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Abstract

Statistical testing can be framed as a repetitive game between two players,
Forecaster and Sceptic. On each round, Forecaster sets prices for various
gambles, and Sceptic chooses which gambles to make. If Sceptic multiplies
by a large factor the capital he puts at risk, he has evidence against Fore-
caster’s ability. His capital at the end of each round is a measure of his
evidence against Forecaster so far. This can go up and then back down. If
you report the maximum so far instead of the current value, you are exagger-
ating the evidence against Forecaster. In this article, we show how to remove
the exaggeration. Removing it means systematically reducing the maximum
in such a way that a rival to Sceptic can always play so as to obtain cur-
rent evidence as good as Sceptic’s reduced maximum. We characterize the
functions that can achieve such reductions. Because these functions may
impose only modest reductions, we think of our result as a method of in-
suring against loss of evidence. In the context of an actual market, it is a
method of insuring against the loss of what an investor has gained so far.

A version of this article has been published in Statistics and Probability
Letters 81 157–162 (2011); doi:10.1016/j.spl.2010.10.013.
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1 Introduction

In game-theoretic probability (see, e.g., [6]) Sceptic tries to prove Forecaster
wrong by gambling against him: the values of Sceptic’s capital Kn measure
the changing evidence against Forecaster. We assume that Sceptic’s initial
capital is K0 = 1, and that Sceptic is required to ensure that Kn ≥ 0 at each
time n.

Sceptic can lose as well as gain evidence. At a time n when Kn is large
Forecaster’s performance looks poor, but then Ki for some later time i may
be lower and make Forecaster look better. Our result will show that, for a
modest cost, Sceptic can avoid losing too much evidence.

Suppose we exaggerate the evidence against Forecaster by considering
not the current value Kn of Sceptic’s capital but the greatest value so far:

K∗n := max
i≤n
Ki.

Continuing research started in [5], we show that there are many functions
F : [1,∞)→ [0,∞) such that

1. F (y)→∞ as y →∞ almost as fast as y, and

2. Sceptic’s moves can be modified on-line in such a way that the modified
moves lead to capital

K′n ≥ F (K∗n), n = 1, 2, . . . . (1)

If we are dissatisfied by the asymptotic character of the first of these two
conditions, which does not prevent K′n/Kn from becoming very small for
some n, we can compromise by putting a fraction c of the initial capital on
Sceptic’s original moves and the remaining fraction 1 − c on the modified
moves, thus obtaining capital cKn + (1 − c)K′n at each time n. This way
Sceptic may sacrifice a fraction 1− c of his capital but gets extra insurance
against losing evidence. See Section 3 for details.

As we will show, the set of nondecreasing functions F for which (1) can be
achieved can be characterized very simply: it is the set of all nondecreasing
F that satisfy ∫ ∞

1

F (y)

y2
dy ≤ 1. (2)

Similar results hold in measure-theoretic probability. One similar measure-
theoretic result, for the case where Sceptic’s strategy is known in advance,
is proven in [5] using a simple method based on Lévy’s zero-one law. Lévy’s
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zero-one law generalizes to game-theoretic probability (see [7]), but in the
present article, where Sceptic’s strategy is not necessarily known in advance
and Sceptic’s moves must be modified on-line, we use an entirely different
method of proof, based on the idea of stopping and combining capital pro-
cesses. This idea has been used previously by various authors, e.g., El-Yaniv
et al. ([2], Theorem 1, based on Leonid Levin’s personal communication) and
Shafer and Vovk ([6], Lemma 3.1). We show that it gives optimal results in
the setting of this article.

In Section 4 we explain the meaning of our results in the case where
Sceptic represents someone actually trying to make money, not a method
for testing forecasts. Suppose Sceptic is a gambler (or an investor) who
comes to a casino (stock market) with initial capital 1. On each round,
we are allowed to observe how she gambles and then gamble on the same
outcome, before observing it, and we want to do so in such a way that
our capital will always be at least F (K∗), where F is a fixed nondecreasing
function and K∗ is her maximal capital so far. For which functions F can
our goal be achieved? For F satisfying (2).

Alternatively, suppose we have some commodity, such as gold, that we
want to sell within a fixed period, say a year. We would like to sell it at
the point in time during the year when its price is highest, but of course we
never know whether the current price will be exceeded later. If F satisfies
(2), we have a strategy that guarantees the price F (K∗), where K∗ is the
highest price over the year. This provides an imperfect alternative to buying
a floating lookback put option (see, e.g., [4], Section 26.11); we get less
protection, but we get it for free.

The main idea of the proof can also be explained in these terms. For
every threshold u we consider the strategy that stops playing when the
current capital reaches (or exceeds) u. This corresponds to the function
Fu(y) := u1{y≥u}. (If E is some property, 1{E} is defined to be 1 if E is
satisfied and 0 if not.) Now we can mix these strategies according to some
probability measure P on u. It remains to notice that every nondecreasing
function F satisfying (2) can be represented as such a mixture: F (y) =∫
Fu(y)P (du) =

∫ y
1 uP (du).

In this article, we use the standard notation R for the set of real numbers;
the set of natural numbers is N := {1, 2, . . .}. The extended real line [−∞,∞]
is denoted R, and we use the convention ∞+ (−∞) :=∞.
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2 Calibrating exaggerated evidence

Our prediction protocol involves four players: Forecaster, Sceptic, Rival
Sceptic, and Reality.

Protocol 1 Competitive scepticism

K0 := 1 and K′0 := 1
for n = 1, 2, . . . do

Forecaster announces En ∈ E
Sceptic announces fn ∈ [0,∞]X such that En(fn) ≤ Kn−1
Rival Sceptic announces f ′n ∈ [0,∞]X such that En(f ′n) ≤ K′n−1
Reality announces xn ∈ X
Kn := fn(xn) and K′n := f ′n(xn)

end for

The parameter of the protocol is a set X , from which Reality chooses her
moves; E is the set of all “outer probability contents” on X (to be defined
shortly). We always assume that X contains at least two distinct elements.
The reader who is not interested in the most general statement of our result
and in Section 4 can interpret E as the set of all expectation functionals
E : f 7→

∫
fdP , P being a probability measure on a fixed σ-algebra on X ;

in this case Sceptic and Rival Sceptic are required to output functions that
are measurable w.r. to that σ-algebra.

In general, an outer probability content on X is a function E : RX → R
(where RX is the set of all functions f : X → R) that satisfies the following
four axioms:

1. If f, g ∈ RX and f ≤ g, then E(f) ≤ E(g).

2. If f ∈ RX and c ∈ (0,∞), then E(cf) = cE(f).

3. If f, g ∈ RX , then E(f + g) ≤ E(f) + E(g).

4. For each c ∈ R, E(c) = c, where the c in parentheses is the function in
RX that is identically equal to c.

An axiom of σ-subadditivity on [0,∞]X is sometimes added to this list, but
we do not need it in this article. (And it is surprising how rarely it is needed
in general: see, e.g., [7].) In our terminology we follow [3] and [7]. Upper
previsions studied in the theory of imprecise probabilities (see, e.g., [1]) are
closely related to (but somewhat more restrictive than) outer probability
contents.
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Protocol 1 describes a perfect-information game in which Sceptic tries to
discredit the outer probability contents En issued by Forecaster as a faithful
description of Reality’s xn ∈ X . The players make their moves sequentially
in the indicated order. On each round Sceptic and Rival Sceptic choose gam-
bles fn and f ′n on how xn is going to come out, and their resulting capitals
are Kn and K′n, respectively. Discarding capital is allowed, but Sceptic and
Rival Sceptic are required to ensure that Kn ≥ 0 and K′n ≥ 0, respectively;
this is achieved by requiring that fn and f ′n should be nonnegative.

Let us call a nondecreasing function F : [1,∞) → [0,∞) a capital cali-
brator if there exists a strategy for Rival Sceptic that guarantees (1) with
F (∞) understood to be limy→∞ F (y). We say that a capital calibrator F
dominates a capital calibrator G if F (y) ≥ G(y) for all y ∈ [1,∞). We say
that F strictly dominates G if F dominates G and F (y) > G(y) for some
y ∈ [1,∞). A capital calibrator is admissible if it is not strictly dominated
by any other capital calibrator.

Theorem 1. 1. A nondecreasing function F : [1,∞)→ [0,∞) is a capi-
tal calibrator if and only if it satisfies (2).

2. Any capital calibrator is dominated by an admissible capital calibrator.

3. A capital calibrator is admissible if and only if it is right-continuous
and ∫ ∞

1

F (y)

y2
dy = 1. (3)

Proof. First we prove that any nondecreasing function F : [1,∞) → [0,∞)
satisfying

F (y) =

∫
[1,y]

uP (du), ∀y ∈ [1,∞), (4)

for a probability measure P on [1,∞) is a capital calibrator. For each u ≥ 1,
define the following strategy for Rival Sceptic: on round n, the strategy
outputs

f (u)n :=

{
fn if K∗n−1 < u

u otherwise
(5)

as Rival Sceptic’s move f ′n. Let us check that this is a valid strategy, i.e.,

that En(f
(u)
n ) ≤ K(u)

n−1, n ∈ N, where K(u) is defined by K(u)
0 := 1 and

K(u)
n := f

(u)
n (xn) for n ∈ N. There are three cases to consider:

1. If K∗n−1 < u, we have K(u)
n−1 = Kn−1 and En(f

(u)
n ) = En(fn) ≤ Kn−1 =

K(u)
n−1.

4



2. If n is the smallest number for which K∗n−1 ≥ u, we have K(u)
n−1 =

Kn−1 ≥ u and En(f
(u)
n ) = En(u) = u ≤ K(u)

n−1.

3. Otherwise, we have K(u)
n−1 = u and so En(f

(u)
n ) = En(u) = u = K(u)

n−1.

Set f ′n(x) :=
∫
[1,∞) f

(u)
n (x)P (du), x ∈ X ; this gives K′n =

∫
[1,∞)K

(u)
n P (du)

when we set x to xn. Let us check that this is a valid strategy for Rival
Sceptic, i.e., that En(f ′n) ≤ K′n−1 for all n ∈ N. This is now obvious if En are
expectation functionals, and in general we have

En(f ′n) = En

(∫
[1,∞)

f (u)n P (du)

)

= En

(∫
[1,∞)

(
1{K∗

n−1<u} fn + 1{K∗
n−1≥u} u

)
P (du)

)

= En

(
P ((K∗n−1,∞))fn +

∫
[1,K∗

n−1]
uP (du)

)

≤ P ((K∗n−1,∞))Kn−1 +

∫
[1,K∗

n−1]
uP (du)

=

∫
(K∗

n−1,∞)
Kn−1P (du) +

∫
(K∗

n−2,K∗
n−1]

uP (du) +

∫
[1,K∗

n−2]
uP (du)

≤
∫
(K∗

n−1,∞)
K(u)
n−1P (du) +

∫
(K∗

n−2,K∗
n−1]
K(u)
n−1P (du) +

∫
[1,K∗

n−2]
K(u)
n−1P (du)

=

∫
[1,∞)

K(u)
n−1P (du) = K′n−1.

The last inequality used the analysis of the three cases above. For small
values of n, our convention was K∗0 := 1 and K∗−1 := 1. Notice that
our argument only used Axioms 2–4 for outer probability contents; no σ-
subadditivity was required. This strategy will guarantee

K′n =

∫
[1,∞)

K(u)
n P (du) ≥

∫
[1,K∗

n]
K(u)
n P (du) ≥

∫
[1,K∗

n]
uP (du) = F (K∗n), (6)

where
∫
[1,∞] is understood as

∫
[1,∞) (remember that P is a probability mea-

sure on [0,∞)).
We can now finish the proof of the statement “if” in part 1 of the the-

orem, which says that any nondecreasing function F : [1,∞) → [0,∞) sat-
isfying (2) is a capital calibrator. Without loss of generality we can assume
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that F is right-continuous and that (3) holds. It remains to apply Lemma 1
below.

Let us now check that every capital calibrator satisfies (2). Suppose a
capital calibrator F violates (2). Let us decrease F in such a way that,
for some a > 1 and N ∈ N, it is constant in each interval [an−1, an), n =
1, . . . , N , is zero in [aN ,∞), and still violates (2). We have a strategy for
Rival Sceptic that guarantees (1) (although we cannot say that the new F is
a capital calibrator since it is not nondecreasing). The substitution x = 1/y
shows that

∫ 1
0 F (1/x)dx > 1, which can be rewritten as

F (1)

(
1− 1

a

)
+ F (a)

(
1

a
− 1

a2

)
+ · · ·+ F (aN−1)

(
1

aN−1
− 1

aN

)
> 1. (7)

Suppose, without loss of generality, that X ⊇ {0, 1}, and let Forecaster
always choose

En(f) :=
1

a
f(1) +

(
1− 1

a

)
f(0), n ∈ N. (8)

Let Sceptic play the strategy of always betting all his capital on 1: fn(1) :=
aKn−1 and fn(x) := 0 for x 6= 1. Then K∗N = an where n is the number of
1s output by Reality before the first element different from 1 (except that
n = N if Reality outputs only 1s during the first N rounds). Backward
induction shows that the initial capital K′0 required to ensure K′N ≥ F (K∗N )
must be at least

F (aN )

(
1

a

)N
+F (aN−1)

(
1

a

)N−1(
1− 1

a

)
+F (aN−2)

(
1

a

)N−2(
1− 1

a

)
+ · · ·+ F (a)

1

a

(
1− 1

a

)
+ F (1)

(
1− 1

a

)
> 1; (9)

the inequality follows from (and is equivalent to) (7), but we know that it
is false as K′0 = 1.

We have proved part 1 of the theorem. Part 3 is now obvious, and part 2
follows from parts 1 and 3.

The following lemma was used in the proof of Theorem 1.

Lemma 1. A nondecreasing right-continuous function F : [1,∞) → [0,∞)
satisfies (3) if and only if (4) holds for some probability measure P on
[1,∞).
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Proof. Let us first check that the existence of a probability measure P sat-
isfying (4) implies (3). We have:∫

[1,∞)

F (y)

y2
dy =

∫
[1,∞)

∫
[1,y]

u

y2
P (du)dy

=

∫
[1,∞)

∫
[u,∞)

u

y2
dyP (du) =

∫
[1,∞)

P (du) = 1. (10)

It remains to check that any nondecreasing right-continuous F : [1,∞)→
[0,∞) satisfying (3) satisfies (4) for some probability measure P on [1,∞).
Let Q be the measure on [1,∞) (σ-finite but not necessarily a probability
measure) with distribution function F , in the sense that Q([1, y]) = F (y)
for all y ∈ [1,∞). Set P (du) := (1/u)Q(du). We then have (4), and the
calculation (10) shows that the σ-finite measure P must be a probability
measure (were it not, we would not have an equality in (3)).

According to (3), the function

F (y) := αy1−α (11)

is an admissible capital calibrator for any α ∈ (0, 1).

3 Insuring against loss of evidence

Condition (2) implies lim infy→∞ F (y)/y = 0. Therefore, as we mentioned
in Section 1, K′n/Kn may be very small for some n even if (1) holds, and
we pointed out a simple way to use Theorem 1 for insuring against this
possibility. The following corollary says that it leads to an optimal result.

Corollary 1. Let c ≥ 0 and F : [1,∞) → [0,∞) be a nondecreasing func-
tion. Rival Sceptic has a strategy ensuring

K′n ≥ cKn + F (K∗n) (12)

if and only if c and F satisfy∫ ∞
1

F (y)

y2
dy ≤ 1− c. (13)

Proof. Suppose (13) is satisfied; in particular, c ∈ [0, 1). Using cfn+(1−c)f ′n
as Rival Sceptic’s strategy, where fn are Sceptic’s moves and f ′n are Rival
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Sceptic’s moves guaranteeing K′n ≥ 1
1−cF (K∗n) (cf. Theorem 1), we can see

that Rival Sceptic can guarantee (12).
Now suppose Rival Sceptic can ensure (12), but (13) is violated. As in

the proof of Theorem 1, we can decrease F so that, for some a > 1 and
N ∈ N, it is constant in each interval [an−1, an), n = 1, . . . , N , is zero in
[aN ,∞), and still violates (13). Similarly to (7), we have

F (1)

(
1− 1

a

)
+ F (a)

(
1

a
− 1

a2

)
+ · · ·+ F (aN−1)

(
1

aN−1
− 1

aN

)
> 1− c.

Suppose X ⊇ {0, 1} and define Forecaster’s and Sceptic’s strategies as be-
fore. Now backward induction shows that the initial capital K′0 required to
ensure K′N ≥ cKN + F (K∗N ) must be at least

caN
(

1

a

)N
+ F (aN )

(
1

a

)N
+ F (aN−1)

(
1

a

)N−1(
1− 1

a

)
+ F (aN−2)

(
1

a

)N−2(
1− 1

a

)
+ · · ·+ F (a)

1

a

(
1− 1

a

)
+ F (1)

(
1− 1

a

)
> c+ (1− c) = 1.

This contradicts K′0 = 1.

According to (11) and (12), Rival Sceptic can guarantee

K′n ≥ cKn + (1− c)α(K∗n)1−α (14)

for any constants c ∈ [0, 1] and α ∈ (0, 1).
Corollary 1 does not mean that (14) or, more generally, (12) cannot be

improved; it only says that the improvement will not be significant enough
to decrease the coefficient in front of Kn. For example, if we do not discard

the term
∫
(K∗

n,∞)K
(u)
n P (du) in (6), we will obtain

K′n ≥ P ((K∗n,∞))Kn + F (K∗n). (15)

The coefficient P ((K∗n,∞)) in front of Kn tends to zero as K∗n →∞.
In particular, using (15) allows us to improve (14) to

K′n ≥ cKn + (1− c)(1− α)(K∗n)−αKn + (1− c)α(K∗n)1−α.
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4 Insuring against loss of money

In conclusion, we discuss an application of our results to finance. Consider
a financial market in which K securities are traded over successive periods.
Recall that the return of a security during a trading period is the ratio

closing price− opening price

opening price
,

and let xkn be the kth security’s return in the nth trading period. For each
period n, write xn for the vector (x1n, . . . , x

K
n ), which is in X := [−1,∞)K .

Now consider how an investor might invest in the market during period
n. Write γkn for the amount of money invested in security k during period n,
and write γn for the vector (γ1n, . . . , γ

K
n ). Under the simplifying assumption

that the investor is allowed to go long or short by any amount, γn can be
any vector in RK . If the investor chooses γn and the market chooses xn,
then the investor’s profit will be γ1nx

1
n + · · ·+ γKn x

K
n .

This simple model of a financial market can be embedded in Protocol 1
as follows. As we said, X := [−1,∞)K . On each round Forecaster chooses
the same outer probability content En = E on X , which is defined by

E(f) := inf
{
K | ∃γ ∈ RK∀x ∈ X : K + γ1x1 + · · ·+ γKxK ≥ f(x)

}
.

We leave it to the reader to verify that this satisfies the axioms for an outer
probability content. In the situation of Protocol 1, where the function f is
nonnegative, the infimum does not change if we additionally require that
γ1, . . . , γK should be nonnegative and sum to at most K, and therefore, inf
is attained and can be replaced with min.

Now Forecaster is a dummy player, Sceptic is an investor in the market,
Rival Sceptic is another investor, who decides on his own investment for each
trading period after seeing Sceptic’s decision, and Reality is the market. The
initial capital is 1 for both investors. Results of this article show that Rival
Sceptic can modify Sceptic’s decisions in such a way that his capital K′n
never drops much below the maximal value K∗n achieved by Sceptic’s capital
Ki so far. For example, for any constants c ∈ [0, 1] and α ∈ (0, 1), Rival
Sceptic can guarantee (14).

Corollary 2. Let F : [1,∞) → [0,∞) be a nondecreasing function. In the
protocol of this section, Rival Sceptic has a strategy ensuring (1) if and only
if F satisfies (2). Let c ≥ 0. Rival Sceptic has a strategy ensuring (12) if
and only if c and F satisfy (13).
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Algorithm 1 Ensuring K′n ≥ F (K∗n)

C := P ((1,∞)), F := 1− C = P ({1}), and K∗ := 1
for n = 1, 2, . . . do

read Kn
K′n := CKn + F
if Kn > K∗ then
C := P ((Kn,∞))
F := F + P ((K∗,Kn])Kn
K∗ := Kn

end if
end for

Proof. We will only prove the first statement. As discussed, the part “if”
is a special case of Theorem 1. The part “only if” is proved using the same
idea as before. Namely, suppose F violates (2). Let a > 1 and N ∈ N satisfy
(7). We can assume, without loss of generality, that Reality is restricted to
choosing xn ∈ {u, d}, where u, d ∈ X are the vectors u := (a−1, 0, . . . , 0) and
d := (−1, 0, . . . , 0). A simple calculation shows that, under this restriction,

E(f) =
1

a
f(u) +

(
1− 1

a

)
f(d)

(cf. (8)). Suppose Sceptic always chooses γn = (Kn−1, 0, . . . , 0) (i.e., invests
all his capital in the 1st security). As before, backward induction gives (9),
and we arrive at a contradiction.

We can apply these ideas not only to securities but also to commodities
or dynamic portfolios of securities. In particular, our two stories at the end
of Section 1 are special cases of the framework of this section corresponding
to K = 1. (The case of an arbitrary K is not really more general: as far
as our results are concerned, it reduces to the case of K = 1, since our
argument is also applicable to Sceptic’s returns.)

It is easy to give an explicit trading algorithm ensuring (1), where F is
a capital calibrator, Kn is the closing price of a financial security for trading
period n, and K′n is the algorithm’s capital at the end of period n; as always,
we assume K0 = K′0 = 1. By Lemma 1, there exists a probability measure P
on [1,∞) that satisfies (4); it is clear that such a P is unique. The method
used in the proof of part 1 of Theorem 1 requires (see (5)) that the algorithm
keeps P ((K∗n,∞)) units of the security in its portfolio at the beginning of
period n. According to (15), the algorithm’s cash position is at least F (K∗n),
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Algorithm 2 Ensuring K′n ≥ αK1−α
n

Parameter: α ∈ (0, 1)
C := 1− α, F := α, and K∗ := 1
for n = 1, 2, . . . do

read Kn
K′n := CKn + F
if Kn > K∗ then
C := (1− α)K−αn
F := F + (1− α)((K∗)−α −K−αn )Kn
K∗ := Kn

end if
end for

but the bound (15) involves throwing away part of capital, since in general

we may have K(u)
n > u when u ≤ K∗n. Using the same position in the security

but avoiding throwing money away, we arrive at Algorithm 1. Intuitively,
the algorithm’s portfolio at the beginning of period n contains F monetary
units in cash and C units of the security. The algorithm keeps track of
the running maximum K∗ of the security’s price. At periods n when the
security reaches a record price, Kn > K∗, the portfolio is updated by selling
P ((K∗,Kn]) units of the security; this leads to the increase of P ((K∗,Kn])Kn
in the cash position.

It is easy to see that Algorithm 1 is quite general: it is applicable not
only in our current financial context but also in the context of Protocol 1.
Namely, on round n of Protocol 1 Rival Sceptic should choose f ′n := Cfn+F .

Finally, we specialize Algorithm 1 to the case where F is defined by (11).
Using the argument in the proof of Lemma 1, we find Q([1, y]) = αy1−α for
all y ≥ 1, and so Q gives weight α to 1 and has density α(1 − α)y−α over
(1,∞). Therefore, P gives weight α to 1 and has density α(1 − α)y−1−α

over (1,∞). Since

P ((K,∞)) =

∫ ∞
K

α(1− α)y−1−αdy = (1− α)K−α,

we obtain Algorithm 2, which was used in the computer simulations reported
in [5], Section 8.
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