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Abstract

Building on the game-theoretic framework for probability, we show that it is
possible, using randomization, to make sequential probability forecasts that
will pass any given battery of statistical tests. This result, an easy consequence
of von Neumann’s minimax theorem, simplifies and generalizes work by earlier
authors.
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1 Introduction

In a recent book (Shafer and Vovk, 2001), we introduced a purely game-theoretic
framework for probability theory. In this article, we build on that framework
to demonstrate the possibility of good probability forecasting.

In Section 2, we review the prototypical game studied in our book. One of
the players, a sceptic, bets repeatedly at odds given by a probability forecaster.
The sceptic can become infinitely rich unless reality respects the forecaster’s
odds over the long run. In Section 3, we formulate a game that better repre-
sents the challenge faced by the forecaster, as opposed to the sceptic. In this
new game, which we did not consider in our book, the forecaster faces a sceptic
whose strategy is revealed in advance, and he is allowed to use a degree of ran-
domization to conceal each of his probability forecasts until the corresponding
outcome has been announced. Our main result, stated and proven in Section 4,
says that the forecaster can keep the sceptic from becoming infinitely rich, no
matter how reality chooses the outcomes. This means that relative to the scep-
tic’s strategy, the outcomes will look like random events with the forecasted
probabilities. This result is an easy consequence of von Neumann’s minimax
theorem, but it is somewhat surprising. As we explain in Section 5, it sug-
gests that we can make an arbitrary sequential process in the real world look
stochastic in any specified respect.

In the usual measure-theoretic framework for probability, an asymptotic sta-
tistical test can be defined by specifying an event of probability zero; the test
is passed if the event does not happen (Martin-Löf 1966). In our framework, a
statistical test is a betting strategy for the sceptic; the test is passed if the scep-
tic does not become infinitely rich. Because we consider any betting strategy
for sceptic (any statistical test), our result strengthens earlier results in Foster
and Vohra (1998), Fudenberg and Levine (1999), Lehrer (2001), and Sandroni
et al. (2003). These articles made weaker demands on the forecaster; instead
of requiring that the probabilities he gives as forecasts pass any statistical test,
Foster and Vohra asked only that the entire sequence of probabilities be properly
calibrated, and the other authors added only the demand that certain subse-
quences also be properly calibrated. A sequence of probabilities is properly
calibrated when the difference between the average of the probabilities and the
observed relative frequency of the events being forecast converges to zero; for
a precise statement see equations (5) and (7) below. When calibration fails,
whether on the entire sequence or on a subsequence, a statistical test has been
failed. But there are other statistical tests that go beyond calibration. We can
check, for example, whether the convergence required by calibration is at the
rate required the law of the iterated logarithm (Ville 1939).1 In the measure-
theoretic framework, violation of the law of the iterated logarithm is an event of

1A referee has asked whether a violation of the law of the iterated logarithm can be detected
in finite time. It can be, in the same sense in which a failure of calibration can be detected
in finite time (Kolmogorov 1929; Shafer and Vovk 2001, p. 120). But longer sequences of
probability forecasts are needed to detect violations of the law of the iterated logarithm than
to detect violations of calibration.
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probability zero. In our framework, there is a betting strategy for sceptic that
makes him infinitely rich when it happens (Shafer and Vovk 2001, Chapter 5).

So far as mathematical technique is concerned, this article holds little nov-
elty, for our argument from the minimax theorem was already used by some of
the authors concerned with proper calibration (Foster and Vohra 1998, Fuden-
berg 1999, Sandroni et al. 2003). Our contribution is to put the argument in
our game-theoretic framework and to show that it can lead to forecasts with
stochastic properties going beyond calibration. The earlier articles we have
cited did not quite exhaust the argument’s potential even for calibration. As
we show in Appendix A, our result implies a general statement about tests of
calibration that is stronger and simpler than the strongest previous statement,
the one given by Sandroni et al. (2003).

In another recent article, Sandroni (2003) has given a measure-theoretic
version of our result. As we show in Appendix B, Sandroni’s result can be
derived quite easily, modulo technicalities, from our Theorem 4. It is less general
than our Theorem 4 in several respects, most notably in that it makes the
restrictive assumption that outcomes are generated by a probability measure.

Our result also has philosophical significance beyond that of the earlier work,
because it goes beyond calibration to questions about the meaning of probability.
Within the game-theoretic framework, the requirement that probabilities resist
any betting strategy defines their very meaning. Some readers might consider
calibration alone fundamental, arguing that the project of properly calibrating
subsequences is in the spirit of the frequentist foundation of probability advanced
by von Mises (1919), and it is true that von Mises’s approach is still sometimes
presented as a legitimate competitor to interpretations of probability based on
betting. But as Ville (1939) pointed out, it is deficient because it does not require
as much irregularity as classical probability theory does. A sequence satisfying
von Mises’s conditions satisfies the law of large numbers, but it need not satisfy
other predictions of probability theory, such as the law of the iterated logarithm.
Our game-theoretic framework provides one way, the simplest way formulated to
date, of correcting this deficiency. From our point of view, the work on properly
calibrated forecasting that we are extending stays too close to von Mises, and its
relative complexity should be seen as another deficiency of von Mises’s picture.
As we show here, the story is simpler in our game-theoretic framework. For
more on the historical background of the game-theoretic framework, see Shafer
and Vovk (2004), Appendix C, and Chapter 2 of Shafer and Vovk (2001).

An abridged version of this working paper, omitting in particular all the
appendices, was published in 2005 as “Good randomized sequential probability
forecasting is always possible,” Journal of the Royal Statistical Society, Series
B, volume 67, pp. 747–764. This working paper remains useful, however, for
its more thorough exposition. In addition to the appendices, it includes an
informative additional result, Theorem 5, added in 2007.

In 2004, before the published version appeared, we learned that randomiza-
tion is not needed in the quite common case where the properties we want for the
forecasts can be enforced by a strategy for the sceptic that is continuous in the
forecast. The proof for the continuous case is remarkably simple [41]. Moreover,

2



Vovk has recently shown that Theorem 3 of this paper can be derived naturally
from this continuous case [40]. We now call the whole approach, whether or not
randomization is used, defensive forecasting. For more information, including
extensions beyond the binary case, see the whole series of working papers on
defensive forecasting at www.probabilityandfinance.com.

2 The game-theoretic framework for probability

In this section, we review the elements of our game-theoretic framework, with
an emphasis on the idea of probability forecasting. For a review of earlier work
on probability forecasting, see Dawid (1986).

Probability forecasting can be thought of as a game with two players, Fore-
caster and Reality. On each round, Forecaster gives probabilities for what Re-
ality will do. Assuming, for simplicity, that Reality makes a binary choice on
each round, we might begin our description of the game with this protocol:

FOR n = 1, 2, . . . :
Forecaster announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.

This is a perfect-information protocol; the players move in the order indicated,
and each player sees the other player’s moves as they are made. The players
may also receive other information as play proceeds; we make no assumption
about what other information each player does or does not receive.

Forecaster’s goal, broadly conceived, is to state probabilities that pass all
possible statistical tests in light of Reality’s subsequent moves. To formalize this
goal, we add a third player, Sceptic, who seeks to refute Forecaster’s probabili-
ties. Sceptic is allowed to bet at the odds defined by Forecaster’s probabilities,
and he refutes the probabilities if he gets infinitely rich. This produces a fully
specified perfect-information game:

Binary Forecasting Game I
Players: Forecaster, Sceptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Forecaster announces pn ∈ [0, 1].
Sceptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Mn(xn − pn).

Restriction on Sceptic: Sceptic must choose Mn so that his capital remains
nonnegative (Kn ≥ 0) no matter what value Reality announces for xn.
Winner: Sceptic wins if Kn tends to infinity. Otherwise Forecaster wins.

This protocol specifies both an initial value for Sceptic’s capital (K0 = 1) and
a lower bound on its subsequent values (Kn ≥ 0). The asymptotic conclusions
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we draw about the game will not change if these numbers are changed, but
some lower bound is needed in order to prevent Sceptic from recouping losses
by borrowing ever more money to make ever larger bets.

An internal strategy for one of the players in this game is a rule that tells
the player how to move on each round based on the previous moves by the other
players. The word “internal” here refers to the fact that the strategy uses only
information internal to the game, ignoring other information the player might
receive. We call an internal strategy for Sceptic legal if it respects the condition
that Sceptic move so that his capital always remains nonnegative, no matter
how the other players move.

In the game as we have defined it, Forecaster and Sceptic have opposite
goals. One of them wins, and the other loses. We have not assigned a goal to
Reality, but she is in a position to determine which of the other two players wins.
The exact sense in which this is true is spelled out in the next two theorems.

Making Forecaster win is easy; Reality can do this even without Forecaster’s
cooperation:

Theorem 1 Reality has an internal strategy that assures that Forecaster wins.

Proof Consider the strategy for Reality that always sets

xn :=

{
1 if Mn ≤ 0
0 if Mn > 0.

When Reality follows this strategy, Sceptic’s capital increment Mn(xn − pn) is
never positive and so his capital cannot tend to infinity.

Making Sceptic win is harder, because Sceptic can keep himself from winning
by never betting (always setting Mn := 0). But if Sceptic makes large enough
bets, Reality can assure that he wins. If Sceptic and Reality cooperate closely,
they can assure that Sceptic wins spectacularly:

Theorem 2 Sceptic and Reality can jointly assure that Sceptic wins. More
precisely, there is a legal internal strategy for Sceptic and an internal strategy
for Reality such that Sceptic wins when the two players follow these strategies.

Proof Consider the strategies that call for Sceptic to announce

Mn :=

{
Kn−1/(1− p) if pn < 0.5
−Kn−1/p otherwise,

and for Reality to announce

xn :=

{
1 if pn < 0.5
0 otherwise.

The strategy for Sceptic is legal, and when Sceptic and Reality follow these
strategies, Sceptic’s capital doubles on each round.
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The simple argument in this proof has goes back at least to Putnam (1963); see
Dawid’s comments in Oakes (1985).

Because Reality can largely determine the winner, the following hypothesis
is a nonvacuous prediction about Reality’s behaviour:

Hypothesis of the Excluded Gambling System: No matter
how Sceptic plays, Reality will play so that Sceptic does not win the
game.

This hypothesis is not a mathematical assumption. Rather, it is a way of con-
necting our mathematical formalism, a formal game, with the real world, where
the xn appear. It provides an interpretation in the real world of the probabilities
pn.

When we adopt the hypothesis of the excluded gambling system in a partic-
ular real-world forecasting setup, we are expressing confidence in the theory or
the person supplying the probabilities. Of course, we never adopt it more than
provisionally. When we do adopt it, we say that a property E of the sequence
p1x2p2x2 . . . happens almost surely in the game-theoretic sense if Sceptic has an
internal strategy that wins the game whenever the actual sequence p1x2p2x2 . . .
fails to satisfy E.

In Shafer and Vovk (2001), we justify the hypothesis of the excluded gam-
bling strategy by showing that it gives meaning to the classical predictions of
probability theory. Consider, for simplicity, a probability measure P on {0, 1}∞
that assigns non-zero probability to every finite sequence x1 . . . xn. Suppose
Forecaster uses P ’s conditional probabilities as his moves,

pn := P (xn = 1 | x1, . . . , xn−1), (1)

and suppose E is a measurable subset of {0, 1}∞. Then, as we show in Sec-
tion 8.1 of (Shafer and Vovk 2001):

1. If P (E) = 0, then Sceptic has a legal internal strategy that wins the game
if E happens.

2. If P (E) > 0, then Sceptic does not have such a strategy.

In other words, an event happens almost surely in the game-theoretic sense if
and only if it has probability one.

These results for the binary case go back to Ville (1939), but we show that
they generalize to more general forecasting games. Instead of having Reality
choose from {0, 1}, we can have her choose from some other measurable space
Ω. Forecaster’s moves will then come from P(Ω), the set of all probability
measures on Ω, and Sceptic will gamble on each round by choosing a payoff that
has zero or perhaps negative expected value with respect to the measure chosen
by Forecaster on that round. (See, for example, the Randomization Subgame
described in Section 3.1.) In this case as in the binary case, Reality must avoid
any given set of probability zero in order to keep Sceptic from becoming infinitely
rich.
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Historically, the principle that a given set of small or zero probability will not
happen has been considered fundamental to the interpretation of probability by
many authors, including Kolmogorov (1933). It is sometimes called Cournot’s
principle (Shafer and Vovk 2004). Within our game-theoretic framework, we
use Cournot’s principle as another name for our hypothesis of the excluded
gambling system.

We conclude this brief review of the game-theoretic framework with these
clarifications:

1. Because they allow Reality to play strategically and even collaborate with
other players, our games diverge from the usual picture of stochastic pro-
cesses, in which the outcome is not thought to be affected by how anyone is
betting. But the principal mathematical results in Shafer and Vovk (2001)
assert that Sceptic has strategies that achieve certain goals. If Sceptic can
achieve a goal even when Reality and Forecaster do their worst against
him as a team, he can also achieve it when Reality is indifferent to the
game and Forecaster has no advance knowledge of how Reality will be-
have. Allowing Forecaster and Reality to play as a team makes our results
worst-case results.

2. The framework does not require that Forecaster’s move on the nth round
be derived from a probability measure for x1x2 . . . specified in advance of
the game. On the contrary, when deciding how to move on the nth round,
Forecaster may use any new information and any new ideas that come his
way by that time.

3. Instead of giving Sceptic the goal of making his capital tend to infinity (so
that Forecaster’s goal is to keep it from tending to infinity), we sometimes
give Sceptic the goal of making his capital unbounded (so that Forecaster’s
goal is to keep it bounded). The two formulations are equivalent for our
purposes, because if Sceptic has a strategy that guarantees his capital
will be unbounded, then he has a strategy that guarantees it will tend to
infinity. (See the last paragraph of the proof of Theorem 3.) We will not
hesitate to take advantage of this equivalence. (See, for example, the first
two bullets in Section 5.1.)

4. Many of the classical results of probability theory hold in our framework
even when Forecaster offers bets that fall short of defining probability dis-
tributions for Reality’s move. This feature of our framework is important
for applications to finance, because only a limited number of instruments
can be priced by a securities market. But we are not concerned with this
feature in the present article.

5. Finally, infinities are not essential to our story. Although we have been
talking, for brevity, about a probability forecaster’s performance being
tested by an adversary who seeks to become infinitely rich over an infinite
sequence of bets, we can also develop a more useful but more complicated
finitary picture, where the adversary seeks only to become very rich by
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means of finitely many bets. See Chapters 6 and 7 of Shafer and Vovk
(2001) and Theorem 4 in Section 4 of this article.

3 The challenge to Forecaster

The work reviewed in the preceding section emphasizes what Sceptic can
achieve—how Sceptic can become infinitely rich if Reality violates various pre-
dictions. In the remainder of this article, we look at the challenge faced by
Forecaster.

Theorem 2 says that Sceptic and Reality can defeat Forecaster in Binary
Forecasting Game I, where they have full knowledge of Forecaster’s moves and
no constraints on their own moves. But the strategies for Sceptic and Reality
used to prove Theorem 2 are rather delicate: as functions of Forecaster’s move
pn, they change discontinuously at pn = 1/2. It turns out that Forecaster is in
a much stronger position if the protocol is changed even slightly to prevent this
delicate and very precise collaboration between Sceptic and Reality. There are
at least two different ways to do this:

• We can constrain Sceptic to use a strategy continuous in pn. As we men-
tioned in Section 1, we have shown in work subsequent to the original
posting of this working paper that this constraint suffices to give Fore-
caster a winning strategy. This is explained in [41] and at more length in
[31].

• We can restrict Reality’s knowledge of pn slightly, so that she may be
unable to tell, for example, whether or not it exceeds 1/2. We can do this
by having Forecaster announce not pn itself but a probability distribution
Pn, possibly very concentrated about a single point, from which pn will
subsequently be drawn. This idea was used by several authors in the 1990s
and more recently; see Sandroni et al. (2003).

The purpose of this section is to formulate a game, which we call Binary Fore-
casting Game II, in which Forecaster gives only a probability distribution Pn

for pn. We give the protocol for this game in Subsection 3.3. As we see there,
Forecaster’s winning means his winning almost surely with respect to the prob-
abilities involved in the randomization. We show in Section 4 that Forecaster
does have a winning strategy.

We begin this section, in Subsection 3.1, by explaining abstractly how the
idea of drawing pn from a probability distribution can be expressed game-
theoretically. The game we use for the explanation can be thought of as a
subgame of Binary Forecasting Game II.

Binary Forecasting Game II also incorporates the idea that Sceptic can com-
bine a number of strategies he might want to use into a single strategy, which
makes him infinitely rich if any of the individual strategies do. We explain this
in Subsection 3.2. This explanation also involves a game that can be thought
of as a subgame of Binary Forecasting Game II.
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Because we will not use the subgames developed in Subsections 3.1 and 3.2
in isolation, some readers may prefer to skip these subsections, at least ini-
tially, turning directly to the protocol for Binary Forecasting Game II in Sub-
section 3.3.

3.1 Allowing Forecaster to randomize

In our purely game-theoretic approach, the notion that Forecaster’s move is
selected at random from a probability distribution he announces must also be
represented game-theoretically. We can do this by splitting Forecaster into two
players. The first player decides on the probabilities and sets up the randomizing
device (this is the role of a person who constructs and spins a roulette wheel);
the second player then decides on the outcome of the randomization (this is the
role of the roulette wheel). Calling the first player Forecaster and the second
Random Number Generator, and writing P[0, 1] for the set of all probability
measures on [0, 1], we can describe their interaction in terms of a game analogous
to our Binary Forecasting Game I:

Randomization Subgame
Players: Forecaster, Random Number Generator
Protocol:

F0 := 1.
FOR n = 1, 2, . . . :

Forecaster announces Pn ∈ P[0, 1].
Forecaster announces fn : [0, 1] → R such that

∫
fndPn ≤ 0.

Random Number Generator announces pn ∈ [0, 1].
Fn := Fn−1 + fn(pn).

Restriction on Forecaster: Forecaster must choose Pn and fn so that his
capital remains nonnegative (Fn ≥ 0) no matter what value Random Number
Generator announces for pn.
Winner: Forecaster wins if his capital Fn tends to infinity.

In this game, Forecaster bets by choosing a gamble fn that is either fair
(
∫

fndPn = 0) or unfavourable to him (
∫

fndPn < 0). If Forecaster gets in-
finitely rich with such bets, then we will think that Random Number Generator
has done a bad job—i.e., has not made his p1, p2, . . . look like draws from the
sequence P1, P2, . . . of probability measures.

Random Number Generator can easily defeat Forecaster. We will assume
that he does so, playing so that Fn stays bounded. In other words, we will adopt
Cournot’s principle for this Randomization Subgame. This assumption will be
implicit in our formulation of Binary Forecasting Game II (Subsection 3.3),
inasmuch as that game requires the forecasts pn to defeat Sceptic and Reality
only when Fn is bounded.

The protocol of the Randomization Subgame implicitly assumes that fn is
measurable; this is needed in order for the integral to be defined. But as we
will see when we prove Theorem 3 in Section 4, Forecaster can achieve what we
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want him to achieve even if we put much stronger restrictions on the fn; e.g.,
we can require that they be continuous and piecewise linear.

3.2 Sceptic’s strength

Consider first the problem of representing Sceptic’s strength.
The most important point here is the following feature of our game:

Proposition 1 Suppose R1 and R2 are legal internal strategies for Sceptic, and
set

R = α1R1 + α2R2,

where α1 and α2 are nonnegative real numbers adding to one. Then R is also
a legal internal strategy for Sceptic, and R wins whenever R1 wins or R2 wins.

Proof An internal strategy Q for Sceptic is a function that assigns a real num-
ber to every finite sequence of moves by Forecaster and Reality of the form
p1x1 . . . pn. Such a function recursively determines a capital process L for Scep-
tic: L(2) = 1, where 2 is the empty sequence, and

L(p1x1 . . . pnxn) = L(p1x1 . . . pn−1xn−1) +R(p1x1 . . . pn)(xn − pn). (2)

The internal strategy Q is legal if and only if L is everywhere nonnegative.
Let K1, K2, and K be the capital processes for R1, R2, and R, respectively.

By (2), K = α1K1 + α2K2. It follows that (i) K is everywhere nonnegative
whenever K1 and K2 are, and thus R is legal whenever R1 and R2 are, and
(ii) on any path p1x1p2x2 . . . where K1 or K2 tends to infinity, K also tends to
infinity.

If Forecaster is considering two different legal internal strategies for Sceptic, R1

and R2, and he wants to find a strategy of his own that beats both of them,
then according to this proposition, it is enough for him to find a strategy that
beats α1R1 + α2R2. This conclusion generalizes from any pair to any finite set
of legal internal strategies and even to any countably infinite set of legal internal
strategies. It also generalizes from internal strategies to strategies that use any
other information that we can assume in advance will be available to Sceptic.

There are no more than a countable number of statistical tests we might ask
Forecaster’s probabilities to pass, and hence no more than a countable number
of legal strategies for Sceptic that Forecaster needs to counter. Indeed, as Wald
(1937) explained, there are only a countable number of sentences in any formal
language that we might use to formulate tests. But as a practical matter, we
cannot specify all the tests that interest us, and Proposition 1 depends on an
asymptotic notion of winning that loses contact with practicality when we try
to average too many strategies. The average will tend to infinity when any
of its components does, but not as fast. So we do not want to exaggerate
the significance of the possibility of averaging strategies for Sceptic. We assert
only that in some circumstances it can allow Sceptic to capture the aspects of
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randomness (including calibration) that interest us. For a closer look, see Vovk
(2004).

Because we are asking Forecaster to defeat only a single strategy for Sceptic,
we can clarify Forecaster’s task by requiring Sceptic to announce this strategy
before Forecaster moves. If the players did not receive information from outside
the game in the course of play, then we might simply require Sceptic to announce
an internal strategy for the whole game at the outset. But because our frame-
work does allow both Forecaster and Sceptic to receive information from outside
of game, and because some of this information might be unanticipated or infor-
mal, we instead require only that Sceptic announce a strategy for each round
before Forecaster moves on that round. For simplicity, we assume that this
strategy is internal at least in the sense that at the point where it is announced,
the only not-yet-received information it uses is Forecaster’s not-yet-announced
move.

The following game, which can be thought of as a subgame of the game we
will formulate in Subsection 3.3, except that here we have Forecaster announc-
ing pn and there Random Number Generator will do so, expresses these ideas
formally. It differs from Binary Forecasting Game I in only one way: Scep-
tic now moves first on each round, announcing a strategy that is a function of
Forecaster’s forthcoming move.

Forecasting Subgame
Players: Sceptic, Forecaster, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Sceptic announces a function Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(xn − pn).

Restriction on Sceptic: Sceptic must choose Sn so that his capital remains
nonnegative (Kn ≥ 0) no matter what values Forecaster and Reality announce
for pn and xn.
Winner: Sceptic wins if Kn tends to infinity.

The strategy Sn takes only the subsequent move by Forecaster, pn, into account.
But in choosing Sn, Sceptic may take into account both previous moves in the
game and any other information received before the round begins. The game
does not require Sn to be continuous or even measurable. The requirement
that Kn remain nonnegative no matter how Forecaster and Reality move does,
however, mean that Sn must be a bounded function of p.

3.3 The game to challenge Forecaster

Combining our two ideas—announcing Sceptic’s strategy at the outset of
each round and randomizing the probability forecasts—we obtain a perfect-
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information game involving four players:

Binary Forecasting Game II
Players: Sceptic, Forecaster, Reality, Random Number Generator
Protocol:

K0 := 1.
F0 := 1.
FOR n = 1, 2, . . . :

Sceptic announces a function Sn : [0, 1] → R.
Forecaster announces Pn ∈ P[0, 1].
Reality announces xn ∈ {0, 1}.
Forecaster announces fn : [0, 1] → R such that

∫
fndPn ≤ 0.

Random Number Generator announces pn ∈ [0, 1].
Kn := Kn−1 + Sn(pn)(xn − pn).
Fn := Fn−1 + fn(pn).

Restriction on Sceptic: Sceptic must choose Sn so that his capital remains
nonnegative (Kn ≥ 0) no matter how the other players move.
Restriction on Forecaster: Forecaster must choose Pn and fn so that his
capital remains nonnegative (Fn ≥ 0) no matter how the other players move.
Winner: Forecaster wins if either (i) his capital Fn tends to infinity or (ii)
Sceptic’s capital Kn stays bounded.

As we explained when we described the subgames in the preceding subsections,
the rules of this game impose only regularity conditions on Sn or fn. The
requirement that Kn ≥ 0 no matter how the other players move does imply a
bound on each Sn, and the requirement

∫
fndPn ≤ 0 does imply that fn must

be integrable and therefore measurable. But this is about all that can be said.
If Random Number Generator does a good job in the game (Fn does not

tend to infinity), then Forecaster wins the game if and only if Sceptic does not
detect any disagreement between Forecaster and Reality (Kn stays bounded). In
the next section, we prove that Forecaster has a winning strategy. If Forecaster
uses this strategy, then Random Number Generator can guarantee that the pn

are good probability forecasts for the xn just by making sure that they look like
random draws from the Pn.

In the protocol as we have set it up, Random Number Generator actually
announces pn after Reality announces xn, and this makes it awkward to think
of pn as a probability forecast of xn. But our result (Forecaster has a winning
strategy) is not affected if we make an exception to our presumption of perfect
information by supposing that Random Number Generator sees the xn later or
perhaps never at all, and this should not hamper his ability to make the pn look
like random draws from the Pn. We will return to this point in Section 5.1,
where we recast the protocol so that xn is announced after pn.

One might also worry that the protocol grants too much to Sceptic and
Reality. We could tie Sceptic down more by requiring him to announce an
internal strategy for the entire game at the outset. We could also ensure the
neutrality of Reality by requiring her to choose her entire sequence of moves
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x1x2 . . . before play begins, even though she announces these moves to the
other players according to the indicated schedule. But because Forecaster has a
winning strategy in the game as laid out, there is no point in changing the game
to strengthen Forecaster’s hand. Forecaster’s winning strategy will remain a
winning strategy when the other players are weakened.

4 Good probability forecasts

Theorem 3 Forecaster has a winning internal strategy in Binary Forecasting
Game II.

Proof Imagine for a moment that Forecaster and Reality play the following
zero-sum game on round n after Sceptic announces the bounded function Sn:

Game on Round n
Players: Forecaster, Reality
Protocol:

Simultaneously:
Forecaster announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.

Payoffs: Forecaster loses (and Reality gains) Sn(pn)(xn − pn).

The value of this game is at most zero, because for any mixed strategy Q for
Reality (any probability measure Q on {0, 1}), Forecaster can limit Reality’s
expected gain to zero by choosing pn := Q{1}. In order to apply von Neumann’s
minimax theorem, which requires that the move spaces be finite, we replace
Forecaster’s move space [0, 1] with a finite subset An of [0, 1]. Fixing ε > 0
and using the boundedness of Sn, we choose An dense enough in [0, 1] that the
value of the game is smaller than ε2−n. The minimax theorem then tells us that
Forecaster has a mixed strategy Pn (a probability measure on [0, 1] concentrated
on An) such that ∫

Sn(p)(x− p)Pn(dp) ≤ ε2−n (3)

for both x = 0 and x = 1.
Returning now to Binary Forecasting Game II, consider the strategy for

Forecaster that tells him, on round n, to use the Pn just identified and to use
as his second move the function fn given by

fn(p) :=
1

1 + ε

(
Sn(p)(xn − p)− ε2−n

)
(4)

for p ∈ An and defined arbitrarily for p /∈ An. (This allows Forecaster to make
fn continuous and piecewise linear if he wishes.) The condition

∫
fndPn ≤ 0 is

then guaranteed by (3). Comparing the sums

Kn = 1 +
n∑

i=1

Si(pi)(xi − pi)

12



and

Fn = 1 +
1

1 + ε

n∑

i=1

(
Si(pi)(xi − pi)− ε2−i

)
,

we see that
(1 + ε)Fn = Kn + ε2−n,

so that Kn ≤ (1 + ε)Fn. This establishes that Fn is never negative and that
either Kn will stay bounded or Fn will be unbounded.

To complete the proof, it suffices to show that for every legal strategy T for
Forecaster, we can construct another legal strategy T ∗ such that whenever T ’s
capital is unbounded, T ∗’s tends to infinity. This is easy to do. We choose some
number larger than 1, say 2. Starting, as the game requires, with initial capital
1 for Forecaster, we have him play T until its capital exceeds 2. Then he sets
aside 1 of this capital and continues with a rescaled version of T , scaled down to
the reduced capital. (This means he multiplies T ’s moves on succeeding rounds
by the same factor as he has multiplied the capital at this point, thus assuring
that the capital on succeeding rounds is also multiplied by this factor.) When
the capital again exceeds 2, he again sets aside 1, and so forth. The money set
aside, which is part of the capital earned by this strategy, grows without bound.
For another way of constructing T ∗ from T , see Shafer and Vovk (2001), p. 68.

The essential idea of this proof—the application of von Neumann’s minimax
theorem—was used by several of the authors who worked on properly calibrated
randomized forecasting, including Hart (Foster and Vohra 1998, pp. 383–384),
Fudenberg and Levine (1999), and Sandroni et al. (2003). In Appendix A, we
show that Theorem 1 implies the result obtained by Sandroni et al. (2003), the
strongest result on properly calibrated randomized forecasting of which we are
aware.

Like the results of previous authors, Theorem 3 generalizes beyond the case
where Reality’s moves are binary. Our proof generalizes directly to the case
where Reality’s move space Ω is a finite set, and the argument can probably
also be extended to yet other games considered by Shafer and Vovk (2001).

Whereas previous work on properly calibrated forecasting seems to be es-
sentially asymptotic (and has been criticized on this account; see Schervish’s
comment in Oakes (1985)), our game-theoretic result is not. We stated Theo-
rem 3 in asymptotic form, but in the course of proving it, we also established a
finitary result:

Theorem 4 For any ε > 0, Forecaster has a strategy in Binary Forecasting
Game II that guarantees Kn ≤ (1 + ε)Fn for each n.

Forecaster can guarantee Fn ≥ Kn to any approximation required, which means
that every dollar gained by Sceptic can be attributed to the poor performance
of Random Number Generator.

A more careful look at the proof of Theorem 3 allows one to strengthen
Theorem 4 as follows.

13



Theorem 5 For any ε > 0 and any sequence ε1, ε2, . . . of positive reals, Fore-
caster has a strategy in Binary Forecasting Game II that guarantees:

• Kn ≤ (1 + ε)Fn for each n;

• each Pn is concentrated on a set {p′n, p′′n} ⊆ [0, 1] containing at most two
elements (we allow p′n = p′′n) such that |p′n − p′′n| < εn.

The condition |p′n − p′′n| < εn shows that a tiny amount of randomization is
sufficient; a similar observation was made by Kakade and Foster (2004).

Proof Fix n. We are required to show that Forecaster can achieve his goal
(3) using Pn concentrated on {p′, p′′} ⊆ [0, 1] with |p′ − p′′| < εn. Consider the
curve C consisting of the points

Cp := (Sn(p)(−p), Sn(p)(1− p)) , p ∈ [0, 1],

in the (x, y)-plane R2. Inequality (3) requires that a convex combination of
points on this curve be southwest of the point (ε2−n, ε2−n) (where (x1, y1) being
southwest of (x2, y2) means that x1 ≤ x2 and y1 ≤ y2). We will see that a convex
mixture of Cp′ and Cp′′ with arbitrarily close p′ and p′′ can be made arbitrarily
close to the origin (0, 0) (except in trivial cases); this will establish the theorem.

We may assume that C does not pass through the origin. (If it does, we can
set p′ = p′′ := p for Cp = (0, 0).)

Clearly, C lies in the second (x ≤ 0, y ≥ 0) and fourth (x ≥ 0, y ≤ 0)
quadrants of the plane. For each p ∈ [0, 1] let Lp be the straight line passing
through the origin and the point (−p, 1− p) (so that Cp is the only point of the
intersection of C and Lp). Let A be the set of p for which Cp is in the second
quadrant, and let B be the set of p for which Cp is in the fourth quadrant.
Without loss of generality we assume that the sets A and B are non-empty (if
A is empty, we can set p′ = p′′ := 0, and if B is empty, we can set p′ = p′′ := 1).
Since A ∪ B = [0, 1] and the set [0, 1] is connected, the closures of A and B
cannot be disjoint.

Let p′ ∈ [0, 1] be any point in the intersection of the closures of A and B.
The line Lp′ contains a point of C either in the second or in the fourth quadrant;
suppose, for concreteness, that Cp′ is in the second quadrant. There are Cps in
the fourth quadrant with p arbitrarily close to p′. We can take one of them as
p′′.

Forecaster’s strategy must also include a rule for selecting fn. We retain the
rule indicated in the proof of Theorem 3: the support of the probability measure
Pn now consists of the two points p = p′ and p = p′′, so we define fn(p) by (4)
and extend it to [0, 1] by making it piecewise linear and therefore integrable.

5 Discussion

Theorems 3 and 4 say that if you have a good random number generator, you
can do a good job forecasting probabilistically how reality will behave. In this
concluding section, we elaborate this message and its implications for how we
think about stochasticity.

14



5.1 Variations on the game

We can vary Binary Forecasting Game II in several ways without losing its
intuitive message. Here we look at a couple of variations that may be helpful
to some readers.

Two games at once

The rule for winning in Binary Forecasting Game II treats the game as a single
game involving four players. We could just as well, however, return to the picture
developed in Section 3, in which Random Number Generator is simultaneously
participating in two different games by announcing the pn. All the players are
in the same protocol—the protocol in Binary Forecasting Game II—but there
are two games because there are two rules for winning2:

• Against Forecaster, Random Number Generator is playing the Random-
ization Subgame we described in Section 3.1. Random Number Generator
wins this game if and only if Fn stays bounded (so that the pn look random
with respect to the Pn).

• Against Sceptic, Random Number Generator is playing the Forecasting
Subgame (in the role we gave to Forecaster when we first described that
game on p. 10), which he wins if and only if Kn stays bounded (so that
the xn look random with respect to the pn).

Theorem 4 says that Forecaster has a strategy that guarantees Kn ≤ (1 + ε)Fn

for all n. By playing this strategy, Forecaster guarantees that Random Number
Generator wins the Forecasting Subgame whenever Random Number Generator
wins the Randomization Subgame.

Putting xn after pn

As we have already mentioned, one counter-intuitive feature of Binary Fore-
casting Game II is that pn is announced after the outcome xn it is supposed to
predict. Here is a way of changing the protocol so that xn comes last, where it
seems to belong.

FOR n = 1, 2, . . . :
Sceptic announces a bounded function Sn : [0, 1] → R.
Forecaster announces Pn ∈ P[0, 1].
Forecaster announces, for x = 0 and x = 1,

fx
n : [0, 1] → R such that

∫
fx

ndPn ≤ 0.
Random Number Generator announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(xn − pn).
Fn := Fn−1 + fxn

n (pn).
2Recall point 3 at the end of Section 2 concerning the equivalence of requiring that a

player’s capital not tend to infinity and requiring that it be bounded.
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Changing the protocol in this way does not invalidate the conclusion that
Forecaster has a winning strategy. In order to see this, we need to think sepa-
rately about two changes and why they do not weaken Forecaster:

• Forecaster now makes his second move before Reality announces xn. In-
stead of waiting to see xn and then announcing fn, Forecaster announces
a strategy for how fn will depend on xn.

• Random Number Generator announces pn before Reality announces xn.

A winning strategy remains a winning strategy when it is announced, in whole
or in part, in advance. So it does not weaken Forecaster to announce how fn

will depend on xn. Nor can the order in which Forecaster’s opponents make
their moves after he is finished diminish what he can achieve.

This version of the protocol helps us see that the randomization is a way of
requiring Reality’s neutrality. Intuitively, Reality’s moves x1x2 . . . have nothing
to do with how well Random Number Generator can simulate random draws
from announced probability measures on [0, 1]. But if Forecaster makes fn de-
pend on xn, Reality may be able to choose the xn so that Random Number
Generator fails Forecaster’s test. When we adopt Cournot’s principle for the
Randomization Subgame, we are assuming Reality will not behave in this ma-
licious way.

5.2 Is randomization really needed?

Theorem 2 seems to establish that Forecaster cannot win against Sceptic without
the randomization we have studied in this article. It may be unreasonable,
however, to ask Forecaster to defeat the extremely precise collaboration between
Sceptic and Reality in the example we used to prove Theorem 2. Is it not
possible that Forecaster might succeed without randomization if we ask him
only to defeat more reasonable strategies by Sceptic?

One reasonable thing for Sceptic to do is to test for calibration. The tradi-
tional way of checking calibration is to divide the range of the forecasts, [0, 1],
into a large number of small intervals and to check whether the average of the
xn for the pn in each interval itself falls in or near that interval. We can easily
translate this into a strategy for Sceptic in Binary Forecasting Game I. Say we
use 4 intervals: [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1]. Let R be the strategy
constructed for Sceptic in Proposition 3.3 of Shafer and Vovk (2001), which
keeps his capital nonnegative and makes him infinitely rich unless

lim
n→∞

∑n
i=1(xi − pi)

n
= 0. (5)

Suppose Sceptic runs 4 copies of R/4; copy 1 on the rounds where pn ∈ [0, 0.25)
(pretending the other rounds do not happen), copy 2 on the rounds where
pn ∈ [0.25, 0.5) (again pretending the other rounds to not happen), etc. Then
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Reality can defeat Forecaster by always choosing

xn :=

{
1 if pn < 0.5
0 otherwise.

This is in the spirit of examples discussed by Oakes, Dawid and Schervish (1985),
who conclude that many sequences of outcomes cannot be predicted probabilis-
tically by a computable theory.

Even this example can be questioned, however. A strategy for Sceptic that
requires him to distinguish whether pn < 0.25 or pn ≥ 0.25 may be reasonable
from a mathematical point of view, but it is not reasonable from a computational
point of view. It is not continuous in pn, and so it cannot really be implemented.
It is not computable.

The fact that only continuous functions are computable, together with the
fact that the strategies for Sceptic that we studied in Shafer and Vovk (2001)
are continuous, suggests that we study a version of Binary Forecasting Game II
in which Sceptic’s move Sn is required to be continuous. Recent work by Vovk,
Takemura, and Shafer (2005) shows that Forecaster can win such a game without
randomization.

5.3 The meaning of stochasticity

We have shown that good randomized probability forecasting for a sequence
x1x2 . . . is always possible. If Forecaster is allowed to announce his probability
pn for each xn after observing x1x2 . . . xn−1, and he is allowed to randomize
when choosing these probabilities, then he can make sure that they pass a given
battery of statistical tests. This shows that probability theory applies broadly to
the real world. But this breadth of applicability undermines some conceptions
of stochasticity. If everything is stochastic to a good approximation, then the
bare concept of stochasticity has limited content.

There is content in the assertion that a sequence obeys a probability dis-
tribution P that we specify fully before any observation. The assertion can be
refuted when the sequence is observed, and if it is not refuted then Forecaster
can avoid refutation himself only by agreeing with P ’s predictions in the limit
(Appendix E; Dawid 1984, p. 281). But there seems to be very little content in
the assertion that a sequence is governed by a completely unknown probability
distribution.

When he follows the strategy suggested by the proof of Theorem 3, is Fore-
caster using experience of the past to predict the future? He is certainly taking
the past into consideration. Sceptic’s moves signal emerging discrepancies that
he would like to take advantage of, and Forecaster chooses his ps to avoid ex-
tending these discrepancies. But because he succeeds regardless of the xs, it
is awkward to call Forecaster’s ps predictions. Perhaps we should call them
descriptions of the past rather than predictions of the future.

Kolmogorov once expressed puzzlement about the appearance in the real
world of the kind of irregularity described by probability (Kolmogorov 1983,
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p. 1):

In everyday language we call random those phenomena where
we cannot find a regularity allowing us to predict precisely their re-
sults. Generally speaking there is no ground to believe that random
phenomena should possess any definite probability. Therefore, we
should have distinguished between randomness proper (as absence
of any regularity) and stochastic randomness (which is the subject
of the probability theory).

There emerges a problem of finding the reasons for applicability
of the mathematical theory of probability to the phenomena of the
real world.

But when probability is used in a way that succeeds regardless of how events
turn out, we do not need to look farther to find reasons for its success.
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A Properly calibrated randomized forecasting

As we explained in the introduction to this article, the work on randomized
forecasting by Foster and Vohra (1998), Fudenberg and Levine (1999), Lehrer
(2001), and Sandroni et al. (2003) demonstrated only the existence of random-
ized forecasts with certain calibration properties. Foster and Vohra showed that
the whole sequence of forecasts can be made properly calibrated, and the other
authors showed that subsequences of forecasts selected by certain rules can also
be made properly calibrated. In this appendix, we show that our Theorem 3,
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together with a game-theoretic strong law of large numbers that we proved in
Shafer and Vovk (2001), implies the existence of randomized forecasts that are
properly calibrated even with respect to the widest possible class of rules for
selecting subsequences. For brevity, we continue to consider only the binary
case.

Selecting subsequences can be more complicated in probability forecast-
ing than in von Mises’s theory, because we can use p1x1 . . . pn−1xn−1pn, not
merely x1 . . . xn−1, when deciding whether to include the nth trial in the sub-
sequence. Among our predecessors, however, only Sandroni et al. went beyond
x1 . . . xn−1, and they used only x1 . . . xn−1 and pn, still ignoring the prior fore-
casts p1, . . . , pn−1. We will be as broad as possible, allowing rules that use all
the internal information p1x1 . . . pn−1xn−1pn.

Let us write U for the set of all sequences of the form p1x1 . . . pn−1xn−1pn.
We call any measurable function F : U → {0, 1} a selection rule; we interpret it
by including the nth round in the subsequence when F (p1x1 . . . pn−1xn−1pn) =
1. We say that an infinite sequence of forecasts p1p2 . . . is properly calibrated
with respect to a selection rule F on a path x1x2 . . . if

∞∑
n=1

F (p1x1 . . . pn−1xn−1pn) < ∞ (6)

or

lim
n→∞

∑n
i=1 F (p1x1 . . . pi−1xi−1pi)(xi − pi)∑n

i=1 F (p1x1 . . . pi−1xi−1pi)
= 0. (7)

Let us write V for the set of all sequences of the form p1x1 . . . pnxn. A
forecasting system is a measurable function ζ : V → P[0, 1]. Given a path
s = x1x2 . . . , we define ζs : [0, 1]∗ → P[0, 1] by

ζs(p1, . . . , pn−1, pn) := ζ(p1x1 . . . pnxn).

By Ionescu-Tulcea’s extension theorem (Shiryaev 1996, Section II.9), there exists
a unique probability measure ζ∗s on [0, 1]∞ having ζs(p1, . . . , pn) as a conditional
distribution for pn+1 given p1, . . . , pn for n = 0, 1, . . . . We say that ζ is properly
calibrated with respect to a selection rule F on a path s if ζ∗s -almost every
forecast sequence p1p2 . . . is properly calibrated with respect to F on s; we say
that ζ is properly calibrated with respect to F if it is properly calibrated with
respect to F on every path s.

Because our notion of a selection rule is more general than the notion used by
Sandroni et al., the following theorem is stronger than Proposition 1 of Sandroni
et al.:

Theorem 6 Given an arbitrary countable collection of selection rules, there
exists a forecasting scheme that is properly calibrated with respect to all the
rules in the collection.

Proof Let C be a countable collection of selection rules. For each selection rule
F in C, fix a strategy RF for Sceptic in Binary Forecasting Game I that is legal
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and makes him infinitely rich if neither (6) nor (7) holds. Such a strategy RF

can be constructed in an almost trivial way from the winning strategy RSLLN

for Sceptic we constructed in Section 3.3 of Shafer and Vovk (2001) to prove the
game-theoretic strong law of large numbers in the bounded forecasting game
studied there; we simply ignore any round n in Binary Forecasting Game I
for which F (p1x1 . . . pn−1xn−1pn) = 0. More precisely, RF tells Sceptic to set
Mn equal to zero whenever F (p1x1 . . . pn−1xn−1pn) = 0 and to use RSLLN’s
recommendation for round k of the bounded forecasting game on the round of
Binary Forecasting Game I for which F (p1x1 . . . pn−1xn−1pn) 6= 0 for the kth
time.

By Lemmas 3.1 and 3.2 of Shafer and Vovk (2001), Sceptic can average
the RF for F ∈ C to obtain a legal strategy R in Binary Forecasting Game I
that makes him infinitely rich whenever any of the RF does so. This strategy R
makes him infinitely rich if there is any F in C for which neither (6) nor (7) holds.
It can be chosen measurable. Since it is known in advance, it can be translated
into Sceptic’s strategy in Binary Forecasting Game II. This makes Forecaster’s
winning strategy in Binary Forecasting Game II (which exists by Theorem 1)
a function of only Reality’s and Random Number Generator’s moves—i.e., a
forecasting system. Call it ζ.

To complete the proof, we need to check that ζ is properly calibrated with
respect to all F ∈ C on all s = x1x2 . . . . In other words, for each s and
each F , we need to show that ζ∗s -almost all forecast sequences p1, p2, . . . are
properly calibrated with respect to F on s. But lack of proper calibration leads
to Sceptic becoming infinitely rich, and by Theorem 3, this leads to Forecaster
also becoming infinitely rich. And since Forecaster’s capital is a supermartingale
with respect to ζ∗s , Forecaster becomes infinitely rich with probability zero.

B Forecasting under stochasticity

Suppose we fix a horizon N and a function T (p1, x1, . . . , pN , xN ) for testing the
probability forecasts p1, . . . , pN . The function T takes only two values: “accept”
and “reject”. Suppose further that under any probability distribution P for
x1, . . . , xN , the probability that T accepts when P ’s conditional probabilities
are used for the pn is at least 1 − ε. Sandroni (2003) shows that there is a
randomized strategy for giving the pn that makes the probability that T accepts
at least 1− ε no matter how x1, . . . , xN come out. This is a measure-theoretic
version of our game-theoretic Theorem 4. It is weaker than Theorem 4 in several
respects:

• It assumes a fixed horizon N .

• It assumes that Reality chooses the x1, . . . , xN randomly rather than play-
ing strategically.

• It fixes a single test T at the outset, whereas our Sceptic can change his
strategy as the game proceeds.
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But it expresses in measure-theoretic terms the proposition that randomized
probability forecasts can perform as well true probabilities.

Typically, measure-theoretic counterparts can be derived from game-
theoretic results in probability (Shafer and Vovk 2001, Chapter 8). We now
demonstrate that this rule holds in the present case by deriving a simplified
version of Sandroni’s result from our Theorem 4.

Following Sandroni, we assume that the game is played for only a finite
number of rounds, say N . To avoid technicalities, we make two simplifying
assumptions:

1. We assume, as we have done throughout this article, that the outcomes
xn are binary. (Sandroni allows any finite outcome space.)

2. We assume that all probabilities are chosen from a fixed finite subset P
of [0, 1]. The forecaster is required to choose his pn from P, and the
unknown probability distribution P has all its conditional probabilities
(its probabilities for xn = 1 given x1, . . . , xn−1) in P.

Under these assumptions, our Theorem 4 holds with ε = 0.
A test T is a function that maps each sequence (p1, x1, . . . , pN , xN ) with

pn ∈ P and xn ∈ {0, 1} to 0 or 1. We interpret T = 1 to mean that the test
rejects the pn (this reverses Sandroni’s convention). The test does not reject the
truth with probability 1− ε if, for any probability distribution P on {0, 1}N with
conditional probabilities in P, the P -probability that T (p1, x1, . . . , pN , xN ) = 1,
where pn is the conditional P -probability that xn = 1 given x1, . . . , xn−1, does
not exceed ε. The test can be passed with probability 1 − ε if there exists a
forecasting system (in the sense of the preceding appendix but with the pn

restricted to P) ζ such that, for any path s = x1, . . . , xN ,

ζ∗s
{
(p1, . . . , pN ) ∈ [0, 1]N |T (p1, x1, . . . , pN , xN ) = 1

} ≤ ε,

where ζ∗s is defined as in the preceding appendix but with n restricted not to
exceed N .

Corollary 1 If a test does not reject the truth with probability 1− ε then it can
be passed with probability 1− ε.

Proof Let T be a test that does not reject the truth with probability 1− ε. We
use it to define a martingale K as follows: define a function K′(p1, x1, . . . , pn, xn),
where n = 0, 1, . . . , N , pi ∈ [0, 1], and xi ∈ {0, 1}, by the requirements

K′(p1, x1, . . . , pN , xN ) := T (p1, x1, . . . , pN , xN )

and

K′(p1, x1, . . . , pn, xn) :=
max
p∈P

(pK′(p1, x1, . . . , pn, xn, p, 1) + (1− p)K′(p1, x1, . . . , pn, xn, p, 0))
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for n = N−1, N−2, . . . , 1, 0. Since T does not reject the truth with probability
1 − ε, K′(2) ≤ ε. It is easy to see that K := K′/K′(2) is a capital process
of some strategy in Binary Forecasting Game I in which Sceptic is allowed to
throw part of his money away at each trial. Consider the corresponding strategy
(i.e., the strategy with the same Mn) in which Sceptic keeps all his money at
each trial; this determines Sceptic’s strategy in Binary Forecasting Game II
(Sn(p) is Sceptic’s move in Binary Forecasting Game I made in response to
p1, x1, . . . , pn−1, xn−1, p). Consider also the randomized strategy for Random
Number Generator that draws pn ∈ P randomly from Pn at each trial and the
deterministic strategy for Reality that outputs a fixed sequence s = (x1, . . . , xN )
of moves. Let ζ be the part of Forecaster’s winning strategy that produces
Pn (in the game with the goal Fn ≥ Kn for all n; cf. Theorem 4) as played
against these strategies for Sceptic, Random Number Generator, and Reality.
Because Fn ≥ Kn, Fn is a nonnegative supermartingale with respect to ζ∗s , and
it starts at 1. So Doob’s inequality implies that ζ∗s gives the event FN ≥ 1/ε
probability at most ε. It follows that ε is also an upper bound for the probability
that KN ≥ 1/ε and hence for the probability that K′N ≥ 1 and hence for the
probability that T (p1, x1, . . . , pN , xN ) = 1.

C Roots of the game-theoretic framework

In this appendix, we review some of the historical roots of the game-theoretic
framework. For a broader account, see [32], Chapter 2, and [33].

C.1 Von Mises’s collectives

Richard von Mises was the first to give the hypothesis of the excluded gambling
system a role in the foundation of probability. Von Mises thought of a proba-
bility as a limiting relative frequency in a sequence of trials, but he recognized
that the existence of a limiting frequency does not imply the irregularity needed
to exclude a gambling system. In 1919 [36], von Mises suggested that this reg-
ularity could be guaranteed by requiring that the same limiting frequency be
obtained when one selects a subsequence of trials step by step, deciding just
before each trial whether it will be included in the subsequence. Von Mises
called a sequence of outcomes satisfying this requirement a Kollectif.

Von Mises’s collectives were widely studied and debated in mathematical
circles in the 1930s. Many people pointed out that no sequence could satisfy his
condition for every rule for selecting subsequences, while others noted that the
condition can be satisfied for any countable collection of such rules. Abraham
Wald argued that this is enough, because no formal language can express more
than a countable number of rules [42], and Alonzo Church buttressed Wald’s
argument by pointing out that there are only countably many effectively com-
putable selection rules [3].
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C.2 Ville’s martingales

A fundamental objection to von Mises’s picture was advanced in the late 1930s
by Jean Ville [35], who demonstrated that a sequence of outcomes may permit
a gambler to get infinitely rich even though its limiting frequencies behave as
von Mises required. Von Mises’s conditions keep the gambler from getting rich
simply by choosing when to bet, but the gambler may still be able to get rich
by cleverly varying the amount he bets and which outcome he bets on.

At the time of Ville’s work, measure theory in the modern abstract sense had
not yet established itself as the standard foundation for mathematical probabil-
ity, but coin tossing, always the fundamental example of probability, was already
understood in terms of Lebesgue measure. For Ville and his contemporaries, the
properties required of a binary sequence by “classical probability” were the sub-
sets of {0, 1}∞ that have Lebesgue measure one. Ville was able to show that
for every subset E of Lebesgue measure zero, there is a gambling system (a
strategy for the gambler) that parlays initial finite wealth into infinite wealth if
the sequence of outcomes x1x2 . . . falls in E. So by ruling out gambling systems
we can guarantee any classical property, including, for example, the law of the
iterated logarithm, which, as Ville showed, can be violated by a sequence that
is a collective in von Mises’s sense.

Ville called the capital process determined by a strategy for the gambler
a martingale, and the requirement that the gambler use only his initial finite
wealth, without borrowing, means that the martingale must be nonnegative.
So we can restate Ville’s result by saying that for every subset E of measure
zero there is a nonnegative martingale that tends to infinity if x1x2 . . . falls in
E. The requirement that nonnegative martingales not tend to infinity may be
called the martingale definition of randomness.

Wald and Church’s arguments apply to Ville’s notion of a gambling system
just as well as they apply to von Mises’s notion of a subsequence selection
rule (see Wald’s comments on pp. 15–16 of [8]). Thus there exist sequences of
outcomes that resist all the gambling systems that can be formulated in a given
formal language. Ville could have reasonably argued that when the language
is rich enough, these sequences are the truly random sequences, and he could
have tried to make this martingale definition of randomness a foundation for
probability theory as von Mises had done with his collectives.

In fact, neither Ville nor any of his contemporaries promoted the martingale
definition of randomness, and the game-theoretic perspective that Ville had
brought to the foundations of probability was neglected for many decades. There
are a host of reasons for this:

• In spite of decades of effort, Von Mises never really produced a simple and
attractive reconstruction of the mathematical theory of probability on his
proposed new foundation, and his efforts in this direction did not provide
much guidance for a similar effort based on Ville’s sequences. By 1939,
when Ville’s book appeared, most students of mathematical probability,
including Ville, had concluded that efforts to give a deep foundation to
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probability should be abandoned in favour of some more superficial axiom
system, such as the one proposed by Kolmogorov [17].

• Ville himself misunderstood the implications of Church’s argument (see
[35], p. 134).

• The advent of Hitler and World War II disrupted the lives of Ville’s Euro-
pean colleagues so severely that many who might have explored his ideas
further never even became aware of them. Ville himself turned to other
topics ([32], p. 198).

• Ville’s notion of a martingale was co-opted by the American mathemati-
cian Joe Doob, who developed it formally within measure-theoretic prob-
ability [9].

• The frequentist interpretation of probability has roots in philosophy and
popular culture that has sustained interest in von Mises’s ideas. There
has been no comparable impetus for the development of a game-theoretic
interpretation.

Per Martin-Löf’s article, “The literature on von Mises’ Kollectivs revisited”,
published in 1969, thirty years after the appearance of Ville’s Étude critique de
la notion de collectif, was probably the first review of von Mises’s work that
gave Ville’s contribution its due. Even today one sees discussions of von Mises’s
ideas that make no mention of Ville.

C.3 The revival of game-theoretic probability

In the 1960s, Kolmogorov brought a powerful new idea into the discussion of
randomness: algorithmic complexity. Fixing a universal Turing machine, he
defined the complexity of a finite sequence as the length of the shortest program
that would generate it. A random finite sequence, he suggested, is a maximally
complex one [15, 16]. This idea inspired work in many directions by many
authors. Here we discuss only a development that can be seen as a step towards
our game-theoretic framework: Claus Peter Schnorr’s revival, in 1970, of Ville’s
martingale definition of randomness.

In order to explain something of what Schnorr did, we must mention the defi-
nition of randomness for infinite sequences given by Per Martin-Löf in 1966 [22].
Kolmogorov’s definition of randomness for finite sequences cannot be applied
directly to infinite sequences, but Martin-Löf reformulated it in terms of sta-
tistical tests. He showed that a universal object exists in the set of recursively
enumerable statistical tests of randomness, and he demonstrated that the crit-
ical level of this universal test for a finite sequence x of length n is n − C(x),
where C(x) is complexity in Kolmogorov’s sense. This means that a finite se-
quence is random in Kolmogorov’s sense to the extent that its randomness is
not rejected by the universal test, and so it becomes natural to say that an
infinite sequence is random if its randomness is never rejected by the universal

27



test. The sequences that are not random in this sense form a constructively
defined null set.

Schnorr’s contribution was to show that Martin-Löf’s definition of random-
ness is equivalent to a version of Ville’s martingale definition of randomness. He
showed that an infinite binary sequence is random in Martin-Löf’s sense if and
only if every lower semicomputable martingale (including those whose starting
point is merely lower semicomputable, not computable) is bounded on the se-
quence ([30], p. 41). (Schnorr actually preferred a weaker condition, which he
considered more constructive: he wanted to say that a sequence is random if no
computable martingale grows fast enough on the sequence for its divergence to
be detected in a certain constructive sense ([30], p. 77). This condition corre-
sponds to a different notion of constructively defined null set, which originated
with L. E. J. Brouwer.)

Because Ville himself did not espouse the martingale definition of probability,
it can be argued that Schnorr was the first to do so. But Martin-Löf also played
an essential role, not only by defining randomness in terms of statistical tests in
1966, but also by calling attention to Ville’s work, of which he had been unaware
in 1966 [24], in the historical article he published in 1969. Although it cannot
be said that Martin-Löf advocated the martingale definition in this historical
article, his comments about Ville were both positive and suggestive, and they
may well have inspired Schnorr’s attention to the martingale definition.

Leonid Levin independently covered the same ground as Schnorr in work
that was not published until 1973 [20]. Levin expressed his results in a language
that made their game-theoretic content less obvious (see Appendix D). But in
at least one respect his results were more general than Schnorr’s. Schnorr, like
von Mises and Ville, seems to have been motivated by the problem of providing
meaning to probability. A probability p is to be explained in terms of the
randomness of a binary sequence of 0s and 1s. More generally, a probability
measure P on a space Ω is to be explained in terms of the randomness of a
sequence of elements of Ω. Levin, like Martin-Löf, went beyond this problem
to consider the randomness of a sequence x1x2 . . . with respect to a probability
measure that is not necessarily a product measure. This is one way—though
not the best way, as we will now argue—to approach the problem of evaluating
sequential probability forecasts.

C.4 Dawid’s prequential principle

The problem of evaluating a sequence of probability forecasts p1p2 . . . seems
to have first been raised in 1950, in weather forecasting [2], where it led to a
literature on the topic of calibration (see [7] for a review). Probability forecasts,
it was pointed out, should be properly calibrated—not too high or too low—
relative to actual frequencies. On days when our probability forecast for rain
is 0.2, it should rain approximately 20% of the time. And when we use a
subsequence selection rule in the sense of von Mises, we want the same proper
calibration on the subsequence: we should see rain approximately 20% of the
time.
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In the literature on calibration, as elsewhere, people were quicker to recognize
the relevance of von Mises’s subsequence selection than to recognize the rele-
vance of Ville’s gambling systems. Subsequence selection rules were discussed at
least as early as 1968 [4]. Phil Dawid first called attention to gambling systems,
somewhat in passing, in 1985 ([6], p. 1270).

Dawid also made a far more important contribution to our story. This is his
prequential principle, which we see as an indispensable historical step in break-
ing the link, forged almost without reflection by mathematical probabilists, be-
tween probability forecasts and probability measures. Weather forecasters and
others who actually make probability forecasts often do not see any such link;
they may use all sorts of tricks to make up the probabilities p1p2 . . . as they go
along, but they seldom obtain these numbers by calculating conditional prob-
abilities from a probability measure. But for those schooled in mathematical
probability, the idea that pn should be the conditional probability for xn given
x1 . . . xn−1 is almost inescapable.

In [6] and a series of other articles, Dawid noted that any forecasting sys-
tem that does not use outside information—any rule for choosing pn based on
x1 . . . xn−1—actually determines a probability measure. (This theorem is often
attributed to Ionescu-Tulcea; see [34], §II.9.) But Dawid saw an analogy be-
tween probability forecasting and Bayesian statistics, where the likelihood prin-
ciple says that hypotheses should be evaluated only in terms of the probabilities
they assign to what actually happened. In the same spirit, Dawid insisted that
one should evaluate not the forecasting system but only the forecasts p1, p2, . . .
actually made; this is his prequential principle.

Although the pictures developed by Ville, Schnorr, and Levin are largely
game-theoretic, the game we can see in these pictures is only between Sceptic
and Reality. There is no role for a player named Forecaster in the picture,
because the forecasts are all specified in advance by a probability measure.
By bringing the forecaster into the picture and talking about a probability
measure on a sequence as a special kind of strategy for the forecaster, and then
by focusing our attention on the forecaster’s actual moves rather than on his
strategies, Dawid more or less created our game-theoretic framework.

It was, in any case, by combining Schnorr’s game-theoretic picture with
Dawid’s prequential principle that Vovk arrived at the early version of the game-
theoretic framework he exposited in 1993 [38]. It is a relatively short step from
this version to the general version exposited in our book [32], in which Forecaster
can make more general moves.

Once we have the game-theoretic framework, however, we no longer need
to talk about the prequential principle, for it holds automatically, at least to
the extent we need it. The outcome of the game obviously depends only on
the moves actually made by the players, not on strategies they may or may
not have been following. This frees us from many complications and problems.
We can get started, for example, without discussing whether strategies must be
computable. Any strategy that we actually construct for Forecaster or Sceptic
will be computable and more, but this is a fact of life, not a condition arbitrarily
added to the setup.
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D Sceptic’s universal strategy

We have already mentioned Kolmogorov’s introduction of the concept of uni-
versality into the foundations of probability and its further use by Martin-Löf.
Kolmogorov defined randomness for a finite sequence in terms of the sequence’s
complexity relative to a universal Turing machine, and Martin-Löf proved the
existence of a universal statistical test for the randomness of both finite and
infinite sequences [22]. Schnorr gave a game-theoretic interpretation of Martin-
Löf’s universal test, and Levin, at about the same time, made clear the existence
of an essentially maximal lower semicomputable supermartingale [44].

As we mentioned in §3, our Binary Forecasting Game I also has a universal
object: a universal lower semicomputable game-theoretic supermartingale. Its
existence follows readily from an argument given by Levin ([21], §4.4). We
will not repeat this argument here, but in order to provide some perspective
for the reader who is not familiar with Levin’s work, we will explain what
a universal lower semicomputable game-theoretic supermartingale is and say
something about what its existence does and does not mean.

Recall that a game-theoretic martingale is a martingale in Ville’s sense—
the capital process resulting from a strategy for Sceptic. Given a strategy P
for Sceptic, we obtain the resulting game-theoretic martingale KP by setting
KP(2) := 1, where 2 is the empty sequence, and

KP(p1x1 . . . pnxn) := KP(p1x1 . . . pn−1xn−1)
+ P(p1x1 . . . pn−1xn−1pn)(xn − pn). (8)

(Cf. Shafer and Vovk, 2001, p. 82.) The concepts of strategy and game-theoretic
martingale are largely interchangeable; we can recover the strategy for Sceptic
from its game-theoretic martingale, and what we can say in terms of one we can
say in terms of the other. One is computable if and only if the other is.

At first glance, we might hope to find a universal computable strategy
for Sceptic, one that does as well, in some asymptotic sense, on every path
p1x1p2x2 . . . as any other computable strategy for Sceptic. But it is fairly easy
to see that there is no such thing. From any computable strategy P we can con-
struct a path p1x1p2x2 . . . and another computable strategy that does infinitely
better on that path. The key is to identify a path where P does poorly. We
can do this by setting all the pn equal to 1

2 and then choosing the xn step by
step: always choose xn so that P’s gain, P( 1

2 , x1, . . . , xn−1,
1
2 )(xn− 1

2 ), is either
negative or (if we find that P( 1

2 , x1, . . . , xn−1,
1
2 ) is close to zero before we find

its sign) very small. Having identified the path, we then construct a strategy
that does infinitely better than P on that path by betting all Sceptic’s current
capital on the winning side at each step.

In order to find a universal object, we must ask for something less than a
computable game-theoretic martingale, and it turns out that the appropriate
something less is a lower semicomputable game-theoretic supermartingale.

Notice that a process S (a real-valued function on sequences of the form
p1x1 . . . pnxn) qualifies as a game-theoretic martingale if and only if S(2) = 1
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and for each p1x1 . . . pn there exists M ∈ R such that

S(p1x1 . . . pnxn) = S(p1x1 . . . pn−1xn−1) + M(xn − pn) (9)

for all xn. The notion of a game-theoretic supermartingale is defined analo-
gously; it is a process S such that S(2) = 1 and for each p1x1 . . . pn there exists
M ∈ R such that

S(p1x1 . . . pnxn) ≤ S(p1x1 . . . pn−1xn−1) + M(xn − pn) (10)

for all xn. The change from the equality in (9) to the inequality in (10) means,
intuitively, that we now allow Sceptic to throw money away.

Recall that a process S is lower semicomputable if the relation

S(p1x1 . . . pnxn) > r,

where n ranges over natural numbers, pi ∈ [0, 1], xi ∈ {0, 1}, and r ranges
over rational (or real) numbers, is positively decidable. In the case of a game-
theoretic martingale, being lower semicomputable is the same as being com-
putable, but in the case of a game-theoretic supermartingale, being lower semi-
computable is a weaker condition.

Here is the exact sense in which the lower semicomputable game-theoretic
supermartingale given by Levin’s argument is universal:

Theorem 7 There exists a lower semicomputable game-theoretic supermartin-
gale U such that for any lower semicomputable game-theoretic supermartingale
S there exists a positive constant C such that, for every n and every situation
p1x1 . . . pnxn,

U(p1x1 . . . pnxn) ≥ CS(p1x1 . . . pnxn).

The fact that U is a game-theoretic supermartingale means that for each
p1x1 . . . pn−1xn−1pn there exists a number P(p1x1 . . . pn−1xn−1pn) that satisfies

U(p1x1 . . . pnxn) ≤ U(p1x1 . . . pn−1xn−1) + P(p1x1 . . . pn−1xn−1pn)(xn − pn)

for all xn. If we allow definitions to depend on the axiom of choice, this defines
a strategy P whose capital process is never less than U . But such a strategy P
will be at best computable in the limit.

Although Theorem 7 follows from Levin’s argument, it is stronger than the
result stated by Levin, because it is prequential: it does not assume a strat-
egy for Forecaster. We can reduce the picture to Levin’s picture by fixing a
strategy for Forecaster that depends only on Reality’s moves. If this strategy,
say p(x1 . . . xn), is computable, then U reduces to a function of Reality’s moves
only:

V (x1, . . . , xn) := U(p(2), x1, . . . , p(x1, . . . , xn−1), xn).

This function is a supermartingale with respect to the probability measure ob-
tained from p(x1 . . . xn) by Ionescu-Tulcea’s extension theorem ([34], §II.9). The
product V p is Levin’s a priori semimeasure.
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E Jeffreys’s law

In 1962 [1], David Blackwell and Lester E. Dubins showed that if two probabil-
ity measures on for x1x2 . . . are equivalent (either is absolutely continuous with
respect to the other), then they have conditional distributions for the future
given the first n outcomes x1 . . . xn whose variation distance from each other
converges to zero almost surely under both measures as n tends to infinity. This
is an abstract measure-theoretic result, but it can be interpreted as giving con-
ditions under which two probability measures or probability forecasters can be
expected to agree more and more closely, or merge, as time goes on. Other the-
orems that can be interpreted similarly were subsequently proven by Kabanov
et al. [12], Dawid [6], and Vovk [37]. Following Dawid ([5], p. 281), we call the
general thesis that probability forecasts should merge Jeffreys’s law.

The method we have studied in this article produces a sequence P1P2 . . .
of probability measures on [0, 1] and draws pn from Pn. We will now show
that if there is another good forecaster who makes nonrandomized forecasts p′n
(forecasts p′n that are known to everyone at the beginning of each round), then
the Pn can succeed only if they concentrate around p′n as we proceed.

To put the result in purely game-theoretic form, we use the following version
of the forecasting game considered in §4.1:

Binary Forecasting Game III
Players: Theory, Sceptic, Forecaster, Random Number Generator, Reality
Protocol:

K0 := 1.
K′0 := 1.
F0 := 1.
FOR n = 1, 2, . . . :

Theory announces p′n ∈ [0, 1].
Sceptic announces Sn : [0, 1] → R.
Forecaster announces Pn ∈ P[0, 1].
Forecaster announces, for x = 0 and x = 1,

fx
n : [0, 1] → R such that

∫
fx

ndPn ≤ 0.
Sceptic announces S′n ∈ R.
Random Number Generator announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(xn − pn).
Fn := Fn−1 + fn(pn).
K′n := K′n−1 + S′n(xn − p′n).

Restriction on Sceptic: Sceptic must choose the Sn and S′n so that his capital
on both accounts is always nonnegative (Kn ≥ 0 and K′n ≥ 0 for all n) no matter
how the other players move. Moreover, each Sn must be continuous.
Restriction on Forecaster: Forecaster must choose the Pn and fn so that
his capital is always nonnegative (Fn ≥ 0 for all n) no matter how the other
players move.
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Theorem 8 Sceptic has a strategy in Binary Forecasting Game III such that if
Kn and K′n are bounded, then limn→∞(pn − p′n) = 0.

Proof Let us restate the protocol so that Sceptic’s moves also look like prob-
ability forecasts:

K0 := 1.
K′0 := 1.
F0 := 1.
FOR n = 1, 2, . . . :

Theory announces p′n ∈ [0, 1].
Sceptic announces qn : [0, 1] → [0, 1].
Forecaster announces Pn ∈ P[0, 1].
Forecaster announces, for x = 0 and x = 1,

fx
n : [0, 1] → R such that

∫
fx

ndPn ≤ 0.
Sceptic announces q′n ∈ [0, 1].
Random Number Generator announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.
Kn := Kn−1qn(pn)/pn if xn = 1.
Kn := Kn−1(1− qn(pn))/(1− pn) if xn = 0.
Fn := Fn−1 + fn(pn).
K′n := K′n−1q

′
n/p′n if xn = 1.

K′n := K′n−1(1− q′n)/(1− p′n) if xn = 0.

This change is motivated by the fact that a positive martingale with respect to
a probability measure P can always be represented as Q/P , where Q is another
probability measure. Formally, we can verify that the two protocols give the
same capital processes for Sceptic using the relationships

qn(pn) =
Kn−1 + Sn(1− pn)

Kn−1
pn and q′n =

K′n−1 + S′n(1− p′n)
K′n−1

p′n.

In the modified protocol, consider the strategy for Sceptic that tells him to
make the same move against both Theory and Forecaster:

q′n = qn(pn) :=

√
pnp′n√

pnp′n +
√

(1− pn)(1− p′n)
.

This is the normalized geometric mean. By Cauchy’s inequality, its denominator
does not exceed 1. If both Kn and K′n are bounded, than as N →∞,

N∏
n=1

√
pnp′n√

pnp′n +
√

(1− pn)(1− p′n)
= O

(
N∏

n=1

pn

)

and
N∏

n=1

√
pnp′n√

pnp′n +
√

(1− pn)(1− p′n)
= O

(
N∏

n=1

p′n

)
.
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Multiplying these equations and taking the square root, we find that

N∏
n=1

(√
pnp′n +

√
(1− pn)(1− p′n)

)

is bounded below by a positive number; this implies
√

pnp′n +
√

(1− pn)(1− p′n) → 1

as n →∞. So pn − p′n → 0.

This method of proof can also produce nonasymptotic game-theoretic ver-
sions of Jeffreys’s law, similar to Theorem 1 in [37].
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