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Abstract

The efficient-markets hypothesis was formulated in the early 1960s, when
Cournot’s principle was no longer widely understood and accepted as a philo-
sophical foundation for probability theory. A revival of Cournot’s principle can
help us distinguish clearly among different aspects of market efficiency.
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1 Introduction

Cournot’s principle says that an event of small or zero probability singled out
in advance will not happen. From the turn of the twentieth century through
the 1950s, many mathematicians, including Chuprov, Borel, Fréchet, Lévy, and
Kolmogorov, saw this principle as fundamental to the application and meaning
of probability.1 In their view, a probability model gains empirical content only
when it rules out an event by assigning it small or zero probability.

In the 1960s, when probability theory was gaining in importance in eco-
nomics and especially finance, Cournot’s principle was no longer so widely ac-
cepted. In fact, the principle had almost disappeared as those who had espoused
it in the earlier period passed from the scene. In this article, I argue that its dis-
appearance entailed a loss of clarity in the interpretation of probability, which
accounts in part for the high level of confusion in initial formulations of the
efficient-markets hypothesis.

The game-theoretic framework for probability (Shafer & Vovk [125]) revives
Cournot’s principle in a form directly relevant to markets. In this framework,
Cournot’s principle is equivalent to saying that a strategy for placing bets with-
out risking bankruptcy will not multiply the bettor’s capital by a large or infinite
factor. It can therefore be applied directly to strategies for exploiting market
prices, without assuming the existence of meaningful probability distributions
related to these prices.

The claim that an investor cannot make a lot of money using public infor-
mation is part of the efficient-markets hypothesis as it was formalized in the
1980s [86]. But this efficient-markets hypothesis also says that market prices
are discounted expected values with respect to a probability distribution that
changes only in accordance with relevant information. This bundling of ideas
has enabled scholars to talk past each other. Some (e.g. Malkiel [94]) claim
the efficient-markets hypothesis is vindicated when strategies for making money
fail. Others (e.g. Shiller [132]) claim it is refuted by any evidence that price
changes are not always based on information.

The game-theoretic framework allows us to unbundle the efficient-markets
hypothesis in a useful way. This unbundling is encouraged by the framework’s
success in dealing with classical probability. The framework accommodates both
the case where an investor or a bettor may buy any variable at its expected value
with respect to a specified probability distribution, as in classical probability
theory, and the case where only some variables are priced and offered for sale, as
in the incomplete markets in which real investors participate. In the case where
all variables are priced, the framework reduces to classical probability, but many
classical results extend to the case where only limited prices are given.

As it turns out, the game-theoretic form of Cournot’s principle, applied
directly to market prices, implies several stylized facts commonly associated
with the existence of a whole probability distribution for future value, including

1Most of them did not call it “Cournot’s principle”, but this name, due to Fréchet, was
used in the 1950s (see p. 5) and may be the most reasonable and convenient name available
today.
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the
√

dt scaling of price changes [150] and CAPM-type relations between the
realized average return for a particular security and that of the market [149].
To the extent that they are confirmed by data, these stylized facts can count as
demonstrations of the usefulness of that part of the efficient-markets hypothesis
represented by Cournot’s principle. But this will not, by itself, provide any
support for the quite separate hypothesis that price changes are usually or
always based on information.

The following sections review the rise and fall of Cournot’s principle in clas-
sical probability (§2), its new form in game-theoretic probability (§3), and its
potential in this new form for probability, economics, and finance theory (§4).

2 The rise and fall of Cournot’s principle

This section traces Cournot’s principle from its inception in Jacob Bernoulli’s
discussion of moral certainty in the early 18th century to its disappearance in
Joseph Doob’s reformulation of mathematical probability theory in the 1950s.

The section is organized on conceptual as well as chronological lines. In §2.1,
I trace the relatively uncontroversial concept of moral certainty from the 17th to
the 20th century. In §2.2, I trace the development of a more controversial idea—
the idea that Cournot’s principle is the only bridge from a probability model to
the world; this idea first emerged in Cournot’s analysis of moral certainty, and
it was best articulated by Paul Lévy in the 1920s. In §2.3, I distinguish between
the strong form of Cournot’s principle, which asserts that a particular event
of very small probability will not happen on a particular trial, and the weak
form, which asserts merely that events of small probability happen rarely on
repeated trials. Then I turn to the history of the opposition; in §2.4, I acknowl-
edge the indifference of British mathematicians and statisticians, and in §2.5,
I acknowledge the more explicit opposition of German philosophers. Finally,
in §2.6, I explain how Doob’s mathematical framework for stochastic processes
contributed to the disappearance of Cournot’s principle after the second world
war.

This section draws heavily on recent papers with Vladimir Vovk on the
historical context of Andrei Kolmogorov’s contributions to the foundations of
probability [127, 128, 151].

2.1 Moral certainty

An event with very small probability is morally impossible; it will not happen.
Equivalently, an event with very high probability is morally certain; it will
happen. This principle was first formulated within mathematical probability
by Jacob Bernoulli. In his Ars Conjectandi , published posthumously in 1713,
Bernoulli proved that in a sufficiently long sequence of independent trials of an
event, there is a very high probability that the frequency with which the event
happens will be close to its probability. Bernoulli explained that we can treat the
very high probability as moral certainty and so use the frequency of the event
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as an estimate of its probability. Beginning with Poisson [23, 109, 133], this
conclusion was called the law of large numbers. (Only later, mostly in the last
fifty years, was “the law of large numbers” used to designate Bernoulli’s theorem
itself and its generalizations, which are purely mathematical statements.)

Probabilistic moral certainty was widely discussed in the eighteenth century.
In the 1760s, Jean d’Alembert muddled matters by questioning whether the
prototypical event of very small probability, a long run of many happenings of
an event as likely to fail as happen on each trial, is possible at all. A run of
a hundred may be metaphysically possible, he felt, but physically impossible.
It has never happened and never will [34–36]. In 1777, George-Louis Buffon
argued that the distinction between moral and physical certainty was one of
degree. An event with probability 9999/10000 is morally certain; an event with
much greater probability, such as the rising of the sun, is physically certain
[26, 92].

Augustin Cournot, a mathematician now remembered as an economist and
a philosopher of science [97, 98], gave the discussion a nineteenth-century cast
in his 1843 treatise on probability [31]. Because he was familiar with geometric
probability, Cournot could talk about probabilities that are vanishingly small.
He brought physics to the foreground. It may be mathematically possible,
he argued, for a heavy cone to stand in equilibrium on its vertex, but it is
physically impossible. The event’s probability is vanishingly small. Similarly, it
is physically impossible for the frequency of an event in a long sequence of trials
to differ substantially from the event’s probability [31, pp. 57 and 106].

In the second half of the nineteenth century, the principle that an event with
a vanishingly small probability will not happen took on a real role in physics,
most saliently in Ludwig Boltzmann’s statistical understanding of the second
law of thermodynamics. As Boltzmann explained in the 1870s, dissipative pro-
cesses are irreversible because the probability of a state with entropy far from
the maximum is vanishingly small [145, p. 80] [123]. Also notable was Henri
Poincaré’s use of the principle. Poincaré’s recurrence theorem, published in 1890
[108, 145], says that an isolated mechanical system confined to a bounded re-
gion of its phase space will eventually return arbitrarily close to its initial state,
provided only that this initial state is not exceptional. Within any region of
finite volume, the states for which the recurrence does not hold are exceptional
inasmuch as they are contained in subregions whose total volume is arbitrarily
small.

At the turn of the twentieth century, it was a commonplace among statis-
ticians that one must decide what level of probability will count as practical
certainty in order to apply probability theory. We find this stated explicitly
in 1901, for example, in the articles by Georg Bohlmann and Ladislaus von
Bortkiewicz in the section on probability in the Encyklopädie der mathematis-
chen Wissenschaften [139, p. 825] [10, p. 861].

Aleksandr Chuprov, professor of statistics in Petersburg, was the champion
of Cournot’s principle in Russia. He called it Cournot’s lemma [29, p. 167]
and declared it a basic principle of the logic of the probable [129, pp. 95–96].
Andrei Markov, also in Petersburg, learned about mathematical statistics from
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Chuprov [107], and we see an echo of Cournot’s principle in Markov’s textbook,
published in German in 1912 [96, p. 12]:

The closer the probability of an event is to one, the more reason
we have to expect the event to happen and not to expect its opposite
to happen.

In practical questions, we are forced to regard as certain events
whose probability comes more or less close to one, and to regard as
impossible events whose probability is small.

Consequently, one of the most important tasks of probability
theory is to identify those events whose probabilities come close to
one or zero.

The importance of Cournot’s principle was also emphasized in the early
twentieth century by Émile Borel. According to Borel, a result of the probability
calculus deserves to be called objective when its probability becomes so great as
to be practically the same as certainty [11–14]. Borel gave a more refined and
demanding scale of practical certainty than Buffon’s. A probability of 10−6,
he suggested, is negligible at the human scale, a probability of 10−15 at the
terrestrial scale, and a probability of 10−50 at the cosmic scale [15, pp. 6–7].

2.2 Probability’s only bridge to the world

Saying that an event of very small or vanishingly small probability will not
happen is one thing. Saying that probability theory gains empirical meaning
only by ruling out the happening of such events is another. Cournot may have
been the first to make this second assertion:

. . .The physically impossible event is therefore the one that has in-
finitely small probability, and only this remark gives substance—
objective and phenomenal value—to the theory of mathematical
probability [31, p. 78].

Cournot’s wording reflects the influence of Immanuel Kant; “objective and phe-
nomenal” refers to Kant’s distinction between the noumenon, or thing-in-itself,
and the phenomenon, or object of experience [37].

Paul Lévy, a French mathematician who began writing on probability in the
1920s, stands out for the clarity of his articulation of the thesis that Cournot’s
principle is the only way of connecting a probabilistic theory with the world
outside mathematics. In a note published in 1922, Lévy’s teacher Jacques
Hadamard explained that probability is based on two basic notions: the notion
of perfectly equivalent (equally likely) events and the notion of a very unlikely
event [66, p. 289]. In his Calcul des probabilités, published in 1925, Lévy empha-
sized the different roles of these two notions. The notion of equally likely events,
Lévy explained, suffices as a foundation for the mathematics of probability, but
so long as we base our reasoning only on this notion, our probabilities are merely
subjective. It is the notion of a very unlikely event that permits the results of

4



the mathematical theory to take on practical significance ([87], pp. 21, 34; see
also [88], p. 3). Combining the notion of a very unlikely event with Bernoulli’s
theorem, we obtain the notion of the objective probability of an event, a phys-
ical constant that is measured by relative frequency. Objective probability, in
Lévy’s view, is entirely analogous to length and weight, other physical constants
whose empirical meaning is also defined by methods established for measuring
them to a reasonable approximation ([87], pp. 29–30).

Lévy’s views were widely shared in France. Starting in the 1940s, Borel called
Cournot’s principle first “the fundamental law of chance” (la loi fondamentale
du hasard) [16] and then “the only law of chance” (la loi unique du hasard)
[17, 18]. The latter phrase was taken up by Robert Fortet [85].

Neither Lévy nor Borel used the name “Cournot’s principle,” which was
coined by Maurice Fréchet in 1949. Fréchet’s inspiration was Oskar Ander-
son, who had talked about the Cournotsche Lemma (Cournot’s lemma) and
the Cournotsche Brücke (Cournot’s bridge) [3, 4]. Anderson was following his
teacher Chuprov in the use of “lemma.” Fréchet felt that “lemma,” like “the-
orem,” should be reserved for purely mathematical results and so suggested
“principe de Cournot.” Fréchet’s coinage was used in the 1950s in French, Ger-
man, and English [42, 120, 121, 140].

2.3 Weak and strong forms of the principle

Fréchet distinguished between strong and weak forms of Cournot’s principle
[62, 99, p. 6]. The strong form refers to an event of small or zero probability
that we single out in advance of a single trial: it says the event will not happen
on that trial. The weak form says that an event with very small probability
will happen very rarely in repeated trials. Some authors, including Lévy, Borel,
and Kolmogorov, adopted the strong principle. Others, including Chuprov and
Fréchet himself, preferred the weak principle.

The strong principle combines with Bernoulli’s theorem to produce the un-
equivocal conclusion that an event’s probability will be approximated by its
frequency in a particular sufficiently long sequence of independent trials. The
weak principle combines with Bernoulli’s theorem to produce the conclusion
that an event’s probability will usually be approximated by its frequency in a
sufficiently long sequence of independent trials, a general principle that has the
weak principle as a special case. This was pointed out by Castelnuovo in his
1919 textbook (p. 108). Castelnuovo called the general principle the empirical
law of chance (la legge empirica del caso):

In a series of trials repeated a large number of times under iden-
tical conditions, each of the possible events happens with a (relative)
frequency that gradually equals its probability. The approximation
usually improves with the number of trials [28, p. 3].

Although the special case where the probability is close to zero is sufficient to
imply the general principle, Castelnuovo thought it pedagogically preferable to
begin his introduction to the meaning of probability by enunciating the general
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principle, which accords with the popular identification of probability with fre-
quency. His approach was influential at the time. Maurice Fréchet and Maurice
Halbwachs adopted it in their 1924 textbook [64]. It brought Fréchet to the
same understanding of objective probability as Lévy: it is a physical constant
that is measured by relative frequency [61, p. 5] [60, pp. 45–46].

The weak point of Castelnuovo and Fréchet’s position lies in the modesty of
their conclusion: they conclude only that an event’s probability is usually ap-
proximated by its frequency. When we estimate a probability from an observed
frequency, we are taking a further step: we are assuming that what usually hap-
pens has happened in the particular case. This step requires the strong form of
Cournot’s principle. According to Kolmogorov [80, p. 240 of the 1965 English
edition], it is a reasonable step only if “we have some reason for assuming” that
the position of the particular case among other potential ones “is a regular one,
that is, that it has no special features.” Kolmogorov and his contemporaries
considered the absence of special features that would enable one to single out
particular trials essential to any application of probability theory to the world.
Richard von Mises formalized this absence in terms of rules for selecting sub-
sequences from infinite sequences of trials [142–144], but Kolmogorov did not
consider such infinitary principles relevant to applications [127, §A.2]. A fini-
tary principle, one applicable to a single trial, is needed, and this is Cournot’s
principle.

2.4 British practicality

For Borel, Lévy, and Kolmogorov, probability theory was a mathematical object,
and there was a puzzle about how to relate it to the world. Cournot’s principle
solved this puzzle in a way that minimized the importance of the distinction
between subjective and objective meanings of probability. For Borel and Lévy,
probabilities begin as subjective but become objective when they are sufficiently
close to zero or one and we adopt Cournot’s principle. Kolmogorov, faithful to
Soviet ideology, avoided any hint of subjectivism but still recognized the role
of Cournot’s principle in relating the mathematical formalism of probability to
the world of frequencies.

The British saw quite a different picture in the late 19th century [114, p. 74ff].
There was little mathematical work on probability in Britain in this period, and
in any case the British were not likely to puzzle over how to relate abstractions
to the world. They saw probability, to the extent that it was of any use at all, as
a way of directly describing something in the world, either belief or frequency.
This left them with a quarrel. Many, including Augustus De Morgan, William
Stanley Jevons and Francis Edgeworth, said belief [44, 49, 50, 70]. A few, most
influentially John Venn [137], said frequency. R. A. Fisher and Harold Jeffreys
carried the debate into the 20th century [54, 55, 69]. Neither side had any need
for Cournot’s principle, and some participants in the debate saw no use even
for Bernoulli’s theorem [37, 51].

British authors did sometimes discuss the classical puzzles about very un-
likely events. Could a pair of dice come up sixes a thousand times running?
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Could Shakespeare’s plays be produced by drawing random letters from a bag?
But they resolved these questions by reminding their readers that rare is not
the same as impossible. As Venn put it [137, p. 349], “A common mistake is to
assume that a very unlikely thing will not happen at all.” I have yet to find, in
the period before the Second World War, a British discussion of the French and
Russian viewpoint on Cournot’s principle.

With the work of Francis Galton in the 1880s and then Karl Pearson in the
1890s [1, 115, 133], the British began to take a leading role in the application
and development of statistics, while remaining less interested in the classical
theory of probability. One aspect of this development was the emergence of
principles of statistical testing. For those on the continent who subscribed to
Cournot’s principle, no additional principles were needed to justify rejecting a
probabilistic hypothesis that gives small probability to an event we single out
in advance and then observe to happen [24]. But in the British tradition, the
problem of testing “significance” came to be seen as something separate from
the meaning of probability itself [55, 101].

2.5 German philosophy

In contrast with Britain, Germany did see a substantial amount of mathematical
work in probability during the first decades of the twentieth century, much of
it published in German by Scandinavians and eastern Europeans. But the
Germans were already pioneering the division of labor to which we are now
accustomed, between mathematicians who prove theorems about probability
and philosophers (including philosophically minded logicians, statisticians, and
scientists) who analyze the meaning of probability. German philosophers did
not give Cournot’s principle a central role.

The Germans, like the British, argued vigorously at the end of the nine-
teenth and beginning of the twentieth century about whether probability is
subjective or objective. Karl Friedrich Stumpf is remembered as one the most
articulate proponents of subjectivism [135], while Johannes von Kries was the
most influential objectivist [141].

Von Kries was the most cogent and influential of all the German philosophers
who discussed probability in the late nineteenth century. In his Principien der
Wahrscheinlichkeitsrechnung, which first appeared in 1886, von Kries rejected
the philosophy of Laplace and the mathematicians who followed him. As von
Kries pointed out, Laplace and his followers started with a subjective concept of
probability but then used observations to validate claims about objective prob-
abilities. They seemed to think that objective probabilities exist and can be
the subject of reasoning by Bayes’s theorem whenever observations are numer-
ous. This nonsensical law of large numbers, von Kries thought, was the result
of combining Bernoulli’s theorem with d’Alembert’s mistaken belief that small
probabilities can be neglected.

Von Kries believed that objective probabilities sometimes exist, but only
under conditions where equally likely cases can legitimately be identified. Two
conditions, he thought, are needed:
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• Each case is produced by equally many of the possible arrangements of the
circumstances, and this remains true when we look back in time to earlier
circumstances that led to the current ones. In this sense, the relative sizes
of the cases are natural.

• Nothing besides these circumstances affects our expectation about the
cases. In this sense, the Spielräume2 are insensitive.

Von Kries’s principle of the Spielräume was that objective probabilities can
be calculated from equally likely cases when these conditions are satisfied. He
considered this principle analogous to Kant’s principle that everything that
exists has a cause. Kant thought that we cannot reason at all without the
principle of cause and effect. Von Kries thought that we cannot reason about
objective probabilities without the principle of the Spielräume.

Even when an event has an objective probability, von Kries saw no legitimacy
in the law of large numbers. Bernoulli’s theorem is valid, he thought, but it tells
us only that a large deviation of an event’s frequency from its probability is just
as unlikely as some other unlikely event, say a long run of successes. What will
actually happen is another matter. This disagreement between Cournot and
von Kries can be seen as a quibble about words. Do we say that an event will
not happen (Cournot), or do we say merely that it is as unlikely as some other
event we do not expect to happen (von Kries)? Either way, we proceed as if it
will not happen. But the quibbling has its reasons. Cournot wanted to make
a definite prediction, because this provides a bridge from probability theory to
the world of phenomena—the real world, as those who have not studied Kant
would say. Von Kries thought he had a different way of connecting probability
theory with phenomena.

Von Kries’s critique of moral certainty and the law of large numbers was
widely accepted in Germany [72]. In an influential textbook on probability,
Emmanuel Czuber named Bernoulli, d’Alembert, Buffon, and De Morgan as
advocates of moral certainty and declared them all wrong; the concept of moral
certainty, he said, violates the fundamental insight that an event of ever so
small a probability can still happen [31, p. 15]. This thought was echoed by the
philosopher Alexius Meinong [103, p. 591].

This wariness about ruling out the happening of events whose probability is
merely very small did not prevent acceptance of the idea that zero probability
represents impossibility. Beginning with Wiman’s work on continued fractions
in 1900, mathematicians writing in German had worked on showing that various
sets have measure zero, and everyone understood that the point was to show
that these sets are impossible [9, p. 419]. This suggests a great gulf between
zero probability and merely small probability. One does not sense such a gulf in
the writings of Borel and his French colleagues; for them, the vanishingly small
was merely an idealization of the very small.

2In German, Spiel means “game” or “play”, and Raum (plural Räume) means “room” or
“space”. In most contexts, Spielraum can be translated as “leeway” or “room for maneuver”.
For von Kries, the Spielraum for each case was the set of all arrangements of the circumstances
that produce it.
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Von Kries’s principle of the Spielräume did not endure, for no one knew
how to use it. But his project of providing a Kantian justification for the
uniform distribution of probabilities remained alive in German philosophy in
the first decades of the twentieth century [103, 118]. John Maynard Keynes [73]
brought it into the English literature, where it continues to echo, to the extent
that today’s probabilists, when asked about the philosophical grounding of the
classical theory of probability, are more likely to think about arguments for a
uniform distribution of probabilities than about Cournot’s principle.

2.6 The fracture

The destruction wrought in the 1930s and 1940s by Hitler and Stalin and then
by the second world war disrupted or destroyed individuals, families, and na-
tions. It also fractured intellectual traditions. In the case of probability theory,
mathematical and philosophical traditions that had thrived in Western Europe
gave way to new currents of thought, often centered in the Soviet Union and
the United States. The mathematical leadership of Paris gave way to Moscow,
where philosophical discourse could be dangerous, and to the United States,
where it was often despised. The philosophical traditions of mathematicians
in continental Europe faded away as English became the dominant language of
philosophy of science, now more heavily influenced by German-speaking philoso-
phers who had escaped from central Europe than by mathematicians of any
language. Cournot’s principle was one victim of this fracture.

In his Grundbegriffe der Wahrscheinlichkeitsrechnung, published in 1933,
Kolmogorov had articulated a frequentist interpretation of probability that re-
lied on Cournot’s principle. He had stated two principles for interpreting prob-
ability; Principle A said that probabilities were approximated by frequencies
on repeated trials, and Principle B was the strong form of Cournot’s princi-
ple, which applies to a single trial. The axiomatization of probability in the
Grundbegriffe, though it added little to earlier formulations by Fréchet and
others [128], was widely acknowledged after the second world war as the defini-
tive mathematical foundation for probability. For a short moment, it appeared
that Kolmogorov’s prestige might carry Cournot’s principle into the new age
as well. Harald Cramér repeated Kolmogorov’s two principles in his influential
Mathematical Methods in Statistics, written during the war and published in
English in 1946. Hans Richter’s 1956 probability textbook, from which West
Germans learned the new approach to mathematical probability, also recognized
the “Cournotsche Prinzip” as the foundation for applications. But such philoso-
phizing fell out of favor among the new generation of mathematicians. Although
Kolmogorov’s student Yuri Prokhorov kept it alive in the Soviet encyclopedias
[117], there was no mention of Cournot’s principle in Boris Gnedenko’s Kurs
teorii vero�tnoste�, published in 1950, or in Michel Loève’s Probability The-
ory , published in 1955, and I have not seen it in any textbook for mathematical
probability after Richter’s.

In addition to taking the French probabilists seriously, Kolmogorov also
showed interest in debates on the foundations of statistics taking place in the
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West after the war [78]. But even with his immense mathematical prestige,
he took care to make his philosophical comments brief and incidental to the
mathematical theory, and his Soviet colleagues usually dared less [5, 79, 83, 91,
129]. The Moscow probabilists became known and admired abroad as formalists,
who showed the rest of the world how mathematical probability could dispense
with worries about meaning. This formal spirit took hold even in France , with
the rise of Bourbaki, a band of mathematical reformers who often looked askance
at the generation of mathematicians represented by Fréchet and Lévy and at
probability theory itself [21, 25].

In the United States, a pivotal role was played by the mathematician
Joseph Doob, who extended Kolmogorov’s formalism to accommodate continu-
ous stochastic processes. An experiment with a random outcome is represented
in Kolmogorov’s formalism by its set E of possible outcomes, together with a
set F of subsets of E (the σ-algebra) and a real-valued function P on F. For
each A ∈ F, P(A) is the probability of A, which is supposed to approximate the
frequency with which the outcome falls in A in repeated trials. In a seminal
paper on continuous Markov processes, published in 1931 [76], Kolmogorov had
used this framework to discuss transition probabilities—the probabilities for a
stochastic process’s value yt′ at time t′ conditional on its value yt, where t < t′.
This use of the framework lies within the boundaries of Kolmogorov’s Principle
A (frequency on repeated trials), at least if we have the means of repeatedly
starting the process at any particular value y, for Kolmogorov’s frequentism
required only that the experiment be susceptible of repetition, not that it ac-
tually be repeated. But Kolmogorov never showed how to use his framework
to describe probabilities for the entire time series or trajectory y = {yt}0≤t<∞.
He did not, that is to say, define a useful σ-algebra F for the case where E
consists of possible trajectories.3 This left a mathematical challenge and also a
philosophical question, for in many cases it is unrealistic to talk about repeating
an entire time series. One thinks, for example, of the daily Dow Jones average
from 1896 to the present; we may want to think that this sequence of numbers
is random, but the experiment cannot be repeated.4

Doob is celebrated for having met the mathematical challenge; he introduced
the concept of a filtration, a sequence {Ft} of σ-algebras that grows with time,
reflecting the growth of knowledge as values of the time series previously lying in
the future are observed, and he generalized Kolmogorov’s concept of conditional
expectation of one variable given another to the concept of expectation given
each of the Ft. But what of the philosophical problem? If a time series cannot
be repeated, then we cannot interpret the probability for a property of the
time series as the frequency with which that property occurs. So how do we
interpret it? One answer jumps out of the history I have been recounting.

3More precisely, he did not do this for the case of continuous time. He did show, in §I.6
of the Grundbegriffe, how to construct a probability measure representing a discrete Markov
chain.

4Of course, hardly any experiment can be repeated exactly, for chances always vary. This
point haunted probability theory from its very beginning with Bernoulli [23, §1.3 of the English
translation].
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Kolmogorov did not really need both Principle A (the frequency interpretation)
and Principle B (Cournot’s principle), because Principle A can be derived from
Principle B when there are repeated trials (Bernoulli’s theorem). All he needed
was Cournot’s principle, and this is available even when there is only a single
trial. It tells us that the meaning of the probability measure P lies in the
prediction that a property to which P assigns very small probability will not
happen. This is, in fact, how we test a hypothesized probability measure for a
stochastic process.

Had he been a colleague of Paul Lévy’s, living in a Paris unravaged by Hitler,
Doob might have settled on this solution. But he was an American, a pragmatist
living in a far different world than Lévy or Kolmogorov. Having himself worked
as a statistician, Doob believed that the application of mathematical theory
could be left to the practitioner. As he told von Mises in a debate at Dartmouth
in 1940, a practitioner must use “a judicious mixture of experiments with reason
founded on theory and experience” [46, p. 209]. There is no use in a philosopher
telling the practitioner how to use the mathematician’s formalism.

Doob’s attitude did not prevent philosophers from talking about probability.
But as I have already mentioned, English-language philosophy of probability
after the second world war was dominated by traditions that had developed in
the English and German languages. The German scholars Rudolf Carnap, Hans
Reichenbach, and Richard von Mises all settled in the United States on the eve
of the second world war and published in English treatises on probability that
did not mention Cournot’s principle [27, 119, 143].

Because of mathematicians’ emphasis on the formal character of Kol-
mogorov’s axioms, the one consensus that emerged in English-language philos-
ophy of probability in the postwar years was that the probability calculus has
many interpretations. This idea was first articulated with respect to the new
measure-theoretic formalism in 1939 by Ernst Nagel, who listed nine interpre-
tations, including multiple versions of the traditional rivals in the English and
German traditions, belief and frequency [105, pp. 40–41].

In this environment, where Cournot’s principle was fading away, the one per-
son who bothered to articulate a case against the principle was the subjectivist
Bruno de Finetti. De Finetti participated in the 1949 Paris conference where
Fréchet coined the name, and he may have been the first to use the name in
English, when he deplored “the so-called principle of Cournot” [42]. He did not
really disagree with the statement that one should act as if an event with a very
small probability should not happen. But he took the principle as a tautology, a
consequence of the subjective definition of probability, not a principle standing
outside probability theory and relating it to the world [43, p. 235] [39].

The one prominent post-war philosopher who might have been expected to
champion Cournot’s principle was Karl Popper, who taught that all scientific
theories make contact with reality by providing opportunities for falsification.
Cournot’s principle tells us how to find such an opportunity in a probability
model: single out an event of very small probability and see if it happens.
Popper was sympathetic with Cournot’s principle; this is already clear in his
celebrated Logik der Forschung, published in 1935 [110, §68]. But the picture is
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muddied by his youthful ambition to axiomatize probability himself [111] and
his later effort to say something original about propensity [112]. In Realism
and the Aim of Science in 1983, he mentions Cournot’s principle in passing but
suggests somehow replacing it with a theorem (sic) of Doob’s on the futility of
gambling strategies [113, p. 379]. Recasting Cournot’s principle as a principle
about the futility of gambling is the very project to which I now turn, but I
cannot support this with an appeal to Popper’s authority, for he never seems to
have appreciated the principle’s historical importance and continuing potential.

3 Cournot’s principle in game-theoretic form

As I have explained, Shafer and Vovk [125] revive Cournot’s principle in a game-
theoretic form: a strategy for placing bets without risking bankruptcy will not
multiply the bettor’s capital by a large or infinite factor. In the case where
the bettor can buy or sell any random variable for its expected value, this is
equivalent to the classical form of the principle; Jean Ville demonstrated the
equivalence in 1939 [138]. But the game-theoretic principle can also be applied
to real markets, where only some payoffs are priced.

This section discusses some of the implications of the game-theoretic prin-
ciple. After reviewing Ville’s theorem (§3.1), I sketch the main contribution of
[125], which was to show how the game-theoretic principle extends from clas-
sical probability games to more general games and to generalize classical limit
theorems accordingly (§§3.2 and 3.3). Then I review more recent work, which
shows that good forecasts can be obtained by using a quasi-universal test as
a foil (§§3.4 and 3.5). This has profound implications for the interpretation of
probability, the practice of statistics, and our understanding of markets. I look
at some of the implications for markets in §3.6.

3.1 Ville’s theorem

Consider a sequence Y1, Y2, . . . of binary random variables with a joint probabil-
ity distribution P. Suppose, for simplicity, that P assigns every finite sequence
y1, . . . , yn of 0s and 1s positive probability, so that its conditional probabilities
for Yn given values of the preceding variables are always unambiguously defined.
Following Jean Ville [138], consider a gambler who begins with $1 and is allowed
to bet as he pleases on each round, provided that he does not risk bankruptcy.
We can formalize this with the following protocol, where betting on Yn is rep-
resented as buying some number sn (possibly zero or negative) of tickets that
cost $P{Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1} and pay $Yn.

Binary Probability Protocol
Players: Reality, Skeptic
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:
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Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − P{Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1}).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how Reality moves.

This is a perfect-information sequential protocol; moves are made in the order
listed, and each player sees the other player’s moves as they are made. The
sequence K0,K1, . . . is Skeptic’s capital process.

Ville showed that Skeptic’s getting rich in this protocol is equivalent to an
event of small probability happening, in the following sense:

1. When Skeptic follows a measurable strategy (a rule that gives sn as a
function of y1, . . . , yn−1),

P{sup
n
Kn ≥ 1

ε
} ≤ ε (1)

for every ε > 0. (This is because the capital process K0,K1, . . . is a non-
negative martingale; Equation (1) is sometimes called Doob’s inequality.)

2. If A is a measurable subset of {0, 1}∞ with P(A) ≤ ε, then Skeptic has a
measurable strategy that guarantees

lim inf
n→∞

Kn ≥ 1
ε

whenever (y1, y2, . . .) ∈ A.

We can summarize these results by saying that Skeptic’s being able to multiply
his capital by a factor of 1/ε or more is equivalent to the happening of an event
with probability ε or less.

Although Ville spelled out his theory only for the binary case, he made its
generality clear. It applies to the following more general protocol, where prices
are regular conditional expected values for a known joint probability distribution
P for a sequence of random variables Y1, Y2, . . .:

Probability Protocol
Players: Reality, Skeptic
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Skeptic announces sn : R→ R such that
E(sn(Yn)|Y1 = y1, . . . , Yn−1 = yn−1) exists.

Reality announces yn ∈ R.
Kn := Kn−1 + sn(yn)− E(sn(Yn)|Y1 = y1, . . . , Yn−1 = yn−1).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how Reality moves.

13



Here Skeptic can buy any measurable function of Yn on the nth round for its
conditional expected value, provided this expected value exists. In this general
protocol, as in the binary protocol, there is a probability of ε or less that the
capital process for a particular strategy will reach 1/ε times its initial value, and
there is a zero probability that it will diverge to infinity. Conversely, for any
event of probability less than ε, there is a strategy whose capital process reaches
1/ε times its initial value if the event happens, and for any event of probability
zero, there is a strategy whose capital process diverges to infinity if the event
happens [125, Chapter 8].

In light of these results, we can put both the finitary and infinitary versions
of Cournot’s principle in game-theoretic terms:

The finitary principle. Instead of saying that an event of small probability
singled out in advance will not happen, we say that a strategy chosen by
Skeptic, if it avoids risk of bankruptcy, will not multiply his capital by a
large factor.

The infinitary principle. Instead of saying that an event of zero probability
singled out in advance will not happen, we say that a strategy chosen by
Skeptic, if it avoids risk of bankruptcy, will not make him infinitely rich.

As we will see shortly, the game-theoretic principles can be used in more gen-
eral protocols, where prices are limited and are not necessarily related to a
meaningful probability measure for Reality’s moves.

Ville’s work was motivated by von Mises’s notion of a collective [142–144].
Von Mises had argued that a sequence y1, y2, . . . of 0s and 1s should be consid-
ered random if no subsequence with a different frequency of 1s can be picked
out by a gambler to whom the ys are presented sequentially; this condition, von
Mises felt, would keep the gambler from getting rich by deciding when to bet.
Ville showed that von Mises’s condition is insufficient, inasmuch as it does not
rule out the gambler’s getting rich by varying the direction and amount to bet.

Ville was the first to use the concept of a martingale as a tool in probability
theory. For him, a martingale was a strategy for the player I have been calling
Skeptic. From there, he slipped into also using the word for the player’s cap-
ital process, for once the initial capital is fixed, the strategies and the capital
processes are in a one-to-one correspondence. Doob, who borrowed the concept
from Ville [45, 47], made it apparently more suitable for general use by stripping
away the betting story; for him, a martingale was a merely sequence K1,K2, . . .
of random variables such that

E(Kn+1|K1 = k1, . . . ,Kn = kn) = kn.

In Doob’s later formulation [48], which is now standard in the theory of stochas-
tic processes and the theory of finance, we begin with a filtration F1 ⊆ F2 ⊆ · · ·
in a probability space (P, Ω,F), and we say that random variables K1,K2, . . .
form a martingale if Kn is measurable with respect to Fn and

E(Kn+1|Fn) = Kn

for all n.

14



3.2 The game-theoretic framework

The framework of [125] returns to Ville’s game-theoretic version of classical
probability theory and generalizes it. The generalization has three aspects:

• Instead of beginning with a probability measure and using its conditional
probabilities or expected values as prices on each round, we allow another
player, Forecaster, to set the prices as play proceeds. This makes the
framework “prequential” [38]; there is no need to specify what the price
on the nth round would be had Reality moved differently on earlier rounds.

• When convenient, we make explicit additional information, say xn, that
Reality provides to Forecaster and Skeptic before they make their nth
moves.

• We allow the story to be multi-dimensional, with Reality making several
moves and Forecaster pricing them all.

A convenient level of generality for the present discussion is provided by the
following protocol, where Rk is k-dimensional Euclidean space, Y is a subset of
Rk, and X is an arbitrary set.

Linear Forecasting Protocol
Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1, 2, . . . , N :

Reality announces xn ∈ X.
Forecaster announces fn ∈ Rk.
Skeptic announces sn ∈ Rk.
Reality announces yn ∈ Y.
Kn := Kn−1 + sn · (yn − fn).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how the other players move.

Here sn ·(yn−fn) is the dot product of the k-dimensional vectors sn and yn−fn.
Notice also that play stops on the Nth round rather than continuing indefinitely.
This is a convenient assumption in this section, where we emphasize the finitary
picture; we will return to the infinitary picture later.

The linear forecasting protocol covers many prediction problems considered
in statistics (where x and y are often called independent and dependent variables,
respectively) and machine learning (where x is called the object and y the label)
[67, 136, 147]. Market games can be included by taking fn to be a vector of
opening prices and yn the corresponding vector of closing prices for the nth
trading period.

A strategy for Skeptic in the linear forecasting protocol is a rule that gives
each of his moves sn as a function of the preceding moves by Reality and Fore-
caster, (x1, f1, y1), . . . , (xn−1, fn−1, yn−1), xn, fn. A strategy for Forecaster is
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a rule that gives each of his moves fn as a function of the preceding moves
by Reality and Skeptic, (x1, s1, y1), . . . , (xn−1, sn−1, yn−1), xn. One way of pre-
scribing a strategy for Forecaster is to choose a probability distribution for
(x1, y1), (x2, y2), . . . and set fn equal to the conditional expected value of yn

given (x1, y1), . . . , (xn−1, yn−1), xn. We will look at other interesting strategies
for Forecaster in §3.5.

How can one express confidence in Forecaster? The natural way is to assert
Cournot’s principle: say that a legal strategy for Skeptic (one that avoids Kn < 0
no matter how the other players move) will not multiply Skeptic’s initial capital
by a large factor.

Once we adopt Cournot’s principle in this form, it is natural to scale the
implications of our confidence in Forecaster the same way we do in classical
probability. This means treating an event that happens only when a specified
legal strategy multiplies the capital by 1/ε as no more likely than an event with
probability ε.

To formalize this, consider a possible sequence of moves by Reality and
Forecaster,

(x1, f1, y1), . . . , (xN , fN , yN ). (2)

The space of all such sequences, {X × Rk ×Y}N , is the sample space for our
protocol, and a subset of it is an event. The upper probability of an event E is

PE := inf{ε | Skeptic has a strategy that guarantees KN ≥ 1/ε if

Forecaster and Reality satisfy E and KN ≥ 0 otherwise}.

Roughly, PE is the smallest ε such that Skeptic can multiply his capital by 1/ε
if E happens without risking bankruptcy if E fails. When PE is small, we say
that E is morally impossible.

The lower probability of an event E is

PE = 1− PEc,

where Ec is E’s complement with respect to the sample space. When P(E) is
close to one, we say that E is morally certain.

As in classical probability, we can combine Cournot’s principle with a form
of Bernoulli’s theorem to obtain a statement about relative frequency in a long
sequence of events. In a sufficiently long sequence of events with upper proba-
bility 0.1 or less, for example, it is morally certain that no more than about 10%
of the events will happen [126, §5.3]. This is a martingale-type result; rather
than insist that the events be independent in some sense, we assume that the
upper probability for each event is calculated at the point in the game where
the previous event is settled.

3.3 Extending the classical limit theorems

One of the main contributions of Shafer & Vovk [125] was to show that game
theory can replace measure theory as a foundation for classical probability.
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We showed in particular that classical limit theorems, especially the strong
law of large numbers and the law of the iterated logarithm, can be proven
constructively within a purely game-theoretic framework. From Ville’s work,
we know that for any event with probability zero, there is a strategy for Skeptic
that avoids bankruptcy for sure and makes him infinitely rich if the event fails.
But constructing the strategy is another matter. In the case of the events of
probability zero associated with the classical theorems, we did construct the
requisite strategies; they are computable and continuous.

We provided similar constructions for classical results that do not require
an infinite number of rounds of play to be meaningful: the weak law of large
numbers, finitary versions of the law of the iterated logarithm, and the central
limit theorem. The game-theoretic central limit theorem gives conditions under
which upper and lower probabilities for the value of an average of many outcomes
will approximately coincide and equal the usual probabilities computed from the
normal distribution.

The game-theoretic results are more powerful than the measure-theoretic
ones in the respects I listed at the beginning of §3.2: the prices can be provided
by Forecaster (an actual forecaster or a market) rather than by a probability
distribution known in advance, and Forecaster and Skeptic can use information
x that is not itself priced or probabilized. In addition, new results emerge when
betting is restricted in some way. A new one-sided central limit theorem arises
if Forecaster makes only one-sided betting offers [125, Chapter 5], and laws of
large numbers can be established for market prices [125, Chapter 15].

3.4 Is there a universal test?

Within the measure-theoretic formalization of probability, it is axiomatic that
the union of a countable number of events of probability zero itself has probabil-
ity zero. In the early twentieth century, there was considerable hesitation about
this axiom. Even Émile Borel, who introduced it into probability, was uncom-
fortable with it. Maurice Fréchet and Bruno de Finetti debated it [40, 57]. It
was finally accepted by most mathematicians because it is useful (in proving
the limit theorems, for example) and apparently harmless. Because only a finite
number of events can be observed, an assumption about infinite collections of
events, being untestable, should not get us into trouble [77, p. 14].

Once the countable additivity of probability was more or less universally
accepted, it became natural to discuss universal statistical tests. If we imagine
that we can observe an infinite sequence of random variables Y1, Y2, . . ., then any
subset of R∞ that is assigned probability zero by a probability measure P on
R∞ defines a test of the hypothesis that P is the joint probability distribution
for Y1, Y2, . . .. Given that we have only a finite number of mathematical and
logical symbols and can combine them in at most a countable number of ways,
we can define at most a countable number of subsets of R∞ that have measure
zero. Their union, say E, seems to define a universal test: reject P if and
only if the observed sequence y1, y2, . . . falls in E. This idea was advanced by
Abraham Wald in the 1930s, in defense of von Mises’s and Ville’s idea of using
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batteries of tests to define randomness for sequences [154–156] [41, pp. 15–16].
It was given definitive form within measure-theoretic probability in 1966 by Per
Martin-Löf, who demonstrated the existence of what he called universal tests
of stochasticity [102]. More recently, this concept has been elaborated in the
theory of algorithmic complexity [89, §2.5].

The thesis that one can find a universal test appears less plausible when
we abandon the infinitary picture for the more realistic finitary picture, where
we test using events of small probability rather than events of zero probability.
When we consider two events E1 and E2 whose probabilities are so small as to
make them morally impossible, we will surely say that their disjunction E1∪E2

is also morally impossible, for the sum of two small numbers is also small, even
if not quite as small.5 But we cannot count on the sum of many small numbers
being small, and so we cannot say that the union of many morally impossible
events is always morally impossible.

The picture is similar in the game-theoretic framework. In this framework,
we are testing not a probability distribution but the hypothesis that Forecaster
is a good forecaster. A test for Skeptic is not an event with small probability but
a strategy for Skeptic that does not risk bankruptcy. We reject the hypothesis
when the strategy makes Skeptic sufficiently rich (infinitely rich or many times
richer than he was initially). We combine tests not by taking unions of events
but by averaging strategies.

Suppose, as usual, that Skeptic starts with 1, and suppose S1 and S2 are
strategies for Skeptic that do not risk bankruptcy. Then (S1 + S2)/2 does not
risk bankruptcy, and we can say the following:

Infinitary case. If S1 or S2 make Skeptic infinitely rich, then (S1 +S2)/2 will
also make him infinitely rich.

Finitary case. If S1 or S2 increases Skeptic’s capital from 1 to some large
number C, then (S1 + S2)/2 will also increase it to a large number, at
least C/2.

This is parallel to the way testing using E1∪E2 is related to testing using E1 or
E2. In the infinitary case, we can combine two tests perfectly, obtaining a test
that rejects Forecaster’s if either of the separate tests rejects. In the finitary
case, the combination is not so perfect; the combined test does reject if either
of the separate tests rejects, but perhaps not so strongly.

When we look closer, however, the game-theoretic approach provides some
new insights.

Consider first the infinitary case. In the measure-theoretic approach pio-
neered by Borel, Fréchet, and Kolmogorov, we use countable additivity to prove
limit theorems such as the law of large numbers. In the game-theoretic ap-
proach, we have no such arbitrary general axiom, but there is an obvious way

5Kolmogorov made the same point by saying that if two events are both practically certain,
then their simultaneous happening is also practically certain, but not quite as certain [77,
pp. 4–5]. After the decline of Cournot’s priniciple, this came to be seen as paradoxical, as in
Kyburg’s “lottery paradox” [84].
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to try to combine a countable number of strategies S1,S2, . . .. We try to form a
strategy S by taking the linear combination of these strategies using positive co-
efficients α1, α2, . . . that add to one. This means that S’s move in the situation
(x1, f1, y1), . . . , (xn−1, fn−1, yn−1), xn, fn should be

S((x1, f1, y1), . . . , (xn−1, fn−1, yn−1), xn, fn)

=
∞∑

j=1

αjSj((x1, f1, y1), . . . , (xn−1, fn−1, yn−1), xn, fn). (3)

As it turns out, this works for the strategies we need to combine to prove the
classical limit theorems (see, e.g., [125, p. 67]), but it does not work for arbitrary
strategies S1,S2, . . . in arbitrary instances of the linear forecasting protocol,
because there is no guarantee that the right hand side of (3) will converge. This
vindicates, in some respects, the critics of countable additivity. The general
axiom turns out not to be necessary after all.

The new insights provided by the game-theoretic approach in the finitary
case are more complicated to explain but also more important. As it turns
out, the aspects of disagreement between forecasts fn and outcomes yn that we
really want to test are relatively limited. To see this, consider binary probability
forecasting again:

Binary Probability Protocol with Forecaster and Objects
Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how the other players move.

In this protocol, where Forecaster gives a probability pn on each round, tak-
ing into account the previous outcomes y1, . . . , yn−1 and auxiliary information
x1, . . . , xn, we are mainly interested in two aspects of the agreement between
the probabilities pn and the outcomes yn:

Calibration. Whenever there are a large number of rounds on which pn is close
to some fixed probability p∗, we want the frequency with which yn = 1 on
those rounds to be approximately equal to p∗.

Resolution. We want this approximate equality between frequency and p∗ to
remain true when we consider only rounds where pn is close to p∗ and also
xn is close to some fixed value x∗ in the object space X.
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As it turns out [153], we can often average strategies that reject Forecaster’s
performance over a grid of values of (x∗, p∗) that are sufficiently dense to capture
all deviations of practical interest. This average strategy, which is testing for
calibration and resolution, will not necessarily test for more subtle deviations
by y1, y2, . . . from the forecasts p1, p2, . . ., such as those associated with the law
of the iterated logarithm or Ville’s refutation of von Mises’s theory, but these
more subtle deviations may hold little interest. So the average strategy can be
regarded, for practical purposes, as a universal test. To avoid confusion, I call
it a quasi-universal strategy.

3.5 Defensive forecasting

In cases where we have a quasi-universal strategy, a new opportunity opens
up for Forecaster. Forecaster will do well enough if he can avoid rejection by
that strategy. Formally, he needs a winning strategy in a version of the game
where Skeptic is required to follow the quasi-universal strategy but Reality is
free to move as she pleases. Does Forecaster have such a winning strategy? The
surprising answer is yes.

This is easiest to see in the case where the quasi-universal strategy gives a
move for the nth round that is continuous in the forecast pn. As it happens, this
is not an unreasonable requirement. We can construct quasi-universal strategies
for calibration and resolution that are continuous in this respect, and there is
even a philosophical argument for ruling out any discontinuous strategy for
Skeptic: discontinuous functions are not really computable [22, 100].

As it turns out, it is easy to show that for any forecast-continuous strategy
for Skeptic there exists a strategy for Forecaster that does not allow Skeptic’s
capital to grow, regardless of what Reality does. Let me repeat the simple proof
given in [148, 153]. It begins by simplifying so that Forecaster’s job seems to
be even a little harder. Instead of requiring that the entire forecast-continuous
strategy for Skeptic be announced at the beginning of the game, we ask only
that Skeptic announce his strategy for each round before Forecaster’s move on
that round. And we drop the restriction that Skeptic avoid risk of bankruptcy.
This produces the following protocol:

Binary Forecasting against Continuous Tests
Players: Reality, Forecaster, Skeptic
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

Here Sn is Skeptic’s strategy for the nth round; it gives his move as a function
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of Forecaster’s not-yet-announced move pn.

Theorem 1 Forecaster has a strategy that ensures K0 ≥ K1 ≥ K2 ≥ · · ·.

Proof Because Sn is continuous, Forecaster can use the following strategy:

• if the function Sn(p) takes the value 0, choose pn so that Sn(pn) = 0;

• if Sn is always positive, take pn := 1;

• if Sn is always negative, take pn := 0.

This guarantees that Sn(pn)(yn − pn) ≤ 0, so that Kn ≤ Kn−1.

Some readers may question the philosophical rationale for requiring that Sn

be continuous. As it turns out, dropping this requirement does not cost us
much; Forecaster can still win if we allow him to randomize [152]. This means
that instead of telling Reality his probability pn, Forecaster may give Reality
only a probability distribution Pn for pn, with the value pn to be drawn from
Pn out of sight of Reality or perhaps after Reality has selected yn.

A strategy for Forecaster is what one usually calls a probability model; given
the previous outcomes y1, . . . , yn−1 and auxiliary information x1, . . . , xn, it gives
a probability pn for yn = 1. Such probabilities can be used in any repetitive de-
cision problem [146]. So Theorem 1’s guarantee that they are valid, in the sense
that they pass any reasonable test of calibration and resolution, has immense
practical significance.

When he follows the strategy described by Theorem 1, is Forecaster using
experience of the past to predict the future? He is certainly taking the past
into consideration. The moves for Skeptic recommended by the quasi-universal
strategy signal emerging discrepancies that Skeptic would like to take advantage
of, and the strategy for Forecaster chooses his pn to avoid extending these
discrepancies. But because they succeed regardless of the yn, it is awkward
to call the pn predictions. The are really only descriptions of the past, not
predictions of the future.

The fact that we can always make good probability forecasts undermines
some popular ideas about stochasticity. Indeed, to the extent that everything is
stochastic, stochasticity has no content. We can still point to quantum mechan-
ics as an extraordinarily successful stochastic theory, whose probabilities appear
to withstand all tests, not merely tests of calibration and resolution. Less ex-
treme but also remarkable, there are cases where relatively simple probability
models—exchangeable models or Markov models, for example—are successful.
In these cases, which go beyond merely being able to give sequential proba-
bilities that beat tests of calibration and resolution, it is reasonable to claim
predictive insight; perhaps it is even reasonable to claim that we have caught
a glimpse of causal regularities [124]. But bare stochasticity, it seems, is no
regularity at all.
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3.6 Implications for market prices

Organized exchanges, in which a buyer or seller can always find a ready price
for a particular commodity or security, are forecasting games. So we can ask
whether Cournot’s principle holds in such exchanges, and we can consider the
implications of its holding. It is often said that in an efficient market, an investor
cannot make a lot of money without taking undue risk. Cournot’s principle
makes this precise by saying that he will not make a lot of money without
risking bankruptcy; he starts with a certain initial capital, and on each round of
trading he risks at most a portion of his current capital. In the next section, I
will say more about how this formulation relates to established formulations of
the efficient-markets hypothesis. Here, in preparation, I explain how Cournot’s
principle alone can explain certain stylized facts about prices that are often
explained using stochasticity.

3.6.1 The
√

dt effect

Consider first the stylized fact that changes in market prices over an interval of
time of length dt scale as

√
dt. In a securities market where shares are traded

252 days a year, for example, the typical change in price of a share from one
year to the next is

√
252, or about 16, times as large as the typical change from

one day to the next. There is a standard way of explaining this. We begin by
assuming that price changes are stochastic, and we argue that successive changes
must be uncorrelated; otherwise someone who knew the correlation (or learned
it by observation) could devise a trading strategy with positive expected value.
Uncorrelatedness of 252 successive daily price changes implies that their sum,
the annual price change, has variance 252 times as large and hence standard
deviation, or typical value,

√
252 times as large. This is a simple argument, but

stochastic ideas intervene in two places, first when price changes are assumed
to be stochastic, and then when market efficiency is interpreted as the absence
of a trading strategy with positive expected value. As I now explain, we can
replace this stochastic argument with a purely game-theoretic argument, in
which Cournot’s principle expresses the assumption of market efficiency.

For simplicity, consider the following protocol, which describes a market in
shares of a corporation. Investor plays the role of Skeptic; he tries to make
money, and Cournot’s principle says he cannot get very rich following the rules,
which do not permit him to risk bankruptcy. Market plays the roles of Forecaster
(by giving opening prices) and Reality (by giving closing prices). For simplicity,
we suppose that today’s opening price is yesterday’s closing price, so that Market
gives only one price each day, at the end of the day. When Investor holds sn

shares during day n, he makes sn(yn − yn−1), where yn is the price at the end
of day n.

The Market Protocol
Players: Investor, Market
Protocol:
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K0 := 1.
Market announces y0 ∈ R.
FOR n = 1, 2, . . . , N :

Investor announces sn ∈ R.
Market announces yn ∈ R.
Kn := Kn−1 + sn(yn − yn−1).

Restriction on Investor: Investor must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how Market moves.

For simplicity, we ignore the fact that the price yn of a share cannot be negative.
Since there is no stochastic assumption here, we cannot appeal to the idea

of the variance of a probability distribution for price changes to explain what√
dt scaling means. But we can use

√√√√ 1
N

N∑
n=1

(yn − yn−1)2 (4)

as the typical daily change, and we can compare it to the magnitude of the
change we see over the whole game, say

max
0<n≤N

|yn − y0| (5)

The quantity (5) should have the same order of magnitude as
√

N times the
quantity (4). Equivalently, we should have

N∑
n=1

(yn − yn−1)2 ∼ max
0<n≤N

(yn − y0)2, (6)

where ∼ is understood to mean that the two quantities are of the same order of
magnitude.

Does Cournot’s principle give us any reason to think that (6) should hold?
Indeed it does. As it turns out, Investor has a legal strategy (one avoiding
bankruptcy) that makes a lot of money if (6) is violated. Market (who here
represents all the other investors and speculators) wants to set prices so that
Investor will not make a lot money, and we just saw, in §3.5 that he can more
or less do so. So we may expect (6) to hold.

The strategy that makes money if (6) is violated is an average of two strate-
gies, one a momentum strategy (holding more shares after the price goes up),
the other a contrarian strategy (holding more shares after the price goes down).

1. The momentum strategy is based on the assumption that Investor can
count on

∑
(yn − yn−1)2 ≤ E and max(yn − y0)2 ≥ D, where D and E

are known constants. On this assumption, the strategy is legal and turns
$1 into $D/E or more for sure.
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2. The contrarian strategy is based on the assumption that Investor can
count on

∑
(yn − yn−1)2 ≥ E and max(yn − y0)2 ≤ D, where D and E

are known constants. On this assumption, the strategy is legal and turns
$1 into $E/D or more for sure.

If the assumptions about
∑

(yn−yn−1)2 and max(yn−y0)2 fail, then the strategy
fails to make money, but Investor can still avoid bankruptcy. For details, see
[150].

3.6.2 The game-theoretic CAPM

The Capital Asset Pricing Model (CAPM), popular in finance theory for almost
forty years, assumes that a firm whose shares are traded in a securities market
has a stable level of risk relative to the market as a whole. The risk for a security
s is defined in terms of a probability model for the returns of all the securities
in the market; it is the theoretical regression coefficient

βs =
Cov(Rs, Rm)

Var(Rm)
, (7)

where Rs is a random variable whose realizations are s’s returns, and Rm is a
random variable whose realizations are a market index’s returns.6 The CAPM
says that

E(Rs) = r + βs(E(Rm)− r), (8)

where r is rate of interest on government debt, assumed to be constant [30,
p. 197]. Because E(Rm)−r is usually positive, this equation suggests that secu-
rities with higher β have higher average returns. The equation has found only
weak empirical confirmation, but it continues to be popular because it suggests
plausible ways of analyzing decision problems faced by financial managers.

As it turns out, a purely game-theoretic argument based on Cournot’s prin-
ciple leads to an analogous equation involving only observed returns, with no
reference to a probability distribution. The game-theoretic equation is

rs ∼ r′ + bs(rm − r′), (9)

where

rs :=
1
N

N∑
n=1

sn, rm :=
1
N

N∑
n=1

mn,

and

bs :=
∑N

n=1 snmn∑N
n=1 m2

n

, r′ := rm − 1
N

N∑
n=1

m2
n,

sn and mn being the actual returns of s and the market index, respectively, over
period n. This is analogous to (8), inasmuch as r′ measures the performance of

6Here “return” means simple return; R = (pn+1 − pn)/pn, where pn is the the price of
the share (or the level of the market index) at time n. All expected values, variances, and
covariances are with respect to probabilities conditional on information known at time n.
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the market as a whole, and the other quantities are empirical analogues of the
theoretical quantities in (8).

The interpretation of (9) is similar to the interpretation of the game-theoretic
version of

√
dt scaling, equation (6); a speculator can make money to the extent

it is violated. Given the approximations in the derivation of (9), as well as the
existence of transaction costs and other market imperfections, we can expect the
relation to hold only loosely, but we can ask whether it is any looser in practice
than the empirical relations implied by CAPM. If not, then the very approximate
confirmation of CAPM that has been discerned in data might be attributed
to (9), leaving nothing that can be interpreted as empirical justification for the
stochastic assumptions in CAPM. For details, see [149].

4 The return of Cournot’s principle

In this concluding section, I discuss what probability, economics, and finance
can gain from a revival of Cournot’s principle.

4.1 Why probability needs Cournot’s principle

Until the middle of the twentieth century, specialists in mathematical prob-
ability generally assumed that any probability can be known, either a priori
or by observation. Those who understood probability as a measure of belief
did not question the presumption that one can know one’s beliefs. Those who
understood probability as relative frequency assumed that one can observe fre-
quencies. Those who interpreted probability using Cournot’s principle did so
on the assumption that they would know the probabilities they wanted to test;
you would not check whether an event of small probability happened unless you
had conjectured it had small probability.

The observations necessary for estimating a numerical probability may be
hard to come by. But at worst, Cournot suggested, they could be made by
a superior intelligence who represents the limits of what humans can observe
[97, pp. 146–150]. Here Cournot was drawing an analogy with the classical
understanding of determinism. Classical determinism required more than the
future being determined in some theological sense; it required that the future
be predictable by means of laws that can be used by a human, or at least by
a superior intelligence whose powers of calculation and observation are human-
like.

The presumption that probabilities be knowable leads to the apprehension
that some events may not have probabilities. Perhaps there are three categories
of events:

1. Those we can predict with certainty.

2. Those we can predict only probabilistically.

3. Those that we can predict neither with certainty nor probabilistically.
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Most probabilists did think that there are events in the third category. Kol-
mogorov said so explicitly, and he did not speak of them as events whose prob-
abilities cannot be known; he spoke of them as events that do not have proba-
bilities [81, p. 1]. John Maynard Keynes and R. A. Fisher, each in his own way,
also insisted that not every event has a numerical probability [56, 73, 74].

Doob’s success in formalizing the concept of a probability measure for an
arbitrary stochastic process destabilized this consensus. As I have already em-
phasized, there are many cases where we cannot repeat an entire stochastic
process—cases where there is only one realization, one time series. In these
cases, the probability measure assigns probabilities to many events that are not
repeated. Having no direct frequency interpretation, these probabilities cannot
be verified in any direct way. Because Doob did not appeal to Cournots princi-
ple or provide any other guidance about their meaning, his followers looked in
other directions for understanding. Many looked towards mechanisms, such as
well-balanced dice, that produce or at least simulate randomness. As they saw
it, phenomena must be produced in some way. Deterministic phenomena are
produced by deterministic mechanisms, indeterministic phenomena by chance
mechanisms. The probabilities, even if unverifiable and perhaps unknowable,
are meaningful because they have this generative task.

The growing importance of this way of seeing the world is evidenced by a
pivotal article published by Jerzy Neyman in 1960 [106]. According to Neyman,
science was moving into a period of dynamic indeterminism,

. . . characterized by the search for evolutionary chance mecha-
nisms capable of explaining the various frequencies observed in the
development of phenomena studied. The chance mechanism of car-
cinogenesis and the chance mechanism behind the varying properties
of the comets in the Solar System exemplify the subjects of dynamic
indeterministic studies. One might hazard the assertion that every
serious contemporary study is a study of the chance mechanism be-
hind some phenomena. The statistical and probabilistic tool in such
studies is the theory of stochastic processes. . .

As this quotation confirms, Neyman was a frequentist. But his rhetoric suggests
that the initial meaning of probabilities lies in their relation to how phenomena
are generated rather than in their relation to frequencies. He wants to explain
frequencies, but he does not ask that every probability have a frequency inter-
pretation. Perhaps it is enough that successive probability predictions be well
calibrated and have good resolution in the sense explained in §3.4.

What is most striking about Neyman’s vision is that stochastic processes
appear as the only alternative to deterministic models. The third category of
phenomena, those we can predict neither with certainty nor probabilistically, has
disappeared. This way of thinking has become ever more dominant since 1960.
In many branches of science, we now hear casual references to “true,” “physi-
cal,” or “objective” probabilities, without any hesitation about their existence.
An indeterministic process is assumed to be a stochastic process, regardless of
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whether we do or even can know the probabilities. The näıveté derided by von
Kries 120 years ago is once again orthodoxy.

The game-theoretic results reported in §3 provide a framework for regaining
the philosophical sophistication of von Kries, Keynes, Fisher, and Kolmogorov,
without abandoning the successes achieved by the theory of stochastic processes.
Whenever we test a stochastic process empirically, we are applying Cournot’s
principle to known (hypothetical) probabilities. When we have less than a
stochastic process, a model giving only limited prices or probabilities, we can still
test it via Cournot’s principle, without regarding it as part of some unknowable
yet somehow still meaningful full stochastic process.

The results on defensive forecasting reviewed in §3.5 also provide new in-
sights. They show that in a certain limited sense, our third category is indeed
empty. Any quantity or event that can be placed in a series (in a time series,
not necessarily a series of independent repetitions) can be predicted probabilis-
tically, at least with respect to that series. This suggests that talk about chance
mechanisms is also empty. Defensive forecasting works for any time series, re-
gardless of how it is generated. The idea of a chance mechanism adds nothing.

4.2 Why economics needs Cournot’s principle

The suggestion that market prices are expected values goes back at least to
Cournot [31, Chapter V]. But whose expected values are they? Does the mar-
ket have a mind? And how do learn more details about the probabilities that
presumably accompany these expected values? These questions scarcely trou-
bled Cournot, who still lived in a Laplacean world where one does not fret too
much about mankind’s ability to discern the proper measure of its ignorance.
But as critiques such as that of von Kries accumulated, this tranquility became
less and less tenable. By the beginning of the twentieth century, it seemed to
require either the philosophical näıveté of a Bachelier [6] or the obscurity of an
Edgeworth [104].

Insofar as probability is concerned, today’s economists are descendants not
of Edgeworth and Keynes, but of Doob, Neyman, and de Finetti. It was Paul
Samuelson, perhaps, who first brought Doob’s measure-theoretic version of mar-
tingales into economics, in the 1965 article now recognized as a first step in the
formulation of the concept of informational efficiency [122]. Doob’s mathemat-
ics was not enough to bring Samuelson back to Cournot’s tranquility, as we see
in the conclusion of the article:

I have not here discussed where the basic probability distribu-
tions are supposed to come from. In whose minds are they ex ante?
Is there any ex post validation of them? Are they supposed to be-
long to the market as a whole? And what does that mean? Are they
supposed to belong to the “representative individual,” and who is
he? Are they some defensible or necessitous compromise of diver-
gent expectation patterns? Do price quotations somehow produce
a Pareto-optimal configuration of ex ante subjective probabilities?
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This paper has not attempted to pronounce on these interesting
questions.

These questions point towards a deconstruction of probability, but Samuelson’s
profession has moved in the opposite direction, resolutely embracing, under the
slogan of “rational expectations,” the hypothesis that the world of trade has
true probabilities in the sense of Neyman, happily congruent with its inhabi-
tants’ subjective probabilities in the sense of de Finetti [93]. The affect may be
bullheadedness rather than tranquility, but economics has reimposed a unity on
objective and subjective probability.

The game-theoretic framework allows us to give up this willful reunification,
renouncing Cournot’s tranquility but retaining Cournot’s principle. Once we re-
claim Cournot’s principle as a way of interpreting probabilities, we can interpret
prices directly in the same way; neither a representative individual nor a mind
for the market is needed. There is no need to posit probabilities, objective or
subjective, that go beyond the prices. These prices are no one’s opinions. They
are created by competition [68]. They form a martingale not in Doob’s sense but
in Ville’s sense, and because they are the prices at which investors can trade,
they generate other martingales in Ville’s sense, even though no probabilities in-
tervene. Moreover, because the finitary version of the game-theoretic treatment
produces error bounds that tighten as the number of instances grows, we can
regain the Knightian distinction between risks faced by an insurance company,
which competes in evaluating average outcomes in a long series of trails it ob-
serves along with competitors, and the uncertainties faced by an entrepreneur
or venture capitalist, who encounters a smaller number of opportunities in a
series more privately observed [75].

4.3 Why finance needs Cournot’s principle

We can always invent a probability distribution with respect to which prices form
a martingale. As Eugene Fama explained in his celebrated 1970 article [52], the
central problem in understanding market efficiency is to explain what it means
for this probability distribution to reflect fully all available information. Some
have questioned whether he ever provided an explanation, but his 1976 finance
text [53] added a gloss that has endured: the probabilities should correspond
to rational expectations [86]. Somehow, the probabilities should be right. They
should connect properly with what really happens in the future.

This brings us back again to Cournot’s principle, and to the thesis of this
article, that we can test market prices directly using the game-theoretic version
of Cournot’s principle, without positing full probability distributions.

The results on defensive forecasting that I reported in §3.5 tell us that it is
possible to set prices that will foil nearly any trading strategy that does not risk
bankruptcy. In markets with reasonable liquidity, there are many speculators
trying to do this doable task, and so it is reasonable to hypothesize that they
have succeeded. In other words, the game-theoretic version of Cournot’s prin-
ciple is a very plausible hypothesis. But it predicts only a sort of equilibrium
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in speculation, not an equilibrium among rational investors with well-founded
probabilities concerning the risks of different investments and well-defined pref-
erences over those risks [20].

Does it tell us that prices fully reflect all available information? In one sense,
yes. It tells us that there is no information available that will allow a speculator
to beat the prices. But it does not say that the available information determines
prices. It does not rule out there being prices just as consistent with all available
information that differ from the actual prices by a factor of 2, or a factor of 3,
or a factor of 10. It does not rule out there being prices just as consistent with
all the available information that would result in vastly different allocations of
capital among competing projects [134]. It does not rule out long slow swings
in prices based on no information at all or variability far beyond that justified
by the flow of new information [116, 131].

Future empirical work on the hypothesis of informational efficiency in cap-
ital markets should, I believe, try to unbundle the game-theoretic hypothesis
expressed by Cournot’s principle from the quite distinct hypothesis that price
changes are largely due to new information. Much empirical work that has al-
ready been done, related to the anomalies I have just mentioned, may in the
future be seen as first steps in this direction.

Acknowledgements

This paper draws on collaboration with Vladimir Vovk and has benefited from
correspondence and conversation with innumerable colleagues, many of whom
are thanked in earlier books and papers cited here.

The author has also benefited from the discussion of the paper at the 8th
International Conference of the Cournot Centre for Economic Research in Paris,
December 1, 2005, especially discussion by André Orléan, Bernard Walliser, and
John Vickers. Comments by Alain de Fontenay and Marietta Peytcheva were
also helpful.

References

[1] John Aldrich. The language of the English biometric school. International
Statistical Review, 71(1):109–129, 2003.

[2] Aleksandr D. Aleksandrov, Andrei N. Kolmogorov, and Mikhail A.
Lavrent’ev, editors. Matematika, ee soder�anie, metody i znaqe-
nie. Nauka, Moscow, 1956. The Russian edition had three volumes.
The English translation, Mathematics, Its Content, Methods, and Mean-
ing, was first published in 1962 and 1963 in six volumes by the American
Mathematical Society, Providence, RI, and then republished in 1965 in
three volumes by the MIT Press, Cambridge, MA. Reprinted by Dover,
New York, 1999.

29



[3] Oskar Nikolaevich Anderson. Einführung in die mathematische Statistik.
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[11] Émile Borel. La valeur pratique du calcul des probabilités. Revue du mois,
1:424–437, 1906. Reprinted in [19], Volume 2, pp. 991–1004.
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[63] Maurice Fréchet. Les mathématiques et le concret. Presses Universitaires
de France, Paris, 1955.
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mathématique. Cahiers du Sud, Paris, 1948. This volume was reprinted
by Blanchard in 1962 and by Hermann in 1998. An English translation,
Great Currents of Mathematical Thought, was published by Dover, New
York, in 1971.

[86] Stephen F. LeRoy. Efficient capital markets and martingales. Journal of
Economic Literature, 27:1583–1621, 1989.
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nung auf Statistik. In Encyklopädie der mathematischen Wissenschaften,
Bd. I, Teil 2, pages 821–851. Teubner, Leipzig, 1901.

[140] Guy von Hirsch. Sur un aspect paradoxal de la théorie des probabilités.
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