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Abstract

This expository article reviews the game-theoretic framework for probability
and the method of defensive forecasting that derives from it.

The game-theoretic framework, introduced by Vladimir Vovk and myself
in Probability and Finance: It’s Only a Game! (Wiley 2001 [51]), can replace
measure theory as a mathematical framework for classical probability theory,
discrete and continuous. Classical theorems are proven by betting strategies
that multiply a player’s stake by a large factor if the theorem’s prediction fails.
These strategies can be specified explicitly, giving probability a constructive
character appropriate for applications.

Defensive forecasting, introduced by Vovk, Takemura, and myself in 2005
[77], is one of the most interesting applications. It identifies a betting strategy
that succeeds if probabilistic forecasts are inaccurate, and it makes probabilistic
forecasts that will defeat this betting strategy. The fact that this is possible
provides new insight into the meaning of probability.
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1 Introduction

Game-theoretic probability begins with the idea that probabilities are tested
by betting: a forecaster’s probabilities are refuted when an opponent betting
at the odds defined by the probabilities multiplies his stake by a large factor.
Defensive forecasting is a method for giving probability forecasts that cannot
be refuted in this way.

1.1 Dawid’s counterexample

At first glance, it seems implausible that we can give probability forecasts that
cannot possibly be defeated by a betting opponent. The intuition that this
is impossible can be formalized using the following betting protocol, in which
Reality successively decides the outcomes of a sequence of events. Just before
Reality announces the outcome of the nth event (yn = 1 if the event happens,
yn = 0 if it fails), Forecaster gives a probability pn for its happening, and
his betting opponent, Skeptic, sets the stakes sn for a bet for or against its
happening. We assume that this is a perfect-information protocol: each player
sees the other player’s moves as they are made.

Protocol 1. Probability forecasting
FOR n = 1, 2, . . . :

Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Skeptic’s profit := sn(yn − pn).

If sn > 0, Skeptic is betting on the event; he gets sn(1− pn) if it happens and
loses snpn if it fails. If sn < 0, he is betting against the event; he gets −snpn if
it fails and loses −sn(1− pn) if it happens.

Working together, Skeptic and Reality can refute Forecaster spectacularly.
When Forecaster gives a low probability, Skeptic bets on the event and Reality
makes it happen; when Forecaster gives a high probability, Skeptic bets against
the event and Reality makes it fail. This idea was formalized in 1985 by A. P.
Dawid, whose studies of probability forecasting were seminal for game-theoretic
probability [17], in a discussion of an article by David Oakes [16, 41]. As Dawid
explained, if Reality follows the strategy

yn :=

{
1 if pn < 0.5
0 if pn ≥ 0.5,

and Skeptic follows the strategy

sn :=

{
1 if pn < 0.5
−1 if pn ≥ 0.5,
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then Skeptic makes a profit of at least 0.5 on every round: 1−pn when pn < 0.5
and pn when pn ≥ 0.5.

Surprisingly, Dawid’s counterexample to the possibility of good probability
forecasting is not as watertight as it first appears. The weak point of Skeptic’s
and Reality’s strategy is that it requires them to be able to tell whether pn is
exactly equal to 0.5 and to switch their moves with infinite abruptness (dis-
continuously) as pn shifts from 0.5 to something ever so slightly less. Because
the idea of an infinitely abrupt shift lives in a idealized mathematical world, we
should be wary about drawing practical conclusions from it.

To show that Dawid’s counterexample depends on the artificiality of the
mathematical idealization, it suffices to show that it disappears when we hobble
Skeptic and Reality in small ways that are reasonable or inconsequential in
practice. This has been done in two different ways:

1. We can hobble Skeptic a bit by requiring that he follow a strategy that
makes his bet a continuous function of the forecast pn. This is not a
practical impediment, because a continuous function can change with any
degree of abruptness short of infinite. It can easily be shown—I reproduce
in §4.2 below the proof given in [77]—that Forecaster can beat any contin-
uous strategy. And as I explain in §4.3, there are continuous strategies for
Skeptic that make a lot money unless Forecaster’s probabilities perform
well. In particular, Skeptic has continuous strategies that make a lot of
money unless Forecaster is well calibrated, in the sense that about 30% of
the events for which pn is near 0.3 will happen, about 40% of the events
for which pn is near 0.4 will happen, etc. By playing against and beating
a continuous strategy for Skeptic that makes money if Forecaster does not
perform well, Forecaster is sure to perform well no matter what Reality
does. This may seem surprising, but Forecaster’s play turns out to be
quite natural. To guarantee calibration, for example, he always chooses a
value of pn where he has been fairly well calibrated so far, so that Reality
cannot make his calibration much worse, no matter whether she puts yn

equal to 1 or 0; see §4.3.3.

2. Alternatively, we can hobble Skeptic and Reality by allowing Forecaster to
make the exact value of pn slightly indeterminate. Forecaster announces
a probability distribution for pn rather than the exact value of pn, leaving
the exact value to be determined by a random drawing from the probability
distribution after Skeptic and Reality make their moves. In this case,
Forecaster can beat any strategy for Skeptic, even it if is not continuous.
Vovk and I initially gave a direct proof of this [76], building on earlier
work by Foster and Vohra and others [22], but the result actually follows
easily from the result concerning continuous strategies for Skeptic [66].

The idea of getting good forecasts by playing against strategies for Skeptic is
called defensive forecasting. It turns out to be very productive. It works not
only when we give probabilities for a sequence of events but also when we merely
give point forecasts for a sequence of quantities [72, 74].
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1.2 The significance of defensive forecasting

In order to understand the practical and philosophical significance of defensive
forecasting, we need to understand the following claims:

• The empirical meaning of a theory that gives probabilities for a sequence
of events lies in the predictions it makes very confidently. In other words,
such a theory’s meaning is captured by statistical tests, which reject the
theory when something to which it gives very small probability happens.

• Statistical testing can alternatively be understood in betting terms, be-
cause an event with very small probability happening is equivalent to a
betting strategy multiplying the capital it risks by a large factor.

• This game-theoretic notion of testing generalizes from the case where full
probability distributions are given to the case where only some quantities
are predicted.

• In many cases, it is possible to a specify a single betting strategy that is
quasi-universal, in the sense that it makes a lot of money (multiplies the
capital risked by a large factor) whenever our probabilistic predictions fail
in ways that are important to us.

Once these claims are accepted, the possibility of defensive forecasting casts a
new light on the objective meaning of probability. It is often supposed that the
success of probability predictions proves the existence of some sort of chance
mechanism underlying the phenomenon being predicted. Something like the
throwing of dice must be going on. But now we see that a sequence of probability
predictions can be successful regardless of how events are actually determined.

It should be emphasized that this result holds only in the perfect-information
sequential protocol that I have been discussing, where Forecaster sees all the pre-
ceding outcomes y1, . . . , yn−1 before gives a probability pn for yn. A probabilis-
tic theory that gives successful probabilities much farther in advance (quantum
mechanics, for example) can claim more empirical content.

The remainder of this article is divided into four sections. In §2, I draw
on the historical record to make a case for my claims concerning the empirical
meaning of probabilistic theories—the claim that empirical meaning is captured
by statistical testing and the claim that testing can be understood in terms of
betting. In §3, I review the game-theoretic framework for probability and some
of its accomplishments other than defensive forecasting. In §4, I review the basic
theory of defensive forecasting and discuss its implications further.

2 Historical context

It is a commonplace that a probabilistic or statistical theory can be tested by
checking whether an event to which it assigns very small probability happens.
But during the past 50 years, few scholars have seen this as fundamental to
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the meaning of objective probability. Instead, proponents of the objective in-
terpretation of probability have continued to emphasize the relation between
objective probability and frequency, even while the difficulties involved in iden-
tifying probability with frequency have led others to abandon the objective
interpretation in favor of a subjective one.

I begin this section, in §2.1, by reviewing difficulties with the frequency
interpretation that emerged in the twentieth century. Then in §2.2, I review
the understanding of objective probability based on testing, which dates back
to the nineteenth century and was dominant in France during much of the
twentieth century. Here I speak of Cournot’s principle, which says that an
event of very small probability singled out in advance will not happen. Finally,
in §2.3, I explain Ville’s theorem, which relates small probability to the success
of a betting strategy and therefore allows us to recast Cournot’s principle in
betting terms.

2.1 The failure of frequentism

Most debate about the meaning of probability is carried on within a consensus
that frequencies can be used to estimate probabilities. This consensus relies on
Bernoulli’s theorem, which says that when successive observations are indepen-
dent, the frequency with which an event happens almost certainly approximates
its probability. The classical subjectivist and objectivist positions in the debate
were already familiar in Germany and Britain in the nineteenth century. Ac-
cording to the subjectivist position, probabilities are primarily degrees of belief.
According to the objectivist position, they are merely frequencies, whose reality
is independent of our knowledge. (I leave aside the secondary debate about
the scope of application of Bayes’s theorem, which introduces purely subjective
probabilities.)

This classical picture began to fray in the middle of the twentieth century,
when statisticians began to emphasize stochastic processes more than inde-
pendent observations. As Jerzy Neyman explained in 1960 [40], the history of
indeterminism in science had entered a new period of “dynamic indeterminism,”

characterized by the search for evolutionary chance mechanisms ca-
pable of explaining the various frequencies observed in the develop-
ment of the phenomena studied. The chance mechanism of carcino-
genesis and the chance mechanism behind the varying properties of
the comets in the Solar System exemplify the subjects of dynamic
indeterministic studies. One might hazard the assertion that ev-
ery serious contemporary study is a study of the chance mechanism
behind some phenomenon. The statistical and probabilistic tool
in such studies is the theory of stochastic processes, now involving
many unsolved problems. In order that the applied statistician be
in a position to cooperate effectively with the modern experimental
scientist, the theoretical equipment of the statistician must include
familiarity and capability of dealing with stochastic processes.
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The shift from independent observations to stochastic processes destabilized the
identification of probabilities with frequencies. We can observe only one Solar
System: the stochastic process plays itself out only once. There are recurring
events in the Solar System, and so there are, as Neyman says, various frequen-
cies to explain. But the probabilities required to define so complex a stochastic
process go far beyond those that can be estimated by frequencies, and the fre-
quencies explained may go beyond those that approximate single probabilities.

Examples of frequencies that are not explained by single probabilities go
back to the law of large numbers formulated by Poisson in 1837 [42]. If events
E1, . . . , EN have probabilities p1, . . . , pN , and if the relative frequency of the
En (the fraction that happen) approximates the average of the pn, then the pn

explain the frequency, even though the frequency does not approximate a single
probability. In the framework of stochastic processes, each pn is a probabil-
ity conditional on earlier events. Poisson’s result was treated in this spirit by
Kolmogorov in 1929 [27]. I will discuss its game-theoretic formulation in §3.3
and §3.4.

Neyman dealt with the failure of classical frequentism by falling back on
the thought that phenomena have “chance mechanisms” behind them. Perhaps
God does play dice with the universe. With this rhetorical shift, Neyman clung
to a sense of objectivity, but he lost frequentism’s strong empiricism. A chance
mechanism is supposed to be an objective feature of the world, but we cannot
thoroughly observe and test it. We cannot refute the mere hypothesis that a
phenomenon is governed by some completely unknown stochastic process. This
elusiveness contributed to the resurgence of subjectivism in the late twentieth
century.

In more recent years, our much increased capacity to acquire, store, and
analyze data has reversed somewhat the shift from the model of independent
observations to stochastic processes. We now see many large datasets in which
the number of variables measured greatly exceeds the number of observations
[73]. We may still be interested in predicting a particular variable Y from other
variables X1, . . . , Xk, as Neyman was ([40], p. 626), but when k is so extremely
large, it often seems neither necessary nor practical to model the evolution of
the system over time. Instead, we may simply assume that changes in the
system are adequately summarized by current values of the Xi. But this does
not bring back the strong empiricism of frequentism. We are still positing a
stochastic model so vast, with so many unspecified probabilities, that it can be
neither estimated nor refuted. Instead of proclaiming a proud empiricism as our
predecessors in the mid-twentieth century did, we now mumble that no models
are strictly true; at best they are somehow useful.

2.2 Cournot’s principle

A model is useful when it makes predictions, and predictions can be tested. In
the British tradition, in which probability is either belief or frequency, signifi-
cance testing is a topic separate from the meaning of probability. But another
early-twentieth-century tradition made testing basic to the meaning of proba-
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bility. Largely French, this tradition was a casualty of the eclipse of the Parisian
school of mathematical probability by the American and Russian schools after
World War II. But it retains its intellectual power, and it is an essential step
towards game-theoretic probability.

2.2.1 Rise

An event with very small probability is morally impossible; it will not happen.
Equivalently, an event with very high probability is morally certain; it will
happen. This principle was first used within mathematical probability by Jacob
Bernoulli. In his Ars Conjectandi , published posthumously in 1713, Bernoulli
proved that in a sufficiently long sequence of independent trials of an event,
there is a very high probability that the frequency with which the event happens
will be close to its probability. Bernoulli explained that we can treat the very
high probability as moral certainty and so use the frequency of the event as an
estimate of its probability.

Augustin Cournot, a mathematician now remembered as an economist and
a philosopher of science [35], gave the discussion a nineteenth-century cast in
his 1843 treatise on probability [13]. Because he was familiar with geometric
probability, Cournot could talk about probabilities that are vanishingly small.
It may be mathematically possible for a heavy cone to stand in equilibrium
on its vertex, he argued, but physically impossible. The event’s probability
is vanishingly small. Similarly, it is physically impossible for the frequency of
an event in a long sequence of trials to differ substantially from the event’s
probability [13, pp. 57 and 106].

At the turn of the twentieth century, it was a commonplace among statis-
ticians that one must decide what level of probability will count as practical
certainty in order to apply probability theory. We find this stated explicitly
in 1901, for example, in the articles by Georg Bohlmann and Ladislaus von
Bortkiewicz in the section on probability in the Encyklopädie der mathemati-
schen Wissenschaften [59, p. 825] [5, p. 861]. Aleksandr Chuprov, professor of
statistics in Petersburg, was the champion in Russia of the importance of the
principle that an event of very small probability will not happen. He called it
Cournot’s lemma [11, p. 167] and declared it a basic principle of the logic of the
probable [53, pp. 95–96]. The idea was also used by British statisticians, and it
was given the name “significance testing” by R. A. Fisher in the 1920s [21].

Saying that an event of very small or vanishingly small probability will not
happen is one thing. Saying that probability theory gains empirical meaning
only by ruling out the happening of such events is another. Cournot may have
been the first to make this second assertion:

. . .The physically impossible event is therefore the one that has in-
finitely small probability, and only this remark gives substance—
objective and phenomenal value—to the theory of mathematical
probability [13, p. 78].
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As I have already suggested, Cournot’s notion of infinitely small was flexible;
the small probabilities involved in Bernoulli’s theorem qualified [36].

From the time he first taught probability at the École polytechnique in Paris
in 1919, the celebrated French mathematician Paul Lévy was an articulate ad-
vocate of Cournot’s viewpoint. In his 1925 Calcul des probabilités [34], the most
important book on mathematical probability published in the 1920s, Lévy in-
sisted that the only bridge between mathematical probability and the world of
experience is provided by predictions that events of vanishingly small probabil-
ity will not happen. He was thinking both about statistical mechanics, where
the probabilities for substantial deviations from equilibrium really are vanish-
ingly small, and about Bernoulli’s theorem, which says that there is only a very
small probability that the frequency of an event’s happening on repeated trials
will differ much from the event’s probability.

Lévy’s views were widely shared in France and elsewhere in Europe. We
find them in Italy in Castelnuovo’s 1919 textbook [9, p. 180], whose influence is
acknowledged by Lévy’s French colleagues Maurice Fréchet and Maurice Halb-
wachs in their 1924 textbook [23]. In the 1940s, the preeminent French prob-
abilist Émile Borel called Cournot’s principle “the only law of chance” (la loi
unique du hasard) [6, 7]. Neither Lévy nor Borel used the name “Cournot’s prin-
ciple,” which was coined by Maurice Fréchet in 1949. Fréchet was responding
to Oskar Anderson, who had talked about the Cournotsche Lemma (Cournot’s
lemma) and the Cournotsche Brücke (Cournot’s bridge) [1, 2]. Anderson was
following his teacher Chuprov in the use of “lemma,” but Fréchet felt that
“lemma,” like “theorem,” should be reserved for purely mathematical results
and so suggested “principe de Cournot.” Fréchet’s coinage was used in the
1950s in French, German, and English [18, 44, 45, 60].

Fréchet and Castelnuovo are sometimes classified as frequentists, because of
their emphasis on the objective meaning of probability. They did insist that
probabilities are measured by frequencies, but they saw this not as a matter
of definition but as a result of Bernoulli’s theorem (frequency will approximate
probability with high probability) combined with Cournot’s principle (an event
with high probability will happen). Andrei Kolmogorov is another so-called
frequentist who considered Cournot’s principle basic to the empirical mean-
ing of probability; he called it “Principle B” in his famous Grundbegriffe der
Wahrscheinlichkeit, published in 1933.

2.2.2 Fall

After around 1960 the idea that Cournot’s principle is basic to the empirical
meaning of probability largely disappears [52]. We occasionally find the idea
asserted by Kolmogorov’s students. Per Martin-Löf asserted it in 1969 [37,
p. 616] (though he has told me that he learned it from Borel rather than from
Kolmogorov), and Yu. V. Prokhorov and B. A. Sevast’yanov asserted it in their
article on probability in the Soviet Mathematical Encyclopedia in the 1970s [43].
I know few other examples.

Why did Cournot’s principle disappear? The most obvious factors were
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geopolitical. The language of mathematics after World War II was English, and
to the extent that mathematicians discussed the philosophy of probability, they
tended to follow British traditions. Kolmogorov and his Russian colleagues were
seen as experts on the mathematics of probability, but they were never loqua-
cious about philosophy, because philosophy was dangerous in the Soviet Union.
Perhaps particular influence should be attributed to the United States mathe-
matician J. L. Doob, who put stochastic processes into the measure-theoretic
framework championed by Kolmogorov [20]. Doob’s philosophy of probability
[19] differed little from the pragmatic frequentism of his Harvard teacher Julian
Lowell Coolidge [12].

In any case, the disappearance of Cournot’s principle is unfortunate, because
the principle is precisely the remedy needed for the ailments of frequentism.
Although the shift from independent observations to stochastic processes and
probability laws conditional on many variables makes it impossible to charac-
terize the empirical content of a model’s probabilities fully in terms of stable
frequencies, this shift does not alter the fundamental fact that the only em-
pirically meaningful predictions are those to which the model attaches high
probability.

2.3 Ville’s theorem

The game-theoretic framework that I describe in the next section depends on
the fact that we can formulate Cournot’s principle game-theoretically. Instead
of saying that an event of small probability will not happen, we say that a
strategy for placing bets will not multiply the capital risked by a large factor.
In the case where the bettor can buy or sell any random variable for its expected
value, this game-theoretic formulation is equivalent to the classical formulation;
Jean Ville demonstrated the equivalence in his dissertation, published in 1939
[57].

Ville’s formulation was actually infinitary: he showed that multiplying the
stake one risks by an infinite factor is equivalent to an event of zero probability
happening. Ville considered only the infinitary case, where the game continues
for an infinite number of rounds and Skeptic tries to become infinitely rich,
because he conceived his work as a critique of Richard von Mises’s notion of
a collective [61–63]; the title of his book was Étude critique de la notion de
collectif. For von Mises, an event has a probability p only in the context of an
infinite sequence of events whose limiting frequency of occurrence is p, and which
obeys the further condition that any reasonable rule for selecting a subsequence
will produce one with the same limiting frequency. This latter condition, von
Mises thought, would keep a gambler from getting rich by betting on some of
the events and not others. Ville showed by example that von Mises’s condition
is inadequate, inasmuch as it does not rule out the gambler’s getting rich by
varying his bet. Ville then showed that ruling out an arbitrary strategy’s making
a gambler infinitely rich, even if that strategy does vary how much and on what
side to bet, is just the same as ruling out the happening of an arbitrary event
of probability zero.
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Unfortunately, Ville’s work was largely overlooked, in general because of the
eclipse of the French school of probability after World War II, and in particular
because of the success of Doob’s reformulation of Ville’s notion of a martingale
in measure-theoretic terms. Discussions of von Mises’s frequentism still usually
overlook Ville’s emendation of it, and Ville’s theorem is still not well known.

In order to state Ville’s theorem, consider a sequence Y1, Y2, . . . of binary
random variables with a joint probability distribution P. Suppose, for simplicity,
that P assigns every finite sequence y1, . . . , yn of 0s and 1s positive probability, so
that its conditional probabilities for Yn given values of the preceding variables
are always unambiguously defined. Following Ville, consider a gambler who
begins with $1 and is allowed to bet as he pleases on each round, provided that
he never risks more than he has. (The condition that he never risks more than
he has is needed to guarantee that the initial capital of $1 represents the total
capital he risks. If he were allowed to borrow in order to make larger bets,
he would be risking more.) We can formalize this with the following protocol,
where betting on Yn is represented as buying some number sn (possibly zero
or negative) of tickets that cost $P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1) and pay
$Yn.

Protocol 2. Ville’s binary probability protocol
K0 := 1.
FOR n = 1, 2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1)).

Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how Reality moves.

Along with all the other protocols I consider in this article, this is a perfect-
information sequential protocol; moves are made in the order listed, and each
player sees the other player’s moves as they are made. The sequence K0,K1, . . .
is Skeptic’s capital process.

2.3.1 Infinite horizon, zero probability

Ville’s theorem says that Skeptic’s getting infinitely rich in Protocol 2 is equiv-
alent to an event of zero probability happening, in the following sense:

1. When Skeptic follows a strategy that gives sn as a function of y1, . . . , yn−1,

P (K0,K1, . . . is unbounded) = 0. (1)

2. If A is a measurable subset of {0, 1}∞ with P(A) = 0, then Skeptic has a
strategy that guarantees

lim
n→∞

Kn = ∞
whenever (y1, y2, . . . ) ∈ A.
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We can summarize these two statements by saying that Skeptic’s being able to
multiply his capital by an infinite factor is equivalent to the happening of an
event with probability zero.

2.3.2 Infinite horizon, small probability

Practical applications require that we consider small probabilities rather than
zero probabilities. In this case, we can use the following finitary version of Ville’s
theorem, which is proven in Chapter 8 of [51].

1. When Skeptic follows a strategy that gives sn as a function of y1, . . . , yn−1,

P
(

sup
n=0,1,...

Kn ≥ 1
δ

)
≤ δ (2)

for every δ > 0. (Although Ville was the first to establish Equation (2), it
is now sometimes called Doob’s inequality.)

2. If A is a measurable subset of {0, 1}∞ with P(A) ≤ δ, then Skeptic has a
strategy that guarantees

lim inf
n→∞

Kn ≥ 1
δ

whenever (y1, y2, . . . ) ∈ A.

We can summarize these results by saying that Skeptic’s being able to multiply
his capital by a factor of 1/δ or more is equivalent to the happening of an event
with probability δ or less.

2.3.3 Finite horizon, small probability

If we assume that the game is played only for a fixed number of rounds N
instead of being continued indefinitely, then the preceding statements simplify
to the following:

1. When Skeptic follows a strategy that gives sn as a function of y1, . . . , yn−1,

P
(

max
0≤n≤N

Kn ≥ 1
δ

)
≤ δ (3)

for every δ > 0.

2. If A is a subset of {0, 1}N with P(A) < δ, then Skeptic has a strategy that
guarantees

KN >
1
δ

whenever (y1, . . . , yN ) ∈ A.
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3 Game-theoretic probability

According to Cournot’s principle, a probabilistic theory predicts an event by
assigning it a very high probability. Ville’s theorem allows us to say this in a
different way: a probabilistic theory predicts an event by singling out a betting
strategy that will multiply the capital it risks by a large or infinite factor if
the event fails. In the game-theoretic approach to probability, we derive the
prediction by constructing the strategy.

In Ville’s work, the game-theoretic approach was merely an alternative way
to study classical probability. But we can also use it to generalize classical
probability to situations where no joint probability distribution is given for all
the events and quantities that we may observe. Skeptic can construct strategies
as soon as he is offered only a few bets, and it turns out that relatively few
bets are needed in order to construct strategies that demonstrate interesting
generalizations of classical theorems such as the law of large numbers, the law
of the iterated logarithm, and the central limit theorem. The bets offered to
Skeptic in the probability forecasting protocol of §1.1, for example, are enough.

I begin this section, in §3.1 and §3.2, by reviewing Ville’s treatment of clas-
sical probability in terms of betting strategies. This work by Ville marks the
beginning of the modern theory of martingales in probability. In §3.1, I re-
view how Ville thought about martingales in the binary probability protocol.
In §3.2, I discuss a martingale that Ville used to prove the strong law of large
numbers in the special case of his binary protocol in which successive events are
independent and all have the same probability p.

I then turn to the generalization to the case where no joint probability dis-
tribution for what we may observe is given. In §3.3, I return to the probability
forecasting protocol we considered in §1.1. I discuss the weak and strong law
of large numbers for this protocol, and as an illustration, I sketch a very simple
proof of the weak law. In §3.4, I discuss a protocol in which predictions mn

of quantities yn are interpreted as prices at which Skeptic can buy or sell the
yn, and I explain how we can obtain laws of large numbers even in this case.
In §3.5, I discuss how far the game-theoretic approach applies beyond these
simple examples, and in §3.6, I give an example of its power in practice.

3.1 Martingales in Ville’s picture

Consider again Ville’s binary probability protocol (Protocol 2 on p. 9), but now
suppose that Skeptic begins with capital α not necessarily equal to 1, and drop
the requirement that he keep his capital nonnegative.
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Protocol 3. Ville’s binary probability protocol again
Parameters: real number α, positive probability distribution P on {0, 1}∞

K0 := α.
FOR n = 1, 2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1)). (4)

Recall the meaning of the assumption that the probability distribution P is
positive: for every sequence y1, . . . , yn of 0s and 1, P(Y1 = y1, . . . , Yn = yn) > 0.

A strategy for Skeptic in Protocol 3 is a rule that specifies, for each n and
each possible sequence of prior moves y1, . . . , yn−1 by Reality, a move sn for
Skeptic. When such a strategy is fixed and α is given, Skeptic’s capital Kn

becomes a function of Reality’s moves y1, . . . , yn. Ville was the first to call the
sequence of functions K0,K1, . . . a martingale.

In Protocol 3, knowing the capital process K0,K1, . . . produced by a strategy
for Skeptic is equivalent to knowing the strategy and the initial capital α. You
can find K0,K1, . . . from α and the strategy, and you can find α and the strategy
from K0,K1, . . . . This equivalence was Ville’s justification for calling a capital
process a martingale; before his work, “martingale” was a name for a gambler’s
strategy, not a name for his capital process. The name stuck; now we call capital
processes martingales even in protocols where the strategy cannot be recovered
from them.

Let us call a martingale K0,K1, . . . a scoring martingale if K0 = 1 and Kn is
always nonnegative—i.e., Kn(y1, . . . , yn) ≥ 0 for all n and all y1, . . . , yn. Let us
call a strategy for Skeptic that produces a scoring martingale when it starts with
unit capital a scoring strategy. When Skeptic plays a scoring strategy starting
with K0 = 1, he can be sure that Kn ≥ 0 for all n no matter how Reality plays.
He may be risking the entire initial unit of capital, but he is not putting any
other capital—his own or anyone else’s—at risk.

The game-theoretic version of Cournot’s principle predicts that a scoring
martingale will be bounded. This prediction can be used in two ways:

Prediction. The prediction that a particular scoring martingale Kn is bounded
can imply other predictions that are interesting in their own right. It is
easy to give examples. In §3.2, we will look at a scoring martingale whose
being bounded, as predicted with probability one by (1), implies the strong
law of large numbers. In §3.3, we will look at a scoring martingale whose
being bounded by 1/δ, as predicted with probability δ by (3), implies the
weak law of large numbers.

Testing. The actual values of a scoring martingale test the validity of the prob-
ability distribution P. The larger these “scores” are, the more strongly P
is refuted.

Ville used scoring martingales in both ways.

12



Equation (4), the rule for updating the capital in Protocol 3, implies that
Kn−1 is the expected value at time n− 1 of the future value of Kn:

E(Kn|y1, . . . , yn−1) = Kn−1(y1, . . . , yn−1). (5)

Because its left-hand side is equal to

Kn(y1, . . . , yn−1, 1)
P(y1, . . . , yn−1, 1)
P(y1, . . . , yn−1)

+Kn(y1, . . . , yn−1, 0)
P(y1, . . . , yn−1, 0)
P(y1, . . . , yn−1)

,

Equation (5) is equivalent to

Q(y1, . . . , yn−1, 1) + Q(y1, . . . , yn−1, 0) = Q(y1, . . . , yn−1), (6)

where Q is the function on finite strings of 0s and 1s defined by

Q(y1, . . . , yn) = Kn(y1, . . . , yn)P(y1, . . . , yn).

Equation (6) is necessary and sufficient for a nonnegative function Q on finite
strings of 0s and 1s to define a probability measure on {0, 1}∞. So a nonnegative
martingale with respect to P is the same thing as the ratio of a probability
measure Q to P—i.e., a likelihood ratio with P as denominator.

Doob imported Ville’s notion of a martingale into measure-theoretic proba-
bility, where the gambling picture is not made explicit, by taking Equation (5)
as the definition of a martingale. Game-theoretic probability goes in a different
direction. It uses Ville’s definition of a martingale in more general forecasting
games, where the forecasts are given by a player in the game, not by a prob-
ability distribution P for Reality’s moves. In these games, martingales are not
likelihood ratios. They are simply capital processes for Skeptic.

One very important property of martingales that Ville used, which does
carry over to the more general games studied in game-theoretic probability, is
this: an average of scoring strategies produces the same average of the scoring
martingales. In order to avoid any confusion, let me spell out what this means
in the case where we are taking a simple average of two strategies and also in
the general case where we are averaging a class of strategies.

Simplest case. Suppose the scoring strategies S1 and S2 recommend moves
s1

n(y1, . . . , yn−1) and s2
n(y1, . . . , yn−1), respectively, on the nth round of

the game. The average of S1 and S2—call it S—recommends the move

sn(y1, . . . , yn−1) =
1
2

(
s1

n(y1, . . . , yn−1) + s2
n(y1, . . . , yn−1)

)

on the nth round of the game. If we write K1
n, K2

n, and Kn for the
corresponding scoring martingales, then

Kn(y1, . . . , yn) =
1
2

(K1
n(y1, . . . , yn) +K2

n(y1, . . . , yn)
)

for all n and all y1, . . . , yn.
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General case. In general, consider strategies Sξ, where the index ξ ranges over
a set Ξ. We may average these strategies with respect to a probability
distribution µ on Ξ, obtaining a strategy S with moves

sn(y1, . . . , yn−1) =
∫

Ξ

sξ
n(y1, . . . , yn−1)µ(dξ),

provided only that this integral always converges. The corresponding scor-
ing martingales then average in the same way:

Kn(y1, . . . , yn) =
∫

Ξ

Kξ
n(y1, . . . , yn)µ(dξ).

These assertions are true because the increment Kn − Kn−1 is always linear in
Skeptic’s move sn. This linearity is a feature of all the protocols considered in
[51].

3.2 Ville’s constant probability game

Ville studied some strategies for Skeptic in the special case of the preceding
protocol in which P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1) is always equal to p.
In order to give the reader a glimpse of Ville’s methods, I will now review
the scoring martingale he used to prove the strong law of large numbers for this
special case: Skeptic can become infinitely rich unless Reality makes the relative
frequency of 1s converge to p.

Under the assumption that P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1) is always
equal to p, our protocol looks like this.

Protocol 4. Forecasting with a constant probability p
Parameter: real number p satisfying 0 < p < 1

K0 := 1.
FOR n = 1, 2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − p).

This protocol represents what classical probability calls independent Bernoulli
trials: successive events that are independent and all have the same probability.

The scoring martingale Ville used to prove the strong law of large numbers
for this protocol is

Kn(y1, . . . , yn) :=
rn!(n− rn)!

(n + 1)!
p−rnq−(n−rn), (7)

where q is equal to 1− p and rn is the number of 1s among y1, . . . , yn:

rn :=
n∑

i=1

yi
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[57, p. 52], [58], [46]. To confirm that (7) is a scoring martingale, it suffices to
notice that it is a likelihood ratio with P as the denominator. In fact,

prnqn−rn = P(y1, . . . , yn)

and
rn!(n− rn)!

(n + 1)!
=

∫ 1

0

ξrn(1− ξ)n−rndξ = Q(y1, . . . , yn), (8)

where Q is the probability distribution obtained by averaging probability distri-
butions under which the events yi = 1 are independent and all have a probability
ξ possibly different from p.

Proposition 1 A classical strong law of large numbers. With probability
one,

lim
n→∞

rn

n
= p. (9)

Sketch of Proof Because (7) is a scoring martingale, Ville’s theorem (Equa-
tion (1)) says that, with probability one, there is a constant C such that

rn!(n− rn)!
(n + 1)!

p−rnq−(n−rn) < C (10)

for n = 0, 1, . . . . One can deduce (9) from (10) using Stirling’s formula.

The reader may verify that (7) is Skeptic’s capital process when he follows
the strategy that prescribes the moves

sn(y1, . . . , yn−1) :=
1
pq

(
rn−1 + 1

n + 1
− p

)
Kn−1(y1, . . . , yn−1). (11)

The ratio (rn−1 + 1)/(n + 1) is close to the relative frequency of 1s so far,
rn−1/(n− 1). Roughly speaking, the strategy (11) bets that yn will be 1 when
the relative frequency is more than p, 0 when the relative frequency is less than
p. So whenever the relative frequency diverges from p, Reality must move it
back towards p to keep Skeptic from increasing his capital.

The rate of convergence of rn/n − p to zero implied by (10) is
√

(log n)/n
[58]. Using other scoring martingales (obtained by averaging ξrn(1− ξ)n−rn as
in (8), but with respect to distributions concentrated around p rather than the
uniform distribution), Ville also derived the faster convergence asserted by the
law of the iterated logarithm [51, chapter 5].

We can also use martingale methods to prove other classical theorems, in-
cluding the weak law of large numbers [51, chapter 6] and the central limit
theorem [51, chapter 7]. Rather than pursue this path here, I will now step out-
side classical probability theory, into more general protocols like the probability
forecasting protocol of §1.1. In these protocols, martingale methods allow us to
prove theorems analogous to the classical theorems, but we must express them
directly in game-theoretic terms. Instead of saying that something happens
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with probability one, we say that if it does not happen, Skeptic will multiply
the capital he risks by an infinite factor. Instead of saying that something hap-
pens with the high probability 1− δ, we say that if it does not happen, Skeptic
will multiply the capital he risks by the large factor 1/δ.

3.3 The probability forecasting game

As a first step outside classical probability, let us return to the protocol we con-
sidered in §1.1, in which probability forecasts are made by a player, Forecaster,
rather than by a probability distribution P. For the sake of variety, let us con-
sider the weak law of large numbers rather than the strong law. Accordingly, I
now assume that the game has a fixed finite horizon: it ends after a large but
finite number of rounds, N .

Protocol 5. Finite-horizon probability forecasting
Parameter: natural number N

K0 := 1.
FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

Our study of this protocol will focus on

Sn :=
n∑

i=1

(yi − pi).

The weak law of large numbers says that if N is sufficiently large, the rela-
tive frequency of 1s, (1/N)

∑N
n=1 yn, should be close to the average probability

forecast, (1/N)
∑N

n=1 pn. This means SN/N should be close to zero.
The weak law can be formulated and proven for Protocol 5 as follows:

Proposition 2 A game-theoretic weak law of large numbers. There ex-
ists a scoring martingale that will exceed 1/δ unless

∣∣∣∣
SN

N

∣∣∣∣ ≤
1√
Nδ

. (12)

Proof Consider the strategy for Skeptic that prescribes the move

sn =
2Sn−1

N
.

This produces the capital process

Kn = 1 +
1
N

(
S2

n −
n∑

i=1

(yi − pi)2
)

,
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which is a scoring martingale: Kn ≥ 0 for n = 1, . . . , N because (yi − pi)2 ≤ 1
for each i. For the same reason, the hypothesis KN ≤ 1/δ implies (12).

When ε and δ are small positive numbers, and N is extremely large, so that

N ≥ 1
ε2δ

,

Proposition 2 implies that we can be as confident that |SN/N | ≤ ε as we are
that Skeptic will not multiply his capital by the large factor 1/δ. The martingale
in the proof appears in measure-theoretic form in Kolmogorov’s 1929 proof of
the weak law [27].

A positive probability distribution P on {0, 1}N can serve as a strategy for
Forecaster in Protocol 5, prescribing

pn := P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1).

When such a strategy is imposed, Protocol 5 reduces to a finite-horizon version
of Ville’s binary protocol, Proposition 2 says that there is a scoring martingale
in this finite-horizon protocol that will exceed 1/δ unless

∣∣∣∣∣
1
N

N∑
n=1

(yn − P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1))

∣∣∣∣∣ ≤
1√
Nδ

, (13)

and by Ville’s theorem, this implies that

P

(∣∣∣∣∣
1
N

N∑
n=1

(yn − P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1))

∣∣∣∣∣ ≤
1√
Nδ

)
≥ 1− 1

δ
.

When P(Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1) is always equal to p, we are in a
finite-horizon version of Protocol 3, and we get

P

(∣∣∣∣∣
1
N

N∑
n=1

yn − p

∣∣∣∣∣ ≤
1√
Nδ

)
≥ 1− 1

δ
,

the elementary version of the classical weak law usually derived using Cheby-
shev’s inequality.

Protocol 5 does not require Forecaster to follow a strategy defined by a
probability distribution for y1, . . . , yN . He can use information from outside the
game to decide how to move, or he can simply follow his whims. So instead of
having a classical probability distribution, we are in what A. P. Dawid called
the prequential framework [15]. In this framework, we cannot say that (13) has
probability at least 1 − 1/δ, because we have no probability distribution, but
Proposition 2 has the same intuitive meaning as such a probability statement.
We consider Skeptic’s multiplying his capital by 1/δ or more against a good
Forecaster unlikely in the same way as we consider the happening of an event
unlikely when it is given probability δ or less by a valid probability distribution.
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Although I have focused on the weak law here, it is also straightforward
to prove the strong law for the probability forecasting protocol (Protocol 5,
but with the game played for an infinite number of rounds instead of only N
rounds). Kumon and Takemura have given a proof using a modified form of
Ville’s martingale (7) [30]. In [51, chapter 3], Vovk and I gave an alternative
proof using a martingale extracted from Kolmogorov’s 1930 proof of the strong
law [28].

3.4 The bounded forecasting game

Stepping yet farther away from classical probability, I now ask the reader to
consider a protocol where Forecaster’s task on each round is to give not a prob-
ability for an event but a prediction of a bounded quantity. To fix ideas, I
assume that the quantity and the prediction are always in the interval from 0
to 100.

Protocol 6. Finite-horizon bounded forecasting
Parameter: natural number N

K0 := 1.
FOR n = 1, . . . , N :

Forecaster announces mn ∈ [0, 100].
Skeptic announces sn ∈ R.
Reality announces yn ∈ [0, 100].
Kn := Kn−1 + sn(yn −mn).

As it turns out, the game-theoretic treatment of Protocol 6 is scarcely dif-
ferent from that of Protocol 5. Setting

Sn :=
n∑

i=1

(yi −mi),

we reason almost as before.

Proposition 3 A weak law for bounded forecasting. There exists a scor-
ing martingale that will exceed 1/δ unless

∣∣∣∣
SN

N

∣∣∣∣ ≤
100√
Nδ

. (14)

Proof Consider the strategy for Skeptic that prescribes the move

sn =
2Sn−1

10000N
.

This produces

Kn = 1 +
1

10000N

(
S2

n −
n∑

i=1

(yi −mi)2
)

,
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which is nonnegative because (yi−mi)2 ≤ 10000 for each i. For the same reason,
the hypothesis KN ≤ 1/δ implies (14).

The proofs of the strong law for the infinite-horizon version of Protocol 5
that we just cited, in [30] and [51, chapter 3], also apply to the infinite-horizon
version of Protocol 6.

3.5 Scope of the framework

According to the conventional wisdom, probability theory is based on a handful
of axioms and definitions that were formulated concisely by Andrei Kolmogorov
in 1933 [29, 52]. The reader might ask for a similarly concise statement of the
game-theoretic framework. I have given examples, but where is the general def-
inition of what counts as game-theoretic probability? Is there a single protocol
of which all probabilistic protocols are special cases?

I think not. Game theory is remarkably flexible, and the simple perfect-
information protocols I have presented can be varied in many interesting and
perhaps useful ways. It seems futile to try to draw sharp boundaries between
games that are part of game-theoretic probability and those that are not. We
should think of game-theoretic probability as a Wittgensteinian object, with
canonical instances but fuzzy boundaries.

The canonical instances are perfect-information games with three players,
Forecaster, Reality, and Skeptic. The payoff to Skeptic is linear in Skeptic’s
move, so that we can average scoring strategies and thereby average scoring
martingales, as explained in §3.2. The players’ moves may be one-dimensional,
as in the examples we have considered so far, or they may be multidimensional.
In addition to determining the outcome and therefore the increment in Skeptic’s
capital, Reality may also provide auxiliary information to Forecaster and Skeptic
before they make their moves. This suggests the following protocol.

Protocol 7. Linear forecasting
Parameters: set X, subset Y of Rk

K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces fn ∈ Rk.
Skeptic announces sn ∈ Rk.
Reality announces yn ∈ Y.
Kn := Kn−1 + sn · (yn − fn).

Here sn ·(yn−fn) is the dot product of the k-dimensional vectors sn and yn−fn.
Protocol 7 covers many prediction problems considered in statistics (where

x and y are often called independent and dependent variables, respectively) and
machine learning (where x is called the object and y the label) [25, 56, 73]. As
we will see in a moment, it also covers some market games. Yet many other
interesting protocols relevant to probability, including many in [51], are not

19



special cases of Protocol 7. These include protocols in which Skeptic can bet
on only one side (i.e., cannot necessarily replace a permitted move sn by −sn)
and others involving additional players. Some of the results of game-theoretic
probability also generalize from Euclidean spaces to more general spaces [51,
§4.6].

3.6 Example: the
√

dt effect

Organized exchanges, in which a buyer or seller can always find a ready price
for a particular commodity or security, are forecasting games. It is often said
that in an efficient market, an investor cannot make a lot of money without
taking undue risk. Cournot’s principle makes this precise by saying that he will
not multiply a fixed stake without additional risk. To illustrate the power of
the game-theoretic framework, I want now to point out that Cournot’s principle
alone can account for the stylized fact that changes in market prices over an
interval of time of length dt scale as

√
dt.

In a securities market where shares are traded 252 days a year, for example,
the typical change in price of a share from one year to the next is

√
252, or about

16, times as large as the typical change from one day to the next. There is a
standard way of explaining this. We begin by assuming, in the spirit of Neyman,
that price changes are governed by some “chance mechanism”; they have an
objective but unknown probability distribution. Then we argue that successive
changes must be uncorrelated; otherwise someone who knew the correlation
(or learned it by observation) could devise a trading strategy with positive
expected value. Uncorrelatedness of 252 successive daily price changes implies
that their sum, the annual price change, has variance 252 times as large and
hence standard deviation, or typical value,

√
252 times as large. This is a simple

argument, but it uses the mysterious chance mechanism twice, first when we
use the probabilistic concept of correlation, and then when we interpret market
efficiency as the absence of a trading strategy with positive expected value. As
I now explain, we can replace the appeal to a chance mechanism with a purely
game-theoretic argument, in which Cournot’s principle expresses the assumption
of market efficiency.

For simplicity, consider the following protocol, which describes a market
in shares of a corporation. Investor plays the role of Skeptic; he tries to make
money, and Cournot’s principle says he will not do so without risking more than
his initial stake, which we take to be $1. Market plays the roles of Forecaster
(by giving opening prices) and Reality (by giving closing prices). We suppose
that today’s opening price is yesterday’s closing price, so that Market gives only
one price each day, at the end of the day. When Investor holds sn shares during
day n, he makes sn(yn − yn−1), where yn is the price at the end of day n.
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Protocol 8. Daily trading in the market for a security
K0 := 1.
Market announces y0 ∈ R.
FOR n = 1, 2, . . . , N :

Investor announces sn ∈ R.
Market announces yn ∈ R.
Kn := Kn−1 + sn(yn − yn−1).

For simplicity, I ignore the fact that the price yn of a share cannot be negative.
This does not invalidate our results; they are worst case results, telling us what
Investor can accomplish regardless of Market’s behavior, and so they are not
invalidated by a further restriction on Market’s moves. Stronger results may be
obtained, however, when the restriction yn ≥ 0 is imposed, see [75].

Since no chance mechanism is assumed to be operating, we cannot appeal to
the idea of the variance of a probability distribution for price changes to explain
what

√
dt scaling means. But we can use

√√√√ 1
N

N∑
n=1

(yn − yn−1)2 (15)

as the typical daily change, and we can compare it to the magnitude of the
change we see over the whole game, say

max
0<n≤N

|yn − y0|. (16)

The quantity (16) should have the same order of magnitude as
√

N times the
quantity (15). Equivalently, we should have

N∑
n=1

(yn − yn−1)2 ∼ max
0<n≤N

(yn − y0)2, (17)

where ∼ is understood to mean that the two quantities have the same order of
magnitude.

Does Cournot’s principle give us any reason to think that (17) should hold?
Indeed it does. As it turns out, there is a scoring martingale that becomes large
(makes a lot of money for Investor) if (17) is violated. Market (whose moves
are affected by all the participants in the market, but only slightly by Investor)
tends to set prices so that Investor will not make a lot of money, and as we will
see in §4, he can more or less do so. So we may expect (17) to hold.

The scoring strategy that makes money if (17) is violated is an average of two
scoring strategies, a momentum strategy (hold more shares after the price goes
up), and a contrarian strategy (hold more shares after the price goes down).

1. The momentum strategy turns $1 into $D/E or more if
∑

(yn−yn−1)2 ≤ E
and max(yn − y0)2 ≥ D.
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2. The contrarian strategy turns $1 into $E/D or more if
∑

(yn−yn−1)2 ≥ E
and max(yn − y0)2 ≤ D.

For details, see [75].

4 Defensive Forecasting

I now turn from strategies for Skeptic, which test Forecaster, to strategies for
Forecaster, which seek to withstand such tests. Forecaster engages in defensive
forecasting when he plays in order to defeat a particular strategy for Skeptic.

As it turns out, Forecaster can defeat any particular strategy for Skeptic,
provided only that each move prescribed by the strategy varies continuously with
respect to Forecaster’s previous move. Forecaster wants to defeat more than a
single strategy for Skeptic. He wants to defeat simultaneously all the scoring
strategies Skeptic might use. But as we will see, Forecaster can often amal-
gamate the scoring strategies he needs to defeat by averaging them, and then
he can play against the average. Defeating the average may be good enough,
because when any one of the scoring strategies rejects Forecaster’s validity, the
average will generally reject as well, albeit less strongly.

I begin this section, in §4.1, with an overview of related work on prediction.
Then I explain defensive forecasting in the case of binary forecasting, leaving the
reader to consult other expositions for other protocols [71, 74]. In §4.2, I review
the simple proof that Forecaster can defeat any continuous strategy for Skeptic
in the binary case. In §4.3, I explain how to average strategies for Skeptic to
test for the calibration of binary probability forecasts, and in §4.4, I explain how
resolution can also be achieved. In §4.5, I make some final comments about the
significance of these results.

4.1 Context

Although the names “Forecaster,” “Skeptic,” and “Reality” may not have been
used systematically prior to [51], a good deal of prior work on probabilistic
prediction can be understood in terms of averaging strategies in a game in
which, for successive values of n, Forecaster predicts the value of yn, Skeptic
then bets on the value of yn, and Reality then determines the value of yn.

This work can be classified into the four cells of a 2× 2 table based to these
two distinctions:

Forecast-based vs. test-based. Work is forecast-based if it involves averag-
ing or otherwise amalgamating strategies for Forecaster. Work is test-
based if it amalgamates strategies for Skeptic and then seeks a strategy
for Forecaster that is optimal against the resulting strategy for Skeptic.

Universalizing vs. amalgamating. Work is universalizing if it seeks to
amalgamate all possible strategies for a particular player, thus obtain-
ing a strategy that is universal for that player. Universal strategies are
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usually not computable. Work is (merely) amalgamating if it attempts
only to amalgamate a more manageable class of strategies of the player
concerned, which may be sufficient in practice.

Defensive forecasting is test-based and merely amalgamating.
A substantial amount of work has been done in each of the four cells.

Forecast-based and universalizing. The only work in this cell of which I
am aware is that of Ray Solomonoff, who has argued for decades that it is
possible to average all computable strategies for Forecaster, thus obtaining
a universal strategy that will be successful regardless of Reality’s behavior
[54]. Solomonoff’s universal strategy is only semi-computable, and it is
not clear that useful approximations can be implemented.

Forecast-based and amalgamating. An immense amount of work falls in
this cell, including all the work on Bayesian prediction [3] and prediction
with expert advice [10, 64]. All this work seeks to improve strategies
for Forecaster (probability distributions for Reality’s moves y1, y2, . . . ) by
averaging or otherwise amalgamating them. Averaging strategies for Fore-
caster can be effective asymptotically because the average will eventually
behave like the strategy in the average that best matches the behavior of
Reality. Whether this happens in practice depends on how many rounds
the prediction game runs and how close Reality’s behavior is to any of the
strategies being averaged.

Test-based and universalizing. The best known work in this cell is that of
Leonid Levin and Peter Gács. Their work has roots in a celebrated 1966
article by Per Martin-Löf [37], which established the existence of universal
tests in the case of Bernoulli trials. In the early 1970s, Levin generalized
Martin-Löf’s result beyond the binary case and showed that the amalga-
mation of individual tests can be carried out by averaging [31, 32]. Levin
established the existence of a “neutral” probability distribution, one that
defeats the universal test [32, 33], and this result has been developed fur-
ther by Gács [24]. The result is interesting to those who study randomness,
because it asserts the existence of a probability distribution with respect
to which any sequence y1, y2, . . . is random.

Test-based and amalgamating. This includes work on well-calibrated ran-
domized forecasting by Foster and Vohra [22, 47], and more recent work
on well-calibrated deterministic calibration by Kakade and Foster [26].

Defensive forecasting goes beyond the other test-based amalgamating work pri-
marily because it uses the game-theoretic framework and can therefore defend
against any strategy by Skeptic, not just strategies that test calibration and
resolution. This is analogous to the difference between von Mises, who was
concerned only with frequencies, and Ville, who considered all properties of
probabilities. The added power of the game-theoretic framework may be of lim-
ited importance in the binary case, where calibration and resolution are most
important. But it is key for the generalization to other forecasting games.
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4.2 Defeating a continuous strategy for Skeptic

In this section, I repeat a simple proof, first given in [77], showing that Fore-
caster can defeat any particular fixed strategy for Skeptic, provided that each
move prescribed by the strategy varies continuously with respect to Forecaster’s
previous move

Consider a strategy S for Skeptic in Protocol 1, the binary forecasting pro-
tocol we studied in §1.1. Write

S(p1, y1, . . . , pn−1, yn−1, pn) (18)

for the move that S prescribes on the nth round of the game. At the beginning
of the nth round, just before Forecaster makes his move pn, the earlier moves
p1, y1, p1, . . . , pn−1, yn−1 are known and therefore fixed, and so (18) becomes a
function of pn only, say

Sn(pn).

This defines a function Sn on the interval [0, 1]. If Sn is continuous for all n and
all p1, y1, . . . , pn−1, yn−1, let us say that S is forecast-continuous.

When we fix the strategy S, Skeptic no longer has a role to play in the game,
and we can omit him from the protocol.

Protocol 9. Binary probability forecasting against a fixed test
Parameter: Strategy S for Skeptic

K0 := α.
FOR n = 1, 2, . . . :

Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

Proposition 4 If the strategy S is forecast-continuous, Forecaster has a strat-
egy that ensures K0 ≥ K1 ≥ K2 ≥ · · · .

Proof By the intermediate-value theorem, the continuous function Sn is always
positive, always negative, or else satisfies Sn(p) = 0 for some p ∈ [0, 1]. So
Forecaster can use the following strategy:

• if Sn is always positive, take pn := 1;

• if Sn is always negative, take pn := 0;

• otherwise, choose pn so that Sn(pn) = 0.

This guarantees that Sn(pn)(yn − pn) ≤ 0, so that Kn ≤ Kn−1.

If the reader finds it confusing that the notation Sn(pn) leaves the depen-
dence on the earlier moves p1, y1, p1, . . . , pn−1, yn−1 implicit, he or she may wish
to think about the following alternative protocol, which leaves Skeptic in the
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game and has him announce the function Sn just before Forecaster makes his
move pn:

Protocol 10. When skeptic chooses a strategy on each round
K0 := α.
FOR n = 1, 2, . . . :

Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

Protocol 10 gives Skeptic a little more flexibility than Protocol 9 does; it allows
Skeptic to take into account information coming from outside the game as well
as the previous moves p1, y1, . . . , pn−1, yn−1 when he decides on Sn. But it
still requires that Sn(pn) depend on pn continuously, and it still makes sure
that Forecaster knows Sn before he makes his move pn. (Like all protocols
in this article, Protocol 10 is a perfect-information protocol; the players move
in sequence and see each other’s moves as they are made.) So the proof and
conclusion of Proposition 4 still hold: Forecaster has a strategy that ensures
K0 ≥ K1 ≥ K2 ≥ · · · .

As I argued in (1.1), the requirement that Sn be continuous does not restrict
the practical significance of the result, because a continuous function can change
with arbitrarily great abruptness. This is consistent with the views of L. E. J.
Brouwer, who argued that the idealized concept of computability for real-valued
functions (idealized because real numbers are already idealized objects) should
include the requirement of continuity [8, 38]. Notice also that the strategies for
Skeptic used in §3 to establish classical results in probability theory (as well as
all those used in [51]) are continuous. Finally, as I noted in §1.1, we can get a
version of Proposition 4 even if we permit Skeptic to be discontinuous, provided
we allow Forecaster to randomize his forecasts a little [66, 76].

4.3 Calibration

I now exhibit a forecast-continuous strategy S for Skeptic in Protocol 9 that
multiplies Skeptic’s capital by a large factor whenever Forecaster’s probabili-
ties fail to be well calibrated. According to Proposition 4, Forecaster can give
probabilities that are well calibrated by playing against S.

This subsection follows closely the more general exposition in Vladimir
Vovk’s “Non-asymptotic calibration and resolution” [72].

4.3.1 Goal

Leaving aside Skeptic for a moment, consider binary forecasting with Forecaster
and Reality alone:
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Protocol 11. Forecaster & Reality
FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

If a forecaster is doing a good job, we expect about 30% of the events to
which he gives probabilities near 30% to happen. If this is true not only for
30% but also for all other probability values, then we say the forecaster is well
calibrated. Here are two ways to apply this somewhat fuzzy concept to the
probabilities p1, . . . , pN and outcomes y1, . . . , yN .

1. For a given p ∈ [0, 1], divide the pn into those we consider near p and
those we consider not near. Write

∑
n:pn≈p 1 for the number in the group

we consider near p. Divide this group further into those for which yn is
equal to 0 and those for which yn is equal to 1. Write

∑
n:pn≈p yn for the

number in the latter group. Thus the fraction of 1s on those rounds where
pn is near p is ∑

n:pn≈p yn∑
n:pn≈p 1

. (19)

We say the forecasts are well calibrated at p if (19) is approximately equal
to p. We say the forecasts are well calibrated overall if they are well
calibrated at p for every p for which the denominator of (19), the number
of pn near p, is large.

2. Alternatively, instead of dividing the pn sharply into those we consider
near p and those we consider not near, we can introduce a continuous
measure K(pn, p) of nearness, a function such as the Gaussian kernel

K(pn, p) := e−γ(pn−p)2 (20)

(with γ > 0), which takes the value 1 when pn is exactly equal to p, a
value close to 1 when pn is near p, and a value close to 0 when pn is far
from p. Then we say the forecasts are well calibrated if

∑N
n=1 K(pn, p)yn∑N

n=1 K(pn, p)
≈ p (21)

for every p for which the denominator of the left-hand side is large.

The second approach, making the closeness of pn and p continuous, fits here,
because Skeptic can enforce (21) using a forecast-continuous strategy.

Recall that a function K : Z2 → R is a called a kernel on Z if it satisfies
two conditions:

• It is symmetric: K(p, p′) = K(p′, p) for all p, p′ ∈ Z.

• It is positive definite:
∑m

i=1

∑m
j=1 λiλjK(zi, zj) ≥ 0 for all real numbers

λ1, . . . , λm and all elements z1, . . . , zm of Z.
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The Gaussian kernel (20) is a kernel on [0, 1] in this sense. It also satisfies
0 ≤ K(p, p′) ≤ 1 for all p, p′ ∈ Z. And as I have already noted, K(p, p′) is 1
when p = p′, close to 1 when p′ is near p, and close to 0 when p′ is far from
p. Our reasoning in this section works when K is any kernel on [0, 1] satisfying
these conditions.

The goal that (21) hold for all p for which
∑N

n=1 K(pn, p) is large is fuzzy on
two counts: “≈ p” is fuzzy, and “large” is fuzzy. But reasonable interpretations
of these two fuzzy predicates lead to the following precise goal.

Goal ∣∣∣∣∣
N∑

n=1

K(pn, p)(yn − pn)

∣∣∣∣∣ ≤
√

N (22)

Heuristic Proposition 1 Under reasonable interpretations of “≈ p” and
“large,” (22) implies that (21) holds for all p for which

∑N
n=1 K(pn, p) is large.

Explanation Condition (21) is equivalent to

∑N
n=1 K(pn, p)(yn − p)∑N

n=1 K(pn, p)
≈ 0. (23)

We are assuming that K(pn, p) is small when p is far from pn. This implies that

∑N
n=1 K(pn, p)(pn − p)∑N

n=1 K(pn, p)
≈ 0

when
∑N

n=1 K(pn, p) is large. So (23) holding when
∑N

n=1 K(pn, p) is large is
equivalent to ∑N

n=1 K(pn, p)(yn − pn)∑N
n=1 K(pn, p)

≈ 0 (24)

holding when
∑N

n=1 K(pn, p) is large. If we take
∑N

n=1 K(pn, p) being large to
mean that

N∑
n=1

K(pn, p) À
√

N,

then this condition together with (22) implies
∣∣∣∑N

n=1 K(pn, p)(yn − pn)
∣∣∣

∑N
n=1 K(pn, p)

¿ 1,

which is a reasonable interpretation of (24).
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4.3.2 Betting strategy and forecasting algorithm

In order to derive a strategy for Forecaster that guarantees the goal (22) in
Protocol 11, let us imagine that Skeptic is allowed to enter the game and bet,
as in Protocol 10.

Our strategy for Forecaster will be to play against the following forecast-
continuous strategy for Skeptic.

K29 Betting Strategy

Sn(p) =
n−1∑

i=1

K(p, pi)(yi − pi)

We call this strategy for Skeptic the K29 betting strategy because it is modeled
on the martingale that Kolmogorov used in [27] to prove the weak law of large
numbers (see §3.3).

According to the proof of Proposition 4, playing against the K29 betting
strategy means using the following algorithm to choose pn for n = 1, . . . , N .

K29 Forecasting Algorithm

• If the equation
n−1∑

i=1

K(p, pi)(yi − pi) = 0 (25)

has at least one solution p in the interval [0, 1], set pn equal to such a
solution.

• If
∑n−1

i=1 K(p, pi)(yi − pi) > 0 for all p ∈ [0, 1], set pn equal to 1.

• If
∑n−1

i=1 K(p, pi)(yi − pi) < 0 for all p ∈ [0, 1], set pn equal to 0.

4.3.3 Why the forecasting algorithm works

Why does the K29 forecasting algorithm work? I will give a formal proof that
it works and then discuss its success briefly from an intuitive viewpoint.

Proposition 5 Suppose Forecaster plays in Protocol 11 using the K29 algo-
rithm with a kernel K satisfying K(p, p) ≤ 1 for all p ∈ [0, 1]. Then (22) will
hold no matter how Reality chooses y1, . . . , yN .

Proof Mercer’s theorem says that for any kernel K on [0, 1], there is a mapping
Φ (called a feature mapping) of [0, 1] into a Hilbert space H such that

K(p, p′) = Φ(p) · Φ(p′) (26)

for all p, p′ in [0, 1], where · is the dot product in H [39, 48].
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Under the K29 betting strategy, Skeptic’s moves are

sn =
n−1∑

i=1

K(pn, pi)(yi − pi).

Proposition 4 says that when Forecaster plays the K29 forecasting algorithm
against this strategy, Skeptic’s capital does not increase. So

0 ≥ KN −K0 =
N∑

n=1

sn(yn − pn) =
N∑

n=1

n−1∑

i=1

K(pn, pi)(yn − pn)(yi − pi)

=
1
2

N∑
n=1

N∑

i=1

K(pn, pi)(yn − pn)(yi − pi)− 1
2

N∑
n=1

K(pn, pn)(yn − pn)2

=
1
2

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn)

∥∥∥∥∥

2

− 1
2

N∑
n=1

‖(yn − pn)Φ(pn)‖2 .

Hence ∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn)

∥∥∥∥∥

2

≤
N∑

n=1

‖(yn − pn)Φ(pn)‖2 . (27)

From (27) and the fact that

‖Φ(p)‖ =
√

K(p, p) ≤ 1,

we obtain ∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn)

∥∥∥∥∥ ≤
√

N. (28)

Using (26), the Cauchy-Schwartz inequality, and then (28), we obtain

∣∣∣∣∣
N∑

n=1

K(pn, p)(yn − pn)

∣∣∣∣∣ =

∣∣∣∣∣

(
N∑

n=1

Φ(pn)(yn − pn)

)
· Φ(p)

∣∣∣∣∣

≤
∥∥∥∥∥

N∑
n=1

Φ(pn)(yn − pn)

∥∥∥∥∥ ‖Φ(p)‖ ≤
√

N.

Additional insight about the success of the K29 forecasting algorithm can
be gleaned from Equation (25):

n−1∑

i=1

K(p, pi)(yi − pi) = 0.

In practice, this equation usually has a unique solution in [0, 1], and so this
solution is Forecaster’s choice for pn. Because K(p, pi) is small when p and pi
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are far apart, the main contribution to the sum comes from terms for which pi

is close to p. So the equation is telling us to look for a value of p such that
yi − pi average to zero for i such that pi is close to p. This is precisely what
calibration requires. So we can say that on each round, the algorithm chooses
as pn the probability value where calibration is the best so far.

The pertinence of this formulation becomes clear when we recognize that
Forecaster’s calibration cannot be rejected because of what Reality does on a
single round of the forecasting game. A statistical test of calibration (such as the
K29 betting strategy) can reject calibration (multiply its initial capital by a large
factor) only as a result of a trend involving many trials. To reject calibration
at p, we must see many rounds with pi near p, and the relative frequency of 1s
for these pi must diverge substantially from p. The K29 formulation avoids any
such divergence by always putting the next pn at values of p where no trend is
emerging—where, on the contrary, calibration is excellent so far.

This is only natural. In general, we avoid choices that have worked out
poorly in the past. The interesting point here is that this is sufficient to avoid
rejection by a statistical test. Forecaster can make sure he is well calibrated by
acting as if the future will be like the past, regardless of what Reality does on
each round.

4.3.4 More to say

Calibration is only one probabilistic property of the forecasts p1, . . . , pN in Pro-
tocol 10 that we might demand in order to count Forecaster as a good probability
forecaster. For example, we might demand that the relative frequency of 1s on
rounds for which pi is close to p converge to p at the rate described by the law of
the iterated logarithm. This demand can also be satisfied using Proposition 4.
Because violation of the law of the iterated logarithm is an event of small proba-
bility in classical probability, Ville’s theorem tells us that there is a strategy for
Skeptic that multiplies the capital risked by a large factor if the law is violated.
Such a strategy is constructed in [51, Chapter 5], and Proposition 4 tells us that
Forecaster will satisfy the law of the iterated logarithm by playing against it.

There is much more to say. For example:

• Proposition 4 does more than prevent Skeptic from multiplying the capital
he risks by a large factor: it prevents him from making any money at all.
This means that defensive forecasts do even better, with respect to tests
being defended against, than classical probability theory expects. Rejec-
tion by these tests is avoided for certain, not merely with high probability.

• Forecaster’s strategy on each round n does not depend on the horizon N .
So if the game is played indefinitely, the goal (calibration in the case of
the K29 forecasting algorithm) is achieved for every N .

See [72] for a more comprehensive discussion.
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4.4 Resolution

Probability forecasting is usually based on more information than the success of
previous forecasts for the various probability values. If rainfall is more common
in April than May, for example, then a weather forecaster should take this into
account. It should rain on 30% of the April days for which he gives rain a
probability of 30% and also on 30% of the May days for which he gives rain a
probability 30%. This property is stronger than mere calibration, which requires
only that it rain on 30% of all the days for which the forecaster says 30%. It is
called resolution.

To see that defensive forecasting can achieve resolution as well as mere cali-
bration, we can introduce the auxiliary information xn in the way explained in
§3.5:

Protocol 12. Forecasting with Auxiliary Information xn

Parameter: natural number N , set X
K0 := α.
FOR n = 1, . . . , N :

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

In this context, we need a kernel K : ([0, 1] ×X)2 → [0, 1] to measure the
nearness of (p, x) to (p′, x′). We may choose it so that K((p, x)(p′, x′)) is 1 when
(p, x) = (p′, x′), close to 1 when (p, x) is near (p′, x′), and close to 0 when (p, x)
is far from (p′, x′). Once we have chosen such a kernel, we may say that the
forecasts have good resolution if

∑N
n=1 K((pn, xn)(p, x))yn∑N

n=1 K((pn, xn)(p, x))
≈ p

for every pair (p, x) for which the denominator of the left-hand side is large.
This is a straightforward generalization of calibration, and the entire theory

that I have reviewed for calibration generalizes directly. In the generalization,
the K29 betting strategy is

Sn(p) =
n−1∑

i=1

K((p, xn), (pi, xi))(yi − pi),

and K29 forecasting algorithm achieves good resolution by playing against it.
The K29 forecasting strategy is again very natural. It chooses pn to satisfy

n−1∑

i=1

K((pn, xn), (pi, xi))(yi − pi) = 0
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In other words, it chooses pn so that we already have good resolution for (pi, xi)
near (pn, xn). This is analogous to the practice of varying one’s actions with
the situation in accordance with past experience in different situations. If x is
the friend I am spending time with and p is our activity, and experience tells
me that bowling has been the most enjoyable activity with Tom, bridge with
Dick, and tennis with Harry, then this is how I will choose in the future.

See [72] for details.

4.5 Implications

There is much more to say about defensive forecasting, much of it in recent
papers by Vladimir Vovk [65–72]. I cannot begin to summarize this work here,
but I should mention that probabilities produced by defensive forecasting can
often be used in decision problems, where calibration and resolution often suffice
to guarantee that decisions derived from them are optimal in the same sense as
decisions derived from classical probabilities.

Some readers may find it unsurprising that experience can always be used
to make probability forecasts that pass statistical tests. It is well known, after
all, that probabilities can be estimated consistently using a random sample (see,
e.g., [55]). But this well-known result is based on a strong assumption about
reality’s behavior in the future: that past and future observations are indepen-
dently drawn from the same probability distribution. Defensive forecasting, in
contrast, gives probabilities that pass statistical tests without using any advance
knowledge about how reality will behave. For me, at least, this is surprising and
full of implications.

In my own previous work, I tried to understand the weighing of evidence
when we do not have classical probabilities [49] and the meaning of probabilistic
causality [50]. Learning about the possibility of defensive forecasting has altered
my thinking on both these topics.

• I now think that the main feature distinguishing the domain where we can
use probabilities from the domain where we need other methods (such as
those I studied in [49]) is the presence of a structure for repetition. As
soon as we have a game with repeated rounds and we are concerned with
long run performance in that structure, not with one particular case, we
can use probability theory, at least in its game-theoretic form. But when
we are concerned with a particular case, which different people may place
in different sequences of similar cases or different games, we must weigh
arguments in ways that go beyond probability theory.

• In [50], I argued that probabilistic causal relations can be fully under-
stood in terms of the possibilities for probabilistic prediction; counterfac-
tual worlds are not needed. I continue to believe this, but I now see the
possibility of probabilistic prediction as depending only on the availability
of the auxiliary information on which it is based (the xn in Protocol 12),
not on prior knowledge of probabilities.

These are the ideas I would most like to clarify in future work.
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hebdomadaires des séances de l’Académie des Sciences, 191:910–912, 1930b.

[29] Andrei N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer, Berlin, 1933. An English translation by Nathan Morrison ap-
peared under the title Foundations of the Theory of Probability (Chelsea,
New York) in 1950, with a second edition in 1956.

[30] Masayuki Kumon and Akimichi Takemura. On a simple strategy weakly
forcing the strong law of large numbers in the bounded forecasting game.
Annals of the Institute of Statistical Mathematics, 2007. Forthcoming,
doi:10.1007/s10463-007-0125-5.

[31] Leonid A. Levin. On the notion of a random sequence. Soviet Mathematics
Doklady, 14:1413–1416, 1973.

[32] Leonid A. Levin. Uniform tests of randomness. Soviet Mathematics Dok-
lady, 17:337–340, 1976. The Russian original in: Doklady AN SSSR
227(1), 1976.

[33] Leonid A. Levin. Randomness conservation inequalities; information and
independence in mathematical theories. Information and Control, 61:15–
37, 1984.
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Dialetica, 8:125–144, 1954.

[61] Richard von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathe-
matische Zeitschrift, 5:52–99, 1919.

[62] Richard von Mises. Wahrscheinlichkeitsrechnung, Statistik und Wahrheit.
Springer, Vienna, 1928. Second edition 1936, third 1951. A posthumous
fourth edition, edited by his widow Hilda Geiringer, appeared in 1972.
English editions, under the title Probability, Statistics and Truth, appeared
in 1939 and 1957.

[63] Richard von Mises. Wahrscheinlichkeitsrechnung und ihre Anwendung in
der Statistik und theoretischen Physik. Deuticke, Leipzig and Vienna, 1931.

[64] Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine
Learning, 35:247–282, 1999.

[65] Vladimir Vovk. Predictions as statements and decisions, Working Paper
17, www.probabilityandfinance.com, June 2006.

[66] Vladimir Vovk. Continuous and randomized defensive forecasting: unified
view, Working Paper 21, www.probabilityandfinance.com, August 2007.

[67] Vladimir Vovk. Defensive forecasting for optimal prediction with expert
advice, Working Paper 20, www.probabilityandfinance.com, August 2007.

[68] Vladimir Vovk. Leading strategies in competitive on-line prediction, Work-
ing Paper 18, www.probabilityandfinance.com, August 2007.

[69] Vladimir Vovk. Competing with wild prediction rules, Working Paper 16,
www.probabilityandfinance.com, December 2005 (revised January 2006).

37



[70] Vladimir Vovk. Competitive on-line learning with a convex loss func-
tion, Working Paper 14, www.probabilityandfinance.com, May 2005 (re-
vised September 2005).

[71] Vladimir Vovk. Non-asymptotic calibration and resolution, Working Paper
13, www.probabilityandfinance.com, November 2004 (revised JUly 2006).

[72] Vladimir Vovk. On-line regression competitive with reproducing ker-
nel Hilbert spaces, Working Paper 11, www.probabilityandfinance.com,
November 2005 (revised January 2006.

[73] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning
in a Random World. Springer, New York, 2005.

[74] Vladimir Vovk, Ilia Nouretdinov, Akimichi Takemura, and Glenn
Shafer. Defensive forecasting for linear protocols, Working Paper 10,
www.probabilityandfinance.com, February 2005. An abridged version
appeared in Algorithmic Learning Theory: Proceedings of the 16th
International Conference, ALT 2005, Singapore, October 8-11, 2005,
edited by Sanjay Jain, Simon Ulrich Hans, and Etsuji Tomita, www-
alg.ist.hokudai.ac.jp/ thomas/ALT05/alt05.jhtml on pp. 459–473 of Lec-
ture Notes in Computer Science, Volume 3734, Springer-Verlag, 2005.

[75] Vladimir Vovk and Glenn Shafer. A game-theoretic explanation of the
√

dt
effect, Working Paper 5, www.probabilityandfinance.com, 2003.

[76] Vladimir Vovk and Glenn Shafer. Good randomized sequential probabil-
ity forecasting is always possible, Working Paper 7, www.probabilityand-
finance.com, June 2003 (revised January 2005). An abridged version ap-
peared in Journal of the Royal Statistical Society, Series B, 67:747–764,
2005.

[77] Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecast-
ing, Working Paper 8, www.probabilityandfinance.com, September 2004
(revised January 2005). An abridged version appeared in Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics,
www.gatsby.ucl.ac.uk/aistats/.

38



Game-Theoretic Probability and Finance Project

Defensive Forecasting Subseries Working Papers

7. Good randomized sequential probability forecasting is always possible, by
Vladimir Vovk and Glenn Shafer, June 2003 (revised August 2007).

8. Defensive forecasting, by Vladimir Vovk, Akimichi Takemura, and Glenn
Shafer, September 2004 (revised January 2005).

9. Experiments with the K29 algorithm, by Vladimir Vovk, October 2004.

10. Defensive forecasting for linear protocols, by Vladimir Vovk, Ilia Nouret-
dinov, Akimichi Takemura, and Glenn Shafer, February 2005 (revised
September 2005).

11. On-line regression competitive with reproducing kernel Hilbert spaces, by
Vladimir Vovk, November 2005 (revised January 2006).

13. Non-asymptotic calibration and resolution, by Vladimir Vovk, November
2004 (revised July 2006).

14. Competitive on-line learning with a convex loss function, by Vladimir
Vovk, May 2005 (revised September 2005).

16. Competing with wild prediction rules, by Vladimir Vovk, December 2005
(revised January 2006).

17. Predictions as statements and decisions, by Vladimir Vovk, June 2006.

18. Leading strategies in competitive on-line prediction, by Vladimir Vovk,
August 2007.

20. Defensive forecasting for optimal prediction with expert advice, by
Vladimir Vovk, August 2007.

21. Continuous and randomized defensive forecasting: unified view, by
Vladimir Vovk, August 2007.

22. Game-theoretic probability and its uses, especially defensive forecasting,
by Glenn Shafer, August 2007.

39


