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Abstract

This note continues investigation of randomness-type properties emerging in
idealized financial markets with continuous price processes. It is shown, with-
out making any probabilistic assumptions, that the strong variation exponent
of non-constant price processes has to be 2, as in the case of continuous mar-
tingales.
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1 Introduction

This note is part of the recent revival of interest in game-theoretic probability
(see, e.g., [7, 8, 4, 2, 3]). It concentrates on the study of the “

√
dt effect”, the

fact that a typical change in the value of a non-degenerate diffusion process
over short time period dt has order of magnitude

√
dt. Within the “standard”

(not using non-standard analysis) framework of game-theoretic probability, this
study was initiated in [9]. In our definitions, however, we will be following
[10], which also establishes some other randomness-type properties of continuous
price processes. The words such as “positive”, “negative”, “before”, and “after”
will be understood in the wide sense of ≥ or ≤, respectively; when necessary,
we will add the qualifier “strictly”.

2 Null and almost sure events

We consider a perfect-information game between two players, Reality (a financial
market) and Sceptic (a speculator), acting over the time interval [0, T ], where
T is a positive constant fixed throughout. First Sceptic chooses his trading
strategy and then Reality chooses a continuous function ω : [0, T ] → R (the
price process of a security).

Let Ω be the set of all continuous functions ω : [0, T ] → R. For each t ∈ [0, T ],
Ft is defined to be the smallest σ-algebra that makes all functions ω 7→ ω(s),
s ∈ [0, t], measurable. A process S is a family of functions St : Ω → [−∞,∞],
t ∈ [0, T ], each St being Ft-measurable (we drop the adjective “adapted”). An
event is an element of the σ-algebra FT . Stopping times τ : Ω → [0, T ] ∪ {∞}
w.r. to the filtration (Ft) and the corresponding σ-algebras Fτ are defined as
usual; ω(τ(ω)) and Sτ(ω)(ω) will be simplified to ω(τ) and Sτ (ω), respectively
(occasionally, the argument ω will be omitted in other cases as well).

The class of allowed strategies for Sceptic is defined in two steps. An ele-
mentary trading strategy G consists of an increasing sequence of stopping times
τ1 ≤ τ2 ≤ · · · and, for each n = 1, 2, . . ., a bounded Fτn-measurable function
hn. It is required that, for any ω ∈ Ω, only finitely many of τn(ω) should be
finite. To such G and an initial capital c ∈ R corresponds the elementary capital
process

KG,c
t (ω) := c +

∞∑
n=1

hn(ω)
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
, t ∈ [0, T ]

(with the zero terms in the sum ignored); the value hn(ω) will be called the port-
folio chosen at time τn, and KG,c

t (ω) will sometimes be referred to as Sceptic’s
capital at time t.

A positive capital process is any process S that can be represented in the
form

St(ω) :=
∞∑

n=1

KGn,cn

t (ω), (1)
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where the elementary capital processes KGn,cn

t (ω) are required to be positive,
for all t and ω, and the positive series

∑∞
n=1 cn is required to converge. The

sum (1) is always positive but allowed to take value ∞. Since KGn,cn

0 (ω) = cn

does not depend on ω, S0(ω) also does not depend on ω and will sometimes be
abbreviated to S0.

The upper probability of a set E ⊆ Ω is defined as

P(E) := inf
{
S0

∣∣ ∀ω ∈ Ω : ST (ω) ≥ IE(ω)
}
,

where S ranges over the positive capital processes and IE stands for the indicator
of E.

We say that E ⊆ Ω is null if P(E) = 0. A property of ω ∈ Ω will be said to
hold almost surely (a.s.), or for almost all ω, if the set of ω where it fails is null.

Upper probability is countably (and finitely) subadditive:

Lemma 1. For any sequence of subsets E1, E2, . . . of Ω,

P

( ∞⋃
n=1

En

)
≤

∞∑
n=1

P(En).

In particular, a countable union of null sets is null.

3 Main result

For each p ∈ (0,∞), the strong p-variation of ω ∈ Ω is

varp(ω) := sup
κ

n∑

i=1

|ω(ti)− ω(ti−1)|p ,

where n ranges over all positive integers and κ over all subdivisions 0 = t0 <
t1 < · · · < tn = T of the interval [0, T ]. It is obvious that there exists a unique
number vex(ω) ∈ [0,∞], called the strong variation exponent of ω, such that
varp(ω) is finite when p > vex(ω) and infinite when p < vex(ω); notice that
vex(ω) /∈ (0, 1).

The following is a game-theoretic counterpart of the well-known property of
continuous semimartingales (Lepingle [5], Theorem 1 and Proposition 3; Lévy
[6] in the case of Brownian motion).

Theorem 1. For almost all ω ∈ Ω,

vex(ω) = 2 or ω is constant. (2)

(Alternatively, (2) can be expressed as vex(ω) ∈ {0, 2}.)
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4 Proof

The more difficult part of this proof (vex(ω) ≤ 2 a.s.) will be modelled on the
proof in [1], which is surprisingly game-theoretic in character. The proof of
the easier part is modelled on [11]. (Notice, however, that our framework is
very different from those of [1] and [11], which creates additional difficulties.)
Without loss of generality we impose the restriction ω(0) = 0.

Proof that vex(ω) ≥ 2 for non-constant ω a.s.

We need to show that the event vex(ω) < 2 & nc(ω) is null, where nc(ω)
stands for “ω is not constant”. By Lemma 1 it suffices to show that vex(ω) <
p & nc(ω) is null for each p ∈ (0, 2). Fix such a p. It suffices to show that
varp(ω) < ∞ & nc(ω) is null and, therefore, it suffices to show that the event
varp(ω) < C & nc(ω) is null for each C ∈ (0,∞). Fix such a C. Finally, it
suffices to show that the event

Ep,C,A :=

{
ω ∈ Ω

∣∣∣∣∣ varp(ω) < C & sup
t∈[0,T ]

|ω(t)| > A

}

is null for each A > 0. Fix such an A.
Choose a small number δ > 0 such that A/δ ∈ N, and let Γ := {kδ | k ∈ Z}

be the corresponding grid. Define a sequence of stopping times τn inductively
by

τn+1 := inf
{
t > τn

∣∣ ω(t) ∈ Γ \ {ω(τn)}}, n = 0, 1, . . . ,

with τ0 := 0 and inf ∅ understood to be ∞. Set TA := inf{t | |ω(t)| = A}, again
with inf ∅ := ∞, and

hn(ω) :=

{
2ω(τn) if τn(ω) < T ∧ TA(ω) and n + 1 < C/δp

0 otherwise.

The elementary capital process corresponding to the elementary gambling strat-
egy G := (τn, hn)∞n=1 and initial capital c := δ2−pC will satisfy

ω2(τn+1)− ω2(τn) = 2ω(τn) (ω(τn+1)− ω(τn)) + (ω(τn+1)− ω(τn))2

= KG,c
τn+1

(ω)−KG,c
τn

(ω) + δ2

provided τn+1(ω) ≤ T ∧ TA(ω) and n + 1 < C/δp, and so satisfy

ω2(τN ) = KG,c
τN

(ω)−KG,c
0 +Nδ2 = KG,c

τN
(ω)− δ2−pC + δ2−pNδp ≤ KG,c

τN
(ω) (3)

provided τN (ω) ≤ T ∧ TA(ω) and N < C/δp. On the event Ep,C,A we have
TA(ω) < T and N < C/δp for the N defined by τN = TA. Therefore, on this
event

A2 = ω2(TA) ≤ KG,c
TA

(ω) = KG,c
T (ω).
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We can see that KG,c
t (ω) increases from δ2−pC, which can be made arbitrarily

small by making δ small, to A2 over [0, T ]; this shows that the event Ep,C,A is
null.

The only remaining gap in our argument is that KG,c
t may become strictly

negative strictly between some τn < T ∧TA and τn+1 with n+1 < C/δp (it will
be positive at all τN ∈ [0, T ∧TA] with N < C/δp, as can be seen from (3)). We
can, however, bound KG,c

t for τn < t < τn+1 as follows:

KG,c
t (ω) = KG,c

τn
(ω) + 2ω(τn) (ω(t)− ω(τn)) ≥ 2|ω(τn)| (−δ) ≥ −2Aδ,

and so we can make the elementary capital process positive by adding the neg-
ligible amount 2Aδ to Sceptic’s initial capital.

Proof that vex(ω) ≤ 2 a.s.

We need to show that the event vex(ω) > 2 is null, i.e., that vex(ω) > p is null
for each p > 2. Fix such a p. It suffices to show that varp(ω) = ∞ is null, and
therefore, it suffices to show that event

Ep,A :=

{
ω ∈ Ω

∣∣∣∣∣ varp(ω) = ∞ & sup
t∈[0,T ]

|ω(t)| < A

}

is null for each A > 0. Fix such an A.
The rest of the proof follows [1] closely. Let Mt(f, (a, b)) be the number of

upcrossings of the open interval (a, b) by a continuous function f ∈ Ω during
the time interval [0, t], t ∈ [0, T ]. For each δ > 0 we also set

Mt(f, δ) :=
∑

k∈Z
Mt(f, (kδ, (k + 1)δ).

The strong p-variation varp(f, [0, t]) of f ∈ Ω over an interval [0, t], t ≤ T , is
defined as

varp(f, [0, t]) := sup
κ

n∑

i=1

|f(ti)− f(ti−1)|p ,

where n ranges over all positive integers and κ over all subdivisions 0 = t0 <
t1 < · · · < tn = t of the interval [0, t] (so that varp(f) = varp(f, [0, T ])). The
following key lemma is proved in [1] (Lemma 1; in fact, this lemma only requires
p > 1).

Lemma 2. For all f ∈ Ω, t > 0, and q ∈ [1, p),

varp(f, [0, t]) ≤ 2p+q+1

1− 2q−p
(2cq,λ,t(f) + 1) λp,

where
λ ≥ sup

s∈[0,t]

|f(s)− f(0)|

and
cq,λ,t(f) := sup

k∈N
2−kqMt(f, λ2−k).
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Another key ingredient of the proof is the following game-theoretic version
of Doob’s upcrossings inequality:

Lemma 3. Let c < a < b be real numbers. For each elementary capital process
S ≥ c there exists a positive elementary capital process S∗ that starts from
S∗0 = a− c and satisfies, for all t ∈ [0, T ] and ω ∈ Ω,

S∗t (ω) ≥ (b− a)Mt(S(ω), (a, b)),

where S(ω) stands for the sample path t 7→ St(ω).

Proof. The following standard argument is easy to formalize. Let G be an
elementary gambling strategy leading to S (when started with initial capital
S0). An elementary gambling strategy G∗ leading to S∗ (with initial capital
a − c) can be defined as follows. When S first hits a, G∗ starts mimicking G
until S hits b, at which point G∗ chooses portfolio 0; after S hits a, G∗ mimics
G until S hits b, at which point G∗ chooses portfolio 0; etc. Since S ≥ c, S∗

will be positive.

Now we are ready to finish the proof of the theorem. Let TA := inf{t | ω(t) =
A} be the hitting time for A (with TA := T if A is not hit). By Lemma 3, for
each k ∈ N and each i ∈ {−2k + 1, . . . , 2k} there exists a positive elementary
capital process Sk,i that starts from A + (i− 1)A2−k and satisfies

Sk,i
TA
≥ A2−kMTA

(
ω,

(
(i− 1)A2−k, iA2−k

))
.

Summing 2−kqSk,i/A2−k over i ∈ {−2k + 1, . . . , 2k}, we obtain a positive ele-
mentary capital process Sk such that

Sk
0 = 2−kq

2k∑

i=−2k+1

A + (i− 1)A2−k

A2−k
≤ 2−kq22k+1

and
Sk

TA
≥ 2−kqMTA(ω,A2−k).

Next, assuming q ∈ (2, p) and summing over k ∈ N, we obtain a positive capital
process S such that

S0 =
∞∑

k=1

2−kq22k+1 =
23−q

1− 22−q
and STA ≥ cq,A,TA(ω).

On the event Ep,A we have TA = T and so, by Lemma 2, cq,A,TA
(ω) = ∞. This

shows that ST = ∞ on Ep,A and completes the proof.
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5 Conclusion

Theorem 1 says that, almost surely,

varp(ω)

{
< ∞ if p > 2
= ∞ if p < 2 and ω is not constant.

The situation for p = 2 remains unclear. It would be very interesting to find the
upper probability of the event {var2(ω) < ∞ and ω is not constant}. (Lévy’s
[6] result shows that this event is null when ω is the sample path of Brownian
motion, while Lepingle [5] shows this for continuous, and some other, semi-
martingales.)
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