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Abstract

This article studies the behavior of an index It which is assumed to be a
tradable security, to satisfy the BSM model dIt/It = µdt + σdWt, and to
be efficient in the following sense: we do not expect a prespecified trading
strategy whose value is almost surely always nonnegative to outperform the
index greatly. The efficiency of the index imposes severe restrictions on its
appreciation rate; in particular, for a long investment horizon we should
have µ ≈ r + σ2, where r is the interest rate. This provides another partial
solution to the equity premium puzzle. All our mathematical results are
extremely simple.
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1 Introduction

The efficient index hypothesis (EIH ) is a version of the random walk hypoth-
esis and the efficient market hypothesis. It is a statement about a specific
index, such as S&P 500, and says that we do not expect a prespecified
trading strategy to beat the index by a factor of 1/δ or more, for a given
threshold δ (such as δ = 0.1). The trading strategy is assumed to be prudent,
in the sense of its value being nonnegative a.s. at all times. By saying that
it beats the index by a factor of 1/δ or more we mean that its initial value
is K0 > 0 and its final value KT satisfies KT /IT ≥ (1/δ)(K0/I0). (By the
value of a trading strategy we always mean the undiscounted dollar value
of its current portfolio.) We will see that the EIH has several interesting
implications, such as µ ≈ r + σ2 for the appreciation rate µ of the index.

We use the EIH in the interpretation of our results, but their mathemat-
ical statements do not involve this hypothesis. For example, in Section 2 we
prove that there is a prudent trading strategy that, almost surely, beats the
index by a factor of at least 100 unless

IT
erT

∈
(
eσ

2T/2−2.58σ
√
T , eσ

2T/2+2.58σ
√
T
)

(1.1)

(see Proposition 2.1). If we believe in the EIH (for δ = 0.01), we should
believe in (1.1). But even if we do not believe in the EIH, the proposition
gives us a way of beating the index when (1.1) is violated.

As used in this article, the EIH is a weaker assumption than it appears
to be. There might be sophisticated prudent trading strategies that do beat
the index (by a large factor), but we are not interested in such strategies.
It is sufficient that the primitive strategies considered in this article be not
expected to beat the index.

Our EIH is obviously related, and has a similar motivation, to the stan-
dard efficient markets hypothesis [3]. There are, however, important differ-
ences. For example, the EIH does not assume that the security prices are
“correct” in any sense, or that investors’ expectations are rational (individ-
ually or en masse). The EIH controls for risk only by insisting that our
trading strategies be prudent. Admittedly, this is a weak requirement, and
so the threshold value of δ should be a small number; in our examples, we
use δ = 0.1 or δ = 0.01. If a trader is worried about losing all money, noth-
ing prevents her from investing only part of her capital in prudent strategies
that can lose everything. In Section 6, for example, we consider a trading
strategy that is a weighted average of the index, with weight 90%, and a
prudent trading strategy that, almost surely, beats the index by a factor
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of at least 100 unless (1.1) holds, with weight 10%. This strategy either
underperforms the index by 10% (if (1.1) holds) or beats it by 990% (if
not).

Remark. In [13, 17], the EIH was referred to as the “efficient market hy-
pothesis”, whereas the standard hypothesis of market efficiency as the “effi-
cient markets hypothesis”, with “markets” in plural. However, nowadays the
standard hypothesis is more often called the “efficient market hypothesis”
than the “efficient markets hypothesis”, and so it is safer to use a different
term for our hypothesis. The results of this article agree with the results of
[17] (see, e.g., (1) of [17] as applied to sn := r, ∀n), which were obtained
using very different methods.

We start the main part of the article with results about the final value
of the index under the EIH (Section 2). The main insight here is that
the index outperforms the bond approximately by a factor of eσ

2T/2 (cf.
(1.1)). In the following section, Section 3, we show that, under the EIH,
µ ≈ r + σ2. Section 4 applies this result to the equity premium puzzle; the
equity premium of σ2 is closer to the observed levels of the equity premium
than the predictions [9, 7, 10] of some standard theories. Section 5 discusses
our findings from the point of view of game-theoretic probability (see, e.g.,
[13]), and Section 6 discusses them from the point of view of equilibrium
asset pricing (see, e.g., [11]).

2 The final value of the index

The time interval in this article is [0, T ], T > 0; in the interpretation of
our results the horizon T will be assumed to be a large number. The value
of the index at time t is denoted It. We assume that it satisfies the BSM
(Black–Scholes–Merton) model

dIt
It

= µdt+ σdWt (2.1)

and that I0 = 1. The interest rate r is assumed constant. We will sometimes
interpret ert as the price at time t of a zero-coupon bond whose initial price
is 1.

Let zp be the upper p-quantile of the standard Gaussian distribution
N0,1; i.e., zp is defined by the requirement that P(ξ ≥ zp) = p, where
ξ ∼ N0,1.
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Proposition 2.1. Let δ > 0. There is a prudent trading strategy (depending
on σ, r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless

IT
erT

∈
(
eσ

2T/2−zδ/2σ
√
T , eσ

2T/2+zδ/2σ
√
T
)
. (2.2)

Equation (2.2) says that for large T the efficient index can be expected to
outperform the bond eσ

2T/2-fold. The case δ ≥ 1 in Proposition 2.1 is trivial,
but we do not exclude it to simplify the statement of the proposition; the
upper quantile zp is understood to be −∞ when p ≥ 1.

If we are only interested in a lower or upper bound on IT , we can use
the following proposition.

Proposition 2.2. Let δ > 0. There is a prudent trading strategy that,
almost surely, beats the index by a factor of 1/δ unless

IT
erT

> eσ
2T/2−zδσ

√
T .

There is another prudent trading strategy that, almost surely, beats the index
by a factor of 1/δ unless

IT
erT

< eσ
2T/2+zδσ

√
T . (2.3)

In the rest of this section we will prove Proposition 2.1; Proposition 2.2
can be proved in the same way. It will be clear from the proof that Propo-
sitions 2.1 and 2.2 are tight in the sense that the factor 1/δ cannot be
improved. The main idea of the proof is reminiscent of the argument in [1].

Let 1{. . .} be 1 if the condition in the curly braces is satisfied and 0
otherwise. We start from the following simple analytic lemma.

Lemma 2.3. Let u ∈ R, E ⊆ R be a Borel set, and ξ ∼ N0,1. Then

E
(
euξ 1{ξ ∈ E}

)
= eu

2/2 P (ξ + u ∈ E) .

Proof. This follows from

E
(
euξ 1{ξ ∈ E}

)
=

1√
2π

∫
R
euz 1{z ∈ E} e−z2/2 dz

=
1√
2π

eu
2/2

∫
R
1{z ∈ E} e−(z−u)2/2 dz

=
1√
2π

eu
2/2

∫
R
1 {w + u ∈ E} e−w2/2 dw

= eu
2/2 P (ξ + u ∈ E) .
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The risk-neutral version of (2.1) is

dIt
It

= rdt+ σdWt, (2.4)

and the explicit strong solution to this SDE is

It = e(r−σ2/2)t+σWt . (2.5)

Proof of Proposition 2.1. Let A be the event that (2.2) is violated and 1A be
its indicator function. The BSM price at time 0 of the European contingent
claim whose payoff at time T is IT 1A can be computed as the discounted
expected value

e−rT E(IT 1A)

= e−rT E
(
e(r−σ2/2)T+σ

√
Tξ 1

{
ξ ≤ σ

√
T − zδ/2 or ξ ≥ σ

√
T + zδ/2

})
= P

(
ξ ≤ −zδ/2 or ξ ≥ zδ/2

)
= δ,

where ξ ∼ N0,1; we have used (2.5) and Lemma 2.3. Since the BSM price
can be hedged perfectly (see, e.g., [4], Theorem 5.8.12), there is a prudent
trading strategy Σ with initial value δ and final value IT 1A a.s. We can see
that Σ beats the index by a factor of 1/δ if A happens.

3 Implications for the appreciation rate of the in-
dex

The following corollary of Proposition 2.1 shows that the EIH and the BSM
model (2.1) imply µ ≈ r + σ2.

Proposition 3.1. For each δ > 0 there exists a prudent trading strategy
Σ = Σ(σ, r, T, δ) that satisfies the following condition. For each ϵ > 0,
either ∣∣r + σ2 − µ

∣∣ < (zδ/2 + zϵ)σ√
T

(3.1)

or Σ beats the index by a factor of at least 1/δ with probability at least 1− ϵ.

Intuitively, µ ≈ r+σ2 unless we can beat the index or a rare event happens
(assuming that δ and ϵ are small and T is large).
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Proof of Proposition 3.1. Without loss of generality, assume δ, ϵ ∈ (0, 1). As
Σ we take a prudent trading strategy that beats the index by a factor of
1/δ unless (2.2) holds. Therefore, we are only required to prove that the
event that (2.2) holds but (3.1) does not has probability at most ϵ. We can
rewrite (2.2) as ∣∣∣∣ln IT − rT − σ2

2
T

∣∣∣∣ < zδ/2σ
√
T . (3.2)

Remembering that (2.1) has explicit solution It = e(µ−σ2/2)t+σWt , we can
rewrite (3.2) as ∣∣∣σ√Tξ − (r + σ2 − µ)T

∣∣∣ < zδ/2σ
√
T ,

where ξ ∼ N0,1, i.e., as ∣∣∣∣∣ξ − (r + σ2 − µ)
√
T

σ

∣∣∣∣∣ < zδ/2. (3.3)

If (3.1) is violated, we have either r + σ2 − µ < −(zδ/2 + zϵ)σ/
√
T or r +

σ2 − µ > (zδ/2 + zϵ)σ/
√
T . The two cases are analogous, and we consider

only the first. In this case, (3.3) implies ξ < −zϵ, the probability of which
is ϵ.

Proposition 3.1 shows that the arbitrariness of µ in the BSM model (2.1)
for the index is to a large degree illusory if we accept the EIH.

The strategy Σ of Proposition 3.1 depends only on σ, r, T , and δ. If
we allow, additionally, dependence on µ and ϵ, we can use Proposition 2.2
instead of Proposition 2.1 and strengthen (3.1) by replacing δ/2 with δ.

Proposition 3.2. Let δ > 0 and ϵ > 0. Unless

∣∣r + σ2 − µ
∣∣ < (zδ + zϵ)σ√

T
, (3.4)

there exists a prudent trading strategy Σ = Σ(µ, σ, r, T, δ, ϵ) that beats the
index by a factor of at least 1/δ with probability at least 1− ϵ.

Proof. Suppose (3.4) is violated. Since the cases r+σ2−µ < −(zδ+zϵ)σ/
√
T

and r + σ2 − µ > (zδ + zϵ)σ/
√
T are analogous, we will assume

r + σ2 − µ < −(zδ + zϵ)σ√
T

. (3.5)
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(Our trading strategy depends on which of the two cases holds, and so
depends on µ and ϵ.) As Σ we take a prudent trading strategy that beats
the index by a factor of 1/δ unless (2.3) holds. We are required to prove
that the probability of (2.3) is at most ϵ. We can rewrite (2.3) as

ln IT − rT − σ2

2
T < zδσ

√
T ,

i.e.,

ξ − (r + σ2 − µ)
√
T

σ
< zδ,

where ξ ∼ N0,1. The last inequality and (3.5) imply ξ < −zϵ, whose proba-
bility is ϵ.

4 Equity premium puzzle

The equity premium is the excess of stock returns over bond returns, and
it appears to be higher in the real world than suggested by some standard
economic theories. Mehra and Prescott dubbed this phenomenon the equity
premium puzzle [9]. There is no consensus as to the explanation, or even
to the existence, of the equity premium puzzle; for recent reviews see, e.g.,
[7, 10]. In this section we will see that our results can be interpreted as
providing a partial solution to the puzzle.

According to Proposition 3.1, under the EIH we can expect µ ≈ r + σ2.
This gives the equity premium σ2. The annual volatility of S&P 500 is
approximately 20% (see, e.g., [8], p. 3, or [7], p. 8), which translates into an
expected 4% equity premium. The standard theory, as applied by Mehra
and Prescott, predicts an equity premium of at most 1% ([9], p. 146, [7],
p. 11).

The empirical study by Mehra and Prescott reported in [8], Table 2,
estimates the equity premium over the period 1889–2005 as 6.36%. Taking
into account the later years 2006–2010 reduces it, but not much, to 6.05%.
(The recent news about bonds outperforming stocks over the past 30 years
[5] were about 30-year Treasury bonds, whereas Mehra and Prescott use
short-term Treasury bills for this period.) Our figure of 4% is below 6.05%,
but the difference is much less significant than for Mehra and Prescott’s
predictions. If the years 1802–1888 are also taken into account (as done by
Siegel [14], updated until 2004 by Mehra and Prescott [8], Table 2, and until
2010 by myself), the equity premium goes down to 5.17%.
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Equation (2.2) allows us to estimate the accuracy of our estimate σ2 of
the equity premium. Namely, we have, almost surely,

1

T

∫ T

0

dIt
It

−r−σ2 =
ln IT + σ2T/2− rT − σ2T

T
∈
(
−
zδ/2σ√

T
,
zδ/2σ√

T

)
(4.1)

unless a prespecified prudent trading strategy beats the index by a factor
of 1/δ. Plugging δ := 0.1 (to obtain a reasonable accuracy), σ := 0.2, and
T := 2010 − 1888, we evaluate zδ/2σ/

√
T in (4.1) to 2.98% for the period

1889–2010, and changing T to 2010− 1801, we evaluate it to 2.28% for the
period 1802–2010. For both periods, the observed equity premium falls well
within the prediction interval.

5 Three kinds of probabilities for the index

In this section we will take a broader view of the simple results of the
previous sections. We started from the “physical” probability measure (2.1),
used the risk-neutral probability measure (2.4), and saw the importance of
the probability measure

dIt
It

= (r + σ2)dt+ σdWt, (5.1)

which will be called the efficient-index measure. We will see that the last
two are essentially special cases of game-theoretic probability, as defined in
[13] (and extended to continuous time in [15, 16]). If E is a Borel subset
of the Banach space Ω := C([0, T ]) of all continuous functions on [0, T ], we
define its upper probability with bond as numéraire by

Pb(E) := inf

{
K0

∣∣∣∣ KT

erT
≥ 1E a.s.

}
,

where 1E is the indicator function of E, K ranges over the value processes of
prudent trading strategies, and “a.s.” means with probability one under the
physical measure (2.1) (equivalently, under (2.4) or under (5.1)). In other
words, Pb(E) is the infimum of δ > 0 such that a prudent trading strategy
can beat the bond by a factor of 1/δ or more on the event E (except for its
subset of zero probability). We define the upper probability of E with index
as numéraire by

PI(E) := inf

{
K0

∣∣∣∣ KT

IT
≥ 1E a.s.

}
.
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In other words, PI(E) is the infimum of δ > 0 such that a prudent trading
strategy can beat the index by a factor of 1/δ or more on the event E.

For each Borel E, Pb(E) is the risk-neutral measure of E and PI(E) is
its efficient-index measure. It is standard in game-theoretic probability to
define the corresponding lower probabilities

Pb(E) := 1− Pb(E
c) and PI(E) := 1− PI(E

c),

where Ec := Ω\E. Since our market is complete, upper and lower probabil-
ities always coincide. A major difference of the definitions of Pb and PI from
the usual definitions of upper probabilities in game-theoretic probability is
the presence of “a.s.”; in game-theoretic probability “a.s.” is absent as there
is no probability measure to begin with.

The processes (2.4) and (5.1) are in some sense reciprocal. By Itô’s
formula, if It satisfies (2.4), then I∗t := e2rt /It will satisfy (5.1) with I∗ in
place of I and −W in place ofW , and vice versa. (The definition of I∗t makes
the bond’s price ert the geometric mean of It and I∗t .) In particular, the
appreciation rate of typical trajectories of (2.4) is approximately e(r−σ2/2)t,
and the appreciation rate of typical trajectories of (5.1) is approximately
e(r+σ2/2)t.

6 Connections with optimal portfolio selection

A surprising feature of the BSM theory of option pricing is that the BSM
prices of contingent claims do not depend on the investors’ attitudes toward
risk. Similarly, our results show that the appreciation rate µ of the index
should be close to r + σ2 regardless of the investors’ attitudes toward risk
(but relying on the EIH). In this section we will discuss these results from
the point of view of Merton’s theory of optimal portfolio selection; of course,
which portfolio is optimal very much depends on the chosen utility function.

Let us consider an investor whose utility of a final wealth x is Fα(x),
where

Fα(x) :=

{
xα/α if α ̸= 0

lnx if α = 0
(6.1)

and α < 1 is a constant. The isoelastic utility function Fα(x) has a constant
relative risk aversion equal to 1−α: for all x > 0, −xF ′′

α(x)/F
′
α(x) = 1−α.

Notice that F0(x) = limα→0(Fα(x)− 1/α) (and adding a constant does not
change a utility function in an essential way).

The investor’s goal is to maximize the expectation of the utility of her
final wealth by investing into the index and the bond starting from an initial
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capital of 1. As shown in [11] ((4.25); see also [2], (9.22)), the optimal
fraction w of the investor’s wealth invested in the index is

w =
µ− r

(1− α)σ2
. (6.2)

We start from an example that I learned from Robert Merton, who
believes that it was used already by Paul Samuelson (in the case of discrete
time). The role of this example in this article is heuristic as it replaces
the constant interest rate r by an equilibrium interest rate; it also uses less
familiar economic notions than the rest of the article.

Example 6.1 (heuristic). Consider a primitive economy with one risky
asset I satisfying (2.1). Since there is only one risky asset, we regard It as
both the index and the market portfolio. The role of the risk-free asset is
played by a financial asset (sometimes called “inside money”) traded inside
the economy and serving the purpose of borrowing and lending. The net
amount of inside money in the economy is always zero, and the interest rate
r adjusts to clear the market. Each investor in the economy has the same
utility function (6.1) (so the constant α is the same for all investors), and
her goal is to maximize the expectation of the utility of her final wealth.
Since all investors have identical utility functions, w defined by (6.2) is the
fraction of aggregate wealth invested in the market portfolio; the fraction
invested in the risk-free asset is 1 − w. As the net amount of the risk-free
asset is 0, the equilibrium interest rate r must be such that 1− w = 0, i.e.,
w = 1. This gives the equilibrium relation

µ = r + (1− α)σ2 (6.3)

between µ, r, and σ. Our formula µ ≈ r + σ2 is compatible with (6.3) only
when α = 0 (the case of logarithmic utility). Setting µ := r is compatible
with (6.3) only when α = 1. This corresponds to the risk-neutral probability
measure (2.4) used in BSM option pricing.

It might seem that there is a contradiction between our results and the
argument leading to (6.3). We do not longer need the assumption of Ex-
ample 6.1 that the risk-free asset is inside money, and so we return to our
framework in which r is constant. Suppose that (6.3) happens to be satis-
fied. Then the optimal fraction of the investor’s wealth invested in the index
is 1. How can this be optimal for α ̸= 0 and large T if, by our results, the
investor can beat the index with high probability instead of investing in it?

Let us see that our strategy that beats the index with high probability
does not in fact lead to a higher expected utility than the index. Until the
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end of this section we assume that (6.3) is satisfied. If α < 0 (this is believed
to be the practically interesting case), the explanation is trivial: since our
strategy (one satisfying Proposition 2.1) loses all wealth with positive prob-
ability, its expected utility is −∞. Therefore, we will consider the trading
strategy Σ that is a weighted average of the index, with weight 1 − γ, and
a strategy satisfying Proposition 2.1, with weight γ, where γ ∈ (0, 1). The
specific values that we will discuss later are δ := 0.01 and γ := 0.1; in this
case Σ either underperforms the index by 10% (with a very low probability,
for large T ) or beats it by 990% (with probability close to 1).

For simplicity, we will assume zero interest rate, r = 0. Remember that

IT = e(µ−σ2/2)T+σ
√
Tξ = e(1/2−α)σ2T+σ

√
Tξ,

where ξ ∼ N0,1.
We will calculate the expected utility of the final value IT of the index

and of the final wealth of Σ separately over the three regions implicit in
(2.2); for now, we only assume α ∈ (−∞, 1) and α ̸= 0.

1. Over the region IT ≥ eσ
2T/2+zδ/2σ

√
T we have:

(a) by Lemma 2.3, the expected utility of the index is

E
(
Fα(IT )1

{
IT ≥ eσ

2T/2+zδ/2σ
√
T
})

=
1

α
eα(1/2−α)σ2T E

(
eασ

√
Tξ 1

{
ξ ≥ ασ

√
T + zδ/2

})
=

1

α
eα(1/2−α)σ2T eα

2σ2T/2 P
(
ξ ≥ zδ/2

)
=

δ

2α
eα(1−α)σ2T/2;

(b) replacing Fα(IT ) by Fα((1 − γ + γ/δ)IT ), we find the expected
utility of the final wealth of Σ as

(1− γ + γ/δ)α
δ

2α
eα(1−α)σ2T/2 .

2. Over the region

eσ
2T/2−zδ/2σ

√
T < IT < eσ

2T/2+zδ/2σ
√
T (6.4)

(cf. (2.2)) we have:
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(a) by Lemma 2.3, the expected utility of the index is

E
(
Fα(IT )1

{
eσ

2T/2−zδ/2σ
√
T < IT < eσ

2T/2+zδ/2σ
√
T
})

=
1

α
eα(1/2−α)σ2T E

(
eασ

√
Tξ 1

{
ασ

√
T − zδ/2 < ξ < ασ

√
T + zδ/2

})
=

1

α
eα(1/2−α)σ2T eα

2σ2T/2 P
(
−zδ/2 < ξ < zδ/2

)
=

1− δ

α
eα(1−α)σ2T/2;

(b) replacing Fα(IT ) by Fα((1 − γ)IT ), we find the expected utility
of the final wealth of Σ as

(1− γ)α
1− δ

α
eα(1−α)σ2T/2 .

3. Over the region IT ≤ eσ
2T/2−zδ/2σ

√
T we have:

(a) by Lemma 2.3, the expected utility of the index is

E
(
Fα(IT )1

{
IT ≤ eσ

2T/2−zδ/2σ
√
T
})

=
1

α
eα(1/2−α)σ2T E

(
eασ

√
Tξ 1

{
ξ ≤ ασ

√
T − zδ/2

})
=

1

α
eα(1/2−α)σ2T eα

2σ2T/2 P
(
ξ ≤ −zδ/2

)
=

δ

2α
eα(1−α)σ2T/2;

(b) replacing Fα(IT ) by Fα((1 − γ + γ/δ)IT ), we find the expected
utility of the final wealth of Σ as

(1− γ + γ/δ)α
δ

2α
eα(1−α)σ2T/2 .

For regions 1 and 3 we obtained identical results.
If we divide the total expected utility of Σ over the three regions by the

total expected utility of the index, the factor 1
α eα(1−α)σ2T/2 will cancel out

and we will obtain

δ(1− γ + γ/δ)α + (1− δ)(1− γ)α. (6.5)

Figure 1 plots this ratio for a range of αs and for δ = 0.01 and γ = 0.1. The
ratio is more than 1 when α < 0 and less than 1 when α ∈ (0, 1). As the
utility is negative when α < 0 and positive when α > 0, this means that the
expected utility of Σ is lower than that of the index. The following lemma
states this formally.
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Figure 1: The ratio (6.5) of the expected utilities of Σ and of the index for
values of α ranging from 1 (the risk-neutral case) via 0 (logarithmic utility)
to −3 (relative risk aversion 4) for δ = 0.01 and γ = 0.1.

Lemma 6.2. For all γ, δ ∈ (0, 1) and all α ∈ (−∞, 1),

δ(1− γ + γ/δ)α + (1− δ)(1− γ)α

{
> 1 if α < 0

< 1 if α > 0.

Proof. When γ = 0,

f(γ) := δ(1− γ + γ/δ)α + (1− δ)(1− γ)α = 1.

It remains to check that the derivative f ′(γ), γ > 0, is positive when α < 0
and negative when α ∈ (0, 1).

Let us first discuss the case α < 0; it is believed that typical values of
relative risk aversion for real-world investors are between 2 and 10, which
corresponds to α between −1 and −9. Utility in this case is negative, and
we will couch our discussion in terms of disutility, which we define as minus
utility. For concreteness, let α := −2 (so the relative risk aversion is 3).
According to Figure 1, the disutility of Σ is approximately 1.2 times greater
than the disutility of the index for δ = 0.01, γ = 0.1 (a more accurate value is
1.222). This looks counterintuitive, but is explained by the property of F−2

(and generally Fα for α < 0) to become “saturated”. Let us assume that T is
large. The utility function F−2 is bounded above, and even large differences
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in wealth (on absolute, relative, or any other scale) cease to matter as wealth
increases. In the context of this article, beating the index by a factor of,
say, 10 quickly becomes less and less impressive. For example, the utility
of increasing wealth 10-fold is 100 more valuable when the current wealth
is 1 than when it is 10. This appears to contradict the way institutional
investors are usually evaluated: beating the index by a factor of 10 is as big
an achievement today as it was 20 years ago.

In the context of the calculations of this section (for α = −2), region 1

(IT ≥ eσ
2T/2+zδ/2σ

√
T ) has a probability very close to 1 and in this case Σ

beats the index by a factor of more than 10. But these typical values for
the index are regarded as too large by the utility function, the difference
between Σ and the index is essentially disregarded, and F−2 concentrates
on region 2, (6.4). This is a very unlikely region and Σ loses only 10%
as compared to the index; this is, however, sufficient for F−2 to punish Σ
harshly. In region 3, Σ again beats the index by a factor of more than 10,
but its probability is too small to change the outcome of the comparison.

In the case α ∈ (0, 1), the expected utility of the index is still greater
than that of Σ. The utility function Fα, α ∈ (0, 1), prefers the index to Σ
because Σ loses 10% as compared to the index in the same low-probability
region (6.4); the 10-fold outperformance over the index outside this region
is not sufficient to counterbalance the potential modest and low-probability
underperformance.

It is interesting that in both cases, α < 0 and α > 0, the utility function
Fα focuses on the same region, (6.4). A very bad performance outside this
region is tolerated. For α = 0 this region at least has a high probability; for
other values of α, this is a surprising phenomenon.

The logarithmic utility function is often regarded to be the most funda-
mental utility function; e.g., maximizing expected logarithmic utility often
leads to the best asymptotic growth rate: see, e.g., [6] (and see [12] for
the analysis of Kelly’s rule from the point of view of maximizing expected
utility). This section (and article in general) can be regarded as another
manifestation of the fundamental character of the logarithmic utility func-
tion. Other utility functions in the Fα family lead to decisions based on
potential events (far from catastrophic) that have very low probability.

As a final informal remark, it is not clear that important players in
stock markets, such as mutual and hedge funds, have goals that can be
easily translated into utility functions. An important goal for them is to
beat the market, and our results in the bulk of the article address this goal
directly rather than via a conventional utility function.
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