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Abstract

This note continues investigation of randomness-type properties emerging in
idealized financial markets with continuous price processes. It is shown, with-
out making any probabilistic assumptions, that the strong variation exponent
of non-constant price processes has to be 2, as in the case of continuous mar-
tingales.
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1 Introduction

This note is part of the recent revival of interest in game-theoretic probability
(see, e.g., [7, 8, 4, 2, 3]). It concentrates on the study of the “v/dt effect”, the
fact that a typical change in the value of a non-degenerate diffusion process
over short time period d¢ has order of magnitude v/dt. Within the “standard”
(not using non-standard analysis) framework of game-theoretic probability, this
study was initiated in [9]. In our definitions, however, we will be following
[10], which also establishes some other randomness-type properties of continuous
price processes. The words such as “positive”, “negative”, “before”, and “after”
will be understood in the wide sense of > or <, respectively; when necessary,
we will add the qualifier “strictly”.

2 Null and almost sure events

We consider a perfect-information game between two players, Reality (a financial
market) and Sceptic (a speculator), acting over the time interval [0, T], where
T is a positive constant fixed throughout. First Sceptic chooses his trading
strategy and then Reality chooses a continuous function w : [0,7] — R (the
price process of a security).

Let €2 be the set of all continuous functions w : [0,7] — R. For each ¢ € [0, T,
Fi is defined to be the smallest o-algebra that makes all functions w — w(s),
s € [0,t], measurable. A process S is a family of functions S; : Q@ — [—o0, o],
t € [0,T], each S; being F;-measurable (we drop the adjective “adapted”). An
event is an element of the o-algebra Fr. Stopping times 7 : Q — [0,7T] U {o0}
w.r. to the filtration (F;) and the corresponding o-algebras F, are defined as
usual; w(7(w)) and S; () (w) will be simplified to w(7) and S;(w), respectively
(occasionally, the argument w will be omitted in other cases as well).

The class of allowed strategies for Sceptic is defined in two steps. An ele-
mentary trading strategy G consists of an increasing sequence of stopping times
71 <719 < --- and, for each n = 1,2,..., a bounded F, -measurable function
hy. It is required that, for any w € €, only finitely many of 7,(w) should be
finite. To such G and an initial capital ¢ € R corresponds the elementary capital
process

K Cw) = c+ Y hn(w) (@71 At) —w(my At)), t€[0,T]

n=1

(with the zero terms in the sum ignored); the value h,, (w) will be called the port-
folio chosen at time 7,,, and /C? "“(w) will sometimes be referred to as Sceptic’s
capital at time t.

A positive capital process is any process S that can be represented in the
form

Si(w) =Y Ko (W), (1)



where the elementary capital processes ICtG "m(w) are required to be positive,
for all ¢+ and w, and the positive series Y - | ¢, is required to converge. The
sum (1) is always positive but allowed to take value co. Since ICOG (W) = ep
does not depend on w, Sp(w) also does not depend on w and will sometimes be
abbreviated to Sp.

The upper probability of a set E C () is defined as
E(E) = inf{So ’ Yw e Q: ST(W) > ]IE(UJ)},

where S ranges over the positive capital processes and I stands for the indicator
of E.
We say that E C Q is null if P(E) = 0. A property of w € Q will be said to
hold almost surely (a.s.), or for almost all w, if the set of w where it fails is null.
Upper probability is countably (and finitely) subadditive:

Lemma 1. For any sequence of subsets Fv, Eo,... of Q,
P (U En> < ZIP(E,,).
n=1 n=1

In particular, a countable union of null sets is null.

3 Main result

For each p € (0,00), the strong p-variation of w € Q is
n
vary(w) := sup Z lw(t;) —w(ti-1)|”,
Foi=1

where n ranges over all positive integers and k over all subdivisions 0 = ¢y <
t1 < --- <t, =T of the interval [0,T]. It is obvious that there exists a unique
number vex(w) € [0, 00], called the strong variation exponent of w, such that
var,(w) is finite when p > vex(w) and infinite when p < vex(w); notice that
vex(w) ¢ (0,1).

The following is a game-theoretic counterpart of the well-known property of
continuous semimartingales (Lepingle [5], Theorem 1 and Proposition 3; Lévy
[6] in the case of Brownian motion).

Theorem 1. For almost all w € €,
vex(w) = 2 or w is constant. (2)

(Alternatively, (2) can be expressed as vex(w) € {0,2}.)



4 Proof

The more difficult part of this proof (vex(w) < 2 a.s.) will be modelled on the
proof in [1], which is surprisingly game-theoretic in character. The proof of
the easier part is modelled on [11]. (Notice, however, that our framework is
very different from those of [1] and [11], which creates additional difficulties.)
Without loss of generality we impose the restriction w(0) = 0.

Proof that vex(w) > 2 for non-constant w a.s.

We need to show that the event vex(w) < 2 & nc(w) is null, where nc(w)
stands for “w is not constant”. By Lemma 1 it suffices to show that vex(w) <
p & nc(w) is null for each p € (0,2). Fix such a p. It suffices to show that
varp(w) < oo & nc(w) is null and, therefore, it suffices to show that the event
var,(w) < C & nc(w) is null for each C € (0,00). Fix such a C. Finally, it
suffices to show that the event

Ep,C,A = {w IS2Y)

varp(w) < C & sup |w(t)] > A}

te[0,T)

is null for each A > 0. Fix such an A.

Choose a small number ¢ > 0 such that A/d € N, and let ' := {kd | k € Z}
be the corresponding grid. Define a sequence of stopping times 7,, inductively
by

Tng1 i=1inf{t > 7, |w(t) €T\ {w(m)}}, n=0,1,...,
with 79 := 0 and inf ) understood to be oo. Set Ty := inf{¢ | |w(t)| = A}, again
with inf @) := oo, and

o (10) 2w(Ty) ' 7h(w) <TATa(w) and n+1< C/6P
n(w) ==
0 otherwise.

The elementary capital process corresponding to the elementary gambling strat-
egy G = (Tn, hy,)S%; and initial capital ¢ := §27PC will satisfy

WQ(TnJrl) - WQ(TH) = 2w(7n) (W(Tny1) — W(Th)) + (W(Tng1) — W(Tn))2
=K&° (w) — KE(w) + 6

Tn+1

provided 7,41 (w) < T ATy(w) and n+ 1 < C/6P, and so satisfy
W (rn) = KGF(w) — K5 + No* = KS5(w) — 02 PO+ 02 PN? < K& (w) (3)

provided 7n(w) < T A Tx(w) and N < C/éP. On the event E, ¢ 4 we have
Ty(w) < T and N < C/éP for the N defined by 7 = T4. Therefore, on this

event
A? = WA (Ta) < K5 (w) = KFC(w).



We can see that ICtG “(w) increases from §27PC, which can be made arbitrarily
small by making § small, to A% over [0, 77; this shows that the event E, ¢ 4 is
null.

The only remaining gap in our argument is that ICtG “ may become strictly
negative strictly between some 7,, < T'AT4 and 7,41 with n+1 < C/dP (it will
be positive at all 7y € [0,T AT4] with N < C/éP, as can be seen from (3)). We
can, however, bound ICtG “for 1, <t < T,,11 as follows:

KE (W) = K3 (@) + 20(rn) (@(t) = w(Tn)) = 2|w(ra)| (=0) > —245,

and so we can make the elementary capital process positive by adding the neg-
ligible amount 240 to Sceptic’s initial capital.

Proof that vex(w) < 2 a.s.

We need to show that the event vex(w) > 2 is null, i.e., that vex(w) > p is null
for each p > 2. Fix such a p. It suffices to show that var,(w) = oo is null, and
therefore, it suffices to show that event

Ep)A = {w e

varp(w) =00 & sup |w(t)] < A}
t€[0,T)

is null for each A > 0. Fix such an A.

The rest of the proof follows [1] closely. Let M;(f, (a,b)) be the number of
upcrossings of the open interval (a,b) by a continuous function f € Q during
the time interval [0,¢], t € [0,7]. For each § > 0 we also set

My(f,8) = My(f, (0, (k + 1)3).
keZ

The strong p-variation var,(f,[0,t]) of f € Q over an interval [0,¢], ¢t < T, is
defined as

Varp(fv [Oa t]) = Sipz |f(t1) - f(ti—l)lpv

where n ranges over all positive integers and s over all subdivisions 0 = ¢y <
t1 < --- < t, =t of the interval [0,¢] (so that var,(f) = var,(f,[0,7])). The
following key lemma is proved in [1] (Lemma 1; in fact, this lemma only requires
p>1).

Lemma 2. Forall f € Q, t >0, and q € [1,p),

op+q+1
vary(f, [0,t]) < 1_920p (2cq 2t (f) +1) AP,
where
A= sup |f(s) — f(0)]
s€0,t]
and

Conalf) = sup 2 MM (£, 227%).
keN



Another key ingredient of the proof is the following game-theoretic version
of Doob’s upcrossings inequality:

Lemma 3. Let ¢ < a < b be real numbers. For each elementary capital process
S > c there exists a positive elementary capital process S* that starts from
S§ = a — c and satisfies, for allt € [0,T] and w € Q,

S (w) = (b — a)My(S(w), (a, b)),
where S(w) stands for the sample path t — Sy(w).

Proof. The following standard argument is easy to formalize. Let G be an
elementary gambling strategy leading to S (when started with initial capital
So). An elementary gambling strategy G* leading to S* (with initial capital
a — ¢) can be defined as follows. When S first hits a, G* starts mimicking G
until S hits b, at which point G* chooses portfolio 0; after S hits a, G* mimics
G until S hits b, at which point G* chooses portfolio 0; etc. Since S > ¢, S*
will be positive. O

Now we are ready to finish the proof of the theorem. Let Ty := inf{t | w(¢t) =
A} be the hitting time for A (with T4 := T if A is not hit). By Lemma 3, for
each k € N and each i € {—2% 4 1,...,2*} there exists a positive elementary
capital process S¥ that starts from A + (i — 1)A27F and satisfies

Shi > 427 M, (w, (i — 1)A27*,i427F))

Summing 27%45%¢ /A2 over i € {—2F +1,...,2F}, we obtain a positive ele-
mentary capital process S* such that

ok .
B A+ (i—1)A27F
k __ k kqo2k+1
D D
i=—2k41

and
S5, > 27 MMy, (w, A27F).

Next, assuming ¢ € (2,p) and summing over k € N, we obtain a positive capital
process S such that

- kqo2k-+1 254
Sy = 227 992k+1 _ 552 and S, > cq a1, (W).
k=1

On the event E, 4 we have Ty =T and so, by Lemma 2, ¢, 4,7, (w) = co. This
shows that S = co on Ej, 4 and completes the proof.



5 Conclusion

Theorem 1 says that, almost surely,

() <o ifp>2
var, (w
P = o0 if p < 2 and w is not constant.

The situation for p = 2 remains unclear. It would be very interesting to find the
upper probability of the event {vary(w) < oo and w is not constant}. (Lévy’s
[6] result shows that this event is null when w is the sample path of Brownian
motion, while Lepingle [5] shows this for continuous, and some other, semi-
martingales.)
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