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Abstract

We consider how to make probability forecasts of binary labels. Our main
mathematical result is that for any continuous (in particular, any com-
putable)gambling strategy used for detecting disagreement between the forecasts
and the actual labels, there exists a forecasting strategy whose forecasts are
ideal as far as this gambling strategy is concerned. A forecasting strategy
obtained in this way from a gambling strategy demonstrating a strong law of
large numbers is simplified and studied empirically. This working paper is the
full version of a paper to be published in the AI & Statistics 2005 proceedings.
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1 Introduction

Probability forecasting can be thought of as a game between two players, Fore-
caster and Reality:

Basic Binary Forecasting Protocol
Players: Reality, Forecaster
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

On each round, Forecaster predicts Reality’s move yn chosen from the label
space, always taken to be {0, 1} in this paper. His move, the probability forecast
pn, can be interpreted as the probability he attaches to the event yn = 1. To
help Forecaster, Reality presents him with an object xn at the beginning of the
round; xn are chosen from an object space X.

Forecaster’s goal is to produce pn that agree with the observed yn. Various
results of probability theory, in particular limit theorems (such as the weak and
strong laws of large numbers, the law of the iterated logarithm, and the central
limit theorem) and large-deviation inequalities (such as Hoeffding’s inequality),
describe different aspects of agreement between pn and yn. For example, ac-
cording to the strong law of large numbers, we expect that

lim
n→∞

1
n

n∑

i=1

(yi − pi) = 0. (1)

Such results will be called laws of probability and the existing body of laws
of probability will be called classical probability theory. Historically, laws of
probability form the core of probability theory.

In §2, following [18], we formalize Forecaster’s goal by adding a third player,
Skeptic, who is allowed to gamble at the odds given by Forecaster’s probabilities.
We state a result from [22] and [18] suggesting that Skeptic’s gambling strategies
can be used as tests of agreement between pn and yn and that all tests of
agreement between pn and yn can be expressed as Skeptic’s gambling strategies.
Therefore, the forecasting protocol with Skeptic provides an alternative way of
stating laws of probability.

As demonstrated in [18], many standard proof techniques developed in clas-
sical probability theory can be translated into computable strategies for Skeptic;
all such strategies are continuous. In §3 we show that for any continuous strat-
egy S for Skeptic there exists a strategy F for Forecaster such that S does not
detect any disagreement between the yn and the pn produced by F . This re-
sult is a “meta-theorem” that allows one to move from laws of probability to
forecasting algorithms: as soon as a law of probability is expressed as a con-
tinuous strategy for Skeptic, we have a forecasting algorithm that guarantees
that this law will hold; there are no assumptions about Reality, who may play
adversarially.
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Our meta-theorem is of any interest only if one can find sufficiently interest-
ing laws of probability (expressed as gambling strategies) that can serve as its
input. In §4 we apply it to the important properties of unbiasedness in the large
and small of the forecasts pn ((1) is an asymptotic version of the former). The
resulting forecasting strategy is automatically unbiased, no matter what data
x1, y1, x2, y2, . . . is observed.

In §5 we simplify the algorithm obtained in §4 and demonstrate its perfor-
mance on some artificially generated data sets.

2 The gambling framework for testing probabil-
ity forecasts

Skeptic is allowed to bet at the odds defined by Forecaster’s probabilities, and he
refutes the probabilities if he multiplies his capital manyfold. This is formalized
as a perfect-information game in which Skeptic plays against a team composed
of Forecaster and Reality:

Binary Forecasting Game I
Players: Reality, Forecaster, Skeptic
Protocol:
K0 := 1.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how the other players move.

This is a perfect-information protocol; the players move in the order indicated,
and each player sees the other player’s moves as they are made. It specifies
both an initial value for Skeptic’s capital (K0 = 1) and a lower bound on its
subsequent values (Kn ≥ 0).

Our interpretation, which will be called the testing interpretation, of Binary
Forecasting Game I is that Kn measures the degree to which Skeptic has shown
Forecaster to do a bad job of predicting yi, i = 1, . . . , n.

2.1 Validity and universality of the testing interpretation

As explained in [18], the testing interpretation is valid and universal in an
important sense. Let us assume, for simplicity, that objects are absent (formally,
that |X| = 1). In the case where Forecaster starts from a probability measure
P on {0, 1}∞ and obtains his forecasts pn ∈ [0, 1] as conditional probabilities
under P that yn = 1 given y1, . . . , yn−1, we have a standard way of testing P
and, therefore, pn: choose an event A ⊆ {0, 1}∞ (the critical region) with a
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small P (A) and reject P if A happens. The testing interpretation satisfies the
following two properties:

Validity Suppose Skeptic’s strategy is measurable and pn are obtained from P ;
Kn then form a nonnegative martingale w.r. to P . According to Doob’s
inequality [22, 6], for any positive constant C, supnKn ≥ C with P -
probability at most 1/C. (If Forecaster is doing a bad job according to
the testing interpretation, he is also doing a bad job from the standard
point of view.)

Universality According to Ville’s theorem ([18], §8.5), for any positive con-
stant ε and any event A ⊆ {0, 1}∞ such that P (A) < ε, Skeptic has a
measurable strategy that ensures lim infn→∞Kn > 1/ε whenever A hap-
pens, provided pn are computed from P . (If Forecaster is doing a bad
job according to the standard point of view, he is also doing a bad job
according to the testing interpretation.) In the case P (A) = 0, Skeptic
actually has a measurable strategy that ensures limn→∞Kn = ∞ on A.

The universality of the gambling scenario of Binary Forecasting Game I is its
most important advantage over von Mises’s gambling scenario based on subse-
quence selection; it was discovered by Ville [22].

2.2 Constructiveness of the gambling framework

In [18] we constructed Skeptic’s strategies that made him rich when the state-
ment of any of several key laws of probability theory was violated. The construc-
tions were explicit and lead to computable gambling strategies. We conjecture
that every natural result of classical probability theory leads to a computable
strategy for Skeptic.

Since Brouwer’s work on intuitionist mathematics it is widely accepted that
only continuous functions can be computable (this is Brouwer’s continuity prin-
ciple [3]; for a modern statement, see [11], §22). There are also idealized def-
initions of computability in terms of computational models able to perform
operation with real numbers with infinite accuracy in unit time (such as [1]),
and the functions computed in such weaker senses need not be computable. Our
conjecture asserts computability in the stronger Brouwer’s sense.

Remark According to [19], Brouwer introduced his continuity principle in 1916.
The following quote from Borel’s 1912 paper [2] is popular (see, e.g., [23], p. 64):
“a function cannot be calculable unless it is continuous”; Borel, however, was
interested only in the values that computable functions take on the computable
values of the argument.

3 Defeating Skeptic

In this section we prove the main (albeit very simple) mathematical result of
this paper: for any continuous strategy for Skeptic there exists a strategy for
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Forecaster that does not allow Skeptic’s capital to grow, regardless of what
Reality is doing. Actually, our result will be even stronger: we will have Skeptic
announce his strategy for each round before Forecaster’s move on that round
rather than making him announce his full strategy at the beginning of the game,
and we will drop the restriction on Skeptic. Therefore, we consider the following
perfect-information game that pits Forecaster against the two other players:

Binary Forecasting Game II
Players: Reality, Forecaster, Skeptic
Protocol:
K0 := 1.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

Theorem 1 Forecaster has a strategy in Binary Forecasting Game II that en-
sures K0 ≥ K1 ≥ K2 ≥ · · · .

Proof Forecaster can use the following strategy to ensure K0 ≥ K1 ≥ · · · :
• if the function Sn(p) takes the value 0, choose pn so that Sn(pn) = 0;

• if Sn is always positive, take pn := 1;

• if Sn is always negative, take pn := 0.

Remark In this paper computability serves only to motivate the assumption
of continuity of Sn; only in this remark we briefly discuss computability issues.
The proof of Theorem 1 shows that for computability of the constructed strategy
for Forecaster we need more than the computability of Sn; namely, we need an
oracle that for each point p tells us the sign of Sn(p). Without such an oracle
we can only claim that, for an arbitrary accuracy ε, either we can find, with
accuracy ε, pn ensuring Kn ≤ Kn−1 or we can find pn ensuring Kn ≤ Kn−1 + ε.
For an example showing that such an oracle is necessary, see [11] (Figure 5).

4 Examples of gambling strategies

In this section we discuss strategies for Forecaster obtained by Theorem 1 from
different strategies for Skeptic; the former will be called defensive forecasting
strategies. There are many results of classical probability theory that we could
use, but we will concentrate on the simple strategy described in [18], p. 69, for
proving the strong law of large numbers.
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If Sn(p) = Sn does not depend on p, the strategy from the proof of Theorem 1
makes Forecaster choose

pn :=





0 if Sn < 0
1 if Sn > 0
0 or 1 if Sn = 0.

The basic procedure described in [18] (p. 69) is as follows. Let ε ∈ (0, 0.5]
be a small number (expressing our tolerance to violations of the strong law of
large numbers). In Binary Forecasting Game I, Skeptic can ensure that

sup
n
Kn < ∞ =⇒ lim sup

n→∞
1
n

n∑

i=1

(yi − pi) ≤ ε (2)

using the strategy sn = sε
n := εKn−1. Indeed, since

Kn =
n∏

i=1

(1 + ε(yi − pi)),

on the paths where Kn is bounded we have
n∏

i=1

(1 + ε(yi − pi)) ≤ C,

n∑

i=1

ln(1 + ε(yi − pi)) ≤ ln C,

ε

n∑

i=1

(yi − pi)− ε2
n∑

i=1

(yi − pi)2 ≤ ln C,

ε

n∑

i=1

(yi − pi) ≤ ln C + ε2n,

1
n

n∑

i=1

(yi − pi) ≤ ln C

εn
+ ε

(we have used the fact that ln(1 + t) ≥ t− t2 when |t| ≤ 0.5). If Skeptic wants
to ensure

sup
n
Kn < ∞ =⇒

− ε ≤ lim inf
n→∞

1
n

n∑

i=1

(yi − pi) ≤ lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε,

he can use the strategy sn := (sε
n + s−ε

n )/2, and if he wants to ensure

sup
n
Kn < ∞ =⇒ lim

n→∞
1
n

n∑

i=1

(yi − pi) = 0, (3)
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he can use a convex mixture of (sε
n + s−ε

n )/2 over a sequence of ε converging to
zero. There are also standard ways of strengthening (3) to

lim inf
n→∞

Kn < ∞ =⇒ lim
n→∞

1
n

n∑

i=1

(yi − pi) = 0;

for details, see [18].
In the rest of this section we will draw on the excellent survey [5]. We will

see how Forecaster defeats increasingly sophisticated strategies for Skeptic.

4.1 Unbiasedness in the large

Following Murphy and Epstein [12], we say that Forecaster is unbiased in the
large if (1) holds. Let us first consider the one-sided relaxed version of this
property

lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε. (4)

The strategy for Skeptic described above, Sn(p) := εKn, leads to Forecaster
always choosing pn := 1; (4) is then satisfied in a trivial way.

Forecaster’s strategy corresponding to the two-sided version

− ε ≤ lim inf
n→∞

1
n

n∑

i=1

(yi − pi) ≤ lim sup
n→∞

1
n

n∑

i=1

(yi − pi) ≤ ε (5)

is not much more reasonable. Indeed, it can be represented as follows. The
initial capital 1 is split evenly between two accounts, and Skeptic gambles with
the two accounts separately. If at the outset of round n the capital on the first
account is K1

n−1 and the capital on the second account is K2
n−1, Skeptic plays

s1
n := εK1

n−1 with the first account and s2
n := −εK2

n−1 with the second account;
his total move is

Sn(p) := εK1
n−1 − εK2

n−1 = ε

(
n−1∏

i=1

(1 + ε(yi − pi))−
n−1∏

i=1

(1 + ε(pi − yi))

)
.

Therefore, Forecaster’s move is pn := 1 if

n−1∑

i=1

ln(1 + ε(yi − pi)) >

n−1∑

i=1

ln(1 + ε(pi − yi)),

pn := 0 if
n−1∑

i=1

ln(1 + ε(yi − pi)) <

n−1∑

i=1

ln(1 + ε(pi − yi)),
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and pn can be chosen arbitrarily in the case of equality. The limiting form of
this strategy as ε → 0 is: Forecaster’s move is pn := 1 if

n−1∑

i=1

(yi − pi) > 0,

pn := 0 if
n−1∑

i=1

(yi − pi) < 0,

and pn can be chosen arbitrarily in the case of equality.
We can see that unbiasedness in the large does not lead to interesting fore-

casts: Forecaster fulfils his task too well. In the one-sided case (4), he always
chooses pn := 1 making

n∑

i=1

(yi − pi)

as small as possible. In the two-sided case (5) with ε → 0, he manages to
guarantee that ∣∣∣∣∣

n∑

i=1

(yi − pi)

∣∣∣∣∣ ≤ 1. (6)

His goals are achieved with categorical forecasts, pn ∈ {0, 1}.
In the rest of this section we consider the more interesting case where Sn(p)

depends on p.

4.2 Unbiasedness in the small

We now consider a subtler requirement that forecasts should satisfy, which we
introduce informally. We say that the forecasts pn are unbiased in the small (or
reliable, or valid, or well calibrated) if, for any p∗ ∈ [0, 1],

∑
i=1,...,n:pi≈p∗ yi∑
i=1,...,n:pi≈p∗ 1

≈ p∗ (7)

provided
∑

i=1,...,n:pi≈p∗ 1 is not too small.
Let us first consider just one value for p∗. Instead of the “crisp” point p∗

we will consider a “fuzzy point” I : [0, 1] → [0, 1] such that I(p∗) = 1 and
I(p) = 0 for all p outside a small neighborhood of p∗. A standard choice would
be something like I := I[p−,p+], where [p−, p+] is a short interval containing p∗

and I[p−,p+] is its indicator function, but we will want I to be continuous (it
can, however, be arbitrarily close to I[p−,p+]).

The strategy for Skeptic ensuring (2) can be modified as follows. Let
ε ∈ (0, 0.5] be again a small number. Now we consider the strategy Sn(p) =
Sε,I

n (p) := εI(p)Kn−1. Since

Kn =
n∏

i=1

(1 + εI(pi)(yi − pi)),
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on the paths where Kn is bounded we have
n∏

i=1

(1 + εI(pi)(yi − pi)) ≤ C,

n∑

i=1

ln(1 + εI(pi)(yi − pi)) ≤ ln C,

ε

n∑

i=1

I(pi)(yi − pi)− ε2
n∑

i=1

I2(pi)(yi − pi)2 ≤ ln C,

ε

n∑

i=1

I(pi)(yi − pi)− ε2
n∑

i=1

I(pi) ≤ ln C

(the last step involves replacing I2(pi) with I(pi); the loss of precision is not
great if I is close to I[p−,p+]),

ε

n∑

i=1

I(pi)(yi − pi) ≤ ln C + ε2
n∑

i=1

I(pi),

∑n
i=1 I(pi)(yi − pi)∑n

i=1 I(pi)
≤ ln C

ε
∑n

i=1 I(pi)
+ ε.

The last inequality shows that the mean of yi for pi close to p∗ is close to
p∗ provided we have observed sufficiently many such pi; its interpretation is
especially simple when I is close to I[p−,p+].

In general, we may consider a mixture of Sε,I
n (p) and S−ε,I

n (p) for different
values of ε and for different I covering all p∗ ∈ [0, 1]. If we make sure that the
mixture is continuous (which is always the case for continuous I and finitely
many ε and I), Theorem 1 provides us with forecasts that are unbiased in the
small.

4.3 Using the objects

Unbiasedness, even in the small, is only a necessary but far from sufficient con-
dition for good forecasts: for example, a forecaster who ignores the objects xn

can be perfectly calibrated, no matter how much useful information xn contain.
(Cf. the discussion of resolution in [5]; we prefer not to use the term “resolu-
tion”, which is too closely connected with the very special way of probability
forecasting based on sorting and labeling.) It is easy to make the algorithm
of the previous subsection take the objects into account: we can allow the test
functions I to depend not only on p but also on the current object xn; Sn(p)
then becomes a mixture of

Sε,I
n (p) := εI(p, xn)

n−1∏

i=1

(1 + εI(pi, xi)(yi − pi))

and S−ε,I
n (p) (defined analogously) over ε and I.
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Remark Another popular example is: if the observed sequence of labels is
1, 0, 1, 0, . . . , the sequences of forecasts 0.5, 0.5, . . . and 1, 0, 1, 0, . . . are both
unbiased in the small, but the first of them is not as good as the second. For
this example to be covered by our discussion, the labels yn = n mod 2 should
be complemented by objects, xn := n.

4.4 Relation to a standard counter-example

Suppose, for simplicity, that objects are absent (|X| = 1). The standard con-
struction from Dawid [4] showing that no forecasting strategy produces forecasts
pn that are unbiased in the small for all sequences is as follows. Define an infinite
sequence y1, y2, . . . recursively by

yn :=

{
1 if pn < 0.5
0 otherwise,

where pn is the forecast produced by the forecasting strategy after seeing
y1, . . . , yn−1. For the forecasts pn < 0.5 we always have yn = 1 and for the
forecasts pn ≥ 0.5 we always have yn = 0; obviously, we do not have unbiased-
ness in the small.

Let us see what Dawid’s construction gives when applied to the defensive
forecasting strategy constructed from the mixture of Sε,I

n (p) and S−ε,I
n (p), as

described above, over different ε and different I; we will assume not only that
the test functions I cover all [0, 1] but also that each point p ∈ [0, 1] is covered by
arbitrarily narrow (concentrated in a small neighborhood of p) test functions. It
is clear that we will inevitably have pn → 0.5 if pn are produced by the defensive
forecasting strategy and yn are produced by Dawid’s construction. On the other
hand, since all test functions I are continuous and so cannot sharply distinguish
between the cases pn < 0.5 and pn ≥ 0.5, we do not have any contradiction:
neither the test functions nor any observer who can only measure the pn with
a finite precision can detect the lack of unbiasedness in the small.

In this paper we are only interested in unbiasedness in the small when the
test functions I are required to be continuous. Dawid’s construction shows that
unbiasedness in the small is impossible to achieve if I are allowed to be indicator
functions of intervals (such as [0, 0.5) and [0.5, 1]). To achieve unbiasedness in
the small in this stronger sense, randomization appears necessary (see, e.g., [27]).
It is interesting that already a little bit of randomization suffices, as explained
in [8].

5 Simplified algorithm

Let us assume first that objects are absent, |X| = 1. It was observed empirically
that the performance of defensive forecasting strategies with a fixed ε does not
depend on ε much (provided it is not too large; e.g., in the above calculations
we assumed ε ≤ 0.5). This suggests letting ε → 0 (in particular, we will assume

9



that ε ¿ n−2). As the test functions I we will take Gaussian bells Ij with
standard deviation σ > 0 located densely and uniformly in the interval [0, 1].
Letting ≈ stand for approximate equality and using the shorthand

∑
± f(±) :=

f(+) + f(−), we obtain:

Sn(p) =
∑
±

∑

j

(±ε)Ij(p)
n−1∏

i=1

(1± εIj(pi)(yi − pi))

=
∑
±

∑

j

(±ε)Ij(p) exp

(
n−1∑

i=1

ln(1± εIj(pi)(yi − pi))

)

≈
∑
±

∑

j

(±ε)Ij(p) exp

(
±ε

n−1∑

i=1

Ij(pi)(yi − pi)

)

≈
∑
±

∑

j

(±ε)Ij(p)

(
1± ε

n−1∑

i=1

Ij(pi)(yi − pi)

)

=
∑
±

∑

j

(±ε)Ij(p)

(
±ε

n−1∑

i=1

Ij(pi)(yi − pi)

)

∝
∑

j

Ij(p)
n−1∑

i=1

Ij(pi)(yi − pi)

=
n−1∑

i=1

K(p, pi)(yi − pi), (8)

where K(p, pi) is the Mercer kernel

K(p, pi) :=
∑

j

Ij(p)Ij(pi).

This Mercer kernel can be approximated by
∫ 1

0

1√
2πσ

exp
(
− (t− p)2

2σ2

)
1√
2πσ

exp
(
− (t− pi)2

2σ2

)
dt

∝
∫ 1

0

exp
(
− (t− p)2 + (t− pi)2

2σ2

)
dt

≈
∫ ∞

−∞
exp

(
− (t− p)2 + (t− pi)2

2σ2

)
dt.

As a function of p, the last expression is proportional to the density of the sum
of two Gaussian random variables of variance σ2; therefore, it is proportional to

exp
(
− (p− pi)2

4σ2

)
.
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Figure 1: The First 1000 Probabilities Output by the K29 (σ = 0.01) and
Laplace Forecasting Strategies on a Randomly Generated Bit Sequence

To get an idea of the properties of this forecasting strategy, which we call
the K29 strategy (or algorithm), we run it and the Laplace forecasting strategy
(pn := (k + 1)/(n + 1), where k is the number of 1s observed so far) on a
randomly generated bit sequence of length 1000 (with the probability of 1 equal
to 0.5). A zero point pn of Sn was found using the simple bisection procedure
(see, e.g., [15], §§9.2–9.4, for more sophisticated methods): (a) start with the
interval [0, 1]; (b) let p be the mid-point of the current interval; (c) if Sn(p) > 0,
remove the left half of the current interval; otherwise, remove its right half; (d)
go to (b). We did 10 iterations, after which the mid-point of the remaining
interval was output as pn. Notice that the values Sn(0) and Sn(1) did not have
to be tested. Our program was written in MATLAB, Version 7, and the initial
state of the random number generator was set to 0.

Figure 1 shows that the probabilities output by the K29 (σ = 0.01) and
Laplace forecasting strategies are almost indistinguishable. To see that these
two forecasting strategies can behave very differently, we complemented the
1000 bits generated as described above with 1000 0s followed by 1000 1s. The
result is shown in Figure 2. The K29 strategy detects that the probability p of
1 changes after the 1000th round, and fairly quickly moves down. When the
probability changes again after the 2000th round, K29 starts moving toward
p = 1, but interestingly, hesitates around the line p = 0.5, as if expecting the
process to reverse to the original probability of 1.
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Figure 2: The Probabilities Output by the K29 (σ = 0.01) and Laplace Fore-
casting Strategies on a Randomly Generated Sequence of 1000 Bits Followed by
1000 0s and 1000 1s

The Mercer kernel

K(p, pi) = exp
(
− (p− pi)2

4σ2

)

used in these experiments is known in machine learning as the Gaussian kernel
(in the usual parameterization 4σ2 is replaced by 2σ2 or c); however, many other
Mercer kernels also give reasonable results.

If we start from test functions I depending on the object, instead of (8) we
will arrive at the expression

Sn(p) =
n−1∑

i=1

K((p, xn), (pi, xi))(yi − pi), (9)

where K is a Mercer kernel on the squared product ([0, 1] × X)2. There are
standard ways of constructing such Mercer kernels from Mercer kernels on [0, 1]2

and X2 (see, e.g., the description of tensor products and direct sums in [21, 17]).
For Sn to be continuous, we have to require that K be forecast-continuous in
the following sense: for all x ∈ X and all (p′, x′) ∈ [0, 1]×X, K((p, x), (p′, x′))
is continuous as a function of p. The overall procedure can be summarized as
follows.

K29 Algorithm
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Parameter: forecast-continuous Mercer kernel K on ([0, 1]×X)2

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define Sn(p) as per (9).
Output any root p of Sn(p) = 0 as pn;
if there are no roots, pn := (1 + sign(Sn))/2.
Read yn ∈ {0, 1}.

Computer experiments reported in [25] show that the K29 algorithm performs
well on a standard benchmark data set. For a theoretical discussion of the K29
algorithm, see the appendix and [26].

6 Related work and directions of further re-
search

This paper’s methods connect two areas that have been developing indepen-
dently so far: probability forecasting and classical probability theory. It appears
that, when properly developed, these methods can benefit both areas:

• the powerful machinery of classical probability theory can be used for
probability forecasting;

• practical problems of probability forecasting may suggest new laws of prob-
ability.

Classical probability theory started from Bernoulli’s weak law of large num-
bers (1713) and is the subject of countless monographs and textbooks. The
original statements of most of its results were for independent random vari-
ables, but they were later extended to the martingale framework; the latter was
reduced to its game-theoretic core in [18]. The proof of the strong law of large
numbers used in this paper was extracted from Ville’s [22] martingale proof of
the law of the iterated logarithm (upper half).

The theory of probability forecasting was a topic of intensive research in
meteorology in the 1960s and 1970s; this research is summarized in [5]. Machine
learning is still mainly concerned with categorical prediction, but the situation
appears to be changing. Probability forecasting using Bayesian networks is a
mature field; the literature devoted to probability forecasting using decision
trees and to calibrating other algorithms is also fairly rich. So far, however,
the field of probability forecasting has been developing without any explicit
connections with classical probability theory.

Defensive forecasting is indirectly related, in a sense dual, to prediction with
expert advice (reviewed in [24], §4) and its special case, Bayesian prediction. In
prediction with expert advice one starts with a given loss function and tries to
make predictions that lead to a small loss as measured by that loss function.
In defensive forecasting, one starts with a law of probability and then makes
predictions such that this law of probability is satisfied. So the choice of the law
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of probability when designing the forecasting strategy plays a role analogous to
the choice of the loss function in prediction with expert advice.

In prediction with expert advice one combines a pool of potentially promis-
ing forecasting strategies to obtain a forecasting strategy that performs not
much worse than the best strategies in the pool. In defensive forecasting one
combines strategies for Skeptic (such as the strategies corresponding to differ-
ent test functions I and different ±ε in §4) to obtain one strategy achieving an
interesting goal (such as unbiasedness in the small); a strategy for Forecaster is
then obtained using Theorem 1. The possibility of mixing strategies for Skeptic
is as fundamental in defensive forecasting as the possibility of mixing strategies
for Forecaster in prediction with expert advice.

This paper continues the work started by Foster and Vohra [7] and later
developed in, e.g., [10, 16, 27] (the last paper replaces the von Mises–style
framework of the previous papers with a martingale framework, as in this paper).
The approach of this paper is similar to that of the recent paper [8], which also
considers deterministic forecasting strategies and continuous test functions for
unbiasedness in the small.

The main difference of this paper’s approach from the bulk of work in learn-
ing theory is that we do not make any assumptions about Reality’s strategy.

The following directions of further research appear to us most important:

• extending Theorem 1 to other forecasting protocols (such as multi-label
classification) and designing efficient algorithms for finding the corre-
sponding pn;

• exploring forecasting strategies corresponding to: (a) Hoeffding’s inequal-
ity, (b) the central limit theorem, (c) the law of the iterated logarithm (all
we did in this paper was to slightly extend the strong law of large numbers
and then use it for probability forecasting).
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Appendix: Geometry of the K29 algorithm and
weak probability theory

In this paper the K29 algorithm was derived, somewhat informally, from the
requirement that the forecasts should be unbiased in the small. However, since
in this derivation we assumed that ε was very small, we cannot longer assert
that the algorithm obtained (K29) is unbiased in the small. In this appendix
we will give a direct argument showing that the K29 algorithm can be expected
to be unbiased in the small. The figures in this appendix will be given in color
(color is especially important for Figure 8).
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What K29 accomplishes

In this subsection we reproduce a result from [26] (Theorem 3 below coincides
with Theorem 1 of [26]) and complement it by related results showing connec-
tions with classical probability theory.

Following the K29 algorithm Forecaster ensures that Skeptic will never in-
crease his capital with the strategy

sn :=
n−1∑

i=1

K ((pn, xn), (pi, xi)) (yi − pi). (10)

(This strategy is not necessarily valid in the sense of guaranteeing Skeptic’s
solvency; we will take care of the latter later on.) The increase in Skeptic’s
capital when he follows (10) is

KN −K0 =
N∑

n=1

sn(yn − pn)

=
N∑

n=1

n−1∑

i=1

K ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

=
1
2

N∑
n=1

N∑

i=1

K ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1
2

N∑
n=1

K ((pn, xn), (pn, xn)) (yn − pn)2 (11)

(we generalize slightly the protocol of §2 allowing initial values K0 of Skeptic’s
capital different from 1). According to Mercer’s theorem (a very simple proof of
a suitable version can be found in [6], Theorem II.3.1), there exists a function
Φ : [0, 1]×X → H (a feature mapping taking values in a Hilbert space H) such
that

K(a, b) = Φ(a) · Φ(b), ∀a, b ∈ [0, 1]×X (12)

(· standing for the dot product in H). Therefore, we can rewrite (11) as

KN−K0 =
1
2

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥

2

− 1
2

N∑
n=1

‖(yn − pn)Φ(pn, xn)‖2 . (13)

To make sure that Skeptic never goes bankrupt, let us consider a finite-
horizon game with N the horizon (i.e., “FOR n = 1, 2, . . . ” in the protocol of
§2 is replaced by “FOR n = 1, . . . , N”), assume that

C := sup
p,x

‖Φ(p, x)‖ < ∞ (14)

(it is often a good idea to use Mercer kernels with C = 1), and set

K0 :=
1
2
NC2
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(the latter ensuring Kn ≥ 0, ∀n). With game-theoretic lower probability at least
1− δ we will have KN < 1

δK0, which, in combination with (13), implies

1
2

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥

2

≤ KN <
1
δ
K0 =

1
2δ

NC2,

i.e., ∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥

2

<
NC2

δ
,

∥∥∥∥∥
1
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ <
C√
Nδ

.

Therefore, we have proved:

Theorem 2 Let N ∈ {1, 2, . . . }, δ > 0, Φ : [0, 1]×X → H for a Hilbert space
H, and C be defined by (14). Then

P

{∥∥∥∥∥
1
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ <
C√
Nδ

}
≥ 1− δ (15)

in Binary Forecasting Game I with horizon N .

It is clear that the K29 algorithm ensures the inequality within the curly braces
in (15) for any δ > 0; this is stated in the following theorem, in which we also
remove the assumption of a finite horizon.

Theorem 3 The K29 algorithm with parameter K ensures

sup
N∈{1,2,... }

∥∥∥∥∥
1√
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ ≤ C (16)

in Binary Forecasting Game I, where Φ is a mapping taking values in a Hilbert
space and satisfying (12).

In this theorem we can still observe the phenomenon we saw earlier (cf. (6)):
the forecasts are calibrated better than in the case of genuine randomness. Let
us take, for simplicity, Φ ≡ 1. According to the law of the iterated logarithm,
we would expect

lim sup
N→∞

∣∣∣∣∣
1√

2AN ln ln AN

N∑
n=1

(yn − pn)

∣∣∣∣∣ = 1,

where

AN :=
N∑

n=1

pn(1− pn),
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and so

sup
N∈{1,2,... }

∥∥∥∥∥
1√
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
to be infinite for pn not consistently very close to 0 or 1.

Remark The parameter K of the K29 algorithm is required to be forecast-
continuous. If K satisfies (12) with Φ(p, x) continuous in p (for any x), K
is forecast-continuous; moreover, in this case K((p, x), (p′, x′)) is continuous
in (p, p′) (for any (x, x′)). On the other hand, the last property implies that
the mapping Φ in the representation (12) can be chosen continuous ([14]; [17],
Proposition 2.14 on p. 41).

Connection with §§4.2–4.3

Let (p∗, x∗) be a point in [0, 1]×X; we would like the average of yn, n = 1, . . . , N ,
such that (pn, xn) is close to (p∗, x∗) to be close to p∗. (Cf. (7) and the discussion
in §4.3.) Fix a forecast-continuous Mercer kernel K : ([0, 1] × X)2 → R and
consider the “soft neighborhood”

I(p∗,x∗)(p, x) := K((p∗, x∗), (p, x)) (17)

of the point (p∗, x∗). The following is an easy corollary of Theorem 3 (we refrain
from stating the analogous corollary for Theorem 2).

Corollary 1 In Binary Forecasting Game I with horizon N , the K29 algorithm
with parameter K ≥ 0 ensures

∣∣∣∣∣

∑N
n=1(yn − pn)I(p∗,x∗)(pn, xn)

∑N
n=1 I(p∗,x∗)(pn, xn)

∣∣∣∣∣ ≤
C2
√

N∑N
n=1 I(p∗,x∗)(pn, xn)

(18)

for each point (p∗, x∗) ∈ ([0, 1]×X), where I is defined by (17).

This corollary implies that we can expect unbiasedness in the “soft neighbor-
hood” of (p∗, x∗) when

N∑
n=1

I(p∗,x∗)(pn, xn) À
√

N.

Proof of Corollary 1 Let Φ : [0, 1] ×X → H be a function taking values in
a Hilbert space H and satisfying (12). Theorem 3 and the Cauchy–Schwarz
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inequality imply

∣∣∣∣∣
1√
N

N∑
n=1

(yn − pn)I(p∗,x∗)(pn, xn)

∣∣∣∣∣

=

∣∣∣∣∣

(
1√
N

N∑
n=1

(yn − pn)Φ(pn, xn)

)
· Φ(p∗, x∗)

∣∣∣∣∣

≤
∥∥∥∥∥

1√
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ ‖Φ(p∗, x∗)‖ ≤ C2;

the inequality between the extreme terms of this chain is equivalent to (18).

Connection with the weak law of large numbers

Despite the fact that K29 was derived from a proof of the strong law of large
numbers, it is closely connected with the weak law: indeed, if Φ(p, x) ≡ 1, (15)
is a form of Bernoulli’s theorem. To see this, rewrite (15) as

P

{∥∥∥∥∥
1
N

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ ≥ ε

}
≤ C2

Nε2
,

substitute 1 for Φ and 1 for C (see (14)), and compare

P

{∣∣∣∣∣
1
N

N∑
n=1

(yn − pn)

∣∣∣∣∣ ≥ ε

}
≤ 1

Nε2
(19)

with the first displayed equation on p. 126 of [18].

Remark The measure-theoretic counterpart of (19) was first proven by Kol-
mogorov in 1929; this is the origin of the current (provisional) name of the K29
algorithm. The combination of equations (3) and (7) in [9] gives, essentially,

P

{∣∣∣∣∣
N∑

n=1

Zn

∣∣∣∣∣ ≥ ε

}
≤ 1

ε2

N∑
n=1

E
(
Z2

n | Fn−1

)
, (20)

where Z1, . . . , Zn is a martingale difference w.r. to the filtration (Fi)n
i=1 and

F0 is the trivial σ-algebra; (20) is more general than the measure-theoretic
counterpart of (19). (Of course, Kolmogorov did not use this terminology; the
modern notion of martingale was introduced by Ville [22].)

Examples

We can see that, for Φ ≡ 1, (15) is a formalization of unbiasedness in the large.
It is intuitively clear that (15) may express unbiasedness in the small with good
resolution if Φ is a sufficiently twisted surface (assuming, for simplicity, that X
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Figure 3: Analogue of Figure 1 for the Mercer kernel K(p, p′) := cos(p− p′)

is a continuous space) in H: if pairwise distant points (pi, xi), i = 1, . . . , m, in
[0, 1]×X are mapped by Φ to vectors Φ(pi, xi) that are far from being dependent
(we will call this the diversity property of Φ), then unbiasedness is required to
hold in the neighborhood of each point, not just in the large.

To consider a simple example, let us now assume that objects xn are ab-
sent (|X| = 1); Φ = Φ(p) is then a path in the Hilbert space H. The path
Φ(p) := eip in the complex plane satisfies, to some (rather weak) degree, the
diversity property: Φ(p) and Φ(p′) are not collinear for distant p and p′; the
corresponding Mercer kernel is K(p, p′) = cos(p − p′). Figures 3 and 4 are the
analogues of Figures 1 and 2 for this Mercer kernel. A possible explanation for
the rugged shape of the solid line in Figure 3 is that Φ is not diverse enough:
the two-dimensional complex plane simply does not have enough room for much
diversity. If we take Φ(p) := ecip for c > 1 in an attempt to increase diversity for
moderately distant points, we will risk very distant points becoming collinear or
nearly collinear; even the Mercer kernel based on Φ(p) := eπip occasionally con-
fuses 0 and 1, which are mapped to collinear vectors (see Figures 5 and 6). The
forecasts become very bad for Φ(p) := e2πip (Figure 7), although even in this
case the performance can be surprisingly good for categorical (0 or 1) forecasts
(see Figure 6; there is only one error after round 2000).

Much greater diversity is provided by the Gaussian kernel

K(p, p′) := exp
(
− (p− p′)2

c

)
,
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Figure 4: Analogue of Figure 2 for the Mercer kernel K(p, p′) := cos(p− p′)

where c is a small positive number: Φ(p) and Φ(p′) are nearly orthogonal for
distant p and p′. It is easy to check that this kernel corresponds to the Fourier
feature mapping

Φ(p) : R→ C
λ 7→ eiλp

with the following dot product in the feature space:

f · g =
1√
2π

∫
f(λ)g(λ)e−cλ2/4dλ.

Weak probability theory

The research program proposed in this paper consists in using Theorem 1 to
transform laws of probability into forecasting strategies. However, a closer look
at Theorem 1 reveals that we need much less than a law of probability to derive
a forecasting strategy. In this subsection we introduce a suitable relaxation of
the game-theoretic probability theory as developed in [18]; we will assume that
the reader is familiar with, or has access to, the main definitions of [18] (we will,
however, use the words “weak” and “weakly” in a different sense from [18]).

Let us say that Skeptic can weakly force an event E if he has a strategy in
Binary Forecasting Game I that guarantees the disjunction

(∃n : Kn < Kn+1) or E.
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Figure 5: Analogue of Figure 1 for the Mercer kernel K(p, p′) := cos(π(p− p′))

Theorem 1 shows that if Skeptic can weakly force an event E with a continuous
strategy, Forecaster has s strategy in Basic Binary Forecasting Protocol that
guarantees E.

Weak probability theory corresponding to the notion of weakly forcing is
radically different from the standard probability theory. To see this, remember
that the usual results of probability theory (the strong law of large numbers,
the law of the logarithm, etc.; cf. [18]) remain interesting even when we fix
Forecaster’s strategy; in fact, most of these results were first discovered for the
fair-coin protocol ([18], §3.1). It is easy to see that an event E can be weakly
forced when Forecaster follows a fixed strategy producing forecasts in (0, 1) if
and only if E is non-empty. It is clear that the situation will not change if we
require Skeptic’s strategy to be continuous.

All three of the following closely related properties of an event E appear to
be interesting:

• E can be weakly forced;

• E can be weakly forced with a continuous strategy;

• Forecaster can guarantee E in Basic Binary Forecasting Protocol.

We believe that these properties and relations between them deserve serious
study.
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Figure 6: Analogue of Figure 2 for the Mercer kernel K(p, p′) := cos(π(p− p′))
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Figure 7: Analogue of Figure 1 for the Mercer kernel K(p, p′) := cos(2π(p−p′))
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Figure 8: Analogue of Figure 2 for the Mercer kernel K(p, p′) := cos(2π(p−p′))
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