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Abstract

A game-theoretic efficient market hypothesis says that a trading strategy will
not multiply the capital it risks substantially relative to a specified market in-
dex. This implies that the autocorrelation of returns with respect to the index
will be small and that a signal x will have approximately the same lead-lag effect
on all traded securities. These predictions do not depend on assumptions about
probabilities and preferences. Instead they rely on the game-theoretic frame-
work introduced by Shafer and Vovk in 2001, which unifies statistical testing
with the notion of a trading strategy that risks only a fixed capital. In this
framework, we reject market efficiency at significance level α when the capital
risked is multiplied by 1/α or more. This approach identifies the same anoma-
lies as the conventional approach: statistical significance for the autocorrelations
of small-cap portfolios and equal-weighted indices, as well as for the ability of
other portfolios to lead them. Because it bases statistical significance directly
on trading strategies, the approach allows us to measure the degree of market
friction needed to account for this statistical significance. We find that market
frictions provide adequate explanation.



1 Introduction

Substantial autocorrelations for returns appear to violate the efficient-markets
hypothesis (EMH). Such apparent violations, or anomalies, are important to
finance theory. By searching for market frictions that can rule out the trading
profits that anomalies seem to permit, we arrive at a better understanding of
the market.

In this paper, we study autocorrelations and other lead-lag effects using
hypotheses that are related to the EMH but are simpler. We call them game-
theoretic efficient-market hypotheses (GEMHs). A GEMH states that no trading
strategy will multiply the capital it risks by a large factor relative to a specific
market index. This can be tested directly, with no further assumptions about
probabilities or the preferences of investors.

As we show in §2, simple GEMHs predict that the autocorrelations of re-
turns will be small. Though the prediction is not new, it is interesting that we
can make it using many fewer assumptions than EMH models require. More
importantly, the GEMH approach allows us to measure the relative efficiency
of a financial market using the level of transaction costs needed to explain away
the observed autocorrelation. As we show in §3, the observed anomalies are
explained by small levels of transaction costs. This type of analysis is possi-
ble because a GEMH allows us to identify a statistical test with a strategy for
speculation. Our simple GEMHs also make a less familiar prediction: they tell
us that a signal should have approximately the same lead-lag effect on the re-
turns for all securities. The violation of this prediction can be understood as an
additional anomaly, which can also be explained by transaction costs.

In §1.1, we explain how our results can help economists overcome their fail-
ure to reach consensus concerning the EMH. In §1.2, we explain how the game-
theoretic foundation for probability introduced by Shafer and Vovk (2001) mo-
tivates GEMHs. In §1.3, we summarize predictions GEMHs make concerning
lead-lag effects, and in §1.4, we summarize the comparison of these predictions
with actual US stock returns. In §1.5, we relate our results to work by other
authors.

1.1 Breaking the EMH stalemate

Boudoukh, Richardson, and Whitelaw (1994) have categorized explanations of
anomalies into three types: loyalist, revisionist, and heretical. Loyalist expla-
nations point to market frictions that prevent observed prices from matching
rational prices. Revisionist explanations propose more complicated models of
rational price formation, which may be flexible enough to match observed prices.
Heretical explanations abandon the hypothesis that market prices are rational.

The debate between these different viewpoints has been inconclusive. As
Andrew Lo (2007) has pointed out, economists have not reached consensus on
the validity of the EMH, and tests of the EMH have not even led to agreement
on how to measure the relative efficiency of markets. Whenever there seems to
be evidence for more friction in some markets than others, a revisionist explains
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the evidence away.
One reason the stalemate persists is the complexity of the EMH. From its

very beginning in the work of Samuelson (1965) and Fama (1965), the EMH
has woven together two threads: the hypothesis that there are no profitable
trading strategies and the hypothesis that prices incorporate all relevant in-
formation. In theory, we can tie the two threads together by saying that a
marginal-utility-weighted price should be a martingale with respect to an ob-
jectively valid probability distribution (Lucas Jr. 1978). But in practice, the two
still lead in different directions. Loyalists emphasize trading when they argue
that the EMH is confirmed whenever apparently profitable trading strategies are
ruled out by market frictions (e.g. Malkiel 2003). Revisionists emphasize infor-
mation when they construct probabilities and investor preferences that match
observed prices (e.g., Hameed 1997). Heretics also emphasize information when
they argue that these probabilities and investor preferences are implausible (e.g.,
Shiller 2003).

As Fama (1970) first pointed out, the EMH has a joint hypothesis problem.
In order to test the EMH, we must incorporate it into a model that specifies
probabilities and utilities for a marginal investor. So it can never be rejected
definitively. Even if many models produce the same anomaly, there may be a
not-yet-examined model that eliminates the anomaly.

The game-theoretic approach escapes from the joint hypothesis problem by
identifying tests with trading strategies. Such tests allow us to identify anoma-
lies and measure the degree of market inefficiency they imply without modeling
probabilities and utilities. The degree of market inefficiency implied by a sta-
tistically significant anomaly is simply the level of transaction costs required to
eliminate the strategy’s profit and hence the test’s significance. This approach
also breaks the EMH stalemate, inasmuch as it makes clear how far the hypoth-
esis of “no profitable trading strategy” takes us. If the level of transaction costs
needed to eliminate profits from an anomaly is far below the level that actually
exists in the market (as seems to be the case for the anomalies we study in
this paper), then we have an explanation for why a reasonably efficient market
allows the anomaly to exist. This does not eliminate interest in revisionist ex-
planations for why the anomaly arises, but these explanations, too, must take
into account the level of transaction costs the anomaly implies.

1.2 The game-theoretic framework

A GEMH is about a particular market (e.g., the market in the stocks monitored
by CRSP) and a particular traded instrument m, such as a currency, a money
market account, or a traded market index (e.g., the S&P 500 index). It states
that no strategy for trading in the market will multiply the capital it risks by a
large factor relative to m.

The EMH literature has paid little attention to the capital risked by trading
strategies. The strategies considered are often self-financing, but because they
sell stocks short, the capital they risk may be much larger than meets the eye.
So the idea of measuring the profitability of a trading strategy by the factor
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by which it multiplies the capital it risks is novel. This idea derives from the
game-theoretic analysis of classical probability provided by Shafer and Vovk
(2001).

It is conventional to reject a probabilistic hypothesis because of the hap-
pening of an event singled out in advance to which the hypothesis gives small
probability—say probability less than α, where α is a small positive number
such as 5%. As Shafer and Vovk show, this is equivalent to rejecting the hy-
pothesis because the expected values it gives, when interpreted as prices, permit
a speculator to multiply the capital he risks by 1/α. Multiplying one’s capital
by 1000, for example, is the same as an event of probability 0.001 happening
(Shafer and Vovk 2001, pp. 194–197).

Shafer and Vovk also show that classical theorems such as the law of large
numbers and the central limit theorem generalize beyond situations where com-
plete probability distributions for future events (and therefore prices for all
possible payoffs) are given, to situations where only some payoffs are priced.
The key idea is that we can still test the prices by trying to multiply the capital
we risk by a large factor. Predictions such as the law of large numbers are de-
rived from the assumption that strategies for doing so will not succeed. When
applied to a financial market rather than to abstract probability theory, these
techniques allow us to test the efficiency of the market and to derive predictions
from the assumption that it is efficient.

Consider a perfect-information N -period game between two players, Specu-
lator and Market. Think of the capital risked by a strategy for Speculator as
his initial capital in the game, say K0. For simplicity, set K0 equal to 1, and
assume that Speculator trades in only a single security y. At the beginning of
each period, Speculator chooses a fraction Yn of his current capital to invest in
y during the period; he invests the remainder in m. At the end of each period,
Market decides on y’s simple return yn. The following protocol spells out how
this determines Speculator’s capital process K0,K1, . . . ,KN :

Basic Market Protocol
K0 := 1.
FOR n = 1, 2, . . . , N :

Speculator announces Yn ∈ R.
Market announces yn ∈ (−1,∞).
Kn := Kn−1(1 + Ynyn).

Here we assume that Kn and yn are measured using the GEMH’s m as the
numeraire, or unit of monetary value. If we use some other numeraire instead,
then the formula Kn−1(1+Ynyn) for the capital at the end of period n must be
replaced by Kn−1(1 + mn + Yn(yn −mn)), where yn and mn are returns with
respect to the other numeraire; see §2.3.

What does it mean for a strategy for Speculator to risk only the initial capital
K0 in the game? It means that the move Y1 specified by the strategy risks no
more than K0, the move Y2 risks no more than K1, and so on. In other words,
the strategy never risks bankruptcy. It guarantees that Kn will be nonnegative
for all n no matter how Market plays.
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In order to test market efficiency or make a prediction based on market
efficiency, we select a small positive number α (our significance level) and a
strategy for Speculator that risks only the initial unit capital.

• Testing: We reject efficiency if Market moves in such a way that KN >
1/α when Speculator follows the strategy.

• Prediction: If A is a statement about Market’s moves y1, . . . , yN (a
bound on their autocorrelation, for example), and if the strategy guaran-
tees that KN > 1/α if A fails, then we are 1 − α confident that A will
happen.

If we measure Kn and yn with respect to to a numeraire different from our
GEMH’s m, we must replace KN > 1/α in both statements with

KN > (1/α)
N∏

n=1

(1 + mn),

because
∏N

n=1(1+mn) is the ratio by which m grows relative to the numeraire.
Strictly speaking, the requirement that Speculator not risk more than his

current capital Kn−1 on the nth round prevents him from going short in y
(choosing Yn < 0) or in m (choosing Yn > 1). In the first case, Market can
bankrupt him by making yn > −1/Yn ; in the second case he can do so by
making yn < −1/Yn. In order to permit Speculator to undertake a prudent
amount of short selling, we will impose an upper bound on |yn|. But we will
make no other assumptions about Market’s moves. In particular, we will not
assume probabilities for them.

The two players, Speculator and Market, move in the order indicated and see
each other’s moves. Within minimal constraints (such as a constraint on |yn|),
each can move as he pleases. Modeling the market as a single player who can
play strategically against Speculator may seem unreasonably pessimistic, but
it is appropriate because our mathematical results establish what Speculator
can achieve no matter what the market does. The case where Market plays
strategically may be the worst case—the most difficult case for Speculator’s
strategy. But the prediction is also valid if Market does not play strategically.

The intuition underlying the game-theoretic approach is the usual one for
market efficiency: opportunities for easy money will already have been elimi-
nated. This intuition is strongest when applied to simple strategies, and we use
simple strategies in this paper: momentum strategies, contrarian strategies, and
averages of the two. Previous work in the game-theoretic framework by Vovk
and Shafer has shown that these simple strategies can enforce

√
dt scaling on

asset returns (Vovk and Shafer 2003), as well as a CAPM-type relation between
observed averages of returns and their observed correlations with market returns
(Vovk and Shafer 2007). The present study is the first, however, to apply the
game-theoretic approach to autocorrelations and lead-lag effects.

The game-theoretic approach emphasizes the short-run impact of specula-
tion, as opposed to the impact of investors’ long-run preferences concerning risk.

4



The only risk considered is the risk of bankruptcy. The approach does not nec-
essarily contradict equilibrium analyses that make assumptions about investors’
preferences and expectations. As Stephen F. LeRoy explained over thirty years
ago, “it is likely that changes in the expected rate of return due to changes in
estimates of risks are small in comparison with the short-run fluctuations in
realized rates of return,” so that “we are led to expect on prior grounds that
if capital markets are efficient, rates of return will follow a martingale distribu-
tion even in the presence of risk-aversion” (LeRoy 1973, p. 445). But empirical
validation of long-run equilibrium analyses will require that they explain more
than is explained by short-horizon speculative efficiency.

1.3 Our predictions

Suppose that in addition to the N successive returns y1, . . . , yN , Market also
announces an earlier return y0, and that when he announces yn, he also an-
nounces a signal xn. Then we can compute the empirical lagged correlation of
x and y,

corr(x, y) :=
∑N

n=1(xn−1 − x−)(yn − y+)√∑N
n=1(xn−1 − x−)2

√∑N
n=1(yn − y+)2

, (1)

where x− = (1/N)
∑N

n=1 xn−1 and y+ = (1/N)
∑N

n=1 yn. Like other authors,
we are interested in corr(x, y), but we will find it convenient to emphasize the
simpler quantity

eff(x, y) :=
N∑

n=1

xn−1yn, (2)

which we call the lead-lag effect of the signal x on the security y. When the
average of the yn is close to zero, eff(x, y) will be numerically indistinguish-
able from the numerator of corr(x, y). So under reasonable assumptions on the
denominator, a small value for eff(x, y) will imply a small value for corr(x, y).

In §2.2, we show that if the returns yn are measured with respect to m, then
the GEMH for m implies that the lead-lag effect eff(x, y) will be small. In §2.3,
we show that two lead-lag effects involving the same signal x, say eff(x, y) and
eff(x, z), will be approximately equal under the GEMH for m even if the returns
yn and zn are measured with respect to a numeraire different from m.

Our theory does not require that the xn be returns for a security in which
Speculator can trade, but we do need the xn to be scaled like returns: of order√

dt, where dt is the length of time in the trading period. We are most inter-
ested, of course, in the case where xn = yn so that (1) reduces to y’s empirical
autocorrelation,

corr(y, y) :=
∑N

n=1(yn−1 − y−)(yn − y+)√∑N
n=1(yn−1 − y−)2

√∑N
n=1(yn − y+)2

, (3)

and (2) reduces to y’s auto-effect, eff(y, y) :=
∑N

n=1 yn−1yn.
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1.4 Our empirical results

We test the efficiency of the United States stock market by testing our predic-
tions on weekly stock returns for 1962 to 2005. These are our principal findings:

• The game-theoretic approach identifies the same anomalies as the conven-
tional approach. Autocorrelations for portfolios of small-cap stocks are
statistically significant, as are the lead-lag effects of portfolios of larger-
cap stocks on small-cap stocks.

• Although some of the autocorrelations and lead-lag effects are large, they
are accounted for by modest levels of transaction costs. The largest auto-
correlation, that for the portfolio consisting of the one-fifth of stocks with
the smallest market capitalization, is more than 0.5, but its statistical
significance is accounted for by a transaction cost of less than 1.5%. The
implied transaction cost for other autocorrelations and lead-lags is much
less.

• Game-theoretic statistical tests, like conventional statistical tests, vary in
their power. But unlike statistical significance, the implied transaction
cost seems to be insensitive to the power of the test.

• As measured by implied transaction costs, the market was noticeably more
efficient in 1995–2005 than in 1962–1994.

1.5 Connections with other work

Larry Fisher (1966) was the first to point out that thin trading can produce
positive autocorrelation for a portfolio’s returns. On a day when the market as
a whole moves up or down, the stocks in the portfolio that trade tend to move in
the same direction, and so the portfolio does too. The stocks in the portfolio that
do not trade that day tend to catch up the next day, and so the portfolio tends
to move in that direction again. In recent decades, other authors have pointed
out that the same effect can cause lagged returns for one portfolio to have a
positive correlation with current returns for another. Such correlations have
been called “cross-autocorrelations” (Lo and MacKinlay 1990b,a); we call them
simply “lagged correlations.” Stocks with small market capitalization generally
trade most thinly, and not surprisingly, portfolios consisting of small-cap stocks
show the most substantial autocorrelations and the most substantial correlations
with lagged returns for other portfolios. Substantial autocorrelations are also
observed for equal-weighted averages of all the stocks in the market, most of
which are small-cap stocks (Campbell et al. 1997).

For the past twenty years, the literature on autocorrelations and lagged cor-
relations of returns has also discussed the opening they provide for “contrarian”
trading strategies, which go by this name because they involve buying stocks
that have lost value and selling stocks that have gained value. It seems at first
paradoxical that a positive autocorrelation for a portfolio’s returns should pro-
duce profits for a strategy that bets on failure being followed by success. One of
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the contributions of Lo and MacKinlay (1990b) was a resolution of this paradox.
Their explanation points to the positive lagged correlation between winners and
losers: because the winners went up yesterday, we can expect the losers to go
up today.

Our game-theoretic approach casts a different light on this picture. When
we consider only strategies that avoid risk of bankruptcy, as the game-theoretic
approach requires, the obvious strategy for taking advantage of a positive corre-
lation is most naturally described as a “momentum” strategy. The momentum
strategy for taking advantage of a positive autocorrelation for a portfolio’s re-
turns is to make one’s investment in the portfolio proportional to its previous
period’s return, thus increasing this investment when the return goes up and de-
creasing it when the return goes down. More generally, the momentum strategy
for taking advantage of a positive correlation between the returns of portfolio
A and the lagged returns of portfolio B is to make one’s investment in A pro-
portional to B’s return in the previous period. When B is different from A, the
strategy that uses B’s momentum as a signal for investing in A does resemble
the “contrarian” strategy of selling winners to buy losers. This is especially true
when A and B together comprise all the stocks in the market, and we keep cap-
ital not invested in A in a market index. But each game-theoretic momentum
strategy relies only on the correlation that inspires it. In §2, we show that this
correlation alone is enough to make the strategy work. In §3, moreover, we find
empirically that the effectiveness of the strategies tends to be roughly propor-
tional to the magnitude of the correlation. The autocorrelations are larger than
the other lagged correlations, and the strategies based on the autocorrelations
tend to be most effective—the most profitable and hence the most powerful as
statistical tests.

In addition to not trading on particular days, small-cap stocks may also have
less timely closing prices, less informed trades, and so on (Lo and MacKinlay
1990b, Chordia and Swaminathan 2000). It may be a matter of taste whether all
these consequences of illiquidity should be called inefficiencies. But to the extent
that they impede a trading strategy, they can all be thought of as transaction
costs, and so our demonstration that observed correlations can be accounted for
by modest transaction costs further weakens the case for models that account for
them instead by time-varying expected returns (Conrad and Kaul 1988, 1989,
Hameed 1997, Bernhardt and Davies 2005).

In addition to positive autocorrelations for portfolios, nontrading can also
produce negative autocorrelations for individual stocks (Roll 1984). These au-
tocorrelations are also observed, but they are seldom statistically significant
(French and Roll 1986, Campbell et al. 1997). This is also confirmed by our
game-theoretic results.

A great deal of work has been done to find the most powerful statistical tests
of return correlations under the hypothesis that stock prices follow a random
walk. The variance-ratio tests developed by Cochrane (1988), Lo and MacKinlay
(1988), and Chow and Denning (1993) are among the most powerful. They
test correlations at many lags simultaneously. The game-theoretic tests in this
paper can be adapted to deal simultaneously with many lags, and this deserves
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exploration, but in this paper we show only that the empirical results obtained
by the variance-ratio test can be replicated with game-theoretic tests of single-
lag correlations.

There has also been work on the robustness of the statistical significance
of observed correlations. Nonparametric tests have been developed by Wright
(2000); see also Whang and Kim (2003). Inasmuch as it makes no stochastic
assumptions at all, a game-theoretic test is much more robust than a nonpara-
metric test.

2 Game-Theoretic Bounds

In this section, we derive bounds for a lead-lag effect eff(x, y) from the GEMH
for m. In §2.2, we consider the case where the returns yn are measured with
respect to m. In §2.3, we consider the case where they are measured with respect
to a numeraire different from m.

Remember that eff(x, y) is an empirical quantity—a function of the obser-
vations x0, . . . , xN and y0, . . . , yN . We do not assume a probability distribution
for the xn and yn, and therefore we do not consider a theoretical counterpart
for eff(x, y).

2.1 Averaging strategies

To obtain a two-sided bound on eff(x, y), we will average two strategies, one
giving an upper bound, the other giving a lower bound. In general, as we now
explain, an average strategy allows us to assert simultaneously the predictions
made by the two strategies individually, but this involves relaxing the signifi-
cance level.

Suppose α > 0, A is a statement about Reality’s moves x0, y0, . . . xN , yN ,
and Speculator has a strategy guaranteeing both (1) Kn ≥ 0 for n = 1, . . . , N
and (2) either A happens or KN ≥ 1/α. Then we say that the GEMH predicts
A at level α, and that the strategy witnesses the prediction.

Lemma 1. If the GEMH predicts A1 at level α1 and A2 at level α2, then it
predicts A1 ∩A2 at level α1 + α2.

Proof. Given a strategy witnessing A1 at level α1 and another witnessing A2 at
level α2, we construct a strategy that witnesses A1 ∩A2 at level α1 + α2. This
strategy splits Speculator’s initial capital into two accounts, one with α1/(α1 +
α2) of it and the other with the remaining α2/(α1 + α2); the first account is
played following the strategy that witnesses A1 at level α1, while the second is
played following the strategy that witnesses A2 at level α2. The final capital for
Speculator is then

α1

α1 + α2
K1,N +

α2

α1 + α2
K2,N , (4)

where K1,N is the final capital for the first strategy and K2,N is the final capital
for the second. If A1 ∩ A2 fails, then either A1 fails and so K1,N ≥ 1/α1
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and hence (4) is greater than or equal to 1/(α1 + α2), or else A2 fails and so
K2,N ≥ 1/α2 and again (4) is greater than or equal to 1/(α1 + α2).

This result holds for all protocols considered in this paper and for all proto-
cols considered by Shafer and Vovk (2001).

2.2 Lead-lags measured with respect to m should be small.

Let us add to the Basic Market Protocol the requirement that Market obey

|xn−1yn| < 1
C

(5)

for n = 1, . . . , N . This will allow Speculator to do limited short-selling without
risking more than his initial capital.

The inequality that we will now derive involves the function ∆ : (−1,∞) →
[0,∞) defined by ∆(u) := u− ln(1 + u). We use two properties of ∆(u):

• When u is small in absolute value, ∆(u) is also small. In fact, it is of order
u2.

• ∆(u) ≤ ∆(−u) for u ∈ [0, 1). To verify this, note that 1/(1 + u) +
1/(1 − u) ≥ 2 for u ∈ [0, 1) and then integrate both sides to obtain
ln(1 + u)− ln(1− u) ≥ 2u.

Proposition 1. Suppose the returns y0, y1, . . . , yN are measured with respect
to m, and suppose Market is required to obey (5) with C > 0. Then, for any
significance level α > 0, the GEMH for m predicts

|eff(x, y)| < 1
C

ln
2
α

+
1
C

N∑
n=1

∆(−C |xn−1yn|) (6)

at level α. We also have tighter one-sided predictions: the GEMH for m predicts

eff(x, y) <
1
C

ln
1
α

+
1
C

N∑
n=1

∆(Cxn−1yn) (7)

at level α and predicts

eff(x, y) > − 1
C

ln
1
α
− 1

C

N∑
n=1

∆(−Cxn−1yn) (8)

at level α.

Proof. To prove (7), consider the momentum strategy for Speculator that sets Yn

equal to Cxn−1. The capital process for this strategy, Kn =
∏N

n=1 (1 + Cxn−1yn) ,
is nonnegative by (5). So the strategy witnesses

N∏
n=1

(1 + Cxn−1yn) <
1
α

(9)
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at level α. The constraint (5) also guarantees that ∆(Cyn−1yn) is defined. So
we can take the logarithm of both sides of (9) and then substitute u−∆(u) for
ln(1 + u), obtaining

∑N
n=1 Cxn−1yn < ln(1/α) +

∑N
n=1 ∆(Cxn−1yn). Dividing

by C, we obtain (7).
Similarly, the contrarian strategy that sets Yn equal to −Cxn−1 witnesses

N∏
n=1

(1− Cxn−1yn) <
1
α

at level α. Again taking the logarithm of both sides, substituting u − ∆(−u)
for ln(1− u), and dividing by C, we obtain (8).

Because ∆(u) ≤ ∆(−u), we can substitute ∆ (−C |xn−1yn|) for ∆ (Cxn−1yn)
in (7) and for ∆ (−Cxn−1yn) in (8). Combining these two level α results using
Lemma 1, we obtain

|eff(x, y)| < 1
C

ln
1
α

+
1
C

N∑
n=1

∆(−C |xn−1yn|)

at level 2α. Substituting α/2 for α, we obtain (6) at level α.

Suppose Speculator trades over a total time T , divided into trading periods
of length dt, so that N = T/(dt). Then under the assumption that the xn and
the yn both scale like

√
dt, the qualitative message of the inequality (6) is that

|eff(x, y)| / a + bTdt, (10)

where a and b are constant with respect to T and dt. This is because the term
(1/C) ln(2/α) does not depend on T or dt, while the term

(1/C)
N∑

n=1

∆(−C |xn−1yn|) ,

because ∆(u) is of order u2, is of order (1/C)N (Cdt)2 = CTdt. On the same
principles, we expect the denominator of (1) to grow linearly with T , and so (10)
suggests that

|corr(x, y)| / d

T
+ edt,

where d and e are constant with respect to T and dt. This confirms our intuition
that corr(x, y) should be close to zero when T is large and dt is small.

2.3 Lead-lags not measured with respect to m should be
similar.

We now turn to a second implication of the GEMH for m: when lead-lag effects
are measured with respect to a numeraire different from m, a signal x will have
approximately the same lead-lag effect on a security y as it has on m.
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To fix ideas, we may suppose that m is a market index, but that we measure
capital and the returns xn, yn, and mn with respect to cash. In any case, we
can formulate the protocol as follows:

Protocol for Trading in y and m with a signal x
K0 := 1.
Market announces x0, y0, and m0, all in (−1,∞).
FOR n = 1, 2, . . . , N :

Speculator announces Yn ∈ R.
Market announces xn, yn, and mn, all in (−1,∞).
Kn := Kn−1 (1 + mn + Yn(yn −mn)).

If α > 0, A is a statement about Reality’s moves x0, y0, m0, . . . xN , yN ,mN ),
and Speculator has a strategy that guarantees both (1) Kn ≥ 0 for n = 1, . . . , N

and (2) either A happens or KN ≥ (1/α)
∏N

n=1(1 + mn), then we say that the
GEMH relative to m predicts A at level α, and that the strategy witnesses the
prediction.

We use the function Ψ(m, t) defined by Ψ(m, t) := t− ln (1 + t/(1 + m)) . If
t is very small, and m is of order t1/2, then Ψ(m, t) will be of order t3/2. We set

y†n =
yn −mn

1 + mn
. (11)

This is y’s return with respect to m—i.e., y’s return when the price of y is
measured using m as the numeraire.

Proposition 2. Suppose Market is required to obey

∣∣xn−1y
†
n

∣∣ <
1
C

(12)

for some constant C > 0. Then, for any significance level α ∈ (0, 1], the GEMH
for m predicts

eff(x, y)− eff(x,m) <
1
C

ln
1
α

+
1
C

N∑
n=1

Ψ (mn, Cxn−1(yn −mn)) (13)

at level α and predicts

eff(x,m)− eff(x, y) <
1
C

ln
1
α

+
1
C

N∑
n=1

Ψ(mn,−Cxn−1(yn −mn)) (14)

at level α.

Proof. Consider the strategy for Speculator that sets Yn equal to Cxn−1. It
witnesses

N∏
n=1

(1 + mn + Cxn−1(yn −mn)) <
1
α

N∏
n=1

(1 + mn) (15)

11



at level α. Using (11), we can rewrite condition (12) as

|Cxn−1(yn −mn)| < 1 + mn,

which implies that each factor on the left-hand side of (15) is positive. So we
can take logarithms of both sides, obtaining

N∑
n=1

ln
(

1 + mn + Cxn−1(yn −mn)
1 + mn

)
< ln

1
α

.

Because ln ((1 + m + t)/(1 + m)) = t−Ψ(m, t), we can rewrite this as

N∑
n=1

(Cxn−1(yn −mn)−Ψ(mn, Cxn−1(yn −mn))) < ln
1
α

.

Regrouping and dividing by C, we obtain (13).
The strategy for Speculator that invests the fraction −Cxn−1 of his capital

in y witnesses (15) with C replaced by −C, analogously leading to (14).

By averaging the strategies that produce (13) and (14), we can obtain a two-
sided inequality on eff(x, y) − eff(x,m), analogous to the two-sided bound (6)
on eff(y, y). We can also obtain bounds on the difference between x’s lead-lag
effect on a security y and its lead-lag effect a security z. We omit the details.

When the trading periods are short, so that the returns mn are uniformly
very small, the quantity eff(x, y) − eff(x,m) bounded by Proposition 2 will
approximate eff(x, y†). This is because eff(x, y)−eff(x,m) =

∑
xn−1(yn−mn),

while eff(x, y†) =
∑

xn−1(yn −mn)/(1 + mn). But Proposition 1 already told
us that eff(x, y†) will be small under the GEMH for m. So Proposition 2 may
be most interesting in cases of monthly or annual returns.

3 Empirical Results

In this section, we use the predictions derived in §2 to test two GEMHs for
United States stock markets: (1) The cash GEMH, which says that a speculator
will not multiply the capital he risks by a large factor when capital is measured
in cash. (2) The S&P 500 GEMH, which says he will not do so when capital is
measured relative to the S&P 500 index. We test the cash GEMH because tests
of the EMH usually use cash as numeraire. We test the S&P 500 GEMH because
efficiency relative to the S&P 500 seems to be the most practicable concrete
interpretation of efficiency “relative to the market”; the S&P 500 index is tracked
by many mutual and exchange-traded funds, and its 500 stocks account for 70%
of the capitalization of publicly traded corporations in the United States. We
test the two GEMHs using the predictions about eff(x, y) we derived in §2.2 and
the predictions about eff(x, y)− eff(x, z) we derived in §2.3.

12



We report game-theoretic p-values. Recall that our predictions all involve a
significance level α. The prediction (6), for example, is of the form

lower bound depending on α ≤ eff(x, y) ≤ upper bound depending on α. (16)

The lower bound is negative, the upper bound is positive, and both are small
for reasonable values of α. So the inequality says that eff(x, y) will be small.
The bounds tighten as we make α larger, and unless eff(x, y) is exactly zero, the
bounds will be violated for a sufficiently large value of α. As usual in statistical
testing, we write α̂ for this value. It is the game-theoretic p-value.

When (6) or one of the other inequalities we derived in §2 is violated, the
corresponding strategy for Speculator has produced KN > 1/α, and so our test
has rejected the hypothesis of efficiency. Because of the approximations used to
derive the inequality there will be some values of α for which the inequality is
satisfied but KN > 1/α still holds. So the observed value of 1/KN , which we
could alternatively consider the p-value, will be slightly smaller that the p-value
we report. We use the value of α for which the inequality is just violated instead
of 1/KN as our p-value because it can be considered the “observed significance”
of the empirical quantity that violates the inequality, whether this quantity be
an auto-effect or a difference between lead-lag effects.

Our game-theoretic p-values differ in one striking way from classical p-values.
In classical testing, a p-value is a probability and is therefore always less than
1. In game-theoretic testing, the strategy for multiplying the capital risked
may actually lose money, yielding a value of KN less than 1 and hence a p-
value greater than 1. Aside from its indication that the auto-effect or difference
between lead-lad effects is not large enough to reject the hypothesis of market
efficiency, no importance should be attached to the p-value being greater than
1.

In §3.1, we describe the data we use for our tests. In §3.2, we test our two
GEMHs by applying the inequalities in Proposition 1 to auto-effects; here we
use individual stocks as well as indices and size portfolios. In §3.3, we use the
transaction costs needed to eliminate our profits to measure the efficiency of the
market in stocks of different levels of capitalization. In §3.4, we test the S&P
500 GEMH by looking at lead-lags between size portfolios.

3.1 Data

We use daily stock returns based on closing prices for all publicly traded firms on
the NYSE/AMEX/NASDAQ daily tapes maintained by the Center for Research
in Security Prices (CRSP) for the period beginning July 18, 1962, and ending
December 28, 2005. Our data for market indices and exchange-traded funds
(ETFs) are also obtained from CRSP. So that we can compare our results with
those of authors who studied CRSP data for 1962–1994, we split the 1962–205
period into two periods, 1962–1994 and 1995–2005.

Like Lo and MacKinlay (1990b) and other authors, we use weekly returns
so as to minimize microstructure effects. At the daily and intraday levels, there

13



is a substantial amount of nontrading and nonsynchronous trading. This effect
is weaker at the weekly level; Forester and Keim (2000) estimate estimate the
likelihood for a typical stock going untraded for five consecutive days to be
0.42 percent. We measure returns from Wednesday to Wednesday. This is
consistent with the literature, although some authors use Tuesdays rather than
Wednesdays. Delistings, including those caused by liquidations and mergers,
are common in the database, and a delisting price and return is often provided.
When it is provided, we use it to adjust the last historical return.

We create five size portfolios. We change their composition each year, based
on the market capitalization of stocks the preceding December. All securities
in the CRSP universe are used to find breakpoints. We consider both equal-
weighted returns for the portfolio, calculated by taking the simple average of
the stocks in the portfolio, and value-weighted returns, calculated weighting
individual returns with market capitalization at the end of the previous week.

3.2 Statistical significance of autocorrelations

Most individual stock returns are weakly negatively autocorrelated, while re-
turns on some indices and on portfolios of small-cap stocks are strongly pos-
itively autocorrelated (Campbell et al. 1997). Our game-theoretic tests give
the same results as conventional tests: autocorrelations for individual stocks
are usually not statistically significant, while autocorrelations for portfolios and
indices often are.

We report uncentered autocorrelations, obtained by dividing the auto-effect
eff(y, y) by the denominator of (3):

uncentered autocorrelation :=
∑N

n=1 yn−1yn√∑N
n=1(yn−1 − y−)2

√∑N
n=1(yn − y+)2

. (17)

We also report bounds on these autocorrelations obtained by dividing by the
same denominator the bounds on the auto-effects given by (7) and (8) for α =
5%. We also give three game-theoretic p-values:

• The two-sided value α̂ obtained by setting the two sides of (6) equal.

• The one-sided value α̂m obtained by setting the two sides of (7) equal.

• The one-sided value α̂c obtained by setting the two sides of (8) equal.

In our tables, two asterisks on an autocorrelation indicate rejection at the 5%
level by the two-sided test; one asterisk indicates rejection at the 5% level by a
one-sided test but not by the two-sided test.

In the case where xn = yn, Proposition 1 assumes that |yn−1yn| ≤ 1/C for
n = 1, . . . , N . Subject to this condition, we want to choose C to make our
inequalities as tight as possible, thus making the game-theoretic p-values as
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Table 1: Autocorrelations of weekly returns for 423 individual stocks, 1962–
1994, tested under the cash GEMH

Game-theoretic p-values
Mean Median St. Dev. Min Max

α̂ 1.5 1.5 0.77 0.065 12
α̂m 3.5 1.4 12 0.24 159
α̂c 1.0 0.85 0.87 0.031 8.7
Uncentered autocorrelations, with predicted bounds, α = 5%, C = 5

Mean Median St. Dev. Min Max
autocorrelation -0.02 -0.02 0.04 -0.14 0.13
lower bound -0.27 -0.23 0.15 -0.83 -0.080
upper bound 0.27 0.23 0.15 0.080 0.83

small as possible. To gain insight about the choice of C, consider the equation

ln α̂ = ln 2−
∣∣∣∣∣C

N∑
n−1

yn−1yn

∣∣∣∣∣
︸ ︷︷ ︸

a

+
N∑

n=1

∆(−C |yn−1yn|)
︸ ︷︷ ︸

b

obtained by setting the two sides of (6) equal. The term a is linear in C, while
the term b is approximately quadratic in C. When C is relatively small, a > b.
But as C grows, b catches up and exceeds a. So as C increases, α̂ first declines
and then rises.

Individual stocks. For the 10% most volatile stocks, C cannot be chosen
large enough to give interesting bounds. The remaining 90% satisfy |yn−1yn| ≤
1/C for C = 5. But few of them have significant auto-effects.

Altogether, 10,869 different stocks appear in the CRSP database during the
period July 18, 1962, to December 28, 1994. But only 470 stocks were listed
for the entire period, with no consecutive missing weekly returns. Dropping the
10% most volatile, we are left with 423 stocks. Table 1 summarizes the autocor-
relations for these 423 stocks when returns are measured relative to cash, as well
as the 5% bounds from (7) and (8), together with corresponding game-theoretic
p-values for the cash GEMH. The autocorrelations are generally negative, close
to zero, and not statistically significant. None of the two-sided p-values are
less than 5%, and only four of the one-sided p-values (both corresponding to
contrarian strategies) are less than 5%.

Results are similar for (1) the smaller set of stocks that had strictly no
missing weekly returns for 1962–1994, (2) the S&P 500 GEMH for 1962–1994,
and (3) both GEMHs for 1995–2005. In all three cases, very few autocorrelations
for individual stocks are significant.

Indices and size portfolios. We also consider autocorrelations for three
indices (CRSP equal-weighted, CRSP value-weighted, and the S&P 500) and
five size portfolios. Our results under the cash GEMH (Tables 2, 3, and 4) are
again consistent with results from conventional tests: the autocorrelations are
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Figure 1: Plot of α̂ and C for the cash GEHM: equal-weighted CRSP on left;
value-weighted on right

statistically significant in the case of the CRSP equal-weighted index and the
smaller size portfolios, with the greatest significance observed for the smallest
size portfolios. The pattern of statistical significance for size portfolios is similar
under the S&P 500 GEMH (Table 5).

The graphs in Figure 1 show α̂ for the cash GEMH as a function of C for
the CRSP equal-weighted and value-weighted indices for the 1962–1994 period.
Each graph extends from the point where α̂ dips below 1 to the largest permitted
value of C, 1/ max |yn−1yn|. The graphs suggest that C = 40 is reasonable for
both indices. For the S&P 500 index, C = 40 is again permitted, but the graph
(not shown) is less interesting, because no value of C approaches significance.
So we use C = 40 for all three indices for 1962–1994. For 1995–2005, we choose
C = 148 based on a similar analysis. The indices have smaller extreme returns
in this period.

Table 2 reports autocorrelations and game-theoretic p-values under the cash
GEMH for the three indices. Only the autocorrelation of the CRSP equal-
weighted index is significant. These results are consistent with results from
conventional tests. Recall that the game-theoretic p-values can be interpreted
in terms of the capital for the corresponding strategy in the absence of transac-
tion costs. For example, the p-value α̂m = 0.00013 for the CRSP equal-weighted
index indicates that our momentum strategy for this index would have turned
$1 into at least $(1/0.00013) = $7692 between 1962 and 1994. Because of the
approximation involved in deriving the inequality (7), this is an understatement;
as the panel of the table labelled “Final capital” states, this momentum strat-
egy actually produces a final capital of $7830.92. Holding $1 in the index, in
contrast, would have produced only $445.

Although the autocorrelation of returns for the CRSP equal-weighted index
is smaller in 1995–2005 than in 1962–1994 (0.29 as opposed to 0.35), Table 2
shows it to be slightly more significant in the second period. This is likely due to
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Table 2: Autocorrelations of weekly returns for indices, tested under the cash
GEMH
1962–1994 CRSP Equal-Weighted CRSP Value-Weighted S&P 500

Game-theoretic p-values, C = 40
α̂ 1.7E-3 0.54 1.7
α̂m 1.3E-4 0.19 0.70
α̂c 2.7E5 22 4.5

Uncentered autocorrelations, with predicted bounds, α = 5%, C = 40
autocorrelation 0.35∗∗ 0.08 0.03
lower bound -0.20 -0.15 -0.13
upper bound 0.14 0.14 0.13

Final capital for different strategies starting with $1
momentum $7830.92 $5.33 $1.43
contrarian $0.00 $0.05 $0.22
average $3915.46 $2.69 $0.82
hold index $445.22 $26.50 $7.98

1995–2005 CRSP Equal-Weighted CRSP Value-Weighted S&P 500
Game-theoretic p-values, C = 148

α̂ 4.9E-4 26 6.8
α̂m 1.1E-4 1.3E3 3.2E3
α̂c 1.5E6 1.2 0.33

Uncentered autocorrelations, with predicted bounds, α = 5%, C = 148
autocorrelation 0.29∗∗ -0.06 -0.09
lower bound -0.14 -0.13 -0.13
upper bound 0.13 0.17 0.17

Final capital for different strategies starting with $1
momentum $12918.09 $0.00 $0.00
contrarian $0.00 $0.69 $2.69
average $6459.05 $0.35 $1.35
hold index $15.56 $3.36 $2.73
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Table 3: Autocorrelations of weekly equal-weighted returns for size portfolios,
tested under the cash GEMH
1962–1994 Small 1 2 3 4 Big 5

Game-theoretic p-values, C = 32
α̂ 7.0E-6 1.7E-3 0.018 0.041 0.15
α̂m 3.0E-6 1.5E-4 6.7E-4 5.1E-3 0.055
α̂c 2.1E6 1.8E5 9.7E4 3.3E3 61
Uncentered autocorrelations, with predicted bounds, α = 5%, C = 32
autocorrelation 0.51∗∗ 0.37∗∗ 0.32∗∗ 0.25∗∗ 0.15
lower bound -0.15 -0.21 -0.25 -0.21 -0.17
upper bound 0.14 0.15 0.15 0.16 0.16

1995–2005 Small 1 2 3 4 Big 5
Game-theoretic p-values, C = 79

α̂ 0.018 7.3E-3 0.066 1.3 4.9
α̂m 2.0E-5 3.4E-3 0.030 0.60 7.8
α̂c 1.8E8 6.3E2 91 8.3 1.6
Uncentered autocorrelations, with predicted bounds, α = 5%, C = 79
autocorrelation 0.56∗∗ 0.39∗∗ 0.21∗ 0.06 -0.03
lower bound -0.48 -0.22 -0.18 -0.16 -0.17
upper bound 0.19 0.22 0.18 0.16 0.18

Table 4: Autocorrelations of weekly value-weighted returns for five size portfo-
lios, tested under the cash GEMH
1962–1994 Small 1 2 3 4 Big 5

Game-theoretic p-values, C = 30
α̂ 9.0E-5 0.016 0.82 0.11 0.82
α̂m 2.0E-5 4.7E-4 1.7E-3 0.011 0.38
α̂c 3.7E5 1.5E5 5.9E5 1.7E3 4.8
Uncentered autocorrelations, with predicted bounds, α = 5%, C = 30
autocorrelation 0.43∗∗ 0.34∗∗ 0.30∗ 0.23∗ 0.07
lower bound -0.17 -0.26 -0.38 -0.23 -0.18
upper bound 0.14 0.15 0.16 0.16 0.18

1995–2005 Small 1 2 3 4 Big 5
Game-theoretic p-values, C = 108

α̂ 6.2E-4 8.5E-4 0.031 4.0 0.97
α̂m 4.0E-6 3.2E-4 0.012 1.6 1.3E2
α̂c 4.3E8 2.7E4 633 8.6 0.25
Uncentered autocorrelations, with predicted bounds, α = 5%, C = 108
autocorrelation 0.46∗∗ 0.35∗∗ 0.18∗∗ 0.03 -0.09
lower bound -0.29 -0.16 -0.14 -0.14 -0.14
upper bound 0.15 0.15 0.14 0.14 0.16
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the power of the test; the smaller number of weeks in the second period makes
the test less powerful, but larger value of C works in the opposite direction,
perhaps more strongly.

Table 3 reports results for equal-weighted returns from our five size port-
folios. The smaller portfolios have significant positive correlations, with the
p-value α̂ increasing monotonically with the size of the portfolio. Table 4, for
value-weighted returns, shows a similar pattern. This is again consistent with
conventional tests.

The most important point is that the S&P 500 index, which is now traded
and could have been replicated with low transaction costs even in the earlier
period, does not show statistically significant autocorrelation under the cash
GEMH. This is also true for other traded indices, including the Rydex S&P
Equal-Weighted ETF (RSP), which consists of large S&P 500 stocks, and iShares
S&P SmallCap 600 Index Fund (IJR) (details not reported here).

Table 5: Autocorrelations of weekly returns for size portfolios, tested under the
S&P 500 GEMH
1962–1994 Small 1 2 3 4 Big 5

Equal-weighted C = 150
autocorrelation 0.30 0.22 0.19 0.13 0.10
α̂ 2.2E-8 1.9E-5 1.2E-3 0.076 0.89
α̂m 5.8E-11 5.8E-6 4.9E-4 0.037 0.44
α̂c 6.8E16 1.2E7 1.6E4 70 2.5

Value-weighted, C = 200
autocorrelation 0.28 0.21 0.18 0.12 0.03
α̂ 1.4E-8 5.4E-6 6.4E-5 0.077 1.9
α̂m 2.7E-12 9.6E-7 1.7E-5 0.032 0.94
α̂c 6.6E20 8.2E8 1.9E5 168 1.1

1995–2005 Small 1 2 3 4 Big 5
Equal-weighted C = 64

autocorrelation 0.22 0.10 0.11 0.04 0.07
α̂ 2.3 0.76 0.86 1.6 1.7
α̂m 0.046 0.37 0.43 0.79 0.85
α̂c 3.3E3 4.2 2.9 1.5 1.2

Value-weighted, C = 87
autocorrelation 0.22 0.19 0.16 0.06 0.02
α̂ 2.8 0.16 0.33 1.3 2.0
α̂m 0.018 0.066 0.16 0.66 0.99
α̂c 4.2E4 62 11 1.9 1.0

Table 5 reports on autocorrelations for the five size portfolios when returns
are measured with respect to the S&P 500 index and tested under the S&P
500 GEMH. The correlations are smaller than for the cash GEMH, but they
still tend to be statistically significant for the smaller size portfolios. Again,
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the degree of the statistical significance depends not so much on the size of the
autocorrelation as on the power of the test. Our tests are more powerful when
there are more weeks in the period (1962–1994 is about three times as long as
1995–2005) and when extreme values of |yn−1yn| are less extreme, so that we
can choose C larger. The extremes are greater in 1962–1994 for returns with
respect to cash, but greater in 1995–2005 for returns with respect to to the S&P
500.

3.3 Relative efficiency and economic significance

It is widely understood that the statistical significance of an autocorrelation
does not measure its economic significance. We cannot say that one market is
less efficient than another because the autocorrelation of its returns are more
statistically significant. Nor is it clear that the magnitude of an autocorrelation
of returns measures inefficiency. As we noted in the introduction, the absence
of a convincing measure of relative efficiency has frustrated economists.

In our game-theoretic approach, however, there is an natural way to measure
the inefficiency of a market. An autocorrelation is statistically significant in
this approach when its size permits a speculator, in the absence of transaction
costs, to multiply the capital he risks by 20 or more. It is natural to measure
inefficiency by the level of transaction costs required to eliminate this money-
making opportunity.

Consider, for example, the effect of transaction costs on Speculator’s capital
in the Basic Market Protocol. At the beginning of period n, Speculator plans
to invest Kn−1Yn in the security y. But he already has Kn−2Yn−1(1 + yn−1)
invested in y. So the amount of capital he shifts between y and m at the
beginning of period n is |Kn−1Yn − Kn−2Yn−1(1 + yn−1)|. If we assume that
the cost of the shift is a fraction τ of the amount shifted, then his capital at the
end of the period is given by

Kn := Kn−1(1 + Ynyn)− |Kn−1Yn −Kn−2Yn−1(1 + yn−1)|τ (18)

instead of Kn := Kn−1(1 + Ynyn). The economic significance of an autocorre-
lation that is statistically significant at the 5% level can be measured by the
value of τ that reduces KN , determined recursively by K0 = 1 and (18), to 20
or even to 1. Let us write τ20 for the value of τ that reduces KN to 20, and τ1

for the value that reduces it to 1. We may call τ1 the economic significance of
the result of our game-theoretic statistical test.

Table 6 reports in basis points implied transaction costs for our momentum
strategy for equal-weighted and value-weighted size portfolios during the 1962–
1994 period. Table 7 reports implied transaction costs for CRSP equal-weighted
index in the same fashion. All the transaction costs in these tables are lower
than rates documented in the finance literature. For example, Lesmond et al.
(1999) report that average round-trip transaction costs from 1963 to 1990 were
103 and 12 basis points for small and large decile firms, respectively. Roll’s
measure of bid-ask spread is 434 and 31 basis points for small and large decile
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Table 6: Implied transaction costs for weekly returns of size portfolios, 1962–
1994
Cash EMH Small 1 2 3 4 Big 5

Equal-weighted, C = 32
autocorrelation 0.51 0.37 0.32 0.25 0.15
τ20 119 62 44 22 0
τ1 146 87 67 45 21

Value-weighted, C = 30
autocorrelation 0.43 0.34 0.30 0.23 0.07
τ20 90 52 36 16 0
τ1 117 77 60 40 3

S&P 500 EMH Small 1 2 3 4 Big 5
Equal-weighted, C = 150

autocorrelation 0.30 0.22 0.19 0.13 0.10
τ20 45 24 15 1 0
τ1 50 31 22 10 1

Value-weighted, C = 200
autocorrelation 0.28 0.21 0.18 0.12 0.03
τ20 40 22 13 1 0
τ1 45 27 20 8 0

Table 7: Implied transaction costs for weekly returns of CRSP equal-weighted
index, cash EMH

1962–1994 1995–2005
C = 40 C = 148

autocorrelation 0.35 0.29
τ20 52 36
τ1 73 49

firms, respectively. We may conclude that the statistical significance of the
autocorrelations of returns for size portfolios is fully accounted for by transaction
costs.

The implied transaction costs in the table are approximately linearly related
to the autocorrelations, suggesting that the autocorrelations can also serve as a
crude but useful measure of relative efficiency. P-values, in contrast, are not a
meaningful measure of relative efficiency, because they depend so much on the
power of the test.

Tables 8 and 9 give values of τ1 for tests of lead-lag effects eff(x : y) and
eff(x† : y†) for our five size portfolios. When x = y, these tests reduce to the
tests of eff(y : y) and eff(y† : y†) that we have already considered, and for
this reason, the main diagonals of these tables match the rows of Table 6 that
give τ1 for value-weighted returns under the cash EMH and the S&P 500 EMH,

21



respectively.

Table 8: Values of τ1 for tests of the lead-lag effect eff(x : y) with C = 30, as x
and y range over our five size portfolios, with value-weighted returns, 1962–1994

y = 1 y = 2 y = 3 y = 4 y = 5
x = 1 117 84 61 37 1
x = 2 103 77 58 37 1
x = 3 97 77 60 41 4
x = 4 85 71 57 40 4
x = 5 58 51 44 34 3

Table 9: Values of τ1 for tests of the lead-lag effect eff(x† : y†) with C = 200, as x
and y range over our five size portfolios, with value-weighted returns, 1962–1994

y = 1 y = 2 y = 3 y = 4 y = 5
x = 1 45 24 12 2 0
x = 2 47 27 15 4 0
x = 3 50 33 20 8 0
x = 4 43 30 19 8 0
x = 5 0 0 0 0 0

3.4 Statistical significance of lead-lag differences

The S&P 500 GEMH does not directly rule out a signal observed at time n− 1
helping predict the change in the S&P 500 index from n− 1 to n. It says only
that such a signal should not help us make more money than we could make
by holding the S&P 500 index. As we learned from Proposition 2 in §2.3, this
implies that the signal should have approximately the same effect on every stock
or portfolio as it has on the S&P 500 index itself.

The most widely discussed lead-lag effects are those for size portfolios: large
stocks lead small stocks. So we use our five size portfolios to test Proposition 2.
We use value-weighted returns, measured with respect to cash, for the period
from 1962 to 1994. Table 10 reports eff(x, y) for 1962–1994 as as x and y both
range over our five size portfolios and three indices. Here we designate the
size portfolios, from smallest to largest, as 1, 2, 3, 4, and 5, the CRSP equal-
weighted and value-weighted indices as e and v, and the S&P 500 index as m.
For example, the last entry in the top row, 0.013, for example, is eff(1,m), where
1 is the smallest size portfolio, and m is the S&P 500 index.

The lead-lag effects are roughly proportional, by (1), to the corresponding
correlations, and as it happens they even have the same order of magnitude. So
their most salient properties are those that have been noted in the literature
for correlations of returns for size portfolios: (1) lead-lag effects involving the
same portfolio being led (in the same column) are about the same, and (2)
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Table 10: Values of eff(x, y) as x and y range over our five size portfolios, with
value-weighted returns, 1962–1994

1n 2n 3n 4n 5n en vn mn

1n−1 0.38 0.29 0.22 0.15 0.028 0.25 0.047 0.013
2n−1 0.36 0.28 0.22 0.16 0.032 0.24 0.051 0.017
3n−1 0.35 0.29 0.24 0.18 0.046 0.25 0.064 0.030
4n−1 0.32 0.27 0.23 0.18 0.048 0.23 0.065 0.031
5n−1 0.23 0.20 0.18 0.15 0.041 0.18 0.054 0.024
en−1 0.34 0.28 0.23 0.17 0.044 0.25 0.062 0.028
vn−1 0.24 0.22 0.19 0.15 0.041 0.19 0.055 0.024
mn−1 0.22 0.20 0.18 0.15 0.038 0.18 0.051 0.021

lead-lag effects are largest when the portfolio being led is smallest (is in the first
column). This contrasts sharply with Proposition 2, which predicts that the
lead-lags involving the same lead (in the same row) should be about the same.

Proposition 2 states two inequalities, and the one that risks being violated
is (13), which says that eff(x, y) should not be too much larger than eff(x, m).
The game-theoretic p-value for testing whether x leads y too much more than
it leads m is the value of α that satisfies

eff(x, y)− eff(x,m) =
1
C

ln
1
α

+
1
C

N∑
n=1

Ψ (mn, Cxn−1(yn −mn)) .

These values are given in Table 11 for the five size portfolios. Except when y is
the largest size portfolio (the last column), the differences eff(x, y) − eff(x,m)
are highly statistically significant. The corresponding values of τ1 are given in
Table 12.

Table 11: Game-theoretic p-values for eff(x, y) − eff(x,m) with C = 55, for
x = 1, . . . , 5 and y = 1, . . . , 5, value-weighted returns, 1962–1994

y = 1 y = 2 y = 3 y = 4 y = 5
x = 1 4.4E-9 5.4E-7 1.8E-5 6.8E-4 0.44
x = 2 2.0E-8 1.0E-6 2.0E-5 5.8E-4 0.43
x = 3 5.6E-8 1.2E-6 1.8E-5 4.3E-4 0.42
x = 4 3.5E-7 3.5E-6 2.9E-5 5.0E-4 0.40
x = 5 2.7E-5 7.8E-5 2.4E-4 1.5E-3 0.39

As we mentioned at the end of §2.3, there is little difference, for weekly
returns, between testing eff(x, y) − eff(x,m) using Proposition 2 and testing
eff(x, y†) using Proposition 1. Moreover, the momentum strategies for testing
eff(x, y†) are the same as the momentum strategies for testing eff(x, y). So it is
not surprising that Table 12 is not too different from Table 8.
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Table 12: Values of τ1 for Game-theoretic p-values for eff(x, y)− eff(x,m) with
C = 55, for x = 1, . . . , 5 and y = 1, . . . , 5, value-weighted returns, 1962–1994

y = 1 y = 2 y = 3 y = 4 y = 5
x = 1 133 102 79 56 15
x = 2 118 93 75 54 14
x = 3 107 88 73 54 14
x = 4 94 81 68 52 14
x = 5 67 61 55 45 13

4 Conclusion

Returns for portfolios that are dominated by small-cap stocks have positive au-
tocorrelations. Conventional statistical tests, based on models that give proba-
bilities for changes in stock prices, show that these autocorrelations are statis-
tically significant. Such portfolios are also led by other portfolios, and this too
is statistically significant under the same models.

We have shown that these results can be replicated within a framework where
tests are based not on probability models but on the principle that a strategy for
speculation will not multiply the capital it risks by a large factor. By tying sta-
tistical testing directly to trading, this justifies measuring the relative efficiency
of a market and the economic significance of a statistically significant result by
the level of transaction costs needed to eliminate the statistical significance.

The transaction costs needed to eliminate statistical significance for the au-
tocorrelation of small-cap portfolios is modest, and that this same modest level
of transaction costs also explains the leading of small-cap portfolios by other
portfolios. So we may say that the statistically significant correlations are not
economically significant.

We have considered only the efficiency of the market in publicly listed stocks
in the United States. But our concept of relative efficiency provides a needed
tool for comparing different markets, across financial instruments and across
nations. It may also be useful for measuring the substantive significance of
statistically significant failures of models for prediction in other domains.
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