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Abstract

A new definition of events of game-theoretic probability zero in continuous time
is proposed and used to prove results suggesting that trading in financial markets
results in the emergence of properties usually associated with randomness. This
paper concentrates on “qualitative” results, stated in terms of order (or order
topology) rather than in terms of the precise values taken by a price process.
No stochastic assumptions are made, and the only assumption is that the price
process is continuous.
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1 Introduction

This paper proposes (in Section 2) a new definition of continuous-time events
of zero game-theoretic probability. The applications (Sections 3 and 4) are to
an idealized securities market, with a security price modelled as a continuous
process. We show that the price path will, almost surely, satisfy various proper-
ties usually associated with randomness. The phrase “almost surely” refers to
the fact that a speculator can become arbitrarily rich risking only 1 monetary
unit if the price path does not behave this way; therefore, if we believe that
the market is to some degree efficient, we expect that those properties will be
satisfied.

We consider some of the standard properties of sample paths of Brownian
motion usually found in probability textbooks (such as [7], Section 2.9). This
paper is inspired by [15], which in turn develops some ideas in [18]; both those
papers attempt to formalize the “

√
dt effect” (the fact that a typical change in

the value of a non-degenerate diffusion process over time period dt has order
of magnitude

√
dt). We, however, concentrate on those properties that depend

only on the ordering of the security prices at different times, rather than on
the actual values of the prices. Among such properties are, for example, the
absence of isolated zeroes of the price path and the absence of points of strict
increase or decrease. The difference of the game-theoretic treatment from the
standard results is that we do not assume a priori any stochastic picture; we
start instead from a simple trading protocol without making any probabilistic
assumptions.

This paper is part of the recent revival of interest in game-theoretic prob-
ability (whose idea goes back to Ville [16]; more recent publications include
[3, 12, 14, 9, 6, 8]). The treatment of continuous time in [12] and [18] uses non-
standard analysis; an important contribution of [15] is to avoid non-standard
analysis (which is both unfamiliar to many readers and somewhat awkward in
certain respects) in studying the

√
dt effect. This paper also avoids non-standard

analysis. Its main result is Theorem 2 (all other results will be fairly obvious to
readers familiar with game-theoretic probability). Our key tool will be “high-
frequency limit order strategies”, introduced in game-theoretic probability by
[15].

The words “positive”, “negative”, “increasing”, “decreasing”, “before”, and
“after” will be used in the wide sense of the inequalities ≤ or ≥, as appropriate;
we will add qualifiers “strict” or “strictly” when meaning the narrow sense of
< or >. We will also be using the usual notation u ∨ v := max(u, v), u ∧ v :=
min(u, v), and u+ := u ∨ 0.

2 Null, almost certain, and completely uncer-
tain events

Continuous time will be represented by the semi-infinite interval [0,∞). We
consider a perfect-information game between two players called Reality and
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Sceptic.1 Reality outputs a continuous function ω : [0,∞) → R, interpreted
as the price path of a financial asset (although we do not insist on ω taking
positive values), and Sceptic tries to profit by trading in ω. First Sceptic presents
his trading strategy and then Reality chooses ω. We start by formalizing this
picture.

Let Ω be the set of all continuous functions ω : [0,∞) → R. For each
t ∈ [0,∞), Ft is defined to be the smallest σ-algebra that makes all functions
ω 7→ ω(s), s ∈ [0, t], measurable. A process S is a family of functions St :
Ω → [−∞,∞], t ∈ [0,∞), each St being Ft-measurable (we drop “stochastic”
since no probability measure on Ω is given, and drop “adapted” for brevity).
An event is an element of the σ-algebra F∞ := σ(∪t∈[0,∞)Ft). Stopping times
τ : Ω → [0,∞] w.r. to the filtration (Ft) and the corresponding σ-algebras Fτ

are defined as usual; ω(τ(ω)) and Sτ(ω)(ω) will be simplified to ω(τ) and Sτ (ω),
respectively.

The class of allowed strategies for Sceptic is defined in two steps. An el-
ementary trading strategy G consists of: (a) an increasing infinite sequence of
stopping times τ1 ≤ τ2 ≤ · · · such that limn→∞ τn(ω) = ∞ for each ω ∈ Ω;
(b) for each n = 1, 2, . . ., a bounded Fτn -measurable function hn. (It is possible
that τn = ∞ from some n on, which recovers the case of finite sequences.) To
such G and an initial capital c ∈ R corresponds the elementary capital process

KG,c
t (ω) := c +

∞∑
n=1

hn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
, t ∈ [0,∞); (1)

the value hn(ω) will be called the portfolio chosen at time τn, and KG,c
t (ω) will

sometimes be referred to as Sceptic’s capital at time t. Notice that the sum
of finitely many elementary capital processes is again an elementary capital
process.

A positive capital process is any process S that can be represented in the
form

St(ω) :=
∞∑

n=1

KGn,cn

t (ω), (2)

where the elementary capital processes KGn,cn

t (ω) are required to be positive, for
all t and ω, and the positive series

∑∞
n=1 cn is required to converge (intuitively,

the total capital invested has to be finite). The sum (2) is always positive, but
we allow it to take value +∞. Since KGn,cn

0 (ω) = cn does not depend on ω,
S0(ω) also does not depend on ω and will sometimes be abbreviated to S0.

The upper probability of a set E ⊆ Ω is defined as

P(E) := inf
{
S0

∣∣ ∀ω ∈ Ω : lim inf
t→∞

St(ω) ≥ IE(ω)
}
, (3)

where S ranges over the positive capital processes and IE stands for the indicator
of E. Notice that P(Ω) = 1 (in the terminology of [12], our game protocol is

1Other names for these players, used in [12], are Market and Speculator, respectively.
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“coherent”): indeed, P(Ω) < 1 would mean that some positive capital process
strictly increases between time 0 and ∞ for all ω ∈ Ω, and this is clearly
impossible for constant ω.

We say that E ⊆ Ω is null if P(E) = 0, and we say that E is completely
uncertain if P(E) = 1 and P(Ω \ E) = 1. A property of ω ∈ Ω will be said to
hold almost surely (a.s.) if the set of ω where it fails is null. Correspondingly, a
set E ⊆ Ω is almost certain if P(Ω \ E) = 0.

Remark 1. The interpretation of almost certain events given in Section 1 was
that we expect such events to happen in markets that are efficient to some
degree; similarly, we do not expect null events to happen (provided such an event
is singled out in advance). However, some qualifications are needed, since our
definition of upper probability involves Sceptic’s capital at infinity, which may be
infinite without necessarily contradicting market efficiency. That interpretation
is, e.g., valid for events E ∈ FT that happen or fail to happen before a finite
horizon T : say, if E is null, Sceptic can become arbitrarily rich by time T if E
happens.

The definition (3) enjoys a certain degree of robustness:

Lemma 1. We will obtain an equivalent definition replacing the lim inft→∞ in
(3) by supt∈[0,∞) (and, therefore, by lim supt→∞).

Proof. Suppose P(E) < c < 1 in the sense of the definition with sup and select
a positive capital process S witnessing this, i.e., satisfying S0 < c and

∀ω ∈ Ω : sup
t∈[0,∞)

St(ω) ≥ IE(ω).

For any ε > 0, we can multiply S by 1 + ε and stop it when it hits 1; this will
give a positive capital process witnessing P(E) < (1 + ε)c in the sense of the
definition with lim inf.

Upper probability also enjoys the following useful property of σ-subadditivity
(obviously containing the property of finite subadditivity as a special case):

Lemma 2. For any sequence of subsets E1, E2, . . . of Ω,

P

( ∞⋃
n=1

En

)
≤

∞∑
n=1

P(En).

In particular, a countable union of null sets is null.

Proof. This follows immediately from the countability of a countable union of
countable sets (of elementary capital processes).

The definition of a null set can be restated as follows.

Lemma 3. A set E ⊆ Ω is null if and only if there exists a positive capital
process S with S0 = 1 such that limt→∞ St(ω) = ∞ for all ω ∈ E.

Proof. Suppose P(E) = 0. For each n ∈ {1, 2, . . .}, let Sn be a positive capital
process with Sn

0 = 2−n and lim inft→∞ Sn
t ≥ 1. It suffices to set S :=

∑∞
n=1 Sn.

3



3 Level sets of the price process

Our first theorem is a simple game-theoretic counterpart of a standard measure-
theoretic fact (usually stated in the case of Brownian motion).

Theorem 1. Let b ∈ R. Almost surely, the level set

Lω(b) := {t ∈ [0,∞) | ω(t) = b}

has no isolated points in [0,∞).

Proof. If Lω(b) has an isolated point, there are rational numbers a ≥ 0 and
D 6= 0 such that strictly after the time inf{t | t ≥ a, ω(t) = b} ω does not
take value b before hitting the value b + D (this is true even if 0 is the only
isolated point of Lω(b)). Suppose, for concreteness, that D is positive (the case
of negative D is treated analogously). This event, which we denote Ea,D, is
null: there is a positive capital process that starts from ε (arbitrarily small
positive number) and takes value D + ε when Ea,D happens (choose portfolio
1 at the time inf{t | t ≥ a, ω(t) = b} and then choose portfolio 0 when the set
{b− ε, b + D} is hit). Since each event Ea,D is null, it remains to apply Lemma
2.

Remark 2. As discussed in Remark 1, almost certain events in FT are expected
to happen in markets that are efficient to some degree. The almost certain
properties E of sample paths that we establish in this paper do not belong to any
FT , T < ∞, but it remains true that we expect them to happen in such markets.
Each of these properties E is “falsifiable” in the following sense: there exists a
stopping time τ , called a rejection time for E, such that E = {ω | τ(ω) = ∞}.
Moreover, it is possible to choose a rejection time τ for E such that for any
monotonically increasing (however fast) function f : [0,∞) → [0,∞) there exists
a positive capital process S with S0 = 1 such that Sτ (ω) ≥ f(τ(ω)) for all ω ∈ Ω
with τ(ω) < ∞. For example, the proof of Theorem 1 shows that Sceptic can
become arbitrarily rich immediately after an isolated point in Lω(b) is observed.

Corollary 1. For each b ∈ R, it is almost certain that the set Lω(b) is perfect,
and so either is empty or has the cardinality of continuum.

Proof. Since ω is continuous, the set Lω(b) is closed and so, by Theorem 1,
perfect. Non-empty perfect sets in R always have the cardinality of continuum
(see, e.g., [1], Theorem 4.26).

The following lemma, which uses some standard notions of measure-theoretic
probability, will allow us to show that many events of interest to us are com-
pletely uncertain.

Lemma 4. Suppose P (E) = 1, where E is an event and P is a probability
measure on (Ω,F∞) which makes the process St(ω) := ω(t) a martingale w.r.
to the filtration (Ft). Then P(E) = 1.
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Proof. It suffices to prove that (1) is a local martingale under P . Indeed, in this
case P(E) < 1 in conjunction with the maximal inequality for positive super-
martingales would contradict the assumption that P (E) = 1. It can be checked
using the optional sampling theorem that each addend in (1) is a martingale,
and so each partial sum in (1) is a martingale and (1) itself is a local martingale.

In the rest of this proof I will check, for the sake of the readers with little
experience in measure-theoretic probability (like myself), that each addend

hn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
(4)

in (1) is indeed a martingale. (See [17] for a marginally simpler argument.) For
each t ∈ [0,∞), (4) is integrable by the boundedness of hn and the optional
sampling theorem (see, e.g., [11], Theorem II.3.2). We only need to prove, for
0 < s < t, that (omitting, until the end of the proof, the argument ω and “a.s.”)

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

) | Fs

)
= hn

(
ω(τn+1 ∧ s)− ω(τn ∧ s)

)
. (5)

We will check this equality on three Fs-measurable events separately:

{τn+1 ≤ s}: Both sides of the equality

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
I{τn+1≤s} | Fs

)

= hn

(
ω(τn+1 ∧ s)− ω(τn ∧ s)

)
I{τn+1≤s}

are equal to the Fs-measurable function hn

(
ω(τn+1)−ω(τn)

)
I{τn+1≤s} (its

Fs-measurability follows, e.g., from Lemma 1.2.15 in [7] and the monotone-
class theorem).

{τn ≤ s < τn+1}: We need to check

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn)

)
I{τn≤s<τn+1} | Fs

)

= hn

(
ω(s)− ω(τn)

)
I{τn≤s<τn+1} .

Since hn I{τn≤s<τn+1} is bounded and Fs-measurable, it suffices to check

E
((

ω(τn+1 ∧ t)− ω(τn)
)
I{τn≤s<τn+1} | Fs

)

=
(
ω(s)− ω(τn)

)
I{τn≤s<τn+1} .

Since ω(τn) I{τn≤s<τn+1} is Fs-measurable, it suffices to check

E
(
ω(τn+1 ∧ t) I{τn≤s<τn+1} | Fs

)
= ω(s) I{τn≤s<τn+1},

which is the same thing as

E
(
ω(s ∨ τn+1 ∧ t) I{τn≤s<τn+1} | Fs

)
= ω(s) I{τn≤s<τn+1}

(s ∨ x ∧ t being a shorthand for (s ∨ x) ∧ t or, equivalently, s ∨ (x ∧ t)).
The stronger equality

E (ω(s ∨ τn+1 ∧ t) | Fs) = ω(s)

follows from the optional sampling theorem.
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{s < τn}: We are required to prove

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
I{s<τn} | Fs

)
= 0,

but we will prove more:

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
I{s<τn} | Fs∨τn∧t

)
= 0.

Since the event {τn ≤ t}, being equivalent to τn ≤ s ∨ τn ∧ t, is Fs∨τn∧t-
measurable (see [7], Lemma 1.2.16), it is sufficient to prove

E
(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
I{s<τn≤t} | Fs∨τn∧t

)
= 0 (6)

and
E

(
hn

(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
I{t<τn} | Fs∨τn∧t

)
= 0.

The second equality is obvious, so our task has reduced to proving the
first, (6). Since hn I{τn≤t} = hn I{τn≤s∨τn∧t} is bounded and Fs∨τn∧t-
measurable, (6) reduces to

E
((

ω(τn+1 ∧ t)− ω(τn ∧ t)
)
I{s<τn≤t} | Fs∨τn∧t

)
= 0,

which is the same thing as

E
((

ω(s ∨ τn+1 ∧ t)− ω(s ∨ τn ∧ t)
)
I{s<τn≤t} | Fs∨τn∧t

)
= 0.

The optional sampling theorem now gives

E
((

ω(s ∨ τn+1 ∧ t)− ω(s ∨ τn ∧ t)
) | Fs∨τn∧t

)

= ω(s ∨ τn ∧ t)− ω(s ∨ τn ∧ t) = 0.

The following proposition shows that two standard properties of typical sam-
ple paths of Brownian motion become completely uncertain for continuous price
processes.

Proposition 1. Let b ∈ R. The following events are completely uncertain:

(a) the Lebesgue measure of Lω(b) is zero;

(b) the set Lω(b) is unbounded.

Proof. To see that the upper probability of (b) and of the complement of (a)
is 1, consider the martingale that is identically equal to b. To see that the
upper probability of (a) and of the complement of (b) is 1, consider a constant
martingale not equal to b. (Notice that these arguments do not really require
Lemma 4.)
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4 Properties related to non-increase

Let us say that t ∈ [0,∞) is a point of semi-strict increase for ω if there exists
δ > 0 such that ω(s) ≤ ω(t) < ω(u) for all s ∈ ((t − δ)+, t) and u ∈ (t, t + δ).
Points of semi-strict decrease are defined in the same way except that ω(s) ≤
ω(t) < ω(u) is replaced by ω(s) ≥ ω(t) > ω(u). The following theorem is the
game-theoretic counterpart of Dvoretzky, Erdős, and Kakutani’s [5] result for
Brownian motion (Dubins and Schwarz [4] noticed that it continues to hold for
all continuous martingales); its proof can be found in Appendix B.

Theorem 2. Almost surely, ω has no points of semi-strict increase or decrease.

We will also state several corollaries of Theorem 2. First, the price process
is nowhere monotone (unless constant):

Corollary 2. Almost surely, ω is monotone in no open interval, unless it is
constant in that interval.

Proof. This is an obvious corollary of Theorem 2, but is also easy to prove
directly: each interval of monotonicity where ω is not constant contains a ra-
tional time point a after which ω increases (if we assume, for concreteness, that
“monotonicity” means “increase”) by a rational amount D > 0 before hitting
the level ω(a) again; as in the proof of Theorem 1, it is easy to show that this
event, denoted Ea,D, is null, and it remains to apply Lemma 2 to deduce that
∪a,DEa,D is also null.

Let us say that a closed interval [t1, t2] ⊆ [0,∞) is an interval of local maxi-
mum for ω if (a) ω is constant on [t1, t2] but not constant on any larger interval
containing [t1, t2], and (b) there exists δ > 0 such that ω(s) ≤ ω(t) for all
s ∈ ((t1 − δ)+, t1) ∪ (t2, t2 + δ) and all t ∈ [t1, t2]. In the case where t1 = t2
we can say “point” instead of “interval”. A ray [t,∞), t ∈ [0,∞), is a ray of
local maximum for ω if (a) ω is constant on [t,∞) but not constant on any
larger ray [s,∞), s ∈ (0, t), and (b) there exists δ > 0 such that ω(s) ≤ ω(t)
for all s ∈ ((t − δ)+, t). An interval or ray of strict local maximum is defined
in the same way except that ω(s) ≤ ω(t) is replaced by ω(s) < ω(t). The defi-
nitions of intervals and rays of (strict) local minimum are obtained by obvious
modifications; as usual “extremum” means maximum or minimum. We say that
t ∈ [0,∞) is a point of constancy for ω if there exists δ > 0 such that ω(s) = ω(t)
for all s ∈ ((t − δ)+, t + δ); points t ∈ [0,∞) that are not points of constancy
are points of non-constancy. (Notice that we do not count points of constancy
among points of local extremum.)

Corollary 3. Almost surely, every interval of local extremum is a point, all
points and the ray (if it exists) of local extremum are strict, the set of points
of local extremum is countable, and any neighbourhood of any point of non-
constancy contains a point of local maximum and a point of local minimum.

Proof. We will prove only the statements concerning local maxima.
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If ω has an interval of local maximum [t1, t2] with t1 6= t2, t2 will be a point
of semi-strict decrease, and by Theorem 2 it is almost certain that there will
be no such points (alternatively, one could use the direct argument given in the
proof of Corollary 2). We can see that no such [t1, t2] can even be an interval
of local maximum “on the right”.

Now suppose that there is a point or ray of local maximum that is not strict.
In this case there is a quadruple 0 < t1 < t2 < t3 < t4 of rational numbers and
another rational number D > 0 such that maxt∈[t1,t2] ω(t) = maxt∈[t3,t4] ω(t) >
ω(t4)+D. The event that such a set of rational numbers exists is null: proceed
as in the proof of Theorem 1.

The set of all points of strict local maximum is countable, as the following
standard argument demonstrates: each point of strict local maximum can be
surrounded by an open interval with rational end-points in which that point is
a strict maximum, and all these open intervals will be different.

Finally, Corollary 2 immediately implies that every neighbourhood of every
point of non-constancy contains a point of local maximum.

This is a simple game-theoretic version of the classical result about the
nowhere differentiability of Brownian motion (Paley, Wiener, and Zygmund
[10]):

Corollary 4. Almost surely, ω does not have a non-zero derivative anywhere.

Proof. A point where a non-zero derivative exists is a point of semi-strict in-
crease or decrease.

It would be interesting to find stronger versions of the Paley–Wiener–Zygmund
result (but see parts (a) and (c) of Proposition 2).

The following proposition demonstrates the necessity of various conditions
in Corollaries 2–4.

Proposition 2. The following events are completely uncertain:

(a) ω is constant on [0,∞);

(b) for some t ∈ (0,∞), [t,∞) is the ray of local maximum (or minimum)
for ω;

(c) ω′(t) exists for no t ∈ [0,∞).

Proof. We will be using Lemma 4. To see that the upper probability of (c),
of the complement of (a), and of the complement of (b) is 1, remember that
Brownian motion is a martingale. To see that the upper probability of (a) and
of the complement of (c) is 1, consider a constant martingale. To see that the
upper probability of (b) is 1, consider the following continuous martingale: start
as Brownian motion from 0 and stop when 1 (or −1) is hit.
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5 Conclusion

This paper gives provisional definitions of upper probability and related notions
(such as that of null events) for the case of continuous time. It may stay too
close to the standard measure-theoretic framework in that the flow of infor-
mation is modelled as a filtration. In discrete-time game-theoretic probability,
as presented in [12], measurability does not play any special role, whereas in
measure-theoretic probability measurability has the obvious technical role to
play. On one hand, we could drop all conditions of measurability in all the
definitions given above (equivalently, replace each σ-algebra that we used by
the smallest class of subsets of Ω containing that σ-algebra and closed under
arbitrary unions and intersections); it is obvious that all our theorems and corol-
laries, Proposition 1, and parts of Proposition 2 still hold (and it is an interesting
problem to establish whether the remaining parts of Proposition 2 continue to
hold). On the other hand, one might want to strengthen the requirement of
measurability to that of computability.
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Appendix A: A one-sided law of large numbers

In this appendix we establish a result that will be needed in the proof of The-
orem 2. This result involves the following perfect-information game protocol
depending on two parameters, N ∈ {1, 2, . . .} (the horizon) and c > 0:

Players: Reality, Sceptic
K0 := 1.
FOR n = 1, 2, . . . , N :

Sceptic announces sn ≥ 0.
Reality announces xn ∈ [−c, c].
Kn := Kn−1 + snxn.

END FOR

This is a one-sided version of the bounded forecasting game in [12], p. 65 (in-
tuitively, the restriction sn ≥ 0 means that the expected value of xn is zero
or strictly negative, and Kn is interpreted as Sceptic’s capital). A strategy for
Sceptic is prudent if it guarantees Kn ≥ 0, for all n and regardless of Reality’s
moves. The definition of upper probability in this simple discrete-time case
becomes

P(E) := inf
{
δ

∣∣ Sceptic has a prudent strategy

that guarantees KN ≥ 1/δ when (x1, . . . , xN ) ∈ E
}
,

where E is a subset of the sample space [−c, c]N .
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The following lemma is a simple game-theoretic one-sided weak law of large
numbers.

Lemma 5. Let δ1 > 0, δ2 > 0, and N ≥ c2/δ1δ
2
2. Then

P

(
1
N

N∑
n=1

xn ≥ δ2

)
≤ δ1.

In the proof of Theorem 2 we will actually need the following more precise
version of Lemma 5:

Lemma 6. Sceptic has a strategy that guarantees that his capital Kn will satisfy

Kn ≥ N − n

N
+

1
c2N




n∑

j=1

xj




+,2

(7)

for n = 0, 1, . . . , N , where t+,2 := (t+)2.

Proof. This proof is based on the idea used in [13] (proof of Lemma 5). When
n = 0, (7) reduces to K0 ≥ 1, which we know is true. So it suffices to show
that if (7) holds for n < N , then Sceptic can make sure that the corresponding
inequality for n + 1,

Kn+1 ≥ N − n− 1
N

+
1

c2N




n+1∑

j=1

xj




+,2

, (8)

also holds. This is how Sceptic chooses his move:

• If
∑n

j=1 xj ≥ 0, then Sceptic sets

sn+1 :=
2

c2N

n∑

j=1

xj ≥ 0. (9)

In this case

Kn+1 = Kn +
2

c2N




n∑

j=1

xj


 xn+1

≥ N − n

N
+

1
c2N




n∑

j=1

xj




2

+
2

c2N




n∑

j=1

xj


xn+1

=
N − n

N
+

1
c2N




n+1∑

j=1

xj




2

− x2
n+1

c2N
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≥ N − n− 1
N

+
1

c2N




n+1∑

j=1

xj




+,2

(the last inequality uses t2 ≥ t+,2), which coincides with (8).

• If
∑n

j=1 xj < 0, Sceptic sets sn+1 := 0, and so Kn+1 = Kn. Because




n+1∑

j=1

xj




+,2

−



n∑

j=1

xj




+,2

≤ x2
n+1 ≤ c2,

we again obtain (8) from (7).

Proof of Lemma 5. Sceptic’s strategy in Lemma 6 is prudent (it is obvious that
Kn ≥ 0 for all n), and (7) implies

KN ≥ 1
c2N

(
N∑

n=1

xn

)+,2

.

Combining this inequality with the assumption that N ≥ c2/δ1δ
2
2 , we see that

when the event 1
N

∑N
n=1 xn ≥ δ2 happens, KN ≥ 1/δ1.

Appendix B: Proof of Theorem 2

This proof is modelled on the very simple proof of Dvoretzky, Erdős, and Kaku-
tani’s result given by Burdzy [2]. We will only prove that, almost surely, ω
has no points of semi-strict increase in (0,∞) (the argument given in the direct
proof of Corollary 2, with a = 0, shows that almost surely 0 cannot be a point
of semi-strict increase).

It suffices to prove that, for any given positive constants C and D, the
following event, denoted EC,D, is null: the price process ω starts from 0, before
hitting the level C reaches a point of semi-strict increase t such that ω(t) =
maxs∈[0,t] ω(s), then reaches the level ω(t)+D before hitting ω(t) again. Indeed,
suppose ω in the original game has a point of semi-strict increase, say t > 0.
There are positive rational numbers a ∈ [0, t), C, and D such that ω(s) ≤ ω(t) ≤
ω(a) + C, for all s ∈ [a, t), and ω hits ω(t) + D before hitting ω(t) strictly after
moment t. The latter event, denoted by Ea,C,D is null since it is a translation
of the null event EC,D (namely, Ea,C,D = {ω ∈ Ω | ω|[a,∞)−ω(a) ∈ EC,D}). By
Lemma 2, the union of all Ea,C,D is also null, which completes the proof.

Fix positive C and D; our goal is to prove that EC,D is null. For each
ε ∈ (0, 1) (intuitively, a small constant), define sequences of stopping times Un

and Tn and a sequence of functions Mn on Ω, n = 0, 1, . . ., as

M0 := 0, U0 := 0,
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Tn := inf
{
t > Un

∣∣ ω(t) ∈ {Mn − ε,Mn + D}}, n = 0, 1, . . . ,

Mn+1 := sup
{
ω(t)

∣∣ t ∈ [0, Tn)
}
, n = 0, 1, . . . ,

Un+1 := inf
{
t > Tn

∣∣ ω(t) = Mn+1

}
, n = 0, 1, . . . ;

as usual, inf ∅ is interpreted as ∞. We also set

Xn := Mn −Mn−1, n = 1, 2, . . . , N :=

 1

ε
√

ln 1
ε

 .

It suffices to establish, for an arbitrarily large constant K > 0 and a small enough
ε, the existence of two positive elementary capital processes having strictly pos-
itive initial values and satisfying the following conditions when ω ∈ EC,D:

(a) The first process increases K-fold if TN−1 < ∞ and the price level C is
not attained before time TN−1.

(b) The second process increases K-fold if TN−1 = ∞ or the price level C is
attained before time TN−1.

An elementary trading strategy leading to (b) chooses portfolio 1 at time U0,
portfolio 0 at time T0, portfolio 1 at time U1, portfolio 0 at time T1, etc.; finally,
portfolio 1 at time UN−1 and portfolio 0 at time TN−1. The strategy is started
with initial capital εN to ensure that its capital process is positive. If TN−1 = ∞
or the price level C is attained before TN−1, it will be true that ω(Tn) = Mn+D
for some n ∈ {0, . . . , N − 1}, and so the final capital will be at least D. By the
definition of N , we can ensure εN ≤ D/K by choosing a small ε.

It remains to prove the existence of an elementary trading strategy leading
to (a). Intuitively, this strategy will implement a law of large numbers; in
this paragraph we will discuss the situation informally considering the case of
Brownian motion. Why can we expect that the price level C will be attained?
For x ≥ 0,

P{Xn ≥ x} =

{
ε/(x + ε) if x ∈ [0, D]
0 otherwise,

and so we can compute the expectation of the truncated version X̃n := Xn ∧
(
√

ε− ε) of Xn as

E X̃n =
∫ √

ε−ε

0

εdx

x + ε
=

ε

2
ln

1
ε

(ε is assumed small throughout; in particular,
√

ε− ε < D); it is clear that the
variance of X̃n does not exceed ε. The expectation of the sum X̃1 + · · ·+ X̃N ≤
X1 + · · ·+XN will exceed or be approximately equal to N ε

2 ln 1
ε ≈ 1

2

√
ln 1

ε À 1

and its variance will be at most Nε ≈ 1/
√

ln 1
ε ¿ 1. Therefore, the sum of Xn

can be expected to exceed C. The purpose of this paragraph has been to get a
sense of direction in which we are moving, and now we resume the actual proof.
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Choose a positive constant δ > 0 (intuitively, small even as compared with
ε) such that the ratio M := (

√
ε − ε)/δ is integer. The Darboux sums for the

Riemann integral used earlier for computing E X̃n are

L :=
M∑

m=1

εδ

mδ + ε
≤

∫ √
ε−ε

0

εdx

x + ε
≤

M−1∑
m=0

εδ

mδ + ε
;

we will be interested in the lower Darboux sum L. Fix temporarily an n ∈
{1, . . . , N}. For each m ∈ {1, . . . ,M}, there is a positive elementary capital
process starting at time Un−1 from εδ/(mδ + ε) and ending at:

• δ if and when ω hits Mn−1 + mδ (provided this happens before Tn−1);

• 0 if and when ω hits Mn−1 − ε (at time Tn−1) before hitting Mn−1 + mδ.

Indeed, such a process can be obtained by choosing portfolio δ/(mδ + ε) at time
Un−1 and then choosing portfolio 0 when Mn−1 + mδ or Mn−1 − ε is hit. The
sum Sn of such elementary capital processes over m = 1, . . . , M will also be a
positive elementary capital process.

The initial capital Sn(Un−1) of Sn is L, and it is easy to see that Sn(Tn−1) =
δbX̃n/δc ≤ X̃n. The elementary capital process L− Sn starts from 0 and ends
up with at least xn := L− X̃n at time Tn−1.

Let us take δ so small that L ≥ ε
3 ln 1

ε . Lemma 6 gives an explicit elementary
capital process K that starts from 1 and ends with at least

1
√

ε
2
⌊

1

ε
√

ln 1
ε

⌋

 ε

3
ln

1
ε

 1

ε
√

ln 1
ε

−
N∑

n=1

X̃n




+,2

≥
√

ln
1
ε

(
1
4

√
ln

1
ε
−

N∑
n=1

X̃n

)+,2

(10)

at time TN−1. On the event
∑N

n=1 X̃n ≤ C, the final capital (10) can be made
arbitrarily large by choosing a small ε.

We still need to make sure that the elementary capital process K constructed
in the last paragraph is positive: we did not show that it does not become strictly
negative strictly between Un−1 and Tn−1. According to (9), Sceptic’s move sn

never exceeds
2

√
ε
2
N

N
ε

2
ln

1
ε

= ln
1
ε
,

and

Sn ≤
M∑

m=1

δ

mδ + ε
mδ ≤ Mδ ≤ √

ε

implies L − Sn ≥ −√ε. Therefore, our elementary capital process K is always
at least −√ε ln 1

ε ;
√

ε ln 1
ε is a small amount that can be added to the initial

capital to make K positive. This completes the proof.
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