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Abstract

A nonnegative martingale with initial value equal to one measures evidence
against a probabilistic hypothesis. The inverse of its value at some stopping
time can be interpreted as a Bayes factor. If we exaggerate the evidence by con-
sidering the largest value attained so far by such a martingale, the exaggeration
will be limited, and there are systematic ways to eliminate it. The inverse of
the exaggerated value at some stopping time can be interpreted as a p-value.
We give a simple characterization of all increasing functions that eliminate the
exaggeration.
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Figure 1: The relationship between a Bayes factor and a p-value can be thought
of as a snapshot of the dynamic relationship between a nonnegative martingale
(Xt) with initial value 1 and the process (X∗

t ) that tracks its supremum. The
snapshot could be taken at any time, but in our theorems we consider the final
values of the martingale and its supremum process.

1 Introduction

Nonnegative martingales with initial value 1, Bayes factors, and p-values can all
be regarded as measures of evidence against a probabilistic hypothesis (i.e., a
simple statistical hypothesis). In this article, we review the well-known relation-
ship between Bayes factors and nonnegative martingales and the less well-known
relationship between p-values and the suprema of nonnegative martingales. Fig-
ure 1 provides a visual frame for the relationships we discuss.

Consider a random process (Xt) that initially has the value one and is a
nonnegative martingale under a probabilistic hypothesis P (the time t may be
discrete or continuous). We call such a martingale a test martingale. One
statistical interpretation of the values of a test martingale is that they measure
the changing evidence against P . The value Xt is the number of dollars a
gambler has at time t if he begins with $1 and follows a certain strategy for
betting at the rates given by P ; the nonnegativity of the martingale means that
this strategy never risks a cumulative loss exceeding the $1 with which it began.
If Xt is very large, the gambler has made a lot of money betting against P , and
this makes P look doubtful. But then Xu for some later time u may be lower
and make P look better.

The notion of a test martingale (Xt) is related to the notion of a Bayes factor,
which is more familiar to statisticians. A Bayes factor measures the degree to
which a fixed body of evidence supports P relative to a particular alternative
hypothesis Q; a very small value can be interpreted as discrediting P . If (Xt)
is a test martingale, then for any fixed time t, 1/Xt is a Bayes factor. We can
also say, more generally, that the value 1/Xτ for any stopping time τ is a Bayes
factor. This is represented by the downward arrow on the left in Figure 1.
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Suppose we exaggerate the evidence against P by considering not the current
value Xt but the greatest value so far:

X∗
t := sup

s≤t
Xs.

A high X∗
t is not as impressive as a high Xt, but how should we understand the

difference? Here are two complementary answers:

Answer 1 (downward arrow on the right in Figure 1) Although (X∗
t )

is usually not a martingale, the final value X∗
∞ := sups Xs still has a

property associated with hypothesis testing: for every δ ∈ [0, 1], 1/X∗
∞

has probability no more than δ of being δ or less. For any t, X∗
t , because

it is less than or equal to X∗
∞, has the same property. In this sense, 1/X∗

∞
and 1/X∗

t are p-values (perhaps conservative).

Answer 2 (leftward arrow at the top of Figure 1) As we will show,
there are systematic ways of shrinking X∗

t (calibrating it, as we shall
say) to eliminate the exaggeration. There exist, that is to say, functions f
such that limx→∞ f(x) = ∞ and f(X∗

t ) is an unexaggerated measure of
evidence against P , inasmuch as there exists a test martingale (Yt) always
satisfying Yt ≥ f(X∗

t ) for all t.

Answer 2 will appeal most to readers familiar with the algorithmic theory of
randomness, where the idea of treating a martingale as a dynamic measure
of evidence is well established (see, e.g., [25], Section 4.5.7). Answer 1 may
be more interesting to readers familiar with mathematical statistics, where the
static notions of a Bayes factor and a p-value are often compared.

For the sake of conceptual completeness, we note that Answer 1 has a con-
verse. For any random variable p that has probability δ of being δ or less for
every δ ∈ [0, 1], there exists a test martingale (Xt) such that p = 1/X∗

∞. This
converse is represented by the upward arrow on the right of our figure. It may
be of limited practical interest, because the time scale for (Xt) may be artificial.

Parallel to the fact that we can shrink the running supremum of a test
martingale to obtain an unexaggerated test martingale is the fact that we can
inflate a p-value to obtain an unexaggerated Bayes factor. This is the leftward
arrow at the bottom of our figure. It was previously discussed in [41] and [35].

These relationships are probably all known in one form or another to many
people. But they have received less attention than they deserve, probably be-
cause the full picture emerges only when we bring together ideas from algorith-
mic randomness and mathematical statistics. Readers who are not familiar with
both fields may find the historical discussion in Section 2 helpful.

Although our theorems are not deep, we state and prove them using the full
formalism of modern probability theory. Readers more comfortable with the
conventions and notation of mathematical statistics may want to turn first to
Section 8, in which we apply these results to testing whether a coin is fair.

The theorems depicted in Figure 1 are proven in Sections 3 to 7. Section 3 is
devoted to mathematical preliminaries; in particular, it introduces the concept
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of a test martingale and the wider and in general more conservative concept of
a test supermartingale. Section 4 reviews the relationship between test super-
martingales and Bayes factors, while Section 5 explains the relationship between
the suprema of test supermartingales and p-values. Section 6 explains how p-
values can be inflated so that they are not exaggerated relative to Bayes factors,
and Section 7 explains how the maximal value attained so far by a test super-
martingale can be similarly shrunk so that it is not exaggerated relative to the
current value of a test supermartingale.

There are two appendices. Appendix A explains why test supermartingales
are more efficient tools than test martingales in the case of continuous time.
Appendix B carries out some calculations that are used in Section 8.

2 Some history

Jean Ville introduced martingales into probability theory in his 1939 thesis [39].
Ville considered only test martingales and emphasized their betting interpreta-
tion. As we have explained, a test martingale under P is the capital process for
a betting strategy that starts with a unit capital and bets at rates given by P ,
risking only the capital with which it begins. Such a strategy is an obvious way
to test P : you refute the quality of P ’s probabilities by making money against
them.

As Ville pointed out, the event that a test martingale tends to infinity has
probability zero, and for every event of probability zero, there is a test martin-
gale that tends to infinity if the event happens. Thus the classical idea that a
probabilistic theory predicts events to which it gives probability equal (or nearly
equal) to one can be expressed by saying that it predicts that test martingales
will not become infinite (or very large). Ville’s idea was popularized after World
War II by Per Martin-Löf [27, 28] and subsequently developed by Claus-Peter
Schnorr in the 1970s [34] and A. P. Dawid in the 1980s [11]. For details about
the role of martingales in algorithmic randomness from von Mises to Schnorr,
see [8]. For historical perspective on the paradoxical behavior of martingales
when they are not required to be nonnegative (or at least bounded below), see
[9].

Ville’s idea of a martingale was taken up as a technical tool in probability
mathematics by Joseph Doob in the 1940s [26], and it subsequently became
important as a technical tool in mathematical statistics, especially in sequential
analysis and time series [21] and in survival analysis [1]. Mathematical statistics
has been slow, however, to take up the idea of a martingale as a dynamic measure
of evidence. Instead, statisticians emphasize a static concept of hypothesis
testing.

Most literature on statistical testing remains in the static and all-or-nothing
(reject or accept) framework established by Jerzy Neyman and Egon Pearson in
1933 [31]. Neyman and Pearson emphasized that when using an observation y to
test P with respect to an alternative hypothesis Q, it is optimal to reject P for
values of y for which the likelihood ratio P (y)/Q(y) is smallest or, equivalently,
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for which the reciprocal likelihood ratio Q(y)/P (y) is largest. (Here P (y) and
Q(y) represent either probabilities assigned to y by the two hypotheses or, more
generally, probability densities relative to a common reference measure.) If the
observation y is a vector, say y1 . . . yt, where t continues to grow, then the
reciprocal likelihood ratio Q(y1 . . . yt)/P (y1 . . . yt) is a discrete-time martingale
under P , but mathematical statisticians did not propose to interpret it directly.
In the sequential analysis invented by Abraham Wald and George A. Barnard
in the 1940s, the goal still is to define an all-or-nothing Neyman-Pearson test
satisfying certain optimality conditions, although the reciprocal likelihood ratio
plays an important role (when testing P against Q, this goal is attained by
a rule that rejects P when Q(y1 . . . yt)/P (y1 . . . yt) becomes large enough and
accepts P when Q(y1 . . . yt)/P (y1 . . . yt) becomes small enough).

The increasing importance of Bayesian philosophy and practice starting in
the 1960s has made the likelihood ratio P (y)/Q(y) even more important. This
ratio is now often called the Bayes factor for P against Q, because by Bayes’s
theorem, we obtain the ratio of P ’s posterior probability to Q’s posterior prob-
ability by multiplying the ratio of their prior probabilities by this factor [20].

The notion of a p-value developed informally in statistics. From Jacob
Bernoulli onward, everyone who applied probability theory to statistical data
agreed that one should fix a threshold (later called a significance level) for
probabilities, below which a probability would be small enough to justify the
rejection of a hypothesis. But because different people might fix this threshold
differently, it was natural, in empirical work, to report the smallest threshold
for which the hypothesis would still have been rejected, and British statisticians
(e.g., Karl Pearson in 1900 [32] and R. A. Fisher in 1925 [16]) sometimes called
this borderline probability “the value of P”. Later, this became “P-value” or
“p-value” [3].

After the work of Neyman and Pearson, which emphasized the probabilities
of error associated with significance levels chosen in advance, mathematical
statisticians often criticized applied statisticians for merely reporting p-values,
as if a small p-value were a measure of evidence, speaking for itself without
reference to a particular significance level. This disdain for p-values has been
adopted and amplified by modern Bayesians, who have pointed to cases where
p-values diverge widely from Bayes factors and hence are very misleading from
a Bayesian point of view [35, 43].

3 Mathematical preliminaries

In this section we define martingales, Bayes factors, and p-values. All three
notions have two versions: a narrow version that requires an equality and a wider
version that relaxes this equality to an inequality and is considered conservative
because the goal represented by the equality in the narrow version may be more
than attained; the conservative versions are often technically more useful. The
conservative version of a martingale is a supermartingale. As for Bayes factors
and p-values, their main definitions will be conservative, but we will also define
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narrow versions.
Recall that a probability space is a triplet (Ω,F ,P), where Ω is a set, F is

a σ-algebra on Ω, and P is a probability measure on F . A random variable X
is a real-valued F-measurable function on Ω; we allow random variables to take
values ±∞. We use the notation E(X) for the integral of X with respect to P
and E(X | G) for the conditional expectation of X given a σ-algebra G ⊆ F ;
these notations are used only when X is integrable (i.e., when E(X+) < ∞
and E(X−) < ∞; in particular, P{X = ∞} = P{X = −∞} = 0). A random
process is a family (Xt) of random variables Xt; the index t is interpreted as
time. We are mainly interested in discrete time (say t = 0, 1, 2, . . .), but our
results (Theorems 1–4) will also apply to continuous time (say t ∈ [0,∞)).

3.1 Martingales and supermartingales

The time scale for a martingale or supermartingale is formalized by a filtration.
In some cases, it is convenient to specify this filtration when introducing the
martingale or supermartingale; in others it is convenient to specify the martin-
gale or supermartingale and derive an appropriate filtration from it. So there are
two standard definitions of martingales and supermartingales in a probability
space. We will use them both:

1. (Xt,Ft), where t ranges over an ordered set ({0, 1, . . .} or [0,∞) in this
article), is a supermartingale if (Ft) is a filtration (i.e., an indexed set of
sub-σ-algebras of F such that Fs ⊆ Ft whenever s < t), (Xt) is a random
process adapted with respect to (Ft) (i.e., each Xt is Ft-measurable), each
Xt is integrable, and

E(Xt | Fs) ≤ Xs a.s.

when s < t. A supermartingale is a martingale if, for all t and s < t,

E(Xt | Fs) = Xs a.s. (1)

2. A random process (Xt) is a supermartingale (resp. martingale) if (Xt,Ft)
is a supermartingale (resp. martingale), where Ft is the σ-algebra gener-
ated by Xs, s ≤ t.

For both definitions, the class of supermartingales contains that of martingales.
In the case of continuous time we will always assume that the paths of

(Xt) are right-continuous almost surely (they will then automatically have left
limits almost surely: see, e.g., [13], VI.3(2)). We will also assume that the
filtration (Ft) in (Xt,Ft) satisfies the usual conditions, namely that each σ-
algebra Ft contains all subsets of all E ∈ F satisfying P(E) = 0 (in particular,
the probability space is complete) and that (Ft) is right-continuous, in that,
at each time t, Ft = Ft+ := ∩s>tFs. If the original filtration (Ft) does not
satisfy the usual conditions (this will often be the case when Ft is the σ-algebra
generated by Xs, s ≤ t), we can redefine F as the P-completion FP of F and
redefine Ft as FP

t+ := ∩s>tFP
s , where FP

s is the σ-algebra generated by Fs and
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the sets E ∈ FP satisfying P(E) = 0; (Xt,Ft) will remain a (super)martingale
by [13], VI.3(1).

We are particularly interested in test supermartingales, defined as super-
martingales that are nonnegative (Xt ≥ 0 for all t) and satisfy E(X0) ≤ 1,
and test martingales, defined as martingales that are nonnegative and satisfy
E(X0) = 1. Earlier, we defined test martingales as those having initial value 1;
this can be reconciled with the new definition by setting Xt := 1 for t < 0. A
well-known fact about test supermartingales, first proven for discrete time and
test martingales by Ville, is that

P{X∗
∞ ≥ c} ≤ 1/c (2)

for every c ≥ 1 ([39], p. 100; [13], VI.1). We will call this the maximal inequality.
This inequality shows that Xt can take the value ∞ only with probability zero.

3.2 Bayes factors

A nonnegative measurable function B : Ω → [0,∞] is called a Bayes factor for
P if

∫
(1/B)dP ≤ 1; we will usually omit “for P”. A Bayes factor B is said to

be precise if
∫
(1/B)dP = 1.

In order to relate this definition to the notion of Bayes factor discussed
informally in Sections 1 and 2, we note first that whenever Q is a proba-
bility measure on (Ω,F), the Radon-Nikodym derivative dQ/dP will satisfy∫
(dQ/dP)dP ≤ 1, with equality if Q is absolutely continuous with respect to

P. Therefore, B = 1/(dQ/dP) will be a Bayes factor for P. The Bayes factor
B will be precise if Q is absolutely continuous with respect to P; in this case B
will be a version of the Radon-Nikodym derivative dP/dQ.

Conversely, whenever a nonnegative measurable function B satisfies∫
(1/B)dP ≤ 1, we can construct a probability measure Q that has 1/B

as its Radon-Nikodym derivative with respect to P. We first construct a mea-
sure Q0 by setting Q0(A) :=

∫
A
(1/B)dP for all A ∈ F , and then obtain Q by

adding to Q0 a measure that puts the missing mass 1−Q0(Ω) (which can be 0)
on a set E (this can be empty or a single point) to which P assigns probability
zero. (If P assigns positive probability to every element of Ω, we can add a
new point to Ω.) The function B will be a version of the Radon-Nikodym
derivative dP/dQ if we redefine it by setting B(ω) := 0 for ω ∈ E (remember
that P(E) = 0).

3.3 p-values

In order to relate p-values to supermartingales, we introduce a new concept,
that of a p-test. A p-test is a measurable function p : Ω → [0, 1] such that

P{ω | p(ω) ≤ δ} ≤ δ (3)

for all δ ∈ [0, 1]. We say that p is a precise p-test if

P{ω | p(ω) ≤ δ} = δ (4)
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for all δ ∈ [0, 1].
It is consistent with established usage to call the values of a p-test p-values,

at least if the p-test is precise. One usually starts from a measurable function
T : Ω → R (the test statistic) and sets p(ω) := P{ω′ | T (ω′) ≥ T (ω)}; it is clear
that a function p defined in this way, and any majorant of such a p, will satisfy
(3). If the distribution of T is continuous, p will also satisfy (4). If not, we can
treat the ties T (ω′) = T (ω) more carefully and set

p(ω) := P{ω′ | T (ω′) > T (ω)}+ ξP{ω′ | T (ω′) = T (ω)},

where ξ is chosen randomly from the uniform distribution on [0, 1]; in this way
we will always obtain a function satisfying (4) (where P now refers to the overall
probability encompassing generation of ξ).

4 Supermartingales and Bayes factors

When (Xt,Ft) is a test supermartingale, 1/Xt is a Bayes factor for any value
of t. It is also true that 1/X∞, X∞ being the supermartingale’s limiting value,
is a Bayes factor. Part 1 of the following theorem is a precise statement of the
latter assertion; the former assertion follows from the fact that we can stop the
supermartingale at any time t.

Part 2 of the theorem states that we can construct a test martingale whose
limiting value is reciprocal to a given precise Bayes factor. We include this result
for mathematical completeness rather than because of its practical importance;
the construction involves arbitrarily introducing a filtration, which need not
correspond to any time scale with practical meaning. In its statement, we use
F∞ to denote the σ-algebra generated by ∪tFt.

Theorem 1. 1. If (Xt,Ft) is a test supermartingale, then X∞ :=
limt→∞ Xt exists almost surely and 1/X∞ is a Bayes factor.

2. Suppose B is a precise Bayes factor. Then there is a test martingale (Xt)
such that B = 1/X∞ a.s. Moreover, for any filtration (Ft) such that B is
F∞-measurable, there is a test martingale (Xt,Ft) such that B = 1/X∞
almost surely.

Proof. If (Xt,Ft) is a test supermartingale, the limit X∞ exists almost surely
by Doob’s convergence theorem ([13], VI.6), and the inequality

∫
X∞dP ≤ 1

holds by Fatou’s lemma:∫
X∞dP =

∫
lim inf
t→∞

XtdP ≤ lim inf
t→∞

∫
XtdP ≤ 1.

Now suppose that B is a precise Bayes factor and (Ft) is a filtration (not
necessarily satisfying the usual conditions) such that B is F∞-measurable; for
concreteness, we consider the case of continuous time. Define a test martingale
(Xt,FP

t+) by setting Xt := E(1/B | FP
t+); versions of conditional expectations
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can be chosen in such a way that (Xt) is right-continuous: cf. [13], VI.4. Then
X∞ = 1/B almost surely by Lévy’s zero-one law ([24], pp. 128–130; [30], VI.6,
corollary). It remains to notice that (Xt,Ft) will also be a test martingale. If
(Ft) such that B is F∞-measurable is not given in advance, we can define it by,
e.g.,

Ft :=

{
{∅,Ω} if t < 1

σ(B) otherwise,

where σ(B) is the σ-algebra generated by B.

Formally, a stopping time with respect to a filtration (Ft) is a nonnegative
random variable τ taking values in [0,∞] such that, at each time t, the event
{ω | τ(ω) ≤ t} belongs to Ft. Let (Xt,Ft) be a test supermartingale. Doob’s
convergence theorem, which was used in the proof of Theorem 1, implies that
we can define its value Xτ at τ by the formula Xτ (ω) := Xτ(ω)(ω) even when
τ = ∞ with positive probability. The stopped process (Xτ

t ,Ft) := (Xt∧τ ,Ft),
where a∧ b := min(a, b), will also be a test supermartingale ([13], VI.12). Since
Xτ is the final value of the stopped process, it follows from part 1 of Theorem 1
that 1/Xτ is a Bayes factor. (This also follows directly from Doob’s stopping
theorem, [30], VI.13.)

5 Supermartingales and p-values

Now we will prove that the inverse of a supremum of a test supermartingale is a
p-test. This is true when the supremum is taken over [0, t] for some time point
t or over [0, τ ] for any stopping time τ , but the strongest way of making the
point is to consider the supremum over all time points (i.e., for τ := ∞).

We will also show how to construct a test martingale that has the inverse
of a given p-test as its supremum. Because the time scale for this martingale
is artificial, the value of the construction is more mathematical than directly
practical; it will help us prove Theorem 4 in Section 7. But it may be worth-
while to give an intuitive explanation of the construction. This is easiest when
the p-test has discrete levels, because then we merely construct a sequence of
bets. Consider a p-test p that is equal to 1 with probability 1/2, to 1/2 with
probability 1/4, to 1/4 with probability 1/8, etc.:

P{p = 2−n} = 2−n−1

for n = 0, 1, . . . . To see that a function on Ω that takes these values with these
probabilities is a p-test, notice that when 2−n ≤ δ < 2−n+1,

P{p ≤ δ} = P{p ≤ 2−n} = 2−n ≤ δ.

Suppose that we learn first whether p is 1. Then, if it is not 1, we learn whether
it is 1/2. Then, if it is not 1/2, whether it is 1/4, etc. To create the test
martingale X0, X1, . . ., we start with capital X0 = 1 and bet it all against p

8



being 1. If we lose, X1 = 0 and we stop. If we win, X1 = 2, and we bet it
all against p being 1/2, etc. Each time we have even chances of doubling our
money or losing it all. If p = 2−n, then our last bet will be against p = 2−n,
and the amount we will lose, 2n, will be X∗

∞. So 1/X∗
∞ = p, as desired.

Here is our formal result:

Theorem 2. 1. If (Xt,Ft) is a test supermartingale, 1/X∗
∞ is a p-test.

2. If p is a precise p-test, there is a test martingale (Xt) such that p = 1/X∗
∞.

Proof. The inequality P {1/X∗
∞ ≤ δ} ≤ δ for test supermartingales follows from

the maximal inequality (2).
In the opposite direction, let p be a precise p-test. Set Π := 1/p; this

function takes values in [1,∞]. Define a right-continuous random process (Xt),
t ∈ [0,∞), by

Xt(ω) =


1 if t ∈ [0, 1)

t if t ∈ [1,Π(ω))

0 otherwise.

Since X∗
∞ = Π, it suffices to check that (Xt) is a test martingale. The time

interval where this process is non-trivial is t ≥ 1; notice that X1 = 1 with
probability one.

Let t ≥ 1; we then have Xt = t I{Π>t}. Since Xt takes values in the two-
element set {0, t}, it is integrable. The σ-algebra generated by Xt consists of 4
elements (∅, Ω, the set Π−1((t,∞]), and its complement), and the σ-algebra Ft

generated by Xs, s ≤ t, consists of the sets Π−1(E) where E is either a Borel
subset of [1, t] or the union of (t,∞] and a Borel subset of [1, t]. To check (1),
where 1 ≤ s < t, it suffices to show that∫

Π−1(E)

XtdP =

∫
Π−1(E)

XsdP,

i.e., ∫
Π−1(E)

t I{Π>t} dP =

∫
Π−1(E)

s I{Π>s} dP, (5)

where E is either a Borel subset of [1, s] or the union of (s,∞] and a Borel
subset of [1, s]. If E is a Borel subset of [1, s], the equality (5) holds as its two
sides are zero. If E is the union of (s,∞] and a Borel subset of [1, s], (5) can be
rewritten as ∫

Π−1((s,∞])

t I{Π>t} dP =

∫
Π−1((s,∞])

s I{Π>s} dP,

i.e., tP{Π > t} = sP{Π > s}, i.e., 1 = 1.
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6 Calibrating p-values

An increasing (not necessarily strictly increasing) function f : [0, 1] → [0,∞] is
called a calibrator if f(p) is a Bayes factor for any p-test p. This notion was
discussed in [41] and, less explicitly, in [35]. In this section we will characterize
the set of all increasing functions that are calibrators; this result is a slightly
more precise version of Theorem 7 in [41].

We say that a calibrator f dominates a calibrator g if f(x) ≤ g(x) for all
x ∈ [0, 1]. We say that f strictly dominates g if f dominates g and f(x) < g(x)
for some x ∈ [0, 1]. A calibrator is admissible if it is not strictly dominated by
any other calibrator.

Theorem 3. 1. An increasing function f : [0, 1] → [0,∞] is a calibrator if
and only if ∫ 1

0

dx

f(x)
≤ 1. (6)

2. Any calibrator is dominated by an admissible calibrator.

3. A calibrator is admissible if and only if it is left-continuous and∫ 1

0

dx

f(x)
= 1. (7)

Proof. Part 1 is proven in [41] (Theorem 7), but we will give another argument,
perhaps more intuitive. The condition “only if” is obvious: every calibrator
must satisfy (6) in order to transform the “exemplary” p-test p(ω) = ω on the
probability space ([0, 1],F ,P), where F is the Borel σ-algebra on [0, 1] and P
is the uniform probability measure on F , into a Bayes factor. To check “if”,
suppose (6) holds and take any p-test p. The expectation E(1/f(p)) depends
on p only via the values P{p ≤ c}, c ∈ [0, 1], and this dependence is monotonic:
if a p-test p1 is stochastically smaller than another p-test p2 in the sense that
P{p1 ≤ c} ≥ P{p2 ≤ c} for all c, then E(1/f(p1)) ≥ E(1/f(p2)). This can be
seen, e.g., from the well-known formula E(ξ) =

∫∞
0

P{ξ > c}dc, where ξ is a
nonnegative random variable:

E(1/f(p1)) =

∫ ∞

0

P{1/f(p1) > c}dc ≥
∫ ∞

0

P{1/f(p2) > c}dc = E(1/f(p2)).

The condition (6) means that the inequality E(1/f(p)) ≤ 1 holds for our ex-
emplary p-test p; since p is stochastically smaller than any other p-test, this
inequality holds for any p-test.

Part 3 follows from part 1, and part 2 follows from parts 1 and 3.

Equation (7) gives a recipe for producing admissible calibrators f : take any

left-continuous decreasing function g : [0, 1] → [0,∞] such that
∫ 1

0
g(x)dx = 1

and set f(x) := 1/g(x), x ∈ [0, 1]. We see in this way, for example, that

f(x) := x1−α/α (8)
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is an admissible calibrator for every α ∈ (0, 1); if we are primarily interested in
the behavior of f(x) as x → 0, we should take a small value of α. This class of
calibrators was found independently in [41] and [35].

The calibrators (8) shrink to 0 significantly slower than x as x → 0.
But there are evidently calibrators that shrink as fast as x ln1+α(1/x), or
x ln(1/x) ln1+α ln(1/x), etc., where α is a positive constant. For example,

f(x) :=

{
α−1(1 + α)−αx ln1+α(1/x) if x ≤ e−1−α

∞ otherwise
(9)

is an admissible calibrator for any α > 0.

7 Calibrating the running suprema of test su-
permartingales

Let us call an increasing function f : [1,∞) → [0,∞) a martingale calibrator if
it satisfies the following property:

For any probability space (Ω,F ,P) and any test supermartingale
(Xt,Ft) in this probability space there exists a test supermartingale
(Yt,Ft) such that Yt ≥ f(X∗

t ) for all t almost surely.

There are at least 32 equivalent definitions of a martingale calibrator: we can
independently replace each of the two entries of “supermartingale” in the def-
inition by “martingale”, we can independently replace (Xt,Ft) by (Xt) and
(Yt,Ft) by (Yt), and we can optionally allow t to take value ∞. The equiva-
lence will be demonstrated in the proof of Theorem 4. Our convention is that
f(∞) := limx→∞ f(x) (but remember that X∗

t = ∞ only with probability zero,
even for t = ∞).

As in the case of calibrators, we say that a martingale calibrator f is admis-
sible if there is no other martingale calibrator g such that g(x) ≥ f(x) for all
x ∈ [1,∞) (g dominates f) and g(x) > f(x) for some x ∈ [1,∞).

Theorem 4. 1. An increasing function f : [1,∞) → [0,∞) is a martingale
calibrator if and only if ∫ 1

0

f(1/x)dx ≤ 1. (10)

2. Any martingale calibrator is dominated by an admissible martingale cali-
brator.

3. A martingale calibrator is admissible if and only if it is right-continuous
and ∫ 1

0

f(1/x)dx = 1. (11)

11



Proof. We start from the statement “if” of part 1. Suppose an increasing func-
tion f : [1,∞) → [0,∞) satisfies (10) and (Xt,Ft) is a test supermartingale.
By Theorem 3, g(x) := 1/f(1/x), x ∈ [0, 1], is a calibrator, and by Theo-
rem 2, 1/X∗

∞ is a p-test. Therefore, g(1/X∗
∞) = 1/f(X∗

∞) is a Bayes factor, i.e.,
E(f(X∗

∞)) ≤ 1. Similarly to the proof of Theorem 1, we set Yt := E(f(X∗
∞) | Ft)

obtaining a nonnegative martingale (Yt,Ft) satisfying Y∞ = f(X∗
∞) a.s. We

have E(Y0) ≤ 1; the case E(Y0) = 0 is trivial, and so we assume E(Y0) > 0.
Since

Yt = E(f(X∗
∞) | Ft) ≥ E(f(X∗

t ) | Ft) = f(X∗
t ) a.s.

(the case t = ∞ was considered separately) and we can make (Yt,Ft) a test
martingale by dividing each Yt by E(Y0) ∈ (0, 1], the statement “if” in part 1
of the theorem is proven. Notice that our argument shows that f is a mar-
tingale calibrator in any of the 32 senses; this uses the fact that (Yt) is a test
(super)martingale whenever (Yt,Ft) is a test (super)martingale.

Let us now check that any martingale calibrator (in any of the senses)
satisfies (10). By any of our definitions of a martingale calibrator, we have∫
f(X∗

t )dP ≤ 1 for all test martingales (Xt) and all t < ∞. It is easy to see
that in Theorem 2, part 2, we can replace X∗

∞ with, say, X∗
π/2 by replacing the

test martingale (Xt) whose existence it asserts with

X ′
t :=

{
Xtan t if t < π/2

X∞ otherwise.

Applying this modification of Theorem 2, part 2, to the precise p-test p(ω) := ω
on [0, 1] equipped with the uniform probability measure we obtain

1 ≥
∫

f(X∗
π/2)dP =

∫
f(1/p)dP =

∫ 1

0

f(1/x)dx.

This completes the proof of part 1.
Part 3 is now obvious, and part 2 follows from parts 1 and 3.

As in the case of calibrators, we have a recipe for producing admissible
martingale calibrators f provided by (11): take any left-continuous decreasing

function g : [0, 1] → [0,∞) satisfying
∫ 1

0
g(x)dx = 1 and set f(y) := g(1/y),

y ∈ [1,∞). In this way we obtain the class of admissible martingale calibrators

f(y) := αy1−α, α ∈ (0, 1), (12)

analogous to (8) and the class

f(y) :=

{
α(1 + α)α y

ln1+α y
if y ≥ e1+α

0 otherwise,
α > 0,

analogous to (9).
In the case of discrete time, Theorem 4 has been greatly generalized by

Dawid et al. ([12], Theorem 1). The generalization, which required new proof

12



techniques, makes it possible to apply the result in new fields, such as mathe-
matical finance ([12], Section 4).

In this article, we have considered only tests of simple statistical hypothe-
ses. We can use similar ideas for testing composite hypotheses, i.e., sets of
probability measures. One possibility is to measure the evidence against the
composite hypothesis by the current value of a random process that is a test
supermartingale under all probability measures in the composite hypothesis; we
will call such processes simultaneous test supermartingales. For example, there
are non-trivial processes that are test supermartingales under all exchangeable
probability measures simultaneously ([42], Section 7.1). Will martingale cali-
brators achieve their goal for simultaneous test supermartingales? The method
of proof of Theorem 4 does not work in this situation: in general, it will produce
a different test supermartingale for each probability measure. The advantage of
the method used in [12] is that it will produce one process, thus demonstrating
that for each martingale calibrator f and each simultaneous test supermartingale
Xt there exists a simultaneous test supermartingale Yt such that Yt ≥ f(X∗

t )
for all t (the method of [12] works pathwise and makes the qualification “almost
surely” superfluous).

More flexible method: a separate test supermartingale for each probability
measure in the composite hypothesis. The method of proof Theorem 4 now
works.

8 Examples

Although our results are very general, we can illustrate them using the sim-
ple problem of testing whether a coin is fair. Formally, suppose we ob-
serve a sequence of independent identically distributed binary random variables
x1, x2, . . ., each taking values in the set {0, 1}; the probability θ ∈ [0, 1] of x1 = 1
is unknown. Let Pθ be the probability distribution of x1, x2, . . .; it is a proba-
bility measure on {0, 1}∞. In most of this section, our null hypothesis is that
θ = 1/2.

We consider both Bayesian testing of θ = 1/2, where the output is a poste-
rior distribution, and non-Bayesian testing, where the output is a p-value. We
call the approach that produces p-values the sampling-theory approach rather
than the frequentist approach, because it does not require us to interpret all
probabilities as frequencies; instead, we can merely interpret the p-values using
Cournot’s principle ([36], Section 2). We have borrowed the term “sampling-
theory” from D. R. Cox and A. P. Dempster [10, 14], without necessarily using
it in exactly the same way as either of them do.

We consider two tests of θ = 1/2, corresponding to two different alternative
hypotheses.

1. First we test θ = 1/2 against θ = 3/4. This is unrealistic on its face; it
is hard to imagine accepting a model that contains only these two simple
hypotheses. But some of what we learn from this test will carry over to
sensible and widely used tests of a simple against a composite hypothesis.
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2. Second, we test θ = 1/2 against the composite hypothesis θ ̸= 1/2. In
the spirit of Bayesian statistics and following Laplace ([22]; see also [38],
Section 870, and [37]), we represent this composite hypothesis by the uni-
form distribution on [0, 1], the range of possible values for θ. (In general,
the composite hypotheses of this section will be composite only in the
sense of Bayesian statistics; from the point of view of the sampling-theory
approach, these are still simple hypotheses.)

For each test, we give an example of calibration of the running supremum of
the likelihood ratio. In the case of the composite alternative hypothesis, we also
discuss the implications of using the inverse of the running supremum of the
likelihood ratio as a p-value.

To round out the picture, we also discuss Bayesian testing of the composite
hypothesis θ ≤ 1/2 against the composite hypothesis θ > 1/2, representing the
former by the uniform distribution on [0, 1/2] and the latter by the uniform
distribution on (1/2, 1]. Then, to conclude, we discuss the relevance of the
calibration of running suprema to Bayesian philosophy.

Because the idea of tracking the supremum of a martingale is related to
the idea of waiting until it reaches a high value, our discussion is related to a
long-standing debate about “sampling to reach a foregone conclusion”, i.e., con-
tinuing to sample in search of evidence against a hypothesis and stopping only
when some conventional p-value finally dips below a conventional level such as
5%. This debate goes back at least to the work of Francis Anscombe in 1954
[4]. In 1961, Peter Armitage described situations where even a Bayesian can
sample to a foregone conclusion ([6]; [7], Section 5.1.4). Yet in 1963 [15], Ward
Edwards and his co-authors insisted that this is not a problem: “The likelihood
principle emphasized in Bayesian statistics implies, among other things, that
the rules governing when data collection stops are irrelevant to data interpreta-
tion. It is entirely appropriate to collect data until a point has been proven or
disproven, or until the data collector runs out of time, money, or patience.” For
further information on this debate, see [43]. We will not attempt to analyze it
thoroughly, but our examples may be considered a contribution to it.

8.1 Testing θ = 1/2 against a simple alternative

To test our null hypothesis θ = 1/2 against the alternative hypothesis θ = 3/4,
we use the likelihood ratio

Xt :=
P3/4(x1, . . . , xt)

P1/2(x1, . . . , xt)
=

(3/4)kt(1/4)t−kt

(1/2)t
=

3kt

2t
, (13)

where kt is the number of 1s in x1, . . . , xt (and Pθ(x1, . . . , xt) is the probability
under Pθ that the first t observations are x1, . . . , xt; such informal notation was
already used in Section 2). The sequence of successive values of this likelihood
ratio is a test martingale (Xt).

According to (12), the function

f(y) := 0.1y0.9 (14)
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Figure 2: The red line is a realization over 10, 000 trials of the likelihood ratio
for testing θ = 1/2 against θ = 3/4. The horizontal axis gives the number of
observations so far. The vertical axis is logarithmic and is labelled by powers of
10. The likelihood ratio varies wildly, up to 1015 and down to 10−15. Were the
sequence continued indefinitely, it would be unbounded in both directions.

is a martingale calibrator. So there exists a test martingale (Yt) such that

Yt ≥ max
n=1,...,t

0.1X0.9
n . (15)

Figure 2 shows an example in which the martingale calibrator (14) preserves
a reasonable amount of the evidence against θ = 1/2. To construct this figure,
we generated a sequence x1, . . . , x10,000 of 0s and 1s, choosing each xt indepen-
dently with the probability θ for xt = 1 always equal to ln 2/ ln 3 ≈ 0.63. Then
we formed the lines in the figure as follows:

• The red line is traced by the sequence of numbers Xt = 3kt/2t. If our
null hypothesis θ = 1/2 were true, these numbers would be a realization
of a test martingale, but this hypothesis is false (as is our alternative
hypothesis θ = 3/4).

• The upper dotted line is the running supremum of the Xt:

X∗
t = max

n=1,...,t

3kn

2n
= (best evidence so far against θ = 1/2)t.

• The lower dotted line, which we will call Ft, shrinks this best evidence
using our martingale calibrator: Ft = 0.1(X∗

t )
0.9.

• The blue line, which we will call Yt, is a test martingale under the null
hypothesis that satisfies (15): Yt ≥ Ft.
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According to the proof of Theorem 4, E(0.1(X∗
∞)0.9 | Ft)/E(0.1(X∗

∞)0.9), where
the expected values are with respect to P1/2, is a test martingale that satisfies
(15). Because these expected values may be difficult to compute, we have used
in its stead in the role of Yt a more easily computed test martingale that is
shown in [12] to satisfy (15).

Here are the final values of the processes shown in Figure 2:

X10,000 = 2.2 X∗
10,000 = 7.3× 1015

F10,000 = 1.9× 1013 Y10,000 = 2.2× 1013.

The test martingale Yt legitimately and correctly rejects the null hypothesis
at time 10, 000 on the basis of Xt’s high earlier values, even though the Bayes
factor X10,000 is not high. The Bayes factor Y10,000 gives overwhelming evidence
against the null hypothesis, even though it is more than two orders of magnitude
smaller than X∗

10,000.
As the reader will have noticed, the test martingaleXt’s overwhelming values

against θ = 1/2 in Figure 2 are followed, around t = 7, 000, by overwhelming
values (order of magnitude 10−15) against θ = 3/4. Had we been testing θ = 3/4
against θ = 1/2, we would have found that it can also be rejected very strongly
even after calibration. The fact that (Xt) and (1/Xt) both have times when
they are very large is not accidental when we sample from Pln 2/ ln 3. Under this
measure, the conditional expected value of the increment lnXt − lnXt−1, given
the first t− 1 observations, is

ln 2

ln 3
ln

3

2
+

(
1− ln 2

ln 3

)
ln

1

2
= 0.

So lnXt is a martingale under Pln 2/ ln 3. The conditional variance of its incre-
ment is

ln 2

ln 3

(
ln

3

2

)2

+

(
1− ln 2

ln 3

)(
ln

1

2

)2

= ln 2 ln
3

2
.

By the law of the iterated logarithm,

lim sup
t→∞

lnXt√
2 ln 2 ln 3

2 t ln ln t
= 1 and lim inf

t→∞

lnXt√
2 ln 2 ln 3

2 t ln ln t
= −1

almost surely. This means that as t tends to ∞, lnXt oscillates between ap-
proximately ±0.75

√
t ln ln t; in particular,

lim sup
t→∞

Xt = ∞ and lim inf
t→∞

Xt = 0 (16)

almost surely. This guarantees that we will eventually obtain overwhelming
evidence against whichever of the hypotheses θ = 1/2 and θ = 3/4 that we
want to reject. This may be called sampling to a foregone conclusion, but the
foregone conclusion will be correct, since both θ = 1/2 and θ = 3/4 are wrong.

In order to obtain (16), we chose x1, . . . , x10,000 from a probability distribu-
tion, Pln 2/ ln 3, that lies midway between P1/2 and P3/4 in the sense that it tends
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Figure 3: A realization over 10, 000 trials of the likelihood ratio for testing θ =
1/2 against the probability distribution Q obtained by averaging Pθ with respect
to the uniform distribution for θ. The vertical axis is again logarithmic. As in
Figure 2, the oscillations would be unbounded if trials continued indefinitely.

to produce sequences that are as atypical with respect to the one measure as to
the other. Had we chosen a sequence x1, . . . , x10,000 less atypical with respect
to P3/4 than with respect to P1/2, then we might have been able to sample to
the foregone conclusion of rejecting θ = 1/2, but not to the foregone conclusion
of rejecting θ = 3/4.

8.2 Testing θ = 1/2 against a composite alternative

Retaining θ = 1/2 as our null hypothesis, we now take as our alternative hy-
pothesis the probability distribution Q obtained by averaging Pθ with respect
to the uniform distribution for θ.

After we observe x1, . . . , xt, the likelihood ratio for testing P1/2 against Q is

Xt :=
Q(x1, . . . , xt)

P1/2(x1, . . . , xt)
=

∫ 1

0
θkt(1− θ)t−ktdθ

(1/2)t
=

kt!(t− kt)!2
t

(t+ 1)!
. (17)

Figure 3 shows an example of this process and of the application of same mar-
tingale calibrator, (14), that we used in Figure 2. In this case, we generate the
0s and 1s in the sequence x1, . . . , x10,000 independently but with a probability

for xt = 1 that slowly converges to 1/2: 1
2 + 1

4

√
ln t/t. As we show in Ap-

pendix B, (16) again holds almost surely; if you wait long enough, you will have
enough evidence to reject legitimately whichever of the two false hypotheses
(independently and identically distributed with θ = 1/2, or independently and
identically distributed with θ ̸= 1/2) you want.
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Figure 4: On the left we graph P{p ≤ δ} as a function of δ, where p is the
function defined in (18). On the right, we magnify the lower left corner of this
graph.

Here are the final values of the processes shown in Figure 3:

X10,000 = 3.5 X∗
10,000 = 3, 599

F10,000 = 159 Y10,000 = 166.

In this case, the evidence against θ = 1/2 is very substantial but not overwhelm-
ing.

8.3 p-values for testing θ = 1/2

By Theorem 2, 1/X∗
∞ is a p-test whenever (Xt) is a test martingale. Applying

this to the test martingale (17) for testing P1/2 against Q, we see that

p(x1, x2, . . .) :=
1

sup1≤t<∞
kt!(t−kt)!2t

(t+1)!

= inf
1≤t<∞

(t+ 1)!

kt!(t− kt)!2t
(18)

is a p-test for testing θ = 1/2 against θ ̸= 1/2. Figure 4 shows that it is only
moderately conservative.

Any function of the observations that is bounded below by a p-test is also a
p-test. So for any rule N for selecting a positive integer N(x1, x2, . . .) based on
knowledge of some or all of the observations x1, x2, . . ., the function

rN (x1, x2, . . .) :=
(N + 1)!

kN !(N − kN )!2N
(19)

is a p-test. It does not matter whether N qualifies as a stopping rule (i.e.,
whether x1, . . . , xn always determine whether N(x1, x2, . . .) ≤ n).
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For each positive integer n, let

pn :=
(n+ 1)!

kn!(n− kn)!2n
. (20)

We can paraphrase the preceding paragraph by saying that pn is a p-value (i.e.,
the value of a p-test) no matter what rule is used to select n. In particular, it
is a p-value even if it was selected because it was the smallest number in the
sequence p1, p2, . . . , pn, . . . , pt, where t is an integer much larger than n.

We must nevertheless be cautious if we do not know the rule N—if the
experimenter who does the sampling reports to us pn and perhaps some other
information but not the rule N . We can consider the reported value of pn a
legitimate p-value whenever we know that the experimenter would have told us
pn for some n, even if we do not know what rule N he followed to choose n and
even if he did not follow any clear rule. But we should not think of pn as a
p-value if it is possible that the experimenter would not have reported anything
at all had he not found an n with a pn to his liking. We are performing a p-test
only if we learn the result no matter what it is.

Continuing to sample in search of evidence against θ = 1/2 and stopping
only when the p-value finally reaches 5% can be considered legitimate if instead
of using conventional p-tests for fixed sample sizes we use the p-test (19) with
N defined by

N(x1, x2, . . .) := inf

{
n

∣∣∣∣ (n+ 1)!

kn!(n− kn)!2n
≤ 0.05

}
.

But we must bear in mind that N(x1, x2, . . .) may take the value ∞. If the
experimenter stops only when the p-value dips down to the 5% level, he has a
chance of at least 95%, under the null hypothesis, of never stopping. So it will
be legitimate to interpret a reported pn of 0.05 or less as a p-value (the observed
value of a p-test) only if we were somehow also guaranteed to hear about the
failure to stop.

8.4 Comparison with a standard p-test

If the number n of observations is known in advance, a standard sampling-theory
procedure for testing the hypothesis θ = 1/2 is to reject it if |kn − n/2| ≥ cn,δ,
where cn,δ is chosen so that P1/2{|kn − n/2| ≥ cn,δ} is equal (or less than but as
close as possible) to a chosen significance level δ. To see how this compares with
the p-value pn given by (20) let us compare the conditions for non-rejection.

• If we use the standard procedure, the condition for not rejecting θ = 1/2
at level δ is

|kn − n/2| < cn,δ. (21)

• If we use the p-value pn, the condition for not rejecting θ = 1/2 at level δ
is pn > δ, or

(n+ 1)!

kn!(n− kn)!2n
> δ. (22)
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Figure 5: The ratio (23) as n ranges from 100 to 10, 000. This is the factor
by which not knowing n in advance widens the 99% prediction interval for kn.
Asymptotically, the ratio tends to infinity with n as c

√
lnn for some positive

constant c.

In both cases, kn satisfies the condition with probability at least 1 − δ under
the null hypothesis, and hence the condition defines a level 1 − δ prediction
interval for kn. Because condition (21) requires the value of n to be known
in advance and condition (22) does not, we can expect the prediction interval
defined by (22) to be wider than the one determined by (22). How much wider?

Figure 5 answers this question for the case where δ = 0.01 and 100 ≤ n ≤
10, 000. It shows, for each value of n in this range, the ratio

width of the 99% prediction interval given by (22)

width of the 99% prediction interval given by (21)
, (23)

i.e., the factor by which not knowing n in advance widens the prediction interval.
The factor is less than 2 over the whole range but increases steadily with n.

As n increases further, the factor by which the standard interval is multiplied
increases without limit, but very slowly. To verify this, we first rewrite (22) as

|kn − n/2| < (1 + αn)
√
n

√
1

2
ln

1

δ
+

1

4
lnn, (24)

where αn is a sequence such that αn → 0 as n → ∞. (For some αn of order
o(1) the inequality (24) is stronger than pn > δ, whereas for others it is weaker;
see Appendix B for details of calculations.) Then, using the Berry-Esseen the-
orem and letting zϵ stand for the upper ϵ-quantile of the standard Gaussian
distribution, we rewrite (21) as

|kn − n/2| < 1

2
zδ/2+αn

√
n, (25)
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where αn is a sequence such that |αn| ≤ (2π)−1/2n−1/2 for all n. (See [17].) As
δ → 0,

zδ/2 ∼
√
2 ln

2

δ
∼
√

2 ln
1

δ
.

So the main asymptotic difference between (24) and (25) is the presence of the
term 1

4 lnn in (24).

The ratio (23) tends to infinity with n as c
√
lnn for a positive constant

c (namely, for c = 1/zδ/2, where δ = 0.01 is the chosen significance level).
However, the expression on the right-hand side of (24) results from using the
uniform probability measure on θ to average the probability measures Pθ. Av-
eraging with respect to a different probability measure would give something
different, but it is clear from the law of the iterated logarithm that the best we
can get is a prediction interval whose ratio with the standard interval will grow
like

√
ln lnn instead of

√
lnn. In fact, the method we just used to obtain (24)

was used by Ville, with a more carefully chosen probability measure on θ, to
prove the upper half of the law of the iterated logarithm ([39], Section V.3), and
Ville’s argument was rediscovered and simplified using the algorithmic theory
of randomness in [40], Theorem 1.

8.5 Testing a composite hypothesis against a composite
hypothesis

When Peter Armitage pointed out that even Bayesians can sample to a foregone
conclusion, he used as example the Gaussian model with known variance and
unknown mean [6]. We can adapt Armitage’s idea to coin tossing by comparing
two composite hypotheses: the null hypothesis θ ≤ 1/2, represented by the
uniform probability measure on [0, 1/2], and the alternative hypothesis θ > 1/2,
represented by the uniform probability measure on (1/2, 1]. (These hypotheses
are natural in the context of paired comparison: see, e.g., [23], Section 3.1.)
The test martingale is

Xt =
2
∫ 1

1/2
θkt(1− θ)t−ktdθ

2
∫ 1/2

0
θkt(1− θ)t−ktdθ

=
P{Bt+1 ≤ kt}

P{Bt+1 ≥ kt + 1}
, (26)

where Bn is the binomial random variable with parameters n and 1/2; see
Appendix B for details. If the sequence x1, x2, . . . turns out to be typical of
θ = 1/2, then by the law of the iterated logarithm, (kt − t/2)/

√
t will almost

surely have ∞ as its upper limit and −∞ as its lower limit; therefore, (16) will
hold again. This confirms Armitage’s intuition that arbitrarily strong evidence
on both sides will emerge if we wait long enough, but the oscillation depends on
increasingly extreme reversals of a random walk, and the lifetime of the universe
may not be long enough for us to see any of them (

√
ln ln(5× 1023) < 2).

Figure 6 depicts one example, for which the final values are

X10,000 = 3.7 X∗
10,000 = 272
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Figure 6: A realization over 10, 000 trials of the likelihood ratio for testing the
probability distribution obtained by averaging Pθ with respect to the uniform
probability measure on [0, 1/2] against the probability distribution obtained by
averaging Pθ with respect to the uniform probability measure on (1/2, 1]. As in
the previous figures, the vertical axis is logarithmic, and the red line would be
unbounded in both directions if observations continued indefinitely.

F10,000 = 15.5 Y10,000 = 17.9.

In this realization, the first 10, 000 observations provide modest evidence against
θ ≤ 1/2 and none against θ > 1/2. Figures 2 and 3 are reasonably typical for
their setups, but in this setup it is unusual for the first 10, 000 observations to
show even as much evidence against one of the hypotheses as we see in Figure 6.

8.6 A puzzle for Bayesians

From a Bayesian point of view, it may seem puzzling that we should want to
shrink a likelihood ratio in order to avoid exaggerating the evidence against
a null hypothesis. Observations affect Bayesian posterior odds only through
the likelihood ratio, and we know that the likelihood ratio is not affected by
the sampling plan. So why should we adjust it to take the sampling plan into
account?

Suppose we assign equal prior probabilities of 1/2 each to the two hypotheses
θ = 1/2 and θ = 3/4 in our first coin-tossing example. Then if we stop at time
t, the likelihood ratio Xt given by (13) is identical with the posterior odds in
favor of θ = 3/4. If we write postt for the posterior probability measure at time
t, then

Xt =
postt{θ = 3/4}
postt{θ = 1/2}

=
1− postt{θ = 1/2}
postt{θ = 1/2}

,
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and

postt{θ = 1/2} =
1

Xt + 1
. (27)

This is our posterior probability given the evidence x1, . . . , xt no matter why
we decided to stop at time t. If we “calibrate” Xt and plug the calibrated value
instead of the actual value into (27), we will get the posterior probability wrong.

It may help us escape from our puzzlement to acknowledge that if the model
is wrong, then the observations may oscillate between providing overwhelming
evidence against θ = 1/2 and providing overwhelming evidence against θ = 3/4,
as in Figure 2. Only if we insist on retaining the model in spite of this very
anomalous phenomenon will (27) continue to be our posterior probability for
θ = 1/2 at time t, and it is this stubbornness that opens the door to sampling
to whichever foregone conclusion we want, θ = 1/2 or θ = 3/4.

The same issues arise when we test θ = 1/2 against the composite hypothesis
θ ̸= 1/2. A natural Bayesian method for doing this is to put half our probability
on θ = 1/2 and distribute the other half uniformly on [0, 1] (which is a special
case of a widely recommended procedure described in, e.g., [7], p. 391). This
makes the likelihood ratio Xt given by (17) the posterior odds against θ = 1/2.
As we have seen, if the observations x1, x2, . . . turn out to be typical for the
distribution in which they are independent with the probability for xt = 1 equal
to 1

2 + 1
4

√
ln t/t, then if you wait long enough, you can observe values of Xt as

small or as large as you like, and thus obtain a posterior probability for θ = 1/2
as large or as small as you like.

Of course, it will not always happen that the actual observations are so
equidistant from a simple null hypothesis and the probability distribution rep-
resenting its negation that the likelihood ratio will oscillate wildly and you can
sample to whichever side you want. More often, the likelihood ratio and hence
the posterior probability will settle on one side or the other. But in the spirit
of George Box’s maxim that all models are wrong, we can interpret this not as
confirmation of the side favored but only as confirmation that the other side
should be rejected. The rejection will be legitimate from the Bayesian point of
view, regardless of why we stopped sampling. It will also be legitimate from the
sampling-theory point of view.

On this argument, it is legitimate to collect data until a point has been
disproven but not legitimate to interpret this data as proof of an alternative
hypothesis within the model. Only when we really know the model is correct
can we prove one of its hypotheses by rejecting the others.

A Inadequacy of test martingales in continuous
time

In this appendix we will mainly discuss the case of continuous time; we will see
that in this case the notion of a test martingale is not fully adequate for the
purpose of hypothesis testing (Proposition 2). Fix a filtration (Ft) satisfying
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the usual conditions; in this appendix we will only consider supermartingales
(Xt,Ft), and we will abbreviate (Xt,Ft) to (Xt), or even to Xt or X.

In discrete time, there is no difference between using test martingales and
test supermartingales for hypothesis testing: every test martingale is a test
supermartingale, and every test supermartingale is dominated by a test martin-
gale (according to Doob’s decomposition theorem, [30], VII.1); therefore, using
test supermartingales only allows discarding evidence as compared to test mar-
tingales. In continuous time, the difference between test martingales and test
supermartingales is essential, as we will see below (Proposition 2). For hy-
pothesis testing we need “local martingales”, a modification of the notion of
martingales introduced by Itô and Watanabe [18] and nowadays used perhaps
even more often than martingales themselves in continuous time. This is the
principal reason why in this article we use test supermartingales so often starting
from Section 3.

We will say that a random process (Xt) is a local member of a class C of
random processes (such as martingales or supermartingales) if there exists a
sequence τ1 ≤ τ2 ≤ · · · of stopping times (called a localizing sequence) such
that τn → ∞ a.s. and each stopped process Xτn

t = Xt∧τn belongs to the class
C. (A popular alternative definition requires that each Xt∧τn I{τn>0} should
belong to C.) A standard argument (see, e.g., [13], VI.29) shows that there is
no difference between test supermartingales and local test supermartingales:

Proposition 1. Every local test supermartingale (Xt) is a test supermartingale.

Proof. Let τ1, τ2, . . . be a localizing sequence, so that τn → ∞ as n → ∞ a.s.
and each Xτn , n = 1, 2, . . ., is a test supermartingale. By Fatou’s lemma for
conditional expectations, we have, for 0 ≤ s < t:

E(Xt | Fs) = E
(
lim

n→∞
Xτn

t | Fs

)
≤ lim inf

n→∞
E (Xτn

t | Fs)

≤ lim inf
n→∞

Xτn
s = Xs a.s.

In particular, E(Xt) ≤ 1.

An adapted process (At) is called increasing if A0 = 0 a.s. and its every path
is right-continuous and increasing (as usual, not necessarily strictly increasing).
According to the Doob-Meyer decomposition theorem ([13], Theorem VII.12),
every test supermartingale (Xt) can be represented as the differenceXt = Yt−At

of a local test martingale (Yt) and an increasing process (At). Therefore, for
the purpose of hypothesis testing in continuous time, local test martingales
are as powerful as test supermartingales: every local test martingale is a test
supermartingale, and every test supermartingale is dominated by a local test
martingale.

In discrete time there is no difference between local test martingales and
test martingales ([13], (VI.31.1)). In continuous time, however, the difference
is essential. Suppose the filtration (Ft) admits a standard Brownian motion
(Wt,Ft) in R3. A well-known example ([19]; see also [30], VI.21, and [13],
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VI.26) of a local martingale which is not a martingale is Lt := 1/ ∥Wt + e∥,
where e is a vector in R3 such that ∥e∥ = 1 (e.g., e = (1, 0, 0)); Lt being a local
martingale can be deduced from 1/ ∥·∥ (the Newtonian kernel) being a harmonic
function on R3 \ {0}. The random process (Lt) is a local test martingale such
that supt E(L2

t ) < ∞; nevertheless it fails to be a martingale. See, e.g., [29]
(Example 1.140) for detailed calculations.

The local martingale Lt := 1/ ∥Wt + e∥ provides an example of a test super-
martingale which cannot be replaced, for the purpose of hypothesis testing, by
a test martingale. According to another version of the Doob-Meyer decompo-
sition theorem ([30], VII.31), a supermartingale (Xt) can be represented as the
difference Xt = Yt − At of a martingale (Yt) and an increasing process (At) if
and only if (Xt) belongs to the class (DL). The latter is defined as follows: a
supermartingale is said to be in (DL) if, for any a > 0, the system of random
variables Xτ , where τ ranges over the stopping times satisfying τ ≤ a, is uni-
formly integrable. It is known that (Lt), despite being uniformly integrable (as
a collection of random variables Lt), does not belong to the class (DL) ([30],
VI.21 and the note in VI.19). Therefore, (Lt) cannot be represented as the dif-
ference Lt = Yt − At of a martingale (Yt) and an increasing process (At). Test
martingales cannot replace local test martingales in hypothesis testing also in
the stronger sense of the following proposition.

Proposition 2. Let δ > 0. It is not true that for every local test martingale
(Xt) there exists a test martingale (Yt) such that Yt ≥ δXt a.s. for all t.

Proof. Let Xt := Lt = 1/ ∥Wt + e∥, and suppose there is a test martingale (Yt)
such that Yt ≥ δXt a.s. for all t. Let ϵ > 0 be arbitrarily small. Since (Yt) is in
(DL) ([30], VI.19(a)), for any a > 0 we can find C > 0 such that

sup
τ

∫
{Yτ≥C}

YτdP < ϵδ,

τ ranging over the stopping times satisfying τ ≤ a. Since

sup
τ

∫
{Xτ≥C/δ}

XτdP ≤ sup
τ

∫
{Yτ≥C}

(Yτ/δ)dP < ϵ,

(Xt) is also in (DL), which we know to be false.

B Details of calculations

In this appendix we will give details of some calculations omitted in Section 8.
They will be based on Stirling’s formula n! =

√
2πn(n/e)neλn , where λn = o(1)

as n → ∞.

B.1 Oscillating evidence when testing against a composite
alternative

First we establish (16) for Xt defined by (17). Suppose we have made t obser-
vations and observed k := kt 1s so far. We start from finding bounds on k that
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are implied by the law of the iterated logarithm. Using the simplest version
of Euler’s summation formula (as in [5], Theorem 1), we can find its expected
value as

E(k) =
t∑

n=1

(
1

2
+

1

4

√
lnn

n

)
=

t

2
+

1

4

t∑
n=2

(
lnn+ 1√
n lnn

)
− 1

4

t∑
n=2

(
1√

n lnn

)
=

t

2
+

1

4

∫ t

2

(
lnu+ 1√
u lnu

)
du+O(

√
t) =

t

2
+

1

2

√
t ln t+O(

√
t).

Its variance is

var(k) =
t∑

n=1

(
1

2
+

1

4

√
lnn

n

)(
1

2
− 1

4

√
lnn

n

)
=

t∑
n=1

(
1

4
− 1

16

lnn

n

)
∼ t

4
.

Therefore, Kolmogorov’s law of the iterated logarithm gives

lim sup
t→∞

k − 1
2

(
t+

√
t ln t

)
√

1
2 t ln ln t

= 1 and lim inf
t→∞

k − 1
2

(
t+

√
t ln t

)
√

1
2 t ln ln t

= −1 a.s.

(28)
Using the definition (17) and applying Stirling’s formula, we obtain

lnXt = t ln 2 + ln
k!(t− k)!

t!
− ln(t+ 1) (29)

= t ln 2− tH(k/t) + ln

√
2π

k(t− k)

t
+ λk + λt−k − λt − ln(t+ 1)

= t (ln 2−H(k/t))− 1

2
ln t+O(1) = 2t

(
k

t
− 1

2

)2

− 1

2
ln t+O(1) a.s.,

where H(p) := −p ln p− (1− p) ln(1− p), p ∈ [0, 1], is the entropy function; the

last equality in (29) uses ln 2−H(p) = 2(p− 1/2)2 +O(|p− 1/2|3) as p → 1/2.
Combining (29) with (28), we further obtain

lim sup
t→∞

lnXt√
2 ln t ln ln t

= 1 and lim inf
t→∞

lnXt√
2 ln t ln ln t

= −1 a.s. (30)

B.2 Prediction interval

Now we show that (22) can be rewritten as (24). For brevity, we write k for kn.
Similarly to (29), we can rewrite (22) as

ln 2−H(k/n)+
1

n
ln

√
2π

k(n− k)

n
+
λk + λn−k − λn

n
− 1

n
ln(n+1) <

ln 1
δ

n
. (31)

Since ln 2 − H(p) ∼ 2(p − 1/2)2 (p → 1/2), we have k/n = 1/2 + o(1) for k
satisfying (31), as n → ∞. Combining this with (31), we further obtain

2

(
k

n
− 1

2

)2

< (1 + αn)
ln 1

δ − ln
√
n+ ln(n+ 1) + βn

n
,
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for some αn = o(1) and βn = O(1), which can be rewritten as (24) for a different
sequence αn = o(1).

B.3 Calculations for Armitage’s example

Finally, we deduce (26). Using a well-known expression ([2], 6.6.4) for the
regularized beta function Ip(a, b) := B(p; a, b)/B(a, b) and writing k for kt, we
obtain

Xt =
B(k + 1, t− k + 1)−B(1/2; k + 1, t− k + 1)

B(1/2; k + 1, t− k + 1)

=
1

I1/2(k + 1, t− k + 1)
− 1 =

1

P{Bt+1 ≥ k + 1}
− 1 =

P{Bt+1 ≤ k}
P{Bt+1 ≥ k + 1}

.

(32)

As a final remark, let us compare the sizes of oscillation of the log likelihood
ratio lnXt that we have obtained in Section 8 and in this appendix for our
examples of the three kinds of Bayesian hypothesis testing. When testing a
simple null hypothesis against a simple alternative, lnXt oscillated between
approximately ±0.75

√
t ln ln t (as noticed in Subsection 8.1). When testing a

simple null hypothesis against a composite alternative, lnXt oscillated between
±
√
2 ln t ln ln t (see (30)). And finally, when testing a composite null hypothesis

against a composite alternative, we can deduce from (32) that

lim sup
t→∞

lnXt

ln ln t
= 1 and lim inf

t→∞

lnXt

ln ln t
= −1 a.s.

(details omitted); therefore, lnXt oscillates between ± ln ln t. Roughly, the size
of oscillations of lnXt goes down from

√
t to

√
ln t to ln ln t. Of course, these

sizes are only examples, but they illustrate a general tendency.
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[7] José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. Wiley,
Chichester, 2000.

[8] Laurent Bienvenu, Glenn Shafer, and Alexander Shen. On the history of
martingales in the study of randomness. Electronic Journal for History of
Probability and Statistics, 5(1), June 2009. Available at www.jehps.net.

[9] Bernard Bru, Marie-France Bru, and Kai Lai Chung. Borel and the St. Pe-
tersburg martingale. Electronic Journal for History of Probability and
Statistics, 5(1), June 2009. Available at www.jehps.net.

[10] D. R. Cox. Principles of Statistical Inference. Cambridge University Press,
Cambridge, UK, 2006.

[11] A. Philip Dawid. Statistical theory: the prequential approach. Journal of
the Royal Statistical Society A, 147:278–292, 1984.

[12] A. Philip Dawid, Steven de Rooij, Glenn Shafer, Alexander Shen, Nikolai
Vereshchagin, and Vladimir Vovk. Insuring against loss of evidence in
game-theoretic probability. Statistics and Probability Letters, 81:157–162,
2011.

[13] Claude Dellacherie and Paul-André Meyer. Probabilities and Potential B:
Theory of Martingales. North-Holland, Amsterdam, 1982.

[14] A. P. Dempster. Elements of Continuous Multivariate Analysis. Addison
Wesley, Reading, MA, 1969.

28



[15] Ward Edwards, Harold Lindman, and Leonard J. Savage. Bayesian statisti-
cal inference for psychological research. Psychological Review, 70:193–242,
1963.

[16] Ronald A. Fisher. Statistical Methods for Research Workers. Oliver and
Boyd, Edinburgh, 1925.

[17] C. Hipp and L. Mattner. On the normal approximation to symmetric
binomial distributions. Teori� vero�tnoste� i ee primeneni� , 52:610–
617, 2007.
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