in advance that his second-stage announcements will obey
the rule of conditioning: he will always set qn equal to rnin/pnin.
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3. The only new information Gambler acquires between his move at time
n and his move at time n+1/2 is Reality’s choice of of in. (By the pre-
ceding assumption, he already knows how this will determine House’s
move qn.)

4. Reality pays no attention to how Gambler moves when she chooses her
moves.

Will all of House’s announcements (the pn1, . . . , pnk, the rn1, . . . , rnk, and the
qn) satisfy Cournot’s principle as a group under these assumptions? It is
reasonable to conclude that they will. If they did not, then Gambler would
have a bankruptcy-free strategy S for choosing αn1, . . . , αnk, βn1, . . . , βnk at
time n and γn at time n+ 1/2 that would make him infinitely rich. Because
Reality’s moves do not depend on what Gambler does (Assumption 4) and
House will set qn equal to rnin/pnin (Assumption 2), Gambler has a strategy
S ′ for choosing αn1, . . . , αnk, βn1, . . . , βnk alone that makes his capital grow
exactly as S does: to duplicate the effect of S’s move γn, he adds −γnrnj/pnj

to αnj and γn to βnj , for j = 1, . . . , k as suggested by (7). This strategy does
not require knowledge of in, and so Gambler would have the information
needed to implement it (Assumption 3). So S ′ would also make Gambler
infinitely rich, contradicting Assumption 1.

This result is a new justification of the rule of conditional probability. It
tells us that if P0[A

j
t ] and P0[A

j
t∩E] are valid probabilities for Gambler, in the

sense that he has insufficient information to beat them, then the conditional
probability P0[A

i
t ∩ E]/ P0[A

i
t] will be equally valid as his probability for E

in a later situation where his only additional information is the observation
of Ai

t. We must add, of course, that this is a long-run justification. It does
not really apply to the single case but instead assumes that there will be a
sequence of similar updating problems. It is a justification for using the rule
of conditional probability as a policy in such problems.

Insofar as we have shown that the payoff (10) defines appropriate beliefs
for Gambler after Reality announces i = j0, provided this announcement is
Gambler’s only new information, we can also say that we have justified a
version of Walley’s updating principle. We should not, however, overlook the
differences in formulation. Our argument is concerned with the long run,
and it is concerned with odds Gambler knows he will not be able to beat,
not with odds House should intend to offer.
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1.7.1 The Concept of Exact Information

The crucial assumption in our argument for Walley’s updating principle is
Assumption 3: Reality’s move at time n, in, is the only new thing Gam-
bler learns before he makes his next move. Adapting the term exact event,
introduced by Shafer [21], we may say that in is Gambler’s exact information.

From a thoroughly subjective point of view, it is anodyne to say that
probabilities should be updated using exact information. Certainly a person
should update using all his information, and this is the same as saying that he
should use exactly what he has learned. It is truly daunting, however, to plan
ahead on the assumption that we will update our probabilities by the rule
of conditional probability using all our information. In order to condition on
all our information, we must have initial probabilities not merely for future
possibilities that interest us but for all the possibilities for exactly what we
will learn.

1.7.2 Generalizing to Event Trees

Our derivation of Walley’s updating principle from Cournot’s principle read-
ily generalizes from the relatively rigid sequential two-stage protocol that we
have used here to an event tree, in which Reality’s choices on the next step
depend on what she has done so far.

One generalization is to an event tree in which every second step rep-
resents exact information for Gambler. (Assumption 3 for our derivation
of Walley’s principle from Cournot’s principle was that every second step
in the two-stage sequential protocol represented exact information for Gam-
bler.) It is also natural, however, to consider event trees in which all steps
represent exact information for Gambler. In such trees, Gambler knows at
the outset the exact possibilities for the future step-by-step development of
his knowledge. If House states at the outset initial probabilities for all these
possibilities (i.e., he states probabilities not only for the first step but also
for the histories—the complete paths through the tree), and Gambler adopts
Cournot’s principle for these initial probabilities, then our argument yields
the conclusion that Cournot’s principle will also hold for conditional proba-
bilities as future probabilities. If we place these conditional probabilities on
the steps of the tree, then we again obtain a probability tree, as in Figure 1.

The lesson drawn here for event trees should be contrasted with the les-
son drawn in §1.5 for event trees. The argument in §1.5 was based on the
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avoidance of sure loss by House, while the argument here is based on the
adoption of Cournot’s principle by Gambler. There is also a difference in
the conclusion. In §1.5, we concluded something about consistency of ad-
vance probabilities. If House gives at the outset both probabilities for steps
and probabilities for histories, then the principle of sure loss demands that
they be related by the rule of conditional probability. Here, in contrast,
we have assumed only that probabilities of histories are given at the outset;
Cournot’s principle then justifies the use of the rule of conditioning to obtain
probabilities for steps.

1.8 Summary

We have arrived at a new understanding of subjective probability. According
to the de Finetti’s understanding, a person’s subjective probabilities are rates
at which he is willing to bet. According to our new understanding, a person’s
subjective probabilities are two-sided betting rates at which he believes he
will not win heavily, no matter what strategy for betting he follows. Our new
understanding provides a clear justification for using conditional probabilities
as new probabilities when new information is exact—i.e., when one knows
in advance a set A1

t , . . . , A
k
t of possibilities for exactly what all one’s new

information will be.
The clarity of our new understanding encourages some questions. Does

a person always know two-sided betting rates at which he is confident he
cannot win heavily? And even if he does know such rates for some events,
why should these events include a list of possibilities for exactly what he will
learn between time 0 and time t? These questions inspire the generalizations
considered in the remainder of this article.

In its most extreme form, the theory of subjective probability assumes
that a decision maker begins with knowledge of exact possibilities for the
future development of his knowledge, together with probabilities for each of
these possibilities. We will now explore how this extreme picture can be
relaxed in order to obtain a framework that is more useful for planning. In
the next section (§2) we develop protocols that relax the demand for two-
sided betting rates, as well as the demand for exact information. In a later
section (§3), we extend this more flexible approach to event trees.
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2 Subjective Lower and Upper Prevision

In recent decades, there has been great interest in supplementing subjective
probability with more flexible representations of uncertainty. Some of the
representations studied emphasize evidence rather than gambling [19, 28, 31];
others use a concept of partial possibility [9]. But many scholars prefer to
generalize the story about betting that underlies subjective probability. The
first step of such a generalization is obvious. Instead of requiring a person to
set odds at which he will take either side of a bet, allow him to set separate
odds for the two sides. This leads to lower and upper probabilities and lower
and upper previsions rather than additive probabilities and expected values.
See the early work of C. A. B. Smith [29, 30] and Peter Williams [37, 38, 39],
the influential work of Peter Walley [32, 33, 34, 35], and the recent work of
the imprecise probabilities project [5].

In this section, we look at lower and upper previsions from the point of
view developed in the preceding section. This leads to a better understanding
of how these measures of subjective uncertainty should change with new
information, both when the new information is exact and when it is not.

We begin, in §2.1, by generalizing §1.2’s protocol for subjective proba-
bility to lower and upper previsions. In §2.2, we formulate and study an
abstract protocol from which lower and upper previsions can be derived.
Then we turn to the problem of updating lower and upper previsions after
the passage of time and the acquisition of new information. In §2.3, we state
Walley’s updating principle in the context of a precise protocol. Then we de-
rive our own principles for updating under different assumptions. In §2.4 we
consider the case where future beliefs are stated in advance but the informa-
tion that is anticipated need not be exact; this is the assumption we consider
most appropriate in planning. In §2.5 we consider the case where new infor-
mation is anticipated exactly; in this case we obtain Walley’s principle. We
summarize our results in §2.6.

2.1 Pricing Events and Payoffs

Lower and upper probabilities arise when we relax the requirement that
House announce odds for an event and offer to bet on either side. We instead
allow him to offer one set of odds for betting on the event and another for
betting against it.

Whereas probabilities for events determine expected values for payoffs

25



that depend on those events (see §1.2), lower and upper probabilities are not
so informative. The rates at which a person is willing to bet for or against
given events do not necessarily determine the prices at which he is willing
to buy or sell payoffs depending on those events. So we need more than a
theory of lower and upper probabilities for events; we also need a theory of
lower and upper previsions for payoffs.

2.1.1 Lower and Upper Probabilities

Suppose House expresses his uncertainty about E by specifying two numbers,
p1 and p2. He offers to pay Gambler

−α1(x − p1) =

{
−α1(1− p1) if E happens

α1p1 if E fails
(11)

for any α1 ≥ 0, and he also offers to pay Gambler

α2(x − p2) =

{
α2(1− p2) if E happens
−α2p2 if E fails

(12)

for any α2 ≥ 0. In (11), Gambler sells α1 units of x for p1 per unit, while
in (12), he buys α2 units of x for p2 per unit.

Here is the protocol:

Forecasting with Lower and Upper Probabilities

House announces p1, p2 ∈ [0, 1].
Gambler announces α1, α2 ∈ [0,∞).
Reality announces x ∈ {0, 1}.
K1 := K0 − α1(x − p1) + α2(x − p2).

To avoid sure loss, House must make p1 ≤ p2. If p1 > p2, then Gambler
can make money for sure by making α1 and α2 strictly positive and equal
(buying at p2 what he sells at p1).

House would presumably be willing to increase his own payoffs by de-
creasing p1 in (11) and increasing p2 in (12). The natural question is how
high House will make p1 and how low he will make p2. We may call p1 and
p2 House’s lower and upper probabilities, respectively, if House will not of-
fer (11) for any value higher than p1 and will not offer (12) for any value
lower than p2.
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When we model our beliefs by putting ourselves in the role of House,
we have some flexibility in the meaning we give our refusal to offer higher
values of p1 or lower values of p2. Perhaps we are certain that we do not
want to make additional offers, perhaps we are hesitating, or perhaps we are
providing merely an incomplete model of our beliefs (Walley [33], pp. 61–63).

When we instead model our beliefs by putting ourselves in the role of
Gambler, the question is what values of p1 and p2 we believe will satisfy
Cournot’s principle. In the context of a sequence of forecasts, we might call
p1 and p2 Gambler’s lower and upper probabilities when (1) Gambler believes
that no strategy for buying and selling will make him very rich in the long
run when he can sell x for p1 or buy it for p2 but (2) Gambler is not confident
about this in the case where he is allowed to sell x for more than p1 or buy
it for less than p2. Here again clause (2) can be made precise in more than
one way. Gambler might be unsure about whether he can get very rich with
more advantageous values of p1 or p2, or he might believe that a strategy
available to him would succeed with such values.

2.1.2 Lower and Upper Previsions

In order to price a payoff x that depends on the outcome of more than one
event, we can generalize directly the protocol for forecasting with lower and
upper probabilities:

Forecasting with Lower and Upper Previsions

House announces p1, p2 ∈ R.
Gambler announces α1, α2 ∈ [0,∞).
Reality announces x ∈ R.
K1 := K0 − α1(x − p1) + α2(x − p2).

Again, Gambler is allowed to sell x for p1 and buy it for p2. If p1 is the
highest price at which Gambler can sell x (either the highest price House
will offer or the highest price at which Gambler believes Cournot’s principle,
depending on which viewpoint we adopt), we may call it the lower prevision
of x. Similarly, if p2 is the lowest price at which Gambler can buy x, we
may call it the upper prevision of x. (The terms lower and upper prevision
appear to be due to Peter Williams [39].)

Although its meaning is clear, this protocol is not ideal for a discussion
of House’s or Gambler’s uncertainty about x. House may have more to
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say about x than the lower and upper previsions p1 and p2, and even the
statement that these are lower and upper previsions is not exactly a statement
about the protocol itself. We now turn to a more abstract approach, better
suited to general discussion.

2.2 Forecasting in General

Consider a set R, and consider a set H of real-valued functions on R. We
call H a belief cone on R if it satisfies these two conditions:

1. If g is a real-valued function on R and g(r) ≤ 0 for all r ∈ R, then g
is in H.

2. If g1 and g2 are in H and a1 and a2 are nonnegative numbers, then
a1g1 + a2g2 is in H.

We write CR for the set of all belief cones on R.
Intuitively, a belief cone is a set of payoffs that House might offer Gambler.

Condition 1 says that House will offer any contract that does not require him
to risk a loss. Condition 2 says House will allow Gambler to combine any
two of his offers, in any amounts.

The following abstract protocol is adapted from p. 90 of [26].

Forecasting

Parameters: R and C ⊆ CR

Protocol:
House announces H ∈ C.
Gambler announces g ∈ H.
Reality announces r ∈ R.
K1 := K0 + g(r).

We call any protocol obtained by a specific choice of R and C a forecasting
protocol. We call R the sample space.

We call a real-valued function on the sample space R a variable. House’s
move H, itself a set of variables, determines lower and upper previsions for
all variables. The lower prevision for a variable x is

EH x := sup{α | (α − x) ∈ H}, (13)
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and the upper prevision is

EH x := inf{α | (x − α) ∈ H}. (14)

These definitions are similar to those given by Walley ([33], pp. 64–65).
There is a difference in sign, however, because Walley considers a collection
D of payoffs that House is willing to accept for himself rather than a collection
H that House offers to Gambler.

The condition (α − x) ∈ H in (13) means that Gambler can sell x for α.
So roughly speaking, the lower prevision EH x is the highest price at which
Gambler can sell x. We say “roughly speaking” because (13) tells us only
that Gambler can obtain α − x for α arbitrarily close to EH x, not that he
can obtain (EH x) − x. Similarly, the upper prevision EH x is roughly the
lowest price at which Gambler can buy x.

Once we know lower previsions for all variables, we also know upper
previsions for all variables, and vice versa, because

EH x = −EH(−x)

for every variable x. For additional general properties of lower and upper
previsions, see Chapter 2 of Walley [33] and Chapters 1 and 8 of [26].

2.2.1 Coherence

We call a forecasting protocol coherent if C contains at least one belief cone
H such that for every g ∈ H there exists r ∈ R for which g(r) ≤ 0. This
means that House can avoid sure loss.

Our use of “coherent” follows Shafer and Vovk [26]. In cases where
House’s moves are fixed, so that the game reduces to a game between Gam-
bler and Reality (as in §3.2 of [26] or §1.3.2 of this article), our formulation
simplifies; in these cases, the protocol’s being “coherent” means simply that
Gambler cannot make money for sure. Appendix C discusses related uses of
“coherent” and “incoherent”.

If H satisfies the condition that for every g ∈ H there exists r ∈ R with
g(r) ≤ 0, then

EH x ≤ EH x

for every variable x. See §8.3 of [26].
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2.2.2 Regular Protocols

Given H ∈ CR, set

H∗ := {x : R �→ R | EH x ≤ 0}.

The following facts can be verified straightforwardly:

• H∗ is also a belief cone (H∗ ∈ CR),

• H ⊆ H∗,

• EH x = EH∗ x and EH x = EH∗ x for every variable x, and

• (H∗)∗ = H∗.

Intuitively, if House offers Gambler all the payoffs in H, then he might as
well also offer the other payoffs in H∗, because for every payoff in H∗, there
is one in H that is arbitrarily close to being at least as good.

We call a forecasting protocol regular ifH = H∗ for everyH in C. Because
any forecasting protocol can be replaced with a regular one with the same
lower and upper previsions (enlarge each H in C to H∗), little generality is
lost when we assume regularity. This assumption allows us to remove the
“roughly speaking” from the statements that the lower prevision of x is the
highest price at which Gambler can sell x and the upper prevision the lowest
price at which he can buy it. It also allows us to say that H is completely
determined by its upper previsions (and hence also by its lower previsions):

x ∈ H if and only if EH x ≤ 0.

The condition x ∈ H says that House will give x to Gambler. The condition
EH x ≤ 0 says that House will sell x to Gambler for 0 or less.

2.2.3 Bayesian Protocols

The protocols for subjective probability we studied in §1.2 have the property
that if H avoids sure loss by House, then EH x = EH x for every variable
x. The common value of EH and E xH is, of course, x’s expected value. We
call a forecasting protocol with this property Bayesian. A regular coherent
forecasting protocol is Bayesian if and only if for each H ∈ C, either x or −x
is in H.
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When the sample space R is infinite and endowed with a σ-algebra, some
readers may prefer to require EH x = EH x only for measurable x. We will
not explore this issue, because we draw our motivation from the particular
protocols in §1.2, not from the general concept of a Bayesian protocol.

2.2.4 Interpretation

Both interpretations of lower and upper previsions we discussed in §2.1 gen-
eralize to forecasting protocols in general. We can put ourselves in the role of
House and say that our beliefs are expressed by the prices we are willing to
pay—our lower and upper previsions. Or, as we prefer, we can put ourselves
in the role of Gambler and subscribe to these prices in the sense of believing
that they will not allow us to become very rich in the long run, no matter
what strategy we follow.

The reference to the long run in the second interpretation must be under-
stood in terms of a sequential version of our abstract protocol. If we suppose,
for simplicity, that Reality and House have the same choices on every move,
this sequential protocol can be written as follows:

Sequential Forecasting

Parameters: R and C ⊆ CR

Protocol:
K0 := 1.
For n = 1, 2, . . . :

House announces Hn ∈ C.
Gambler announces gn ∈ Hn.
Reality announces rn ∈ R.
Kn := Kn−1 + gn(rn).

The ambiguities we discussed in §2.1 also arise here. If we take House’s
point of view, we may or may not be categorical about our unwillingness to
offer riskier payoffs than those in Hn. If we take Gambler’s point of view,
we may be more or less certain about whether larger Hn would also satisfy
Cournot’s principle.

2.3 Walley’s Updating Principle

We turn now to Peter Walley’s updating principle. As we saw in §1.6, this
principle entails the rule of conditional probability when it is applied to
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subjective probability. Now we apply it to our abstract framework for lower
and upper previsions.

We begin by generalizing the two-stage protocol we considered in §1.6.

Two-Stage Forecasting

Parameters: R, a disjoint partition B1, . . . ,Bk of R, C ⊆ CR

Protocol:
At time 0:

House announces H0 ∈ C.
Gambler announces g0 ∈ H0.
Reality announces i ∈ {1, 2, . . . , k}.

At time t:
House announces Ht ∈ CBi

.
Gambler announces gt ∈ Ht.
Reality announces r ∈ Bi.

Kt := K0 + g0(r) + gt(r).

Because we are considering how House should make his second move, we
leave this move unconstrained by the protocol. House can choose any belief
cone on the reduced sample space Bi.

Walley’s updating principle says that if House knows at time 0 that Real-
ity’s announcement of i will be House’s only new information when he moves
at time t, then at time 0, as he makes his move H0, House should intend for
his move Ht to be the belief cone wi

t on Bi given by

wi
t := {g : Bi �→ R | g↑ ∈ H0}, (15)

where g↑ is defined by

g↑(r) :=
{
g(r) if r ∈ Bi

0 if r /∈ Bi.
(16)

In words: House should intend to offer a given payoff at the second stage
after Reality announces i if and only if he is already offering that payoff at
the first stage contingent on that value of i. This produces simple formulae
relating the new lower and upper previsions to the old ones:

Ewi
t
x = sup{α | EH0

(x − α)↑ ≥ 0} (17)

and
Ewi

t
x = inf{α | EH0(x − α)↑ ≤ 0} (18)
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for every variable x on the reduced sample space Bi.
A comparison of (16) with (10) confirms that the statement of Walley’s

updating principle given here agrees with the statement we gave in §1.6. See
Appendix B for Walley’s own statement of his updating principle.

2.4 Announcing Future Beliefs in Advance

As we learned in §1.5, the rule of conditional probability is mandated by the
principle of House’s avoiding sure loss when he announces future subjective
probabilities in advance. What can we say when House announces in advance
future beliefs that determine only lower and upper previsions?

Advance Forecasting

Parameters: R, a disjoint partition B1, . . . ,Bk of R, C ⊆ CR.
Protocol:

At time 0:
House announces H0 ∈ C and Hj

t ∈ CBj
for j = 1, . . . , k.

Gambler announces g0 ∈ H0.
Reality announces i ∈ {1, 2, . . . , k}.

At time t:
Gambler announces gt ∈ Hi

t.
Reality announces r ∈ Bi.

Kt := K0 + g0(r) + gt(r).

The strategy for enforcing the rule of conditional probability that we
studied in §1.5 exploited the two-sided nature of the betting offers in the
probability protocol; Gambler could switch the signs of his payoffs as he
pleased. Because the protocol we are now studying is not necessarily Bayesian
(x ∈ H0 does not necessarily imply −x ∈ H0), this flexibility is not available.
We can, however, make an argument from Gambler’s point of view, relying
on Cournot’s principle.

Consider House’s H0 and his Hj
t for some particular j. Suppose the

variable g is in Hj
t , but g

↑ is not in H0. Then it would make no difference in
what Gambler can do if House were to enlarge H0 by adding g↑ to it. He can
already get the effect of g↑ at time 0 by planning in advance to announce g
at time t.

So we can assume, without changing what Gambler can accomplish, that
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if g ∈ Hj
t , then g

↑ ∈ H0. This assumption implies wj
t ⊆ Hj

t by (15) and then

EHj
t
≤ Ewj

t
(19)

by (13). The lower prevision at time t that is foreseen and announced at time
0 should not exceed the lower prevision given by Walley’s updating principle.
Writing simply E0 x for EH0

x and Et x for EHi
t
x (the lower previsions that

House’s time-0 announcements imply for time 0 and t, respectively) and
recalling (17), we can write (19) in the form

Et x ≤ sup{α | E0(x − α)↑ ≥ 0}, (20)

where x is a variable on the reduced sample space Bi.
The argument for (20) relies on the new viewpoint developed in this

article, according to which a person’s uncertainty is measured by prices he
believes he cannot beat, not by prices he is disposed to offer. We expect (20)
to hold because if it did not, the time 0 lower previsions would need to be
increased to reflect stronger betting offers that Gambler cannot beat. Strictly
speaking, of course, talk about Gambler not being able to beat given prices
is talk about the long run, and so a complete exposition of the argument
would involve a sequential protocol, in which advance forecasting is repeated
a large or infinite number of times. We leave this further elaboration of the
argument to the reader.

The argument does not rely on any assumption about exact information.
Possibly House and Gambler will learn more than Bi by time t. We should
keep in mind, however, that Et x, in (20), is not necessarily the lower prevision
at time t. It is merely the lower prevision at time t to which House commits
himself at time 0. This commitment does not exclude the possibility that
House and Gambler will acquire additional unanticipated information and
that House will consequently offer Gambler more variables at time t than
those to which he committed himself at time 0. In this case, the actual lower
prevision for x at time t may come out higher than EHi

t
x and even higher

than Ewi
t
x.

For planning at time 0, we are interested in what we can count on already
at time 0. This is why the upper bound in (20) is interesting. When time
t comes around, positive unanticipated information may lead us to give x a
lower prevision exceeding this upper bound, but there is also the possibility
of negative unanticipated information, and the upper bound can be thought
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of as telling us how conservative we need to be in our advance commitments
in order to hedge against the possible negative information.

The complexity and subtlety of this analysis contrasts with the simplicity
of our analysis of the advance protocol for subjective probabilities in §1.5.
We may explain the contrast by pointing to the strength of the assumption
that House can set two-sided betting rates in advance. The argument of §1.5
does not assume explicitly that new information is anticipated exactly, but
from our new point of view, the assumption that House can set two-sided
betting rates in advance based on i alone is not sensible unless we do indeed
know in advance that there will be no other new information, or at least
no other relevant new information. Otherwise, some kind of hedge against
the unanticipated is in order, and this leads away from two-sided advance
offers and subjective probabilities, to unequal preannounced lower and upper
previsions.

2.5 Updating with Exact Information

Although the case we have just analyzed, where commitments are made in
advance in the face of possible unanticipated new information, seems to us
to have greater practical importance, it is also of interest to consider the case
where new information is anticipated exactly. This is the case where Walley’s
principle applies, and as we now show, the derivation of Walley’s principle
from Cournot’s principle that we presented for subjective probabilities in §1.7
does generalize to lower and upper previsions.

Extending the two-stage protocol of §2.3 just as we extended the two-
stage probability forecasting protocol of §1.6 in §1.7, we obtain the following
sequential protocol:

Sequential Two-Stage Forecasting

K0 := 1.
For n = 1, 2, . . .

At time n:
House announces Hn0 ∈ C.
Gambler announces gn0 ∈ Hn0.
Reality announces in ∈ {1, 2, . . . , k}.

At time n + 1/2:
House announces Hn1 ∈ CBin

.
Gambler announces gn1 ∈ Hn1.
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Reality announces rn ∈ Bin .
Kn := Kn−1 + gn0(rn) + gn1(rn).

We reason just as in §1.7. First, we make the following assumptions:

1. House’s Hn0 satisfy Cournot’s principle.

2. House agrees in advance to follow Walley’s updating principle: Hn1 =
win

n , where wj
n := {g : Bj �→ R | g↑ ∈ Hn0}.

3. The only new information Gambler acquires between his move at time
n and his move at time n + 1/2 is Reality’s choice of of in. (By the
preceding assumption, he already knows House’s move Hn1.)

4. Reality pays no attention to how Gambler moves when she chooses her
moves.

Will all of House’s announcements (the Hn0 and Hn1) satisfy Cournot’s prin-
ciple as a group? It is reasonable to conclude that they will. If they did not,
then Gambler would have a bankruptcy-free strategy S that would make
him infinitely rich. This strategy would specify gn0 ∈ C for n = 1, 2, . . . and
gj

n1 ∈ wj
n for n = 1, 2, . . . and j = 1, . . . , k. Because Reality’s moves do not

depend on what Gambler does (Assumption 4) and House will follow Wal-
ley’s recommendation for Hn1 (Assumption 2), Gambler has a strategy S ′

for choosing the gn0 alone that makes his capital grow exactly as S does: to
duplicate the effect of S’s move gn1, he adds (g

j
n1)

↑ to S’s gn0 for j = 1, . . . , k.
This strategy does not require knowledge of in, and so Gambler would have
the information needed to implement it (Assumption 3). So S ′ would also
make Gambler infinitely rich, contradicting Assumption 1.

This result is a long-run justification for Walley’s updating principle in
its full generality.

2.6 Summary

In this section we have used Gambler’s viewpoint to understand lower and
upper previsions and their updating.

Here as in the case of subjective probability (see §1.8), the proper handling
of updating depends on whether we can exactly anticipate new information.
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• We learned in §2.5 that if we can exactly anticipate new information—
i.e., if we have an exhaustive advance list B1, . . . ,Bk of possibilities
for exactly what all our new information will be, then we can follow
Walley’s updating principle, deriving new lower previsions from old
ones using the formula

Et x = sup{α | E0(x − α)↑ ≥ 0}. (21)

• We learned in §2.4 that if we cannot exactly anticipate new informa-
tion, but we do know that we will learn which of the mutually exclusive
events B1, . . . ,Bk has happened, and we commit ourselves in advance
to lower previsions that depend on which Bi happens, then these pre-
announced lower previsions should satisfy the upper bound

Et x ≤ sup{α | E0(x − α)↑ ≥ 0}. (22)

The requirement of exact new information is very strong. The inequality (22)
depends only on the weaker condition that we learn which of the B1, . . . ,Bk

happens. There is no requirement that this be all we learn. On the other
hand, the inequality only bounds the new lower prevision that can be guar-
anteed at the outset, at the planning stage. Unanticipated information may
actually produce a higher lower prevision.

3 Subjective Uncertainty in Event Trees

We now sketch a theory of lower and upper previsions in event trees. As we
explained in §1.3.3, the framework provided by an event tree is more general
than the framework provided by the protocols we have been studying, because
the moves available to Reality in an event tree may depend on her previous
moves. On the other hand, we simplify at the outset by suppressing House.
As in §1.3.2, we assume that Gambler is told at the outset what variables will
be offered to him in each possible situation in the tree. This assumption is
appropriate for planning, in which we must make assumptions at the outset
not only about our current uncertainty but also about our uncertainty in
future situations.

We do not assume that our event tree provides a protocol for exact an-
ticipation of new information. In other words, we build on the argument
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of §2.4 rather than the argument of §2.5. What Gambler learns following
a particular situation in the tree is not necessarily represented exactly by
one of the steps to the right of that situation. We assume that Reality will
take one of these steps, and that Gambler will know which step Reality takes
when she takes it, but this might not be all that Reality does, and it might
not be all that Gambler learns. When Gambler is in a situation in the tree,
he knows it, but he may also know more. He may know more and believe
more than he anticipated at the planning stage.

We begin this section by characterizing event trees mathematically (§3.1).
Then we use an example to clarify our interpretation of event trees (§3.2).
After explaining how uncertainty in an event tree can be described by a
collection of belief cones—a belief structure, as we call it (§3.3), we look at
the lower and upper previsions determined by belief structures (§3.4).

An important aspect of our interpretation of event trees is our acknowl-
egement of the possibility of refinement. As we explain in §3.2.3, Gambler
may know both that he is in a situation S in one event tree and also that he
is in a more detailed version of S in a more refined event tree. The beliefs
specified for S by the belief structure on the less refined tree will not be
contradicted by the more detailed belief structure on the more refined tree.

3.1 What is an Event Tree?

Formally, an event tree is a set T of objects (situations) partially ordered
by time. We write ≤ for the partial order, and we assume that ≤ has the
following properties:

1. S ≤ S for all S ∈ T .

2. If T ≤ S and S ≤ R, then T ≤ R.

3. If S ≤ R and R ≤ S, then R = S.

4. If T ≤ S and T ≤ R, then R ≤ S or S ≤ R.

Properties 1–3 are the usual rules for partial order. Property 4 makes the
partial order a tree.

When S ≤ R, we say that S follows R. This means that S, if it happens,
happens after or at the same time as R. Writing S ≤ R when S follows
R clashes with the convention that later times are represented by larger
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numbers, but it is imposed by our need to keep our notation consistent with
the theory of event spaces, in which S ≤ R has a more general meaning,
encompassing both ordering by time and ordering by specificity [25].

When R ≤ S or S ≤ R, we say that S and R are ordered. So we can state
Property 4 by saying that any two situations that follow a third situation
are themselves ordered.

As Shafer [19] explains, the abstract concept of an event tree is very flexi-
ble. It allows for the possibility that Reality might sometimes have infinitely
many choices for her next step. It also allows for the possibility that there
is no initial situation in the tree; there might instead be infinite sequences
of earlier and earlier situations. When we use an event tree for planning,
however, we assume that there is an initial situation and that we are in it.

3.1.1 Sample Spaces and Variables

A history (perhaps we should say a possible future history ; we are looking
towards the future, not the past) is a complete path through the tree—a
complete account of how the events the tree tracks might unfold through
time. Formally, a history is a maximal set of ordered situations—a subset r
of T such that every pair of situations in r is ordered and this is true of no
larger subset of T that contains r. When a situation S is in a history r, we
say that r goes through S.

We call the set of all histories the sample space, and we designate it by
R. We call the set of histories that go through S the reduced sample space
for S, and we designate it by RS. We call a real-valued function on R a
variable. We call a real-valued function on RS a variable on S. This is the
kind of variable that might be offered to Gambler when he is in S.

If S ≤ R and x is a variable on S, then we write x↑R for the variable on
R given by

x↑R(r) :=
{

x(r) if r goes through S
0 otherwise

(23)

for all r that go through R. An offer of the variable x↑R in R can be thought
of as a contingent offer—an offer of x provided Reality later arrives in S.

If S ≤ R and x is a variable on R, then we write x↓S for the variable on
S given by

x↓S(r) = x(r)

for all r that go through S.
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3.1.2 Clades and Cuts

We call a subset U of an event tree T a clade if no two distinct situations
in U are ordered. This is equivalent to saying that no history goes through
more than one situation in U . We say that a variable x is measurable with
respect to a clade U if for any situation S in U and for any pair of histories
r1 and r2 that go through S, x(r1) = x(r2). In words: x is constant on the
histories that go through a given situation in U .

We call a nonempty clade U a cut of a situation R if every history that
goes through R goes through exactly one situation in U at the same time or
later.

3.2 How to Interpret an Event Tree

The event trees that we consider in this section must be understood in rela-
tion to our two players, Reality and Gambler. We now explain how we see
this relationship.

We can say that an event tree represents possibilities for what Reality will
do. Each step is a possible move by Reality. But as we explain in §3.2.2, it
is better to think of the tree as a collection of assertions about what Reality
will not do—what is impossible. This is the real empirical meaning of the
tree, inasmuch as it can be refuted.

We assume that Gambler sees Reality’s steps as they are taken, and thus
the steps also represent possibilities for what Gambler will learn. We may
make this vivid by saying that Gambler moves from situation to situation
with Reality. In Figure 2, for example, Gambler and Reality move to sit-
uation S1 when Bill removes the teakettle from the fire. Gambler knows
when he is in a given situation in the tree, although we do not rule out the
possibility that he also knows more. This is the epistemic meaning of the
tree.

Standing back a step, we can think of an event tree as a tool for planning
by a person who places himself in the role of Gambler. It expresses the
person’s assumptions about certain events whose happening or failing he
expects to follow, but it does not purport to make exhaustive predictions
about what else the person will observe, even in relation to these events.
Some steps on the tree may be determined by decisions that the person
himself makes, either in the planning process or later. In this respect, the
person is part of Reality.
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Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

The teakettle
remains on
the fire.

Bill immediately
removes the
teakettle from
the fire.

Teakettle
does not
whistle.

S1

R

U4

U3

U1

U2

S2 Teakettle
whistles.

T1

T2

Figure 2: Another event tree. We call the nodes situations or instantaneous
events.

3.2.1 Situations as Instantaneous Events

Each situation in an event tree is to be understood as a situation at a precise
instant of time. In Figure 2, the timing might be tied down as follows:

• R might be defined by Gambler’s actual initial state of knowledge. He
is standing in Bill’s kitchen watching him, and R is what Gambler
knows of the situation in the kitchen as he points to Bill.

• S1 is the situation where Bill has just removed the teakettle from the
fire.

• S2 is the situation where the teakettle has remained on the fire just
long enough that its whistling is inevitable.

• T1 and T2 are situations where Bill has just picked up the teakettle to
pour the hot water into his teapot.

• U1 and U3 are situations where Bill has just burned himself.

• U2 and U4 are situations where Bill has just finished giving his guests
their tea without having burned himself.
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Because the situations are instantaneous, we can also think of them as events.
A situation is the same as the instantaneous event that the world (or Reality,
as we have been saying) arrives in that situation.

The statement that the situations in the tree are instantaneous should
not be interpreted as meaning that they have a clock time assigned to them
in advance. Figure 2 does not tell us, for example, exactly what time Bill
might burn himself.

3.2.2 Impossibility

According to Figure 2, it is impossible for the teakettle to whistle (T2) unless
it is left on the fire (S2). Moreover, the teakettle will remain on the fire
unless Bill removes it (either S1 or S2 must happen). It will not move or
disintegrate of its own accord, and no man-made or natural catastrophe is
about to destroy the entire kitchen. These two examples illustrate two general
rules of interpretation for an event tree:

• If there is an arrow from S to T , then T can only happen if S happens
first. It is impossible for T to happen without S happening first.

• If there are k arrows from R, where k > 0, say arrows to S1, . . . , Sk,
then exactly one of these k situations must happen after R happens.
It is impossible that S1, . . . , Sk should all fail to happen or that more
than one of them should happen.

The impossibilities that follow from these rules constitute the immediate
empirical meaning of an event tree. We say the tree is empirically valid if
these impossibilities are correct—i.e., if they are not refuted by subsequent
events.

An event tree makes assertions about what is possible as well as assertions
about what is impossible. Only the assertions of impossibility, however,
can be directly tested. Who is to say, after that fact, whether something
that did not happen had really been possible? It is for this reason that we
treat the assertions of impossibility as the empirical meaning of the tree.
We treat possibility as an epistemic matter—a fact about what one knows
from being in a situation rather than a fact about the world. We hasten
to add that we consider this epistemic treatment of possibility appropriate
only for a subjective theory of probability. A theory of objective probability
and causality based on event trees, such as the theory in [22], must treat
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U3
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T12 U2
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Figure 3: A refinement of Figure 2. It gives more information about what
might cause Bill to burn himself if he removes the teakettle from the fire
before it whistles.

possibility as an aspect of the world—an aspect that persists as one learns
more.

3.2.3 Refinement

No event tree can show more than a fragment of what happens in the world—
a fragment of what Reality does. There is always more to be said about the
current state of the world and possibilities for the future. Figure 3 shows a bit
of additional detail that might lie beneath Figure 2’s assertions about Bill’s
teamaking. This figure refines Figure 2 by splitting T1 into two situations,
T11 and T12, depending on whether Bill is pouring the hot water into the
small or large teapot. A person who knows that he is in T11 and knows
Figure 3 knows more at this point than a person who knows only that he
is in T1: he knows Bill is going to burn himself. But nothing he knows
contradicts the impossibilities announced by Figure 2. The two event trees
can be simultaneously empirically valid.

In addition to splitting situations, we can also refine by interpolating
situations to represent intermediate events. In general, this involves refining
what looks like an individual step into chains, or multiple chains, which
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branch according to the outcome of the intermediate events. Examples are
given in [22], [23], and [25]. (The notion of refinement used here differs,
however from the objective concept of refinement used in [22], which does
not permit possibilities to be ruled out by refinement. See also the discussion
in [36].)

We say that an event tree is epistemically valid if Gambler knows at the
outset that he will know when and if he arrives in a given situation in the
tree. A tree can fail to be epistemically valid even though it is empirically
valid, and even though it refines an epistemically valid event tree.

We will assume that the event tree we are working with is both empirically
and epistemically valid. This assumption is appropriate for planning, because
we it is reasonable to make plans about what to do in future situations—
what information to gather and what actions to take—only if we can assume
we will know when to carry out these plans.

The need for epistemic validity underlies our insistence that a situation in
our event tree might not be assigned a determinate clock time. Presumably
we can always specify a range of possible times for each situation in the
tree, and presumably we could refine the tree by splitting each situation
into separate situations, each labeled by one of these possible times. But if
we are not always watching the clock, then this refinement may fail to be
epistemically valid for us. It may also be quite unnecessarily cumbersome.

3.3 Belief Structures on Event Trees

In the protocols of §2, Gambler expressed his beliefs about what would hap-
pen next by adopting Cournot’s principle with respect to given belief cones.
We now generalize this idea to event trees.

Because an event tree can be refined by the interpolation of intermediate
events, we do not want to lean on the notion of what happens next. So
we allow the variables in the belief cone adopted by Gambler for a given
situation to depend on any number of future steps by Reality, not just on
the next step. (This fits the definition of variable we gave in §3.1.2.) We call
the collection of these belief cones a belief structure.

3.3.1 Definition

Consider a set B of pairs of the form (x, S), where S is a situation in our
event tree and x is a variable on S. We write 〈x | S〉 to indicate that the

44



pair (x, S) is in B. We call B a belief structure if the following principles are
satisfied:

1. Rationality: If x is a nonpositive variable on S (this means that
x(r) ≤ 0 for all r through S), then 〈x | S〉.

2. Additivity: If 〈x1 | S〉 and 〈x2 | S〉, then 〈x1 + x2 | S〉.

3. Scaling: If α is a nonnegative real number and 〈x | S〉, then 〈αx | S〉.

4. Contingency: If S ≤ R and 〈x | S〉, then 〈x↑R | R〉.

We suppose that B is adopted by Gambler at the outset, before he accompa-
nies Reality through the event tree. His adoption of B means that he thinks
the offers in it (an offer of x if and when he is in S for every (x, S) in B) are
not enough to allow him to get very rich.

The first three principles, Rationality, Additivity, and Scaling, are
the principles underlying our definition of belief cone in §2.2. They require
the set of x for which (x, S) is in B to be a belief cone for each fixed S.

The fourth principle, Contingency, is justified by the argument we
learned in §2.4. Because Gambler will know if and when he arrives in S, he
can plan in R to accept the offer of x that he knows he will have in S if he
arrives in S. This plan can be adopted at the same time and has the same
effect as accepting an offer of x↑R in R. So if Cournot’s principle is valid
for the offer of x in S, then it is also valid for an offer of x↑R in R, where
Gambler knows less.

All four principles can be thought of ways of enlarging a set of variables
offered to Gambler. We can start with an arbitrary set of variables and use
each of the four principles as a rule for adding others. If x in a nonpositive
variable on S, then we can add 〈x | S〉. If 〈x1 | S〉 and 〈x2 | S〉 are already
in the set, then we can add 〈x1 + x2 | S〉, and so on. The set formed by all
variables that can be obtained in this way in a finite number of steps may
be called the closure of the initial set of variables. It will satisfy all four
conditions and thus qualify as a belief structure.

Figure 4 illustrates Contingency. The event tree at the top of the figure
shows that if it rains on Monday, then Gambler can bet on it raining again
on Tuesday. The event tree at the bottom shows the same offer, made on
a contingent basis on Sunday evening. The two bets have the same payoffs,
and if Gambler cannot get rich exploiting offers on Monday evening, then
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A bet offered on Monday evening

The same bet offered on Sunday evening

$0.50

-$0.50

Rain on
Monday

Dry on
Monday

Rain on
Tuesday

Dry on
Tuesday

Pay Gambler $0.50 if it rains,
-$0.50 if it does not.

Sunday
eveningS

Tuesday
eveningU1

Tuesday
evening

U2

Monday
eveningT1

Monday
eveningT2

$0.50

$0

-$0.50

Rain on
Monday

Dry on
Monday

Rain on
Tuesday

Dry on
Tuesday

Pay Gambler $0.50 if it rains two days
in a row, -$0.50 if it rains on Monday
but not Tuesday, $0 if it does not even
rain on Monday.

Sunday
eveningS

Tuesday
eveningU1

Tuesday
evening

U2

Monday
eveningT1

Monday
eveningT2

Figure 4: Offering a bet contingently.
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he cannot get rich exploiting the corresponding contingent offers on Sunday
evening, when he knows less about the future.

Figure 5 illustrates how a belief structure might extend to a valid refine-
ment. At the top we have that same tree that we saw in Figure 2, with one
variable offered in S1 and another offered in T2. At the bottom we have the
refinement we saw in Figure 3, with the same two offers. For both trees,
we consider the belief structure obtained by taking the closure of the two
gambles offered. By Contingency, the variable offered in T2 is also offered
in S2. But the variable offered in S1 is not offered in T1 in the tree at the
top. The only variables offered in T1 are those introduced by Rational-

ity. Gambler is not offered any bet on whether Bill will burn himself. Our
assumption that the refinement is epistemically valid makes this quite ap-
propriate, for when Gambler is in T1 he is also in either T11 or T12, and hence
he knows whether Bill will burn himself or not.

In general, refinement can reveal more variables available to Gambler.
But neither these additional variables nor the additional knowledge indi-
cated by the refinement should invalidate Gambler’s adoption of Cournot’s
principle for the belief structure on the less refined event tree.

3.3.2 Other Properties

Here some properties that a belief structure may or may not have:

• Coherence: The structure is coherent if whenever 〈x | S〉 there is a
path r going through S such that x(r) ≤ 0.

• Regularity: The structure is regular if 〈x | S〉 whenever 〈x − ε | S〉
for every ε > 0.

• Walley Update: The structure isWalley updated if 〈x | S〉 whenever
x is a variable on S, S ≤ R, and 〈x↑R | R〉.

• Temporal Decomposability: The structure is temporally decom-
posable if whenever 〈x | R〉 and U is cut of R, there exists a variable
y such that (1) y is measurable with respect to U , (2) 〈y | R〉, and (3)
〈(x − y)↓S | S〉 for each S ∈ U .

We discussed Coherence for forecasting protocols in §2.2.1. We cer-
tainly want out belief structures to be coherent. If we discover, in the course
of enlarging an initial set of offers using the five defining conditions, that
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Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

The teakettle
remains on
the fire.

Bill immediately
removes the
teakettle from
the fire.

Teakettle
does not
whistle.

Pay Gambler $0.30
if Bill burns himself,
-$0.70 if he does not.

Pay Gambler $0.30
if Bill burns himself,
-$0.70 if he does not.

S1

R

U4

U3

U1

U2

S2

Pay Gambler $0.20 if Bill burns himself,
-$0.15 if he does not.

Pay Gambler $0.20 if Bill burns himself,
-$0.15 if he does not.

Teakettle
whistles.

T1

T2

Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

Bill burns
himself
making tea.

Bill doesn’t
burn himself
making tea.

The teakettle
remains on
the fire.

Bill immediately
removes the
teakettle from
the fire.

Teakettle does not whistle;
Bill selects small
teapot.

Teakettle
does not whistle; Bill
selects large teapot.

S1

R

U4

U3

U1T11

T12 U2

S2 Teakettle
whistles.

T2

Figure 5: Belief structures for Figures 2 and 3.
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Gambler is offered a sure gain in S, then we will have refuted Gambler’s
adoption of Cournot’s principle for the structure. But this incoherence might
be difficult to discover, and so it is convenient to leave Coherence out of
the definition of belief structure.

We discussed Regularity for forecasting protocols in §2.2.2. As we
noted there, it is a convenient property. Moreover, it has a virtue in common
with the four principles we have assumed for belief structures: it can be in-
terpreted as an instruction for enlarging a set of offers. But we are interested
in implementing the ideas in this article in a practical logic, and it is not
clear how such a logic could make use of an infinite number of premises, one
for each ε > 0. So we also leave Regularity as an auxiliary condition.

Walley Update is the converse of our principle of Contingency. The
two together constitute Walley’s updating principle. As Walley himself would
agree, it is appropriate to demand Walley Update only when the event
tree is interpreted as a protocol for exactly anticipated new information. So it
certainly should not be included in our definition of belief structure. Walley
[33] studies the implications of Walley Update at length. We study the
concept further from our own point of view in [14].

Temporal Decomposability says that Gambler can always decom-
pose an offer in R into two successive offers, the first of which is settled in
U . The variable x offered in R may still be unsettled in U , but there must
be another variable y offered in R that is settled in U , such that in each
situation S in U , Gambler can buy x for the amount he gets there from y.
Gambler can accept y in R and then perhaps wait until U to decide whether
to buy x for the payoff he has obtained from y. The sequential protocols that
we studied in §2 define temporally decomposable belief structures, because
the variables offered there are always immediately settled. We single out the
concept of temporal decomposability here only in order to point out that it
is not required by our general concept of a belief structure on an event tree.
Figure 6 shows a belief structure that is not temporally decomposable.

3.4 Lower and Upper Prevision

A belief structure determines lower and upper previsions in an event tree
just as a belief cone does in a forecasting protocol. In the case of the belief
structure in an event tree, the lower and upper previsions are relative to the
situation.

The lower and upper previsions in S for a variable x on S are defined, of
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-$0.25

$0.75

-$0.25

$0.75

Rain on
Monday

Dry on
Monday

Rain on
Tuesday

Rain on
Tuesday

Dry on
Tuesday

Dry on
Tuesday

Pay Gambler $0.75 if it rains on Tuesday.
-$0.25 if not.

Sunday
eveningS

Tuesday
eveningU4

Tuesday
eveningU3

Tuesday
eveningU1

Tuesday
evening

U2

Monday
eveningT1

Monday
eveningT2

Figure 6: A weather forecaster offers to gamble on whether it will rain the
day after tomorrow but not on whether it will rain tomorrow. On Sunday
evening, he offers $0.25 for a return of $1 if it rains during the day on Tuesday.
The offer is only for Sunday evening; he will no longer gamble on Tuesday’s
weather after he has seen Monday’s. The belief structure he offers to Gambler
is not temporally decomposable.

course by
ES x := sup{α | 〈α − x | S〉}

and
ES x := inf{α | 〈x − α | S〉}.

These quantities have the properties we would expect from our work in §2.
For example,

ES x = −ES(−x)

whenever x is a variable on S, and

ES x ≤ sup{α | ER(x − α)↑R ≥ 0}

whenever x is a variable on S and S ≤ R.
If the belief structure is coherent, we obtain

ES x ≤ ES x.
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If it is regular, we obtain

〈x | S〉 if and only if ES x ≤ 0.

If it is Walley updated, we obtain

ES x = sup{α | ER(x − α)↑R ≥ 0}

whenever x is a variable on S and S ≤ R.
In order to see the effect of temporal decomposability on lower and upper

previsions, we need another definition. Given a situation R, a variable x on
R, and a cut U of R, write EU x for the variable on R given by

(EU x)(r) := ES(r) x↓S(r),

where S(r) is the situation in U that r goes through, and define EU x analo-
gously. In general, we have

ER x ≥ ER[EU x] and ER x ≤ ER[EU x],

but when the belief structure is temporally decomposable, this can be strength-
ened to

ER x = ER[EU x] and ER x = ER[EU x].

See [26], pp. 184–185.
For additional discussion of the properties of lower and upper previsions,

see [33] and §8.3 of [26].

4 Further Perspectives

We have developed a simple mathematical framework for representing sub-
jective uncertainty through time. This framework has many traditional el-
ements, but it relates subjective uncertainty to gambling in a novel way.
Instead of emphasizing that prices for uncertain payoffs should avoid sure
loss, it emphasizes a person’s conviction that he cannot get rich at these
prices.

The framework is also distinguished by the flexbility of its assumptions
about future information. The beliefs it specifies for a future situation where
we have given knowledge are not invalidated if it turns out, when we arrive
in that situation, that we know even more.
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In this concluding section, we offer some additional perspectives on this
new framework. We emphasize the simplicity of its principles (§4.1). We
explain how it is motivated by the problem of planning (§4.2). We discuss
how it might deal with the distinction between updating and revision (§4.3).
And finally, we discuss how it can be further developed using the concept of
an event space (§4.4).

4.1 Two Principles

Early in the twentieth century, the French mathematicians Jacques Hadamard
and Paul Lévy suggested that probability theory is founded on two principles
([26], p. 44). The first principle says that if a gambler can make either of two
bets, he can make them both. This is a mathematical principle, and it leads
to the fundamental property of mathematical probability: probabilities add.
The second principle is not a mathematical principle; rather it is a principle
that connects mathematical probability with reality. This is the principle
that an event with very small probability will not happen.

At its core, our framework is merely an elaboration of Hadamard and
Lévy’s two principles. Our definition of a belief structure formalizes the
principle of additivity. Our version of Cournot’s principle is a generalization
of the principle that an event with very small probability will not happen.

4.2 Uncertain Reasoning

Event trees and the belief structures on them are purely mathematical ob-
jects. We have designed them, however, to serve as part of a semantics for
languages for planning under uncertainty.

A language for planning under uncertainty must name events, describe
possible actions and their outcomes in terms of these events, and describe the
planner’s uncertainty both about the behavior of the world and the outcomes
his own actions. We propose that instantaneous events or situations should
be taken as the fundamental concept in such a language, and that statements
of uncertainty about such events should expressed by gambles be interpreted
using Cournot’s principle. Our four properties for event trees and our four
principles for belief structures can be translated into rules for reasoning about
assertions in such a planning language.

This article has not done any of the work that will be involved in devel-
oping such languages. But the modular character of our semantics should
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contribute to make this work practical. Our notion of refinement will fa-
cilitate the description of events, because it authorizes us describe different
events at different levels of detail. Our principles for belief structures will
allow us to construct belief structures from individual offers to gamble.

4.3 Updating and Revision

There is a sizeable literature, going back at least to work of Isaac Levi [17]
and Peter Gärdenfors [12] in the 1980s, that considers how knowledge should
be revised with experience. Many recent contributions to this literature,
including an influential contribution by Katsuno and Mendelzon [15], em-
phasize the distinction between bringing a knowledge base up to date when
the world it describes changes (“updating”) and revising a knowledge base
to incorporate new information about a static world (“revision”).

The analysis in this article suggests that this distinction between updating
and revision is not simple for subjective probability or subjective lower and
upper prevision. Our steps in our protocols and trees include changes in
the world (moves by Reality), but these changes are also learning steps for
the person who is cast in the role of Gambler. The two aspects cannot be
disentangled, and the abstract theory applies equally well to examples in
which the changes are substantial changes external to the person who plays
Gambler and to examples where the changes are little more than changes in
Gambler’s knowledge.

On the other hand, a belief structure on an event tree can only be an
imperfect plan, drawn up by an imperfect planner and subject to revision.
Several kinds of revision are possible and important. The most innocuous
revision is refinement—the addition of more detail to the event tree or the
addition of more gambles to the belief structure, raising some of our lower
previsions. The most severe is empirical refutation. And as we learned
in §2.4, we may increase our lower previsions in the course of events event
when nothing happens to refute our belief structure.

A belief structure is best thought of, perhaps, as a plan. Plans are seldom
followed for very long. Even when a plan is working well, we usually quickly
obtain enough new insight to make its revision worthwhile. So no matter how
long-term a belief structure on an event tree is, we may expect to change it
before we have followed Reality for many steps.
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4.4 Event Spaces

Although event trees are more flexible than protocols for representing uncer-
tainty, a single event tree cannot represent all the future situations we will
want to consider in a planning problem. Our reasoning in such problems will
be based on rules (rules about what Reality is allowed to do next, rules that
specify probabilities or gambles for what Reality will do next, rules for gath-
ering information, perhaps even rules for taking substantive actions) that are
triggered when a situation satisfies certain premises. Some rules will require
more specificity about the situation than others. Yet an event tree is limited
to one level of specificity; it cannot include situations at different levels of
specificity such as T1 and T11 in Figures 2 and 3.

In [25], we propose a formalism that treats situations in abstraction from
any particular event tree in which they might be represented. In this formal-
ism, we treat on an equal basis not only situations that are ordered in time,
but also situations that are ordered by specificity. These situations form an
event space.

The principles that we have stated for a belief structure in an event tree
readily extend to an event space. We can also add a principle that formalizes
our comments in connection with Figure 5 on p. 47: any variable that is
included in the belief structure for a given situation should also be included
for any refinement of that situation.

A Cournot’s Principle

Antoine Augustin Cournot (1801-1877) was one of the first proponents of
what came to be called the frequentist conception of probability. He also
enunciated what has sometimes been called Cournot’s principle: an event
with probability zero will not happen. This principle, together with the law
of large numbers, implies that probabilities will be matched in the world by
frequencies.

In this article, we have followed Shafer and Vovk [26] in using “Cournot’s
principle” to name a more general principle, which applies to sequential gam-
bling offers that fall short of determining probabilities: Gambler cannot take
advantage of the offers to become infinitely rich.

The concept of probability zero is not necessarily applicable to our pro-
tocols, because they do not necessarily allow us to say whether a given event
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has probability zero or not. The protocol for sequential probability fore-
casting in §1.3, for example, requires only that House give a probability for
each En after E1, E2, . . . , En−1 have been settled; it does not require House
to give a joint probability measure for E1, E2, . . . and hence does not re-
quire him to say whether a given event defined by E1, E2, . . . has probability
zero. But if House did give such a joint probability measure, then Shafer and
Vovk’s version of Cournot’s principle could be considered a consequence of
the principle Cournot advocated, because when Gambler followed a strategy
that did not risk bankruptcy, his capital would be a nonnegative martingale
with respect to the probability measure, and the event that a nonnegative
martingale diverges to infinity has probability zero.

We must distinguish Cournot’s principle from the principle of House’s
avoiding sure loss. Both principles limit Gambler’s ability to make money.
But they differ sharply in other ways:

• The principle of House’s avoiding sure loss is a constraint on House.
It forbids House from choosing probabilities that will permit Gambler
to arrange to make money from House no matter how Reality moves.
This is a hard constraint; it constrains House’s probabilities in specific
and precise ways.

• Formally, Cournot’s principle is a constraint on Reality. It forbids
Reality from moving in such a way that Gambler can make too much
money in the long run. This is a soft constraint; it does not constrain
Reality much on any single move.

Of course, House must avoid sure loss in order for Reality to be able to obey
Cournot’s principle. Moreover, we do not expect Reality to obey Cournot’s
principle unless House chooses his probabilities properly.

B Peter Walley on Updating

In Statistical Reasoning with Imprecise Probabilities [33], Peter Walley paints
a picture in which a person is disposed to agree to certain gambles. Following
de Finetti, Walley calls this person “You”, but “You” is analogous to our
“House”, inasmuch as he expresses beliefs by offering gambles. So far as we
have noticed, Walley does not discuss a counter party; there is no Gambler
in the picture.
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Walley states his updating principle on p. 287 in these words: “Any
gamble Z is B-desirable if and only if BZ is desirable.” The terms in this
statement are defined as follows:

• A gamble (payoff) is desirable, roughly speaking, if You are disposed
to accept it (p. 615).

• B is an event that You will observe to happen or fail.

• A payoff Z is B-desirable if You “intend to accept” Z provided You
observe “just the event B” (p. 287).

• The payoff BZ is equal to Z if B happens and 0 otherwise.

If we identify Walley’s You with our House and identify You being disposed
to accept Z with House’s offering −Z to Gambler, then this becomes the
principle that we stated in §2.3.

Walley argues for his updating principle with the following comments

• “. . . the time at which gambles are accepted does not affect their value.”
(p. 294)

• “The two dispositions mentioned in the updating principle have the
same effect.” (p. 288)

In the last paragraph of §6.1.6 on p. 288, Walley argues that in the
Bayesian case violation of his updating principle may commit a person to
accepting two gambles that together cannot produce a gain and may produce
a net loss. This is not confirmed, however, by our analysis of the two-stage
Bayesian protocol of §1.6. There Gambler cannot make House suffer a loss if
House does not disclose in advance how he will violate the updating princi-
ple (whether his new probability for E will be greater or less than the value
implied by his betting offers at time 0).

C “Incoherence”

The use of “coherent” and “incoherent” in probability theory seems to have
originated with Bruno de Finetti. In a seminal article first published in
French in 1937, [6], de Finetti considered a person—let us call him House—
who offers odds at which he will bet for or against various events. De Finetti
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suggested that these odds should fit together with each other, or cohere, in
such a way that House would not be vulnerable to Gambler’s selecting a
portfolio of bets that would produce a net loss for House no matter how the
events come out. If the odds did not have this property, they would be called
incoherent. De Finetti showed that coherence is sufficient to establish the
classical properties of probability. In later work [7], de Finetti reformulated
these ideas in terms of prices a person sets for buying or selling uncertain
payoffs.

It would be unfair to call a person incoherent for refusing to play de
Finetti’s game—i.e., for refusing to offer all comers prices at which he will
both buy and sell. But once he does agree to the game, it relatively reasonable
to call his prices incoherent when he opens himself up to a sure loss.

In the looser games of §2, where House may offer distinct buying and
selling prices, criticism of these prices becomes more complicated. Here are
two distinct ways we might criticize them:

• Vulnerability to Sure Loss. If House merely states prices at which
he will buy certain variables, then perhaps we can combine various of
his offers in such a way that he pays more than he will get back no
matter how events come out. In this case, his prices are incoherent in
de Finetti’s original sense.

• Understatement. If House not only states prices at which he will buy
certain variables but also states that these are his maximum prices for
these variables, then we may be able to refute one of his statements—
say the statement that α is the most he will pay for x, by combining
various of his other buying offers in such a way that what he is buying
adds up to x and what he pays for it adds up more than α. In this
case, we may say that his statements about what he is willing to pay
are incorrect.

In this article, we say that prices avoid sure loss when they are coherent in
de Finetti’s original sense. This leaves the words “coherent” and “incoher-
ent” available for other roles. So we apply them to protocols: a protocol is
coherent if House is permitted to avoid sure loss. This is also the way the
term is used by Shafer and Vovk [26].

Walley and some other authors use “incoherent” to criticize systems of
prices for understatement. They call a system of buying prices incoherent
whenever the buying price given for one variable is less than the buying price
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that can be derived from buying prices given for other variables. Moreover,
they allow the derivation to include not only the combination of offers but also
the application of other principles to which they subscribe, such as Walley’s
updating principle. This leads to the unpleasant situation where someone
who considers the updating principle inapplicable to a particular problem
risks having his beliefs labeled “incoherent” for this reason.

We suggest that this use of “incoherent” be discontinued. It is impolite
to label systems of prices that some people find reasonable incoherent, and
it is disingenuous, in those circumstances, to pretend that the word is an
innocuous technical term.
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translation by Henry E. Kyburg, Jr., is included in both editions of [16].

[7] Bruno de Finetti. Teoria Delle Probabilità. Einaudi, Turin, 1970. An
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