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Abstract

Andrei Nikolaevich Kolmogorov was the foremost contributor to the mathemat-
ical and philosophical foundations of probability in the twentieth century, and
his thinking on the topic is still potent today. In this article we first review
the three stages of Kolmogorov’s work on the foundations of probability: (1)
his formulation of measure-theoretic probability, 1933, (2) his frequentist theory
of probability, 1963, and (3) his algorithmic theory of randomness, 1965–1987.
We also discuss another approach to the foundations of probability, based on
martingales, that Kolmogorov did not consider.
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1 Introduction

The exposition of this paper is based on Figure 1. At the center of the figure is
Kolmogorov’s earliest formalization of the intuitive notion of probability, in his
famous Grundbegriffe der Wahrscheinlichkeitsrechnung in 1933. This formal-
ization, measure-theoretic probability, has served and still serves as the standard
foundation of probability theory; virtually all current mathematical work on
probability uses the measure-theoretic approach. To connect measure-theoretic
probability with empirical reality, Kolmogorov used two principles, which he
labeled A and B. Principle A is a version of von Mises’s requirement that prob-
abilities should be observed frequencies. Principle B is a finitary version of
“Cournot’s principle”, which goes back to Jacob Bernoulli’s Ars Conjectandi
(1713) and was popularized in the 18th century by Antoine Cournot.

The goal of Kolmogorov’s later attempts to formalize probability was to
provide a better mathematical foundation for applications. In §3 we discuss his
frequentist theory of probability and in §4 his algorithmic theory of randomness.

Another strand of work also derived from von Mises’s ideas. In his 1939 book
Étude critique de la notion de collectif Jean Ville proposed an improvement on
von Mises’s approach that used game-theoretic ideas going back to his famous
compatriot Blaise Pascal. The resulting notion of martingale was never used by
Kolmogorov in his studies of the foundations of probability; he developed von
Mises’s definition in directions quite different from Ville’s. In §5 we discuss this
strand of research, including our recent suggestion [29] to base the mathematical
theory and interpretation of probability directly on the notion of martingale.

We conclude by discussing the usefulness of Kolmogorov’s algorithmic ran-
domness. We argue that, even though its usefulness as a framework for stating
new results about probability might be limited, it has a great potential as a
tool for discovering new facts. We describe in detail an example from our own
research.

We cover both mathematical and scientific aspects of Kolmogorov’s work.
Since the mathematical aspects are uncontroversial and generally well-known,
our emphasis is often on the scientific aspects (how mathematical theories de-
veloped by Kolmogorov relate to reality). But the division of our discussion into
sections is according to the mathematical theories of probability.

2 Measure-theoretic probability

According to Grundbegriffe, the mathematical theory of probability studies
probability measures, i.e., measures P on a measurable space (Ω,F) such that
P (Ω) = 1. An event is just a set E ∈ F and its probability is P (E). On this
simple foundation Kolmogorov built a rich mathematical theory which has been
developed by many researchers and is well known. In this short section we are
mainly interested in connections of measure-theoretic probability with reality,
as Kolmogorov saw them.

Kolmogorov offered two principles for interpreting the probability P (E),
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Figure 1: Some attempts at formalization and interpretation of probability (in
chronological order from top to bottom)
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where E is an event that happens or does not happen in experiment C:

A. One can be practically certain that if C is repeated a large number of times,
the relative frequency of E will differ very slightly from P (E).

B. If P (E) is very small, one can be practically certain that when C is carried
out only once, the event E will not occur at all.

Each of these two principles has a rich history. In A, Kolmogorov follows the
frequentist ideas of Richard von Mises (specifically referring to his [24]). Prin-
ciple B goes back to Bernoulli, Cournot, and Lévy (see [29]).

3 Frequentist probability

Kolmogorov published several informal expositions of his frequentist philosophy
of probability in 1938–1959 [11, 12, 13, 14, 20]. His only attempt to formalize
this philosophy came in 1963, in On tables of random numbers [15]. He starts
this article by stating his reasons for not making such an attempt earlier:

1. The infinitary frequency approach based on limiting frequency (as the
number of trial goes to infinity) cannot tell us anything about real appli-
cations, where we always deal with finitely many trials.

2. The frequentist approach in the case of a large but finite number of trials
cannot be developed purely mathematically.

Kolmogorov never changed his mind about point 1. But by 1963 his think-
ing about the complexity of algorithms had led him to change his mind about
point 2. He now saw that he could use the fact that there are few simple
algorithms to define a finitary version of von Mises’s collectives.

Consider a finite sequence (x1, . . . , xN ) consisting of ones and zeroes. What
properties should this sequence have in order for us to regard it as random
(intuitively, the result of independent trials)? Von Mises had tried to answer
this question for an infinite sequence; he had said that an infinite sequence is
random (or that it is a “collective”) if it satisfies two requirements:

1. The limiting frequency of ones exists.

2. This limiting frequency does not change if we choose an infinite subse-
quence without knowing the outcomes in advance.

In the case of finite sequences the first condition is vacuous, and we only need
to worry about the second one. Of course the words “does not change” must
be replaced with “does not change much”, which leads to the need to speak
about (N, ε)-random sequences rather than just random sequences. In fact,
Kolmogorov’s definition in [15] is even more complicated, since there is an ex-
tra parameter RN (the set of admissible selection rules, themselves complicated
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objects), which is not explicitly reflected in his notation. This lack of mathe-
matical elegance was probably balanced, for Kolmogorov, by the philosophical
importance of the frequentist concept.

Kolmogorov mentions in [15] that he is interested in simple selection rules.
He does not define simplicity precisely, but he relies on the assumption that there
are not too many selection rules in RN , and he explains that this is justified by
the fact that there cannot be many simple selection rules.

Although his definition of (N, ε)-randomness is clearly intended to serve as
the basis for a finitary version of von Mises’s theory, Kolmogorov did not go on
to develop such a theory. In fact, he dropped the concept altogether in favor of
a more direct and elegant approach to defining randomness, to which we now
turn.

4 Finitary algorithmic randomness

As we have just seen, Kolmogorov’s was thinking in 1963 about using algorith-
mic complexity as the starting point for a frequentist definition of probability,
in the style of von Mises. By 1965, however, he was thinking about defining ran-
domness directly in terms of algorithmic complexity, in a way that also allows
us to connect randomness more directly to applications, without any detour
through the idea of frequency. We call this approach Kolmogorov’s finitary the-
ory of algorithmic randomness. He first mentioned it in print in 1965, in the
final paragraph of Three approaches to the definition of the concept “amount of
information” [16]. He developed it further in articles published in 1968 [17] and
1983 [18, 19]. His most detailed exposition was in Combinatorial basis of infor-
mation theory and probability theory [18], published in 1983 but first prepared
in 1970 in connection with his talk at the International Mathematical Congress
in Nice.

Bernoulli sequences

Suppose the binary sequence (x1, . . . , xN ) has k ones and N − k zeroes. To

describe this sequence, log
(

N
k

)
bits are sufficient, since there at most

(
N
k

)

such sequences. According to Kolmogorov, the sequence is Bernoulli if it cannot
be described with substantially fewer bits.

To make this definition precise we need to define the shortest description
of a sequence. The key discovery that made this possible was that there is a
universal method of description, which provides descriptions almost as short as
those provided by any alternative method. (This was realized independently
and earlier by Ray Solomonoff [31, 32]. The existence of a universal method of
description is an implication of the existence of a universal algorithm.)

The Kolmogorov complexity K(x) of x is defined to be the length of the
shortest description of x when the universal method of description is used. Al-
lowing the universal method of description to use extra information y, we obtain

4



the definition of conditional Kolmogorov complexity K(x | y). Now we can say
that a sequence x = (x1, . . . , xN ) with k ones is Bernoulli if K(x | N, k) is close

to log
(

N
k

)
. Kolmogorov made this precise by giving a real number m that

measures the closeness: the sequence is m-Bernoulli if it satisfies

K(x | N, k) ≥ log
(

N
k

)
−m.

Interpretative assumption

A Bernoulli sequence is only one example of a random object. The general
concept, already present in the brief comment in the 1965 article, is that of a
random object in a large finite set A, which must itself be given by some finite
description. Given the description of A, the complexity of an element is at most
the logarithm of the number of elements of A. A random element x is one whose
complexity is close to this maximum—i.e., one satisfying

K(x |A) ≈ log |A|. (1)

Formally, we can call the difference log |A| −K(x |A) the deficiency of random-
ness of x in A.

Recall that Kolmogorov’s measure-theoretic probability was connected to
the empirical world by two interpretative assumptions, Principles A and B. The
main interpretative assumption of his finitary theory of algorithmic randomness
is that we expect the realized outcome x of a trial with outcomes in a finite set
A to be random in A in the sense of (1).

Statistics with complexity models

The basis of standard statistics is the notion of a statistical model, i.e., a family
of probability distributions for the outcomes of an experiment. Kolmogorov
suggested that we replace statistical models with what we call in this article
complexity models: classes of disjoint sets whose union contains all possible
outcomes of the experiment. (The experiment may be very complex. Typically
it consists of a sequence of trials of a more elementary experiment.)

We apply Kolmogorov’s interpretive assumption to a complexity model by
assuming that the outcome of the experiment will be random with respect to
the set in the model that contains it. (Because the sets in the model are disjoint,
there is exactly one such set.) In other words, one’s acceptance of a complexity
model is interpreted as one’s belief that the randomness deficiency of the actual
outcome in the set of the model to which it belongs will be small.

Kolmogorov has given several examples of complexity models, which we
reproduce here. All sequences in our descriptions are assumed to be finite.

5



Example 1 A binary sequence x is Bernoulli if

N = length of x
k0 = # of 0s in x
k1 = # of 1s in x



x is random given N, k0, k1.

As we have already explained, this means that the complexity K(x | N, k1) is

close to
(

N
k1

)
. Formally, the Bernoulli complexity model consists of all equiva-

lence classes of finite sequences of ones and zeroes, where the equivalence of two
sequences means that they have the same length and the same number of ones
(and hence also the same number of zeroes).

Example 2 A binary sequence x is Markov if

N = length of x
s = 1st element of x

k00 = # of 00 in x
k01 = # of 01 in x
k10 = # of 10 in x
k11 = # of 11 in x





x is random given N, s, k00, k01, k10, k11.

In analogy with the previous example, the Markov complexity model consists of
all equivalence classes, where the equivalence of two sequences means that they
have the same length, the same first bit and the same number of transitions
i → j for all i, j ∈ {0, 1}.
Example 3 Markov sequences x of order d: defined analogously to the previous
example.

Example 4 A sequence x = (x1, . . . , xN ) of real numbers is Gaussian if

N = length of x

m = sample mean 1
N

∑N
n=1 xn

σ2 = sample variance 1
N

∑N
n=1(xn −m)2



x is random given N,m, σ2.

To make this precise, one must, of course, discretize the real line in some way.

Example 5 In a similar way one can define Poisson sequences.

Some mathematical results about complexity models are proven in Eugene
Asarin’s articles [1, 2] and his PhD thesis [3] (supervised by Kolmogorov). A
typical result is of the following form: if x is Gaussian (see Example 4), N large
and [a, b] a fixed interval,

#{xn ∈ [a, b]}
N

≈ 1√
2πσ

∫ b

a

e−
(t−m)2

2σ2 dt.

The idea of a complexity model eliminates probability as the basic notion for
the foundations of statistics. We can reintroduce probability by calling certain
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relative frequencies probabilities. In Example 2, for instance, we can define the
conditional probability that a 0 will be followed by a 1 in the Markov sequence
x to be the ratio of the number of occurrences of 01 in x to the total number of
occurrences of 00 and 01 in x. This step is very natural in view of Kolmogorov’s
original motivation, but we can use complexity models directly for prediction
without talking about probability. Suppose, e.g., that we are willing to make
the assumption that a sequence of real numbers of length N , only half of which
is known yet, is Gaussian. Then we can predict that the mean value of the
numbers in the second half will be close to that in the first half. It is clear
that many other predictions of this type can be made for the Gaussian model
and the other models we have considered. No probabilities are needed in these
applications.

Stochastic sequences

If (x1, . . . , xN ) is Bernoulli, then it is random in a simple set (the set of all
sequences with the same length and same number of ones can be described using
approximately 2 log N bits of information). This is true of the other models we
have listed as well, and this seems to be the source of the predictive power of
these models. At a 1982 seminar in Moscow University Kolmogorov defined
a finite object x to be (α, β)-stochastic (where α and β are, typically small,
positive integers) if there exists a finite set A such that

x ∈ A, K(A) ≤ α, K(x |A) ≥ log |A| − β.

The first to study Kolmogorov’s notion of stochasticity were Shen’ [30] and
V’yugin [37]; they answered the question of how many (in different senses)
stochastic sequences are there. There are many other interesting mathematical
questions, both answered and open, raised by Kolmogorov’s concept of stochas-
ticity; see, e.g., V’yugin [38], Li and Vitányi [22], Subsection 2.2.2, Gács et al.
[9], and Vereshchagin and Vitányi [33].

Is the new theory frequentist?

Of the complexity models we have listed, only Example 1 is of direct interest
for the frequentist interpretation of probability. The other examples are natural
developments, but it is clear that they go beyond frequentism. Moreover, as
we have already remarked, the concepts of probability and frequency are not
needed when we use complexity models for prediction.

Kolmogorov never renounced frequentism, but it is clear that the new theory
is not frequentist in the sense of von Mises. Its essential characteristics are the
following:

1. It is strictly finitary: only finite sequences and finite sets of constructive
objects are considered.

2. It makes an assumption analogous to Kolmogorov’s Principle B, which
said that an event of very small probability will not happen. Now we say
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that a particular event, the event that the realized outcome is very simple,
will not happen.

Principle A, the principle of frequency, does not play an essential role. No do
probability distributions play any role; they are replaced by finite sets.

Martin-Löf’s development

In 1966 Martin-Löf [23] gave another justification of Kolmogorov’s notion of
randomness deficiency, showing that it is a universal statistical test. The notion
of a universal statistical test was easy to extend to the case of infinite sequences.
It was later shown, by Levin [21] and Schnorr [28], that a sequence is Martin-
Löf random if and only if the randomness deficiency of its initial fragments is
bounded (the randomness deficiency, however, must be defined in terms of some
variant of Kolmogorov complexity, such as “monotonic” or “prefix” complexity).

5 Martingales

Kolmogorov’s frequentist approach as developed in [15] was based on von Mises’s
ideas. In his 1939 book Jean Ville found, however, that von Mises’s definition
of collective, as formalized by Wald [39], has a serious shortcoming: there are
collectives that violate the law of the iterated logarithm; this is also true about
Church’s 1940 formalization. Kolmogorov was interested in finite sequences, but
Ville’s example has unpleasant implications for long finite sequences as well. In
[15] Kolmogorov solves this difficulty by allowing subsequence selection rules to
scan the sequence in arbitrary order, but it turned out that the solution offered
by Ville himself was a groundbreaking discovery originating a new and fruitful
area of probability theory. The justification offered by von Mises for his notion of
collective was the “principle of the excluded gambling system”; Ville generalized
in a very natural way von Mises’s notion of a gambling system, introducing the
notion of martingale and modifying the notion of collective. The crucial fact
proved by Ville was that his example, or an analogous example based on any
other strong limit theorem, was impossible for the modified collectives. (We
already mentioned a similar property of universality established by Martin-
Löf [23] for Kolmogorov’s later definition based on Kolmogorov complexity.)

Towards 1971 Schnorr [27, 26] suggested several definitions of randomness
through martingales. A similar theory, but without explicit use of martingales,
was developed by Levin (cf. Levin’s [21] definition of randomness in terms of a
priori probability).

Doob [8] expressed and developed Ville’s ideas inside measure-theoretic prob-
ability, and now martingales are central to that theory. The notion of martin-
gale is, however, obviously more game-theoretic than measure-theoretic. In our
book [29] we recount the history of game-theoretic ideas in the foundations of
probability, going back to Pascal, and we show how the classical core of prob-
ability theory can be based directly on game-theoretic martingales, with no
appeal to measure theory. Probability again becomes secondary concept but is
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now defined in terms of martingales; we show that it can serve well for many
purposes. This approach is well suited not only to the classical limit theorems
but also to many applications of probability to finance. In the next section we
demonstrate the approach with an example.

6 The heuristic value of algorithmic randomness

Kolmogorov’s algorithmic theory of randomness continues to generate very in-
teresting new research (see, e.g., [9, 33]). However, the greatest value of the
algorithmic theory may be as a tool of discovery rather than as a language for
mathematical exposition or practical application. Because it is so precise from
the intuitive point of view, the theory is of great use in discovery. But the details
of the mathematical apparatus that makes the theory so precise and explicit—
the additive constants, computability in the limit, etc.—get in the way as soon
as we turn to exposition and application. So as soon as a result is proven, there
is much to be gained by removing algorithmic ideas from that result. Algo-
rithmic randomness thereby disappears, and its guiding role is hidden from the
future users of the result.

Because the algorithmic results are usually not even published, it is not easy
to give examples of this transformation within the confines of an expository
article. For example, we can point to many of the results in our book [29] as
examples of algorithmic results that were stripped down to a game-theoretic
form, but few readers will find this enlightening in the absence of any published
or even well-polished exposition of the original algorithmic results. We will,
however, give one example. For simplicity, and leaving aside Kolmogorov’s
philosophical preferences, we make this example infinitary.

Infinitary algorithmic probability theory, as developed by Martin-Löf, per-
mits a sharp distinction between random and non-random infinite sequences,
leading to pointwise strong limit theorems. For example, we can restate Borel’s
strong law of large numbers by saying that all random infinite binary sequences
x1x2 . . . satisfy

lim
n→∞

1
n

n∑

i=1

xi =
1
2
. (2)

Schnorr [25, 27] quickly noticed that (2) also holds for many non-random se-
quences as well; actually, for (2) to hold it suffices to require a subexponential
rate of growth of the randomness deficiency of the initial fragments of x1x2 . . ..
This observation was extended in [35] to two other strong limit theorems: the
law of the iterated logarithm and the recurrence property. The requirement on
the rate of growth of randomness deficiency is much stronger for these two finer
laws: for example, one of the results of [35] was that

lim sup
n→∞

1√
n ln ln n

∣∣∣∣∣
n∑

i=1

xi − n/2

∣∣∣∣∣ =
1√
2
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if the rate of growth is o(ln ln n); on the other hand, for any function f(n) →∞,
n →∞, there exists a sequence with the rate of growth f(n) ln ln n such that

lim sup
n→∞

1√
n ln ln n

∣∣∣∣∣
n∑

i=1

xi − n/2

∣∣∣∣∣ = ∞.

As Schnorr [26] explains, the fastest admissible rate of growth of randomness
deficiency indicates the importance of the limit theorem under consideration;
the fact that for the strong law of large numbers the rate can be almost as
fast as exponential reflects the fact that this law is one of the most basic limit
theorems of probability.

We will now explain how the algorithmic idea of classification of the strong
limit theorems can be expressed in the game-theoretic framework of [29].1 In-
stead of a binary sequence x1x2 . . . we consider a bounded (by 1, without loss
of generality) in absolute value sequence of real numbers and also allow a Fore-
caster to announce a predicted value mn for each xn. Formally, we consider the
following protocol.

Bounded Forecasting Game
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ [−1, 1].
Skeptic announces Mn ∈ R.
Reality announces xn ∈ [−1, 1].
Kn := Kn−1 + Mn(xn −mn).

Intuitively, mn is Forecaster’s expected value of Reality’s moves xn. This means
that he is prepared to sell to Skeptic, for mn each, any real number of tickets
(positive, zero, or negative) that pay xn. The number of tickets Skeptic chooses
to buy is Mn, and his capital at the end of round n of the game is Kn (assuming
his initial capital was 1).

Let us say that a strategy for Skeptic is prudent if Skeptic’s capital Kn never
becomes negative, no matter what moves Forecaster and Reality make.

Theorem 1 Skeptic has a prudent strategy in the Bounded Forecasting Game
such that he becomes “exponentially rich”, in the sense that

lim sup
n→∞

1
n

lnKn > 0, (3)

1The crucial step in developing that framework itself was adapting Schnorr’s martingale
definition of randomness deficiency to respect Dawid’s [6, 7] prequential principle. As soon as
the picture became clear, the randomness deficiency was removed, and the references to the
algorithmic probability literature became out of place and were edited out.
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on the paths where

lim
n→∞

1
n

n∑

i=1

(xi −mi) = 0 (4)

is violated.

Proof Without loss of generality we assume mn ≡ 0. Skeptic can just use the
following strategy P (described in [29], p. 69; this whole proof is a reversed
version of the proof of Proposition 3.2 in [29]). For every real number ε, let Pε

be the strategy that always buys εα tickets, where α is the current capital. The
strategy P is to divide the initial capital of 1 into two sequences of accounts,
A+

k and A−k , k = 1, 2, . . ., with initial capital 2−k−1 in accounts A+
k and A−k ,

and then to apply Pε with ε := 2−k to each account A+
k , and to apply Pε with

ε := −2−k to each account A−k .
Suppose (4) is violated, e.g.,

1
n

n∑

i=1

xi > δ

for some δ > 0 and for infinitely many n. Taking k so large that ε := 2−k

satisfies ε < δ/2, we can see that, for infinitely many n,

1
n

n∑

i=1

xi > 2ε.

In conjunction with x2
i ≤ 1, this implies

ε

n∑

i=1

xi − ε2
n∑

i=1

x2
i > ε2n;

using the inequality t− t2 ≤ ln(1 + t) (true for t ≥ −1/2), we further obtain

n∑

i=1

ln(1 + εxi) > ε2n.

Since the capital KPε
n attained by the strategy Pε is

2−k−1
n∏

i=1

(1 + εxi),

we can see that
lim sup

n→∞
1
n

lnKPε
n > 0,

which, of course, implies (3).
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The other case where (4) is violated, viz.

1
n

n∑

i=1

xi < −δ

for some δ > 0 and for infinitely many n, is considered analogously: take k so
large that ε := −2−k satisfies |ε| < δ/2.

Theorem 1 corresponds to Schnorr’s [25] variant of the strong law of large
numbers mentioned above. Analogous assertions can be proven for the law of
the iterated logarithm and the recurrence property; the guaranteed speed of
growth of Skeptic’s capital when these laws are violated will be, of course, much
lower.

Even if we are correct that algorithmic randomness is valuable mainly as a
tool for discovery, this would justify its being taught to future researchers much
more widely than it is now.
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