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Abstract

We consider a financial market in which two securities are traded: a stock and
an index. Their prices are assumed to satisfy the Black–Scholes model. Besides
assuming that the index is a tradable security, we also assume that it is efficient,
in the following sense: we do not expect a prespecified self-financing trading
strategy whose wealth is almost surely nonnegative at all times to outperform
the index greatly. We show that, for a long investment horizon, the appreciation
rate of the stock has to be close to the interest rate (assumed constant) plus
the covariance between the volatility vectors of the stock and the index. This
contains both a version of the Capital Asset Pricing Model and our earlier result
that the equity premium is close to the squared volatility of the index.
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For me, the strongest evidence
suggesting that markets are
generally quite efficient is that
professional investors do not beat
the market.

Burton G. Malkiel [3]

1 Introduction

This article continues study of the efficient index hypothesis (EIH ), introduced
in [4] (under a different name) and later studied in [8] and [6]. The EIH is a
hypothesis about a specific index It, such as FTSE 100. Let Σ be any trading
strategy that is prudent, in the sense of its wealth process being nonnegative
almost surely at all times. (We consider only self-financing trading strategies in
this article.) Trading occurs over the time period [0, T ], where the investment
horizon T > 0 is fixed throughout the article, and we assume that I0 > 0. The
EIH says that, as long as Σ is chosen in advance and its initial wealth K0 is
positive, K0 > 0, we do not expect KT /K0, where KT is its final wealth, to be
much larger than IT /I0.

The EIH is similar to the Efficient Market Hypothesis (EMH; see [1] and
[3] for surveys) and in some form is considered to be evidence in favour of the
EMH (see the epigraph above). But it is also an interesting hypothesis in its
own right. For example, in this article we will see that in the framework of
the Black–Scholes model it implies a version of the Capital Asset Pricing Model
(CAPM), whereas the EMH is almost impossible to disentangle from the CAPM
or similar asset pricing models (see, e.g., [1], III.A.6).

Several remarks about the EIH are in order (following [6]):

• Our mathematical results do not depend on the EIH, which is only used in
their interpretation. They are always of the form: either some interesting
relation holds or a given prudent trading strategy outperforms the index
greatly (almost surely or with a high probability).

• Even when using the EIH in the interpretation of our results, we do not
need the full EIH: we apply it only to very basic trading strategies.

• Our prudent trading strategies can still lose all their initial wealth (they
are only prudent in the sense of not losing more than the initial wealth).
A really prudent investor would invest only part of her capital in such
strategies.

We start the rest of the article by proving a result about the “theoretical
performance deficit” (in the terminology of [8]) of a stock St as compared with
the index It, Namely, in Section 2 we show that, for a long investment horizon
and assuming the EIH,

ln
ST /S0

IT /I0
≈ −‖σS − σI‖

2

2
T, (1.1)
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where I0 is assumed positive and σS and σI are the volatility vectors (formally

defined in Section 2) for the stock and the index. We can call ‖σS − σI‖2 /2 the
theoretical performance deficit as it can be attributed to insufficient diversifica-
tion of St as compared to It. Section 3 deduces a version of the CAPM from
(1.1); this version is similar to the one obtained in [8] but our interpretation
and methods are very different. Section 4 gives a more direct derivation of the
CAPM, which improves some constants. Section 5 concludes.

2 Theoretical performance deficit

The value of the index at time t is denoted It and the value of the stock is
denoted St. We assume that these two securities satisfy the multi-dimensional
Black–Scholes model{

dIt
It

= µIdt+ σI,1dW 1
t + · · ·+ σI,ddW

d
t

dSt

St
= µSdt+ σS,1dW 1

t + · · ·+ σS,ddW
d
t ,

(2.1)

where W 1, . . . ,W d are independent standard Brownian motions. For simplicity,
we also assume, without loss of generality, that I0 = 1 and S0 = 1. The
parameters of the model are the appreciation rates µI , µS ∈ R and the volatility
vectors σI := (σI,1, . . . , σI,d)

T and σS := (σS,1, . . . , σS,d)
T. We assume σI 6= σS ,

σI 6= 0, and σS 6= 0. The number of “sources of randomness” W 1, . . . ,W d in
our market is d ≥ 2. The interest rate r is constant. We interpret ert as the
price of a zero-coupon bond at time t.

Let us say that a prudent trading strategy beats the index by a factor of c
if its wealth process Kt satisfies K0 > 0 and KT /K0 = cIT . Let N0,1 be the
standard Gaussian distribution on R and zp, p > 0, be its upper p-quantile,
defined by the requirement P(ξ ≥ zp) = p, ξ ∼ N0,1, when p ∈ (0, 1), and
defined as −∞ when p ≥ 1. We start from the following proposition.

Proposition 2.1. Let δ > 0. There is a prudent trading strategy Σ =
Σ(σI , σS , r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless∣∣∣∣∣ln STIT +

‖σS − σI‖2

2
T

∣∣∣∣∣ < zδ/2 ‖σS − σI‖
√
T . (2.2)

We assumed σS 6= 0, but Proposition 2.1 remains true when applied to the
bond Bt := ert in place of the stock St. In this case (2.2) reduces to∣∣∣∣∣ln IT

erT
− ‖σI‖

2

2
T

∣∣∣∣∣ < zδ/2 ‖σI‖
√
T . (2.3)

Informally, (2.3) says that the index outperforms the bond approximately by

a factor of e‖σI‖2T/2. For a proof of this statement (which is similar to, but
simpler than, the proof of Proposition 2.1 given later in this section), see [6],
Proposition 2.1.
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In the next section we will need the following one-sided version of Proposi-
tion 2.1.

Proposition 2.2. Let δ > 0. There is a prudent trading strategy Σ =
Σ(σI , σS , r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless

ln
ST
IT

+
‖σS − σI‖2

2
T < zδ ‖σS − σI‖

√
T . (2.4)

There is another prudent trading strategy Σ = Σ(σI , σS , r, T, δ) that, almost
surely, beats the index by a factor of 1/δ unless

ln
ST
IT

+
‖σS − σI‖2

2
T > −zδ ‖σS − σI‖

√
T .

In the rest of this section we will prove Proposition 2.1 (Proposition 2.2
can be proved analogously). Without loss of generality suppose δ ∈ (0, 1). We
let Wt stand for the d-dimensional Brownian motion Wt := (W 1

t , . . . ,W
d
t )T.

The market (2.1) is incomplete when d > 2, as it has too many sources of
randomness, so we start from removing superfluous sources of randomness.

The standard solution to (2.1) is{
It = e(µI−‖σI‖2/2)t+σI ·Wt

St = e(µS−‖σS‖2/2)t+σS ·Wt .
(2.5)

Choose two vectors e1, e2 ∈ Rd that form an orthonormal basis in the 2-
dimensional subspace of Rd spanned by σI and σS . Set W̄ 1

t := e1 · Wt and
W̄ 2
t := e2 · Wt; these are standard independent Brownian motions. Let the

decompositions of σI and σS in the basis (e1, e2) be σI = σ̄I,1e
1 + σ̄I,2e

2 and
σS = σ̄S,1e

1 + σ̄S,2e
2. Define σ̄I := (σ̄I,1, σ̄I,2)T ∈ R2 and σ̄S := (σ̄S,1, σ̄S,2)T ∈

R2, and define W̄t as the 2-dimensional Brownian motion W̄t := (W̄ 1
t , W̄

2
t )T.

We can now rewrite (2.5) as{
It = e(µI−‖σ̄I‖2/2)t+σ̄I ·W̄t

St = e(µS−‖σ̄S‖2/2)t+σ̄S ·W̄t .

In terms of our new parameters and Brownian motions, (2.1) can be rewritten
as {

dIt
It

= µIdt+ σ̄I,1dW̄ 1
t + σ̄I,2dW̄ 2

t
dSt

St
= µSdt+ σ̄S,1dW̄ 1

t + σ̄S,2dW̄ 2
t .

(2.6)

The risk-neutral version of (2.6) is{
dIt
It

= rdt+ σ̄I,1dW̄ 1
t + σ̄I,2dW̄ 2

t
dSt

St
= rdt+ σ̄S,1dW̄ 1

t + σ̄S,2dW̄ 2
t ,

whose solution is {
It = e(r−‖σ̄I‖2/2)t+σ̄I ·W̄t

St = e(r−‖σ̄S‖2/2)t+σ̄S ·W̄t .
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Let b ∈ R and let 1{. . .} be defined as 1 if the condition in the curly braces is
satisfied and as 0 otherwise. The Black–Scholes price at time 0 of the European
contingent claim paying IT 1{ST /IT ≥ b} at time T is

e−rT E

(
e(r−‖σ̄I‖2/2)T+

√
T σ̄I ·ξ 1

{
e(r−‖σ̄S‖2/2)T+

√
T σ̄S ·ξ

e(r−‖σ̄I‖2/2)T+
√
T σ̄I ·ξ

≥ b

})

= e−‖σ̄I‖2T/2 E

(
e
√
T σ̄I ·ξ 1

{
√
T (σ̄S − σ̄I) · ξ ≥ ln b+

‖σ̄S‖2 − ‖σ̄I‖2

2
T

})
,

(2.7)

where ξ ∼ N2
0,1. To continue our calculations, we will need the following lemma.

Lemma 2.3. Let u, v ∈ R2, v 6= 0, c ∈ R, and ξ ∼ N2
0,1. Then

E
(
eu·ξ 1{v · ξ ≥ c}

)
= e‖u‖

2/2 F

(
u · v − c
‖v‖

)
,

where F is the distribution function of N0,1.

Proof. This follows from

E
(
eu·ξ 1{v · ξ ≥ c}

)
=

1

2π

∫
R2

eu·z 1{v · z ≥ c} e−‖z‖
2/2 dz

=
1

2π
e‖u‖

2/2

∫
R2

1{v · z ≥ c} e−‖z−u‖
2/2 dz

=
1

2π
e‖u‖

2/2

∫
R2

1 {v · w ≥ c− u · v} e−‖w‖
2/2 dw

= e‖u‖
2/2 P

(
v

‖v‖
· ξ ≥ c− u · v

‖v‖

)
= e‖u‖

2/2 F

(
u · v − c
‖v‖

)
.

Now we can rewrite (2.7) as

F

T σ̄I · (σ̄S − σ̄I)− ln b− ‖σ̄S‖2−‖σ̄I‖2
2 T∥∥∥√T (σ̄S − σ̄I)

∥∥∥
 = F

(
−
‖σ̄S−σ̄I‖2

2 T + ln b

‖σ̄S − σ̄I‖
√
T

)
.

Let us define b by the requirement

‖σ̄S−σ̄I‖2
2 T + ln b

‖σ̄S − σ̄I‖
√
T

= zδ/2,

i.e.,

ln b = −‖σ̄S − σ̄I‖
2

2
T + zδ/2 ‖σ̄S − σ̄I‖

√
T . (2.8)
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As the Black–Scholes price of the European contingent claim IT 1{ST /IT ≥ b}
is δ/2, there is a prudent trading strategy Σ1 with initial wealth δ/2 that almost
surely beats the index by a factor of 2/δ if ST /IT ≥ b.

Now let a ∈ R and consider the European contingent claim paying
IT 1{ST /IT ≤ a}. Replacing “ ≥ b” by “ ≤ a” and “ ≥ ln b” by “ ≤ ln a” in
(2.7) and defining a to satisfy

ln a = −‖σ̄S − σ̄I‖
2

2
T − zδ/2 ‖σ̄S − σ̄I‖

√
T

in place of (2.8), we obtain a prudent trading strategy Σ2 that starts from δ/2
and almost surely beats the index by a factor of 2/δ if ST /IT ≤ a. The sum
Σ := Σ1 + Σ2 will beat the index by a factor of 1/δ if ST /IT /∈ (a, b). This
completes the proof of Proposition 2.1.

3 Capital Asset Pricing Model

In this section we will derive a version of the CAPM from the results of the
previous section. Our argument will be similar to that of Section 3 of [6].

Proposition 3.1. For each δ > 0 there exists a prudent trading strategy Σ =
Σ(σI , σS , r, T, δ) that satisfies the following condition. For each ε > 0, either∣∣∣µS − µI + ‖σI‖2 − σS · σI

∣∣∣ < (zδ/2 + zε) ‖σS − σI‖√
T

(3.1)

or Σ beats the index by a factor of at least 1/δ with probability at least 1− ε.

Proof. Suppose (3.1) is violated; we are required to prove that some prudent
trading strategy (independent of ε) beats the index by a factor of at least 1/δ
with probability at least 1− ε. We have either

µS − µI + ‖σI‖2 − σS · σI ≥
(zδ/2 + zε) ‖σS − σI‖√

T
(3.2)

or

µS − µI + ‖σI‖2 − σS · σI ≤ −
(zδ/2 + zε) ‖σS − σI‖√

T
. (3.3)

The two cases are analogous, and we will assume, for concreteness, that (3.2)
holds.

As (2.5) solves (2.1), we have

ln
ST
IT

= (µS − µI)T +
‖σI‖2 − ‖σS‖2

2
T +
√
T (σS − σI) · ξ, (3.4)

where ξ ∼ Nd
0,1. In combination with (3.2) this gives

ln
ST
IT
≥
(
−‖σI‖2 + σS · σI +

(zδ/2 + zε) ‖σS − σI‖√
T

)
T
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+
‖σI‖2 − ‖σS‖2

2
T +
√
T (σS − σI) · ξ

= −‖σS − σI‖
2

2
T + (zδ/2 + zε) ‖σS − σI‖

√
T +
√
T (σS − σI) · ξ. (3.5)

Let Σ be a prudent trading strategy that, almost surely, beats the index by
a factor of 1/δ unless (2.2) holds. It is sufficient to prove that the probability
of (2.2) is at most ε. In combination with (3.5), (2.2) implies

zδ/2 ‖σS − σI‖
√
T > (zδ/2 + zε) ‖σS − σI‖

√
T +
√
T (σS − σI) · ξ, (3.6)

i.e.,
σS − σI
‖σS − σI‖

· ξ < −zε. (3.7)

The probability of the last event is ε.

Allowing the strategy Σ to depend, additionally, on µI , µS , and ε, we can
improve (3.1) replacing δ/2 by δ.

Proposition 3.2. Let δ > 0 and ε > 0. Unless∣∣∣µS − µI + ‖σI‖2 − σS · σI
∣∣∣ < (zδ + zε) ‖σS − σI‖√

T
, (3.8)

there exists a prudent trading strategy Σ = Σ(µI , µS , σI , σS , r, T, δ, ε) that beats
the index by a factor of at least 1/δ with probability at least 1− ε.

Proof. We modify slightly the proof of Proposition 3.1: assuming (3.2) (with
δ/2 replaced by δ) we now take as Σ a prudent trading strategy that, almost
surely, beats the index by a factor of 1/δ unless (2.4) holds. Combining (3.5)
(with δ/2 replaced by δ) and (2.4), we get (3.6) (with δ/2 replaced by δ), and
we still have (3.7). Notice that Σ now depends on which of the two cases, (3.2)
or (3.3) (with δ/2 replaced by δ), holds.

Propositions 3.1 and 3.2 are similar to Black’s version of the CAPM, and we
will derive corollaries of Proposition 3.2 similar to the Sharpe–Lintner CAPM
(we do not state the analogous easy corollaries of Proposition 3.1). But before
stating and proving these corollaries, we will discuss them informally, to give us
a sense of direction.

Assuming δ � 1, ε� 1, and T � 1, we can interpret (3.8) as saying that

µS ≈ µI − ‖σI‖2 + σS · σI . (3.9)

This approximate equality is applicable to the bond as well as the stock (by
results of [6]), which gives

µI ≈ r + ‖σI‖2 . (3.10)

Combining (3.9) and (3.10) we obtain

µS ≈ r + σS · σI . (3.11)
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And combining (3.11) and (3.10) we obtain

µS ≈ r +
σS · σI
‖σI‖2

(µI − r). (3.12)

Equation (3.12) is a continuous-time version of the Sharpe–Lintner CAPM.
The standard Sharpe–Lintner CAPM (see, e.g., [2], pp. 28–29) can be written
in the form

E(RS) = r +
cov(RS , RI)

σ2(RI)
(E(RI)− r) , (3.13)

where RS and RI are the returns of a risky asset and the market portfolio,
respectively. The correspondence between (3.12) and (3.13) is obvious. Equa-
tion (3.9) can be regarded as an analogue of Black’s version of the CAPM, not
involving the interest rate.

Now we state formal counterparts of (3.10)–(3.12). The following propo-
sition, which would have been a corollary of Proposition 3.2 had we allowed
σS = 0 (or of Theorem 4.3 below had we allowed σS = σI), is proved in [6],
Proposition 3.2.

Proposition 3.3. Let δ > 0 and ε > 0. Unless∣∣∣µI − r − ‖σI‖2∣∣∣ < (zδ + zε) ‖σI‖√
T

, (3.14)

there exists a prudent trading strategy Σ = Σ(µI , σI , r, T, δ, ε) that beats the
index by a factor of at least 1/δ with probability at least 1− ε.

The following two corollaries of Propositions 3.2 and 3.3 assert existence of
trading strategies that depend on “everything”, namely, on µI , µS , σI , σS , r,
T , δ, and ε. The first corollary formalizes (3.11).

Corollary 3.4. Let δ > 0 and ε > 0. Unless

|µS − r − σS · σI | < (zδ + zε)
‖σI‖+ ‖σS − σI‖√

T
, (3.15)

there exists a prudent trading strategy that beats the index by a factor of at least
1
2δ with probability at least 1− ε.

Proof. Let Σ1 be a prudent trading strategy satisfying the condition of Propo-
sition 3.2, and let Σ2 be a prudent trading strategy satisfying the condition of
Proposition 3.3. Without loss of generality suppose that the initial wealth of
both strategies is 1. Then Σ1 + Σ2 will beat the index by a factor of at least 1

2δ
with probability at least 1−ε unless both (3.8) and (3.14) hold. The conjunction
of (3.8) and (3.14) implies (3.15).

Finally, we have a corollary formalizing the Sharpe–Lintner CAPM (3.12).
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Corollary 3.5. Let δ > 0 and ε > 0. Unless∣∣∣∣∣µS − r − σS · σI
‖σI‖2

(µI − r)

∣∣∣∣∣ ≤ (zδ + zε)
‖σI‖+ ‖σS‖+ ‖σS − σI‖√

T
,

there exists a prudent trading strategy that beats the index by a factor of at least
1
3δ with probability at least 1− ε.

Proof. Let Σ1 be a prudent trading strategy satisfying the condition of Proposi-
tion 3.3 and Σ2 be a prudent trading strategy satisfying the condition of Corol-
lary 3.4. Without loss of generality suppose that the initial wealth of Σ1 is 1
and the initial wealth of Σ2 is 2. Then Σ1 + Σ2 will beat the index by a factor
of at least 1

3δ with probability at least 1− ε unless both (3.14) and (3.15) hold.
The conjunction of (3.14) and (3.15) implies∣∣∣∣∣µS − r − σS · σI

‖σI‖2
(µI − r)

∣∣∣∣∣
≤

∣∣∣∣∣µS − r − σS · σI
‖σI‖2

‖σI‖2
∣∣∣∣∣+
|σS · σI |
‖σI‖2

(zδ + zε) ‖σI‖√
T

≤ (zδ + zε)
‖σI‖+ ‖σS − σI‖√

T
+
|σS · σI |
‖σI‖

(zδ + zε)√
T

≤ (zδ + zε)
‖σI‖+ ‖σS‖+ ‖σS − σI‖√

T
.

4 A more direct derivation of the Sharpe–
Lintner CAPM

In the previous section we deduced the Sharpe–Lintner CAPM (Corollary 3.5)
from our result about the theoretical performance deficit. In this section we will
derive it in a more direct manner, which will allow us to improve some constants
in Corollaries 3.4 and 3.5.

We start from modifying Propositions 2.1 and 2.2: whereas Propositions 2.1
and 2.2 measure the performance of the stock in terms of the index, our new
propositions will measure it in terms of the bond.

Proposition 4.1. Let δ > 0. There is a prudent trading strategy Σ =
Σ(σI , σS , r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless∣∣∣∣∣ln ST

erT
+

(
‖σS‖2

2
− σS · σI

)
T

∣∣∣∣∣ < zδ/2 ‖σS‖
√
T . (4.1)

Proposition 4.2. Let δ > 0. There is a prudent trading strategy Σ =
Σ(σI , σS , r, T, δ) that, almost surely, beats the index by a factor of 1/δ unless

ln
ST
erT

+

(
‖σS‖2

2
− σS · σI

)
T < zδ ‖σS‖

√
T . (4.2)
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There is another prudent trading strategy Σ = Σ(σI , σS , r, T, δ) that, almost
surely, beats the index by a factor of 1/δ unless

ln
ST
erT

+

(
‖σS‖2

2
− σS · σI

)
T > −zδ ‖σS‖

√
T .

The proofs of Proposition 4.1 and the two parts of Proposition 4.2 are very
similar, and we will only prove (4.2), again assuming δ ∈ (0, 1).

Proof of Proposition 4.2 (part (4.2)). Let b ∈ R; we will be using the notation
σ̄I and σ̄S introduced in Section 2. The Black–Scholes price at time 0 of the
European contingent claim paying IT 1{ST / erT ≥ b} at time T is

e−rT E

(
e(r−‖σ̄I‖2/2)T+

√
T σ̄I ·ξ 1

{
e(r−‖σ̄S‖2/2)T+

√
T σ̄S ·ξ

erT
≥ b

})

= e−‖σ̄I‖2T/2 E

(
e
√
T σ̄I ·ξ 1

{
√
T σ̄S · ξ ≥ ln b+

‖σ̄S‖2

2
T

})
,

where ξ ∼ N2
0,1 (cf. (2.7)). By Lemma 2.3 this can be rewritten as

F

(
− ln b+ T σ̄S · σ̄I − ‖σ̄S‖2

2 T
√
T ‖σ̄S‖

)
.

It remains to define b by the requirement

− ln b+ T σ̄S · σ̄I − ‖σ̄S‖2
2 T

√
T ‖σ̄S‖

= −zδ

and remember that ‖σ̄S‖ = ‖σS‖ and σ̄S · σ̄I = σS · σI .

The following result strengthens Corollary 3.4; its proof is similar to that of
Proposition 3.2.

Theorem 4.3. Let δ > 0 and ε > 0. Unless

|µS − r − σS · σI | <
(zδ + zε) ‖σS‖√

T
, (4.3)

there exists a prudent trading strategy Σ = Σ(µS , σI , σS , r, T, δ, ε) that beats the
index by a factor of at least 1/δ with probability at least 1− ε.

Proof. Suppose (4.3) is violated. For concreteness, let

µS − r − σS · σI ≥
(zδ + zε) ‖σS‖√

T
. (4.4)
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From (2.5),

ln
ST
erT

= (µS − r)T −
‖σS‖2

2
T +
√
TσS · ξ, (4.5)

where ξ ∼ Nd
0,1. In conjunction with (4.4) this implies

ln
ST
erT
≥ TσS · σI + (zδ + zε) ‖σS‖

√
T − ‖σS‖

2

2
T +
√
TσS · ξ. (4.6)

Let Σ be a prudent trading strategy that, almost surely, beats the index by a
factor of 1/δ unless (4.2) holds. To see that the probability of (4.2) is at most
ε, notice that the conjunction of (4.6) and (4.2) implies

zδ ‖σS‖
√
T > (zδ + zε) ‖σS‖

√
T +
√
TσS · ξ,

i.e.,
σS
‖σS‖

· ξ < −zε.

The strategy Σ in Theorem 4.3 depends on µS but does not depend on µI .
We can make Σ independent of µS if we replace δ in (4.3) by δ/2: take as Σ a
prudent trading strategy that, almost surely, beats the index by a factor of 1/δ
unless (4.1) holds. (Cf. Propositions 3.1 and 3.2.)

Using Theorem 4.3 in place of Corollary 3.4, we can strengthen Corollary 3.5
as follows.

Corollary 4.4. Let δ > 0 and ε > 0. Unless∣∣∣∣∣µS − r − σS · σI
‖σI‖2

(µI − r)

∣∣∣∣∣ ≤ 2(zδ + zε) ‖σS‖√
T

,

there exists a prudent trading strategy that beats the index by a factor of at least
1
2δ with probability at least 1− ε.

5 Conclusion

Let us summarize our results at the informal level of approximate equalities such
as (3.9)–(3.12). At this level, our only two results are the CAPM (3.12) and
the equity premium relation (3.10) (established earlier in [6]); the rest follows.
Indeed, (3.12) and (3.10) imply (3.11), and (3.11) and (3.10) imply (3.9). The
crude form (1.1) of (2.2) also follows from (3.12) and (3.10): just combine the
crude form

ln
ST
IT
≈ (µS − µI)T +

‖σI‖2 − ‖σS‖2

2
T

of (3.4) with (3.9). Finally, the crude form

ln
ST
erT
≈

(
σS · σI −

‖σS‖2

2

)
T
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of (4.1) follows from (3.12) and (3.10) by combining the crude form

ln
ST
erT
≈ (µS − r)T −

‖σS‖2

2
T

of (4.5) with (3.11).
An alternative, simpler, summary of our results at the informal level is given

by the approximate equality (3.11) in which we allow S = I. We can allow
S = I even in Theorem 4.3: when S = I, it reduces to Proposition 3.3. The
approximate equality (3.11) implies both (3.10) (it is a special case for S :=
I) and (3.12) (combine (3.11) and (3.10)). Therefore, at the informal level,
Theorem 4.3 (or its weaker version Corollary 3.4) is the core result of this
article.

One interesting direction of further research is to derive probability-free and
continuous-time versions of our results (e.g., in the framework of [5]). The
results of [8] are probability-free and very similar to the results of this article,
but the discrete-time framework of [8] makes them mathematically unattractive.
The results of [7] are probability-free, very similar to the results of this article,
and are stated and proved in a continuous-time framework; they, however, use
nonstandard analysis.
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