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Abstract

We start from a simple asymptotic result for the problem of on-line regression
with the quadratic loss function: the class of continuous limited-memory predic-
tion strategies admits a “leading prediction strategy”, which not only asymp-
totically performs at least as well as any continuous limited-memory strategy
but also satisfies the property that the excess loss of any continuous limited-
memory strategy is determined by how closely it imitates the leading strategy.
More specifically, for any class of prediction strategies constituting a reproduc-
ing kernel Hilbert space we construct a leading strategy, in the sense that the
loss of any prediction strategy whose norm is not too large is determined by
how closely it imitates the leading strategy. This result is extended to the loss
functions given by Bregman divergences and by strictly proper scoring rules.
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For the only way to compete is to
imitate the leader. . .

Jacques Ellul

1 Introduction

Suppose F is a normed function class of prediction strategies (the “benchmark
class”). It is well known that, under some restrictions on F , there exists a
“master prediction strategy” (sometimes also called a “universal strategy”) that
performs almost as well as the best strategies in F whose norm is not too large
(see, e.g., [9, 5]). The “leading prediction strategies” constructed in this paper
satisfy a stronger property: the loss of any prediction strategy in F whose norm
is not too large exceeds the loss of a leading strategy by the divergence between
the predictions output by the two prediction strategies. Therefore, the leading
strategy implicitly serves as a standard for prediction strategies F in F whose
norm is not too large: such a prediction strategy F suffers a small loss to the
degree that its predictions resemble the leading strategy’s predictions, and the
only way to compete with the leading strategy is to imitate it.

We start the formal exposition with a simple asymptotic result (Proposition
1 in §2) asserting the existence of leading strategies in the problem of on-line
regression with the quadratic loss function for the class of continuous limited-
memory prediction strategies. To state a non-asymptotic version of this result
(Proposition 2) we introduce several general definitions that are used throughout
the paper. In the following two sections Proposition 2 is generalized in two di-
rections, to the loss functions given by Bregman divergences (§3) and by strictly
proper scoring rules (§4). Competitive on-line prediction typically avoids mak-
ing any stochastic assumptions about the way the observations are generated,
but in §5 we consider, mostly for comparison purposes, the case where observa-
tions are generated stochastically. That section contains most of the references
to the related literature, although there are bibliographical remarks scattered
throughout the paper. The proofs are gathered in §6. The final section, §7,
discusses possible directions of further research.

There are many techniques for constructing master strategies, such as gra-
dient descent, strong and weak aggregating algorithms, following the perturbed
leader, defensive forecasting, to mention just a few. In this paper we will use
the technique of defensive forecasting (proposed in [37] and based on [43, 38]
and much earlier work by Levin [25] and Foster and Vohra [19]). The mas-
ter strategies constructed using defensive forecasting automatically satisfy the
stronger properties required of leading strategies; on the other hand, it is not
clear whether leading strategies can be constructed using other techniques (this
is an interesting open question).
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2 On-line quadratic-loss regression

Our general prediction protocol is:

On-line prediction protocol
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Predictor announces µn ∈ P.
Reality announces yn ∈ Y.

END FOR.

At the beginning of each round n Predictor is given some side information xn

relevant to predicting the following observation yn, after which he announces
his prediction µn. The side information is taken from the information space
X, the observations from the observation space Y, and the predictions from
the prediction space P; all three sets are assumed non-empty. The error of
prediction is measured by a loss function λ : Y × P → R, so that λ(yn, µn) is
the loss suffered by Predictor on round n.

A prediction strategy is a strategy for Predictor in this protocol. More ex-
plicitly, each prediction strategy F maps each sequence

s = (x1, y1, . . . , xn−1, yn−1, xn) ∈ S :=
∞⋃

n=1

(
(X×Y)n−1 ×X

)
(1)

to a prediction F (s) ∈ P. We will call S the situation space and its elements
situations; the situation space is always equipped with the standard sum topol-
ogy, with each addend equipped with the standard product topology, when X
and Y are topological spaces (see, e.g., [18], §§2.2–2.3). We will sometimes use
the notation

sn := (x1, y1, . . . , xn−1, yn−1, xn) ∈ S, (2)

where xi and yi are Reality’s moves in the on-line prediction protocol.
In this section we will always assume that Y = [−Y, Y ] for some Y > 0,

[−Y, Y ] ⊆ P ⊆ R, and λ(y, µ) = (y − µ)2; in other words, we will consider the
problem of on-line quadratic-loss regression (with the observations bounded in
absolute value by a known constant Y ).

Asymptotic result

Let k be a positive integer. We say that a prediction strategy F is order k
Markov if F (sn) depends on (2) only via xmax(1,n−k), ymax(1,n−k), . . . , xn−1, yn−1, xn.
More explicitly, F is order k Markov if and only if there exists a function

f : (X×Y)k ×X → P

such that, for all n > k and all (2),

F (sn) = f(xn−k, yn−k, . . . , xn−1, yn−1, xn).
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A limited-memory prediction strategy is a prediction strategy which is order
k Markov for some k. (The expression “Markov strategy” being reserved for
“order 0 Markov strategy”.)

Proposition 1 Let Y = P = [−Y, Y ] and X be a compact metric space. There
exists a strategy for Predictor that produces µn ∈ [−Y, Y ] and guarantees

1
N

N∑
n=1

(yn − µn)2 +
1
N

N∑
n=1

(µn − φn)2 − 1
N

N∑
n=1

(yn − φn)2 → 0 (3)

as N → ∞ for the predictions φn output by any continuous limited-memory
prediction strategy F taking values in [−Y, Y ].

The strategy whose existence is asserted by Proposition 1 is a leading strategy
in the sense discussed in §1: the average loss of a continuous limited-memory
strategy F is determined by how well it manages to imitate the leading strategy.
And once we know the predictions made by F and by the leading strategy, we
can find the excess loss of F over the leading strategy without need to know the
actual observations yn.

Leading strategies for reproducing kernel Hilbert spaces

In this subsection we will state a non-asymptotic version of Proposition 1. Let
P = R. Since P is now a vector space, the sum of two prediction strategies
and the product of a scalar (i.e., real number) and a prediction strategy can be
defined pointwise:

(F1 + F2)(s) := F1(s) + F2(s), (cF )(s) := cF (s), s ∈ S.

Let F be a Hilbert space of prediction strategies (with the pointwise operations
of addition and multiplication by scalar). Its embedding constant cF is defined
by

cF := sup
s∈S

sup
F∈F :‖F‖F≤1

|F (s)| . (4)

We will be interested in the case cF < ∞ and will refer to F satisfying this
condition as reproducing kernel Hilbert spaces (RKHS) with finite embedding
constant. (More generally, F is said to be an RKHS if the internal supremum
in (4) is finite for each s ∈ S.) In our informal discussions we will be assuming
that cF is a moderately large constant.

Proposition 2 Let Y = [−Y, Y ], P = R, and F be an RKHS of prediction
strategies with finite embedding constant cF . There exists a strategy for Predic-
tor that produces µn ∈ [−Y, Y ] and guarantees

∣∣∣∣∣
N∑

n=1

(yn − µn)2 +
N∑

n=1

(µn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ 2Y
√

c2
F + 1 (‖F‖F + Y )

√
N, ∀N ∈ {1, 2, . . .} ∀F ∈ F , (5)

where φn are F ’s predictions, φn := F (sn).
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For an F whose norm is not too large (i.e., F satisfying ‖F‖F ¿ N1/2), (5)
shows that

1
N

N∑
n=1

(yn − φn)2 ≈ 1
N

N∑
n=1

(yn − µn)2 +
1
N

N∑
n=1

(µn − φn)2 .

Proposition 1 is obtained by applying Proposition 2 to a large (“universal”)
RKHS. The details will be given in §6, and here we will only demonstrate this
idea with a simple but non-trivial example.

Let k and m be positive integer constants such that m > k/2. The Sobolev
space Wm,2([−Y, Y ]k) is the completion of the vector space of all smooth func-
tions f : [−Y, Y ]k → R (with the pointwise operations of addition and multipli-
cation by scalar) equipped with the norm

‖f‖ :=


 ∑

0≤|α|≤m

∫

[−Y,Y ]k
(Dαf)2




1/2

,

α = (α1, . . . , αk) ∈ {0, 1, . . .}k ranging over the multi-indices of order |α| :=
α1 + · · · + αk ≤ m and Dα being the operator of differentiating α1 times over
the first variable of f , α2 times over the second variable of f ,. . . , αk times over
the kth variable of f . (See, e.g., [2] for further details and properties of Sobolev
spaces.) A prediction strategy F will be included in F if its predictions φn

satisfy

φn =

{
0 if n ≤ k

f(yn−k, . . . , yn−1) otherwise,

where f is a function from the Sobolev space Wm,2([−Y, Y ]k); ‖F‖F is defined
to be the Sobolev norm of f . Every continuous function of (yn−k, . . . , yn−1) can
be arbitrarily well approximated by functions in Wm,2([−Y, Y ]k), and so F is
a suitable class of prediction strategies if we believe that neither x1, . . . , xn nor
y1, . . . , yn−k−1 are useful in predicting yn.

In this paper we do not describe the prediction algorithm achieving (5); such
an algorithm is described in [35] under the name “K29 algorithm” (cf. the proof
of Proposition 2 in §6). The algorithm can be implemented efficiently using,
e.g., the simple bisection method (see the journal version of [36], the end of §5).

Very large benchmark classes

Some interesting benchmark classes of prediction strategies are too large to
equip with the structure of RKHS [36]. However, an analogue of Proposition
2 can also be proved for some Banach spaces F of prediction strategies (with
the pointwise operations of addition and multiplication by scalar) for which the
constant cF defined by (4) is finite. The modulus of convexity of a Banach space
U is defined as the function

δU (ε) := inf
u,v∈SU

‖u−v‖U=ε

(
1−

∥∥∥∥
u + v

2

∥∥∥∥
U

)
, ε ∈ (0, 2],
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where SU := {u ∈ U |‖u‖U = 1} is the unit sphere in U .
The existence of leading strategies (in a somewhat weaker sense than in

Proposition 2) is asserted in the following result.

Proposition 3 Let Y = [−Y, Y ], P = R, and F be a Banach space of predic-
tion strategies having a finite embedding constant cF (see (4)) and satisfying

∀ε ∈ (0, 2] : δF (ε) ≥ (ε/2)p/p

for some p ∈ [2,∞). There exists a strategy for Predictor that guarantees

∣∣∣∣∣
N∑

n=1

(yn − µn)2 +
N∑

n=1

(µn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ 40Y
√

c2
F + 1 (‖F‖F + Y ) N1−1/p, ∀N ∈ {1, 2, . . .} ∀F ∈ F , (6)

where φn are F ’s predictions.

The example of a benchmark class of prediction strategies given after Proposi-
tion 2 but with f ranging over the Sobolev space W s,p([−Y, Y ]k), s > k/p, is
covered by this proposition: see, e.g., [36], §2. The parameter s (in general, not
necessarily integer) describes the “degree of regularity” of the elements of W s,p,
and taking sufficiently large p we can reach arbitrarily irregular functions in the
Sobolev hierarchy.

3 Predictions evaluated by Bregman diver-
gences

A predictable process is a function F mapping the situation space S to R, F :
S → R. Notice that for any function ψ : P → R and any prediction strategy
F the composition ψ(F ) (mapping each situation s to ψ(F (s))) is a predictable
process; such compositions will be used in Theorems 1–3 below. A Hilbert
space F of predictable processes (with the usual pointwise operations) is called
an RKHS with finite embedding constant if (4) is finite.

The notion of Bregman divergence was introduced in [8], and is now widely
used in competitive on-line prediction (see, e.g., [20, 6, 21, 23, 10]). Suppose
Y = P is a closed interval of the real line R (although it would be interesting
to extend Theorem 1 to the case where R is replaced by any Euclidean, or even
Hilbert, space). Let Ψ and Ψ′ be two real-valued functions defined on Y. The
expression

dΨ,Ψ′(y, z) := Ψ(y)−Ψ(z)−Ψ′(z)(y − z), y, z ∈ Y, (7)

is said to be the corresponding Bregman divergence if dΨ,Ψ′(y, z) > 0 whenever
y 6= z. (Bregman divergence is usually defined for y and z ranging over a
Euclidean space.) In all our examples Ψ will be a strictly convex continuously
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differentiable function and Ψ′ its derivative, in which case we abbreviate dΨ,Ψ′

to dΨ.
We will be using the standard notation

‖f‖C(A) := sup
y∈A

|f(y)| , (8)

where A is a subset of the domain of f . The diameter of a set A ⊆ R is defined
as

diam(A) := sup
a,a′∈A

|a− a′| .

Theorem 1 Suppose Y = P is a closed interval of the real line R. Let F be an
RKHS of predictable processes with finite embedding constant cF and Ψ, Ψ′ be
continuous real-valued functions on Y = P. There exists a strategy for Predictor
that guarantees, for all prediction strategies F and N = 1, 2, . . .,

∣∣∣∣∣
N∑

n=1

dΨ,Ψ′ (yn, µn) +
N∑

n=1

dΨ,Ψ′ (µn, φn)−
N∑

n=1

dΨ,Ψ′ (yn, φn)

∣∣∣∣∣

≤ diam(Y)
√

c2
F + 1

(
‖Ψ′(F )‖F + ‖Ψ′‖C(Y)

)√
N, (9)

where φn are F ’s predictions.

The expression ‖Ψ′(F )‖F in (9) is interpreted as ∞ when Ψ′(F ) /∈ F ; in this
case (9) holds vacuously. Similar conventions will be implicit in all following
statements.

Two of the most important Bregman divergences are obtained from the
convex functions Ψ(y) := y2 and Ψ(y) := y ln y + (1 − y) ln(1 − y) (negative
entropy, defined for y ∈ (0, 1)); they are the quadratic loss function

dΨ(y, z) = (y − z)2 (10)

and the relative entropy (also known as the Kullback–Leibler divergence)

dΨ(y, z) = D(y ‖ z) := y ln
y

z
+ (1− y) ln

1− y

1− z
, (11)

respectively. If we apply Theorem 1 to them, (10) leads (assuming Y = [−Y, Y ])
to a weaker version of Proposition 2, with the right-hand side of (9) twice as
large as that of (5), and (11) leads to the following corollary.

Corollary 1 Let ε ∈ (0, 1/2), Y = P = [ε, 1− ε], and the loss function be

λ(y, µ) = D(y ‖µ)

(defined in (11)). Let F be an RKHS of predictable processes with finite embed-
ding constant cF . There exists a strategy for Predictor that guarantees, for all

6



prediction strategies F ,

∣∣∣∣∣
N∑

n=1

λ (yn, µn) +
N∑

n=1

λ (µn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣

≤
√

c2
F + 1

(∥∥∥∥ln
F

1− F

∥∥∥∥
F

+ ln
1− ε

ε

)√
N, ∀N ∈ {1, 2, . . .},

where φn are F ’s predictions.

The log likelihood ratio ln F
1−F appears because Ψ′(y) = ln y

1−y in this case.
Analogously to Proposition 2, Theorem 1 (as well as Theorems 2–3 in the

next section) can be easily generalized to Banach spaces of predictable processes.
One can also state asymptotic versions of Theorems 1–3 similar to Proposition 1;
and the continuous limited-memory strategies of Proposition 1 could be replaced
by the equally interesting classes of continuous stationary strategies (as in [40])
or Markov strategies (possibly discontinuous, as in [39]). We will have to refrain
from pursuing these developments in this paper.

4 Predictions evaluated by strictly proper scor-
ing rules

In this section we consider the case where Y = {0, 1} and P ⊆ [0, 1]. Every
loss function λ : Y × P → R will be extended to the domain [0, 1] × P by the
formula

λ(p, µ) := pλ(1, µ) + (1− p)λ(0, µ);

intuitively, λ(p, µ) is the expected loss of the prediction µ when the probability
of y = 1 is p. Let us say that a loss function λ is a strictly proper scoring rule if

∀p, µ ∈ P : p 6= µ =⇒ λ(p, p) < λ(p, µ)

(it is optimal to give the prediction equal to the true probability of y = 1 when
the latter is known and belongs to P). In this case the function

dλ(µ, φ) := λ(µ, φ)− λ(µ, µ)

can serve as a measure of difference between predictions µ and φ: it is non-
negative and is zero only when µ = φ. (Cf. [14], §4.)

The exposure of a loss function λ is defined as

Expλ(µ) := λ(1, µ)− λ(0, µ), µ ∈ P.

Theorem 2 Let Y = {0, 1}, P = [0, 1], λ be a continuous strictly proper scor-
ing rule, and F be an RKHS of predictable processes with finite embedding con-
stant cF . There exists a strategy for Predictor that guarantees, for all prediction
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strategies F and all N = 1, 2, . . .,

∣∣∣∣∣
N∑

n=1

λ (yn, µn) +
N∑

n=1

dλ (µn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣

≤
√

c2
F + 1
2

(
‖Expλ(F )‖F + ‖Expλ‖C(P)

)√
N, (12)

where φn are F ’s predictions.

Two popular strictly proper scoring rules are the quadratic loss function
λ(y, µ) := (y − µ)2 and the log loss function

λ(y, µ) :=

{
− ln µ if y = 1
− ln(1− µ) if y = 0.

Applied to the quadratic loss function, Theorem 2 becomes essentially a spe-
cial case of Proposition 2 (with Y = 1/2). For the log loss function we have
dλ(µ, φ) = D(µ ‖φ), and one might hope to obtain a version of Corollary 1 for
Y = {0, 1} from Theorem 2. Unfortunately, Theorem 2 is not sufficient since
the exposure of the log loss function is unbounded (and from the formal point
of view, the log loss function λ(y, µ) is not even defined for some µ ∈ [0, 1],
namely for µ ∈ {0, 1}). This can be done using methods of [37], and it is even
possible to get rid of the restriction P = [ε, 1− ε] in Corollary 1. Since the log
loss function plays a fundamental role in information theory (the cumulative log
loss corresponds to the code length), we state this result as our next theorem.

Theorem 3 Let Y = {0, 1}, P = (0, 1), λ be the log loss function, and F be an
RKHS of predictable processes with finite embedding constant cF . There exists
a strategy for Predictor that guarantees, for all prediction strategies F ,

∣∣∣∣∣
N∑

n=1

λ (yn, µn) +
N∑

n=1

D (µn ‖φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣

≤
√

c2
F + 1.8
2

(∥∥∥∥ln
F

1− F

∥∥∥∥
F

+ 1
)√

N, ∀N ∈ {1, 2, . . .},

where φn are F ’s predictions.

It is clear that the restriction to strictly proper scoring rules is essential.
Consider, e.g., the absolute loss function λ(y, µ) := |y − µ|, the sequence of
observations (y1, y2, . . .) := (0, 1, 0, 1, . . .), and F consisting of the constant pre-
diction strategies. All strategies in F will suffer essentially the same loss, and
it is clear that leading strategies do not exist; Theorem 2 is not applicable as
the absolute loss function is not a proper scoring rule.
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5 Stochastic Reality and Jeffreys’s law

In this section we revert to the quadratic regression framework of §2 and assume
Y = P = [−Y, Y ], λ(y, µ) = (y − µ)2. (It will be clear that similar results
hold for Bregman divergences and strictly proper scoring rules, but we stick to
the simplest case since our main goal in this section is to discuss the related
literature.)

Proposition 4 Suppose Y = P = [−Y, Y ]. Let F be a prediction strategy and
yn ∈ [−Y, Y ] be generated as yn := F (sn) + ξn (remember that sn are defined
by (2)), where the noise random variables ξn have expected value zero given sn.
For any other prediction strategy G, any N ∈ {1, 2, . . .}, and any δ ∈ (0, 1),

∣∣∣∣∣
N∑

n=1

(yn − φn)2 +
N∑

n=1

(φn − µn)2 −
N∑

n=1

(yn − µn)2
∣∣∣∣∣ ≤ 8Y 2

√
2 ln

2
δ

√
N (13)

with probability at least 1 − δ, where φn are F ’s predictions and µn are G’s
predictions.

Combining Proposition 4 with Proposition 2 we obtain the following corollary.

Corollary 2 Suppose Y = [−Y, Y ] and P = R. Let F be an RKHS of pre-
diction strategies with finite embedding constant cF , G be a prediction strategy
whose predictions µn always belong to [−Y, Y ] and are guaranteed to satisfy (5)
(a “leading prediction strategy”), F be a prediction strategy in F taking values
in [−Y, Y ], and yn ∈ [−Y, Y ] be generated as yn := F (sn) + ξn, where the noise
random variables ξn have expected value zero given sn. For any N ∈ {1, 2, . . .}
and any δ ∈ (0, 1), the conjunction of

∣∣∣∣∣
N∑

n=1

(yn − µn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

≤ Y
√

c2
F + 1 (‖F‖F + Y )

√
N + 4Y 2

√
2 ln

2
δ

√
N (14)

and

N∑
n=1

(φn − µn)2 ≤ Y
√

c2
F + 1 (‖F‖F + Y )

√
N + 4Y 2

√
2 ln

2
δ

√
N (15)

holds with probability at least 1 − δ, where φn are F ’s predictions and µn are
G’s predictions.

We can see that if the “true” (in the sense of outputting the true expectations)
strategy F belongs to the RKHS F and ‖F‖F is not too large, not only the
loss of the leading strategy will be close to that of the true strategy, but their
predictions will be close as well.
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Jeffreys’s law

In the rest of this section we will explain the connection of this paper with the
phenomenon widely studied in probability theory and the algorithmic theory
of randomness and dubbed “Jeffreys’s law” by Dawid [12, 15]. The general
statement of “Jeffreys’s law” is that two successful prediction strategies produce
similar predictions (cf. [12], §5.2). To better understand this informal statement,
we first discuss two notions of success for prediction strategies.

As argued in [41], there are (at least) two very different kinds of predictions,
which we will call “S-predictions” and “D-predictions”. Both S-predictions and
D-predictions are elements of [−Y, Y ] (in our current context), and the prefixes
“S-” and “D-” refer to the way in which we want to evaluate their quality.
S-predictions are Statements about Reality’s behavior, and they are successful
if they withstand attempts to falsify them; standard means of falsification are
statistical tests (see, e.g., [11], Chapter 3) and gambling strategies ([32]; for a
more recent exposition, see [29]). D-predictions do not claim to be falsifiable
statements about Reality; they are Decisions deemed successful if they lead to
a good cumulative loss.

As an example, let us consider the predictions φn and µn in Proposition 4.
The former are S-predictions; e.g., they can be rejected if (13) fails to happen
for a small δ and fixed G (the complement of (13) can be used as the critical
region of a statistical test). The latter are D-predictions: we are only interested
in their cumulative loss. If φn are successful ((13) holds for a moderately small
δ) and µn are successful (in the sense of their cumulative loss being close to
the cumulative loss of the successful S-predictions φn; this is the best that can
be achieved as, by (13), the latter cannot be much larger than the former),
they will be close to each other, in the sense

∑N
n=1(φn − µn)2 ¿ N . We can

see that Proposition 4 implies a “mixed” version of Jeffreys’s law, asserting the
proximity of S-predictions and D-predictions.

Similarly, Corollary 2 is also a mixed version of Jeffreys’s law: it asserts
the proximity of the S-predictions φn (which are part of our falsifiable model
yn = φn + ξn) and the D-predictions µn (successful in the sense of leading to a
good cumulative loss; cf. (5)).

Proposition 2 immediately implies two “pure” versions of Jeffreys’s laws for
D-predictions:

• if a prediction strategy F with ‖F‖F not too large performs well, in the
sense that its loss is close to the leading strategy’s loss, F ’s predictions
will be similar to the leading strategy’s predictions; more precisely,

N∑
n=1

(φn − µn)2 ≤
N∑

n=1

(yn − φn)2 −
N∑

n=1

(yn − µn)2

+ 2Y
√

c2
F + 1 (‖F‖F + Y )

√
N ;

• therefore, if two prediction strategies F1 and F2 with ‖F1‖F and ‖F2‖F
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not too large perform well, in the sense that their loss is close to the
leading strategy’s loss, their predictions will be similar.

It is interesting that the leading strategy can be replaced by a master strategy
for the second version: if F1 and F2 gave very different predictions and both
performed almost as well as the master strategy, the mixed strategy (F1 +F2)/2
would beat the master strategy; this immediately follows from

(
φ1 + φ2

2
− y

)2

=
(φ1 − y)2 + (φ2 − y)2

2
−

(
φ1 − φ2

2

)2

,

where φ1 and φ2 are F1’s and F2’s predictions, respectively, and y is the obser-
vation.

The usual versions of Jeffreys’s law are, however, statements about S-
predictions. The quality of S-predictions is often evaluated using universal sta-
tistical tests (as formalized by Martin-Löf [26]) or universal gambling strategies
(Levin [24], Schnorr [28]). For example, Theorem 7.1 of [13] and Theorem 3
of [33] state that if two computable S-prediction strategies are both successful,
their predictions will asymptotically agree. Earlier, somewhat less intuitive,
statements of Jeffreys’s law were given in terms of absolute continuity of prob-
ability measures: see, e.g., [7] and [22]. Solomonoff [30] proved a version of
Jeffreys’s law that holds “on average” (rather than for individual sequences).

This paper is, to my knowledge, the first to state a version of Jeffreys’s law
for D-predictions (although a step in this direction was made in Theorem 8 of
[34]).

6 Proofs

In this section we prove, or give proof sketches of, Propositions 1–4, Theorems
1–3 and Corollary 2. We start from the proof of Proposition 2, which is most
intuitive.

Proof of Propositions 2 and 3

Noticing that

∣∣∣∣∣
N∑

n=1

(yn − µn)2 +
N∑

n=1

(µn − φn)2 −
N∑

n=1

(yn − φn)2
∣∣∣∣∣

= 2

∣∣∣∣∣
N∑

n=1

(φn − µn) (yn − µn)

∣∣∣∣∣

≤ 2

∣∣∣∣∣
N∑

n=1

µn (yn − µn)

∣∣∣∣∣ + 2

∣∣∣∣∣
N∑

n=1

φn (yn − µn)

∣∣∣∣∣ , (16)

11



we can use the results of [35], §6, asserting the existence of a prediction strategy
producing predictions µn ∈ [−Y, Y ] that satisfy

∣∣∣∣∣
N∑

n=1

µn (yn − µn)

∣∣∣∣∣ ≤ Y 2
√

c2
F + 1

√
N (17)

(see (24) in [35]) and
∣∣∣∣∣

N∑
n=1

φn (yn − µn)

∣∣∣∣∣ ≤ Y
√

c2
F + 1 ‖F‖F

√
N (18)

(see (25) in [35]).
The intuition behind (17) is that it is a special case of the requirement

of good calibration of the predictions µn. More generally and informally, the
predictions are said to be well calibrated if, for any µ∗ ∈ P and for large enough
N , the average of yn over those of the first N rounds of the prediction protocol
that satisfy µn ≈ µ∗ is close to µ∗. On the other hand, the intuition behind (18)
is that it expresses the property of good resolution; informally, the predictions
are said to have good resolution if, for any x∗ ∈ X and for large enough N , the
average of yn − µn over those of the first N rounds of the prediction protocol
that satisfy xn ≈ x∗ is close to zero. The method of defensive forecasting allows
Predictor to enforce the properties of good calibration and resolution given a
proof, expressed in a suitable (game-theoretic) language, that the predictions
calculated from the true probability mechanism generating the data satisfy these
properties. This idea is implemented in various contexts in [38, 35, 36, 41].

Replacing (17) and (18) with the corresponding statements for Banach func-
tion spaces ([36], (28) and (29)) we obtain the proof of Proposition 3.

Remark In [35] we considered only prediction strategies F for which F (sn)
depends on sn (see (2)) via xn; in the terminology of this paper these are (order
0) Markov strategies. It is easy to see that considering only Markov strategies
does not lead to a loss of generality: if we redefine the object xn as xn := sn,
any prediction strategy will become a Markov prediction strategy.

Proof of Proposition 1

Proposition 1 will follow from the following lemma, proved (without stating
it explicitly) in [31] (proof of Theorem 2). Remember that C(A), where A is
any topological space, is the set of all continuous real-valued functions on A
equipped with the sup norm (8). We will use the notation `2 for the Hilbert
space of infinite sequences (a1, a2, . . .) ∈ R∞ with componentwise addition and
multiplication by scalar and inner product

〈(a1, a2, . . .), (a′1, a
′
2, . . .)〉 :=

∞∑
n=1

ana′n.

12



Lemma 1 ([31]) Let G be a separable set in C(Z). There exists an RKHS F
on Z with finite embedding constant such that F is dense in G in metric C(Z).

Proof Let F1, F2, . . . be a dense (in metric C(Z)) sequence of elements of G.
Set

Φn :=

{
2−n ‖Fn‖−1

C(Z) Fn if Fn 6= 0
0 otherwise,

Φ(z) := (Φ1(z), Φ2(z), . . .) ∈ `2 for z ∈ Z,

K(z, z′) := 〈Φ(z), Φ(z′)〉`2 , z, z′ ∈ Z,

and let F be the unique RKHS with reproducing kernel K (see the Moore–
Aronszajn theorem in [3], Theorem 2). It is clear that c2

F = supz K(z, z) is
finite. By Lemma 2 below, each Fn belongs to F since it can be represented as

〈
2n ‖Fn‖C(Z) en, Φ(·)

〉
`2

,

where en ∈ `2 consists of all 0s except a 1 at the nth position. Therefore, F is
dense in G.

The following lemma (which is contained in, e.g., Theorem 1 in §2.1 of [27]) was
used in the proof.

Lemma 2 Let Φ : Z → H, where H is a Hilbert space. The RKHS correspond-
ing to the reproducing kernel K(z, z′) := 〈Φ(z), Φ(z′)〉H consists of all functions
〈v, Φ(·)〉H , v ∈ H, with the inner product of 〈v, Φ(·)〉H and 〈v′,Φ(·)〉H equal
to 〈p(v), p(v′)〉H , p standing for the projection onto the closure of the span of
Φ(Z).

Proof By the Moore–Aronszajn theorem ([3], Theorem 2) there is a unique
RKHS with reproducing kernel K, so we only need to check that the function
space F defined in the statement of the lemma is an RKHS with K as repro-
ducing kernel.

First we need to check that the inner product is well defined. This follows
from the obvious fact that the equality of the functions 〈v, Φ(·)〉H and 〈v′,Φ(·)〉H
for v, v′ ∈ span(Φ(Z)) implies v = v′. The continuity of each evaluation func-
tional is also obvious.

The representer of z ∈ Z is kz(·) := 〈Φ(z),Φ(·)〉H (in the sense that
〈kz, f〉F = f(z) for each f ∈ F) and so the reproducing kernel 〈kz,kz′〉F
of F indeed coincides with K.

Now we can easily deduce Proposition 1 from Proposition 2. The set of all
continuous order k Markov strategies is a separable set in the Banach space C(S)
of continuous prediction strategies with the sup norm (by [18], Corollary 4.2.18).
Therefore, the set G of all continuous limited-memory strategies is separable in
C(S).
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Let F be the RKHS whose existence is asserted by Lemma 1; we will see
that any strategy for Predictor satisfying (5) and µn ∈ [−Y, Y ] will satisfy (3)
with φn ∈ [−Y, Y ] output by a continuous limited-memory strategy F taking
values in [−Y, Y ]. Indeed, for any ε > 0 we can find F ∗ ∈ F that is ε-close in
C(S) to F . If φn are F ’s predictions and φ∗n are F ∗’s predictions, (5) implies
that

∣∣∣∣∣
1
N

N∑
n=1

(yn − µn)2 +
1
N

N∑
n=1

(µn − φn)2 − 1
N

N∑
n=1

(yn − φn)2
∣∣∣∣∣

≤
∣∣∣∣∣
1
N

N∑
n=1

(yn − µn)2 +
1
N

N∑
n=1

(µn − φ∗n)2 − 1
N

N∑
n=1

(yn − φ∗n)2
∣∣∣∣∣ + 8(Y + ε)ε

≤ 2Y
√

c2
F + 1 (‖F ∗‖F + Y )

1√
N

+ 8(Y + ε)ε ≤ 10(Y + ε)ε

from some N on. Since ε can be taken arbitrarily small, we have (3).

Proof of Theorem 1

The proof is based on the generalized law of cosines

dΨ,Ψ′(y, φ) = dΨ,Ψ′(µ, φ) + dΨ,Ψ′(y, µ)− (Ψ′(φ)−Ψ′(µ)) (y − µ) (19)

(which follows directly from the definition (7)). From (19) we deduce

∣∣∣∣∣
N∑

n=1

dΨ,Ψ′ (yn, µn) +
N∑

n=1

dΨ,Ψ′ (µn, φn)−
N∑

n=1

dΨ,Ψ′ (yn, φn)

∣∣∣∣∣

=

∣∣∣∣∣
N∑

n=1

(Ψ′(φn)−Ψ′(µn)) (yn − µn)

∣∣∣∣∣

≤
∣∣∣∣∣

N∑
n=1

Ψ′(µn) (yn − µn)

∣∣∣∣∣ +

∣∣∣∣∣
N∑

n=1

Ψ′(φn) (yn − µn)

∣∣∣∣∣ . (20)

From Theorem 3 in [42] we can see that there is a prediction strategy guaran-
teeing ∣∣∣∣∣

N∑
n=1

Ψ′(µn) (yn − µn)

∣∣∣∣∣ ≤ diam(Y) ‖Ψ′‖C(Y)

√
N (21)

and from Theorem 4 in [42] we can see that there is a prediction strategy
guaranteeing

∣∣∣∣∣
N∑

n=1

Ψ′(φn) (yn − µn)

∣∣∣∣∣ ≤ diam(Y)cF ‖Ψ′(F )‖F
√

N. (22)
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We need, however, a single strategy guaranteeing some versions of (21) and (22).
Such a strategy can be obtained by merging a strategy guaranteeing (21) and a
strategy guaranteeing (22) (as in [35], Corollaries 3 and 4).

Setting

Φ(µ, s) :=

(
Ψ′(µ)

‖Ψ′‖C(Y)

,ks

)
∈ R×F , µ ∈ P, s ∈ S, (23)

so that cΦ := supµ,s ‖Φ(µ, s)‖ ≤
√

c2
F + 1 (ks is the representer of s and R×F

is equipped with the standard inner product of the direct sum of R and F), and
letting µn be output by the K29 algorithm (as described in [42]) based on (23),
we obtain

∣∣∣∣∣
N∑

n=1

Ψ′(µn) (yn − µn)

∣∣∣∣∣ ≤ ‖Ψ′‖C(Y)

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, sn)

∥∥∥∥∥
R×F

≤ ‖Ψ′‖C(Y) diam(Y)
√

c2
F + 1

√
N (24)

from Theorem 3 of [42], and we obtain
∣∣∣∣∣

N∑
n=1

Ψ′(φn) (yn − µn)

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

(yn − µn) 〈ksn , Ψ′(F )〉F
∣∣∣∣∣

=

∣∣∣∣∣

〈
N∑

n=1

(yn − µn)ksn ,Ψ′(F )

〉

F

∣∣∣∣∣ ≤ ‖Ψ′(F )‖F
∥∥∥∥∥

N∑
n=1

(yn − µn)ksn

∥∥∥∥∥
F

≤ ‖Ψ′(F )‖F
∥∥∥∥∥

N∑
n=1

(yn − µn)Φ(µn, sn)

∥∥∥∥∥
R×F

≤ ‖Ψ′(F )‖F diam(Y)
√

c2
F + 1

√
N (25)

from the proof of Theorem 4 and from Theorem 3 of [42].
Combining (20) with (24) and (25) we can see that (23) produces a strategy

guaranteeing (9).

Remark As we mentioned earlier, the leading constant in the bound of Theo-
rem 1 (and its corollary) is worse than those in other results in this paper, in the
intersection of their domains of application. The explanation is that Theorem 1
is based on the K29 algorithm, whereas all other results are based on the more
sophisticated “K29∗ algorithm”.

Proof sketch of Theorem 2

The proof is similar to that of Theorem 1, with the role of the generalized law
of cosines (19) played by the equation

λ(y, φ) = a + λ(y, µ) + b(y − µ) (26)
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for some a = a(µ, φ) and b = b(µ, φ). Since y can take only two possible values,
suitable a and b are easy to find: it suffices to solve the linear system

{
λ(1, φ) = a + λ(1, µ) + b(1− µ)
λ(0, φ) = a + λ(0, µ) + b(−µ).

Subtracting these equations we obtain b = Exp(φ)−Exp(µ) (abbreviating Expλ

to Exp), which in turn gives a = dλ(µ, φ). Therefore, (26) gives

∣∣∣∣∣
N∑

n=1

λ (yn, µn) +
N∑

n=1

dλ (µn, φn)−
N∑

n=1

λ (yn, φn)

∣∣∣∣∣

=

∣∣∣∣∣
N∑

n=1

(Exp(φn)− Exp(µn)) (yn − µn)

∣∣∣∣∣

≤
∣∣∣∣∣

N∑
n=1

Exp(µn) (yn − µn)

∣∣∣∣∣ +

∣∣∣∣∣
N∑

n=1

Exp(φn) (yn − µn)

∣∣∣∣∣ . (27)

There are prediction strategies that guarantee
∣∣∣∣∣

N∑
n=1

Exp(µn) (yn − µn)

∣∣∣∣∣ ≤
1
2
‖Exp‖C(P)

√
N (28)

(cf. [37], Theorem 2) and there are prediction strategies that guarantee
∣∣∣∣∣

N∑
n=1

Exp(F (sn)) (yn − µn)

∣∣∣∣∣ ≤
cF
2
‖Exp(F )‖F

√
N (29)

(cf. [37], Theorem 3); merging such strategies as in [35], Corollaries 3 and 4, we
can easily obtain (12) from (27), (28), and (29).

Proof sketch of Theorem 3

It is shown in [37] that there is a prediction strategy guaranteeing

∣∣∣∣∣
N∑

n=1

Exp(µn)(yn − µn)

∣∣∣∣∣ ≤

√√√√
N∑

n=1

µn(1− µn)
(
Exp2(µn) + K(sn, sn)

)
(30)

and
∣∣∣∣∣

N∑
n=1

Exp(F (sn))(yn − µn)

∣∣∣∣∣

≤ ‖Exp(F )‖F

√√√√
N∑

n=1

µn(1− µn)
(
Exp2(µn) + K(sn, sn)

)
(31)

16



(see (21), (22), and the subsection “Proof: Part II” in [37]), where K is the
reproducing kernel of F . Comparing (30) and (31) with (27), we can see that
Theorem 3 will follow from

√√√√
N∑

n=1

µn(1− µn)
(
Exp2(µn) + K(sn, sn)

) ≤
√

c2
F + 1.8
2

√
N,

which in turn will follow from

µ(1− µ)
(

ln2 µ

1− µ
+ c2

F

)
≤ c2

F + 1.8
4

.

It remains to notice that µ(1− µ) ≤ 1/4 and to calculate

sup
µ

(
4µ(1− µ) ln2 µ

1− µ

)
≈ 1.76 ≤ 1.8.

Proof of Proposition 4

This proposition immediately follows from the first equality in (16) (with the
roles of µn and φn interchanged) and Hoeffding’s inequality (the latter is stated
in, e.g., [16], p. 135).

Proof of Corollary 2

On an event of probability at least 1 − δ we will have the conjunction of (5)
and (13). Inequality (15) now obtains as the average of (5) and (13) with all
the straight brackets “|” (signifying absolute value) removed; by the average of
inequalities a ≤ b and c ≤ d we mean the inequality (a + c)/2 ≤ (b + d)/2.
Inequality (14) with the straight brackets removed obtains as the average of (5)
with the straight brackets removed and (13) with the |· · · | replaced by −(· · · ).
Inequality (14) with the |· · · | replaced by −(· · · ) obtains as the average of (5)
with the |· · · | replaced by −(· · · ) and (13) with the straight brackets removed.

7 Conclusion

The existence of master strategies (strategies whose loss is less than or close to
the loss of any strategy with not too large a norm) can be shown for a very wide
class of loss functions. On the contrary, leading strategies appear to exist for a
rather narrow class of loss functions. It would be very interesting to delineate
the class of loss functions for which a leading strategy does exist. In particular,
does this class contain any natural loss functions except Bregman divergences
and strictly proper scoring rules?

Even if a leading strategy does not exist, one might look for a strategy G
such that the loss of any strategy F whose norm is not too large lies between the
loss of G plus some measure of difference between F ’s and G’s predictions and
the loss of G plus another measure of difference between F ’s and G’s predictions.
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