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Abstract

This paper gives yet another definition of game-theoretic probability in the
context of continuous-time idealized financial markets. Without making any
probabilistic assumptions (but assuming positive and continuous price paths),
we obtain a simple expression for the equity premium and derive a version of
the Capital Asset Pricing Model. Finally, we derive a probability-free version
of Girsanov’s theorem and explain how it implies the previous results.

The version of this paper at http://probabilityandfinance.com (Working
Paper 44) is updated most often.
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1 Introduction

This paper reviews and extends previous work in which we derived the existence
of an equity premium and the validity of a Capital Asset Pricing Model (CAPM)
from a purely game-theoretic hypothesis of market efficiency, without assuming
the existence of probabilities for security prices.

For simplicity, we consider only two securities, a stock S and a traded market
index I. We also make the following simplifying assumptions:

• Trading in S and I continues indefinitely. (The time horizon is infinite.)

• The prices of S and I are always positive and continuous.

• The interest rate is zero.

All these assumptions can be relaxed.
Our mathematical results have a practical interpretation if one adopts the

hypothesis that the index I is efficient, in the sense that a strategy for trading
in S and I will not multiply the capital it risks by a factor many times larger
than what would be achieved by buying and holding I. We call this the Efficient
Index Hypothesis (EIH) for I.

A typical mathematical result in this paper asserts the existence of a trading
strategy that will multiply the capital it risks by a factor many times larger than
what would be achieved by buying and holding I unless the price trajectories
of S and I have a particular property. Here are some properties we consider:

• I grows at a rate determined by its volatility. (This is the equity premium.)

• I has the properties of geometric Brownian motion when time is appro-
priately rescaled.

• S obeys a CAPM with respect to I.

In each case, we prove the existence of a trading strategy that beats I by a large
factor if the property does not hold. If you subscribe to the EIH for I, then you
expect the property to hold.

The EIH is explained more fully in Section 2, where we specify the trading
strategies we consider, define an extended class of approximate capital processes
(supermartingales), and state the associated definition of upper probability. An
upper probability measures how little initial capital must be risked to obtain
unit capital if an event happens and thus how unlikely that event is.

We study the index I in Sections 3–5. In Section 3 we define I’s cumulative
growth rate and relative quadratic variation; these exist in a strong sense under
the EIH: the trader can become infinitely rich as soon as they cease to exist.
In Sections 4 and 5 we consider strategies for trading in I and show that under
the EIH it grows at a rate determined by its relative quadratic variation. This
growth is the equity premium.

Section 6 continues Section 3 by defining quantities involving both S and I.
Section 7 then derives a CAPM that relates these quantities to each other and
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includes most of our results about the equity premium as special cases. Even
more general results are discussed briefly in Section 8, and Section 9 concludes
by discussing connections with the standard CAPM.

One purpose of this paper is to clarify the relation between two different
methods that we used in previous work. We first established a probability-
free CAPM fifteen years ago; essentially, our version was the conjunction of a
probability-free version of the standard CAPM and a probability-free expres-
sion for the equity premium. We did this first in discrete time [20], and then
we extended the argument to continuous time using nonstandard analysis [19].
The method used in those papers involved mixing, in a certain sense, the price
paths of S and I (in the case of CAPM) or mixing I and cash (in the case
of the equity premium). Ten years later, without using nonstandard analysis,
one of us derived a probability-free version of the Dubins–Schwarz theorem [16],
effectively reducing the probability-free setting to the Bachelier model, which
for positive prices becomes the Black–Scholes model after a time change. The
Black–Scholes model allows us to use standard probabilistic tools, including Gir-
sanov’s theorem (its standard measure-theoretic version), to obtain a stronger
form of our version of the CAPM [13, 14, 15].

In this paper we apply and compare the two methods, mixing [20, 19] and
probabilistic [13, 14, 15], implementing them both without using nonstandard
analysis. In Section 5, we study the equity premium using the mixing method,
and in Section 4, we study it using the probabilistic method in combination with
the probability-free Dubins–Schwarz theorem. The results from the probabilistic
method are stronger than those from the mixing method, in the sense that they
assert higher lower probabilities for the approximations formalizing the equity
premium phenomenon, but the difference is not great. Since the probability-free
Dubins–Schwarz theorem is only applicable to one security, we cannot apply the
probabilistic method to the CAPM, which involves both S and I. Therefore,
we use the mixing method to obtain our version of the CAPM in Section 7.

2 The Efficient Index Hypothesis

The sample space of this paper is the set Ω of all pairs ω = (I, S) of positive
continuous functions I : [0,∞) → (0,∞) and S : [0,∞) → (0,∞) such that
I(0) = 1. Each ω = (I, S) ∈ Ω will be identified with the function ω : [0,∞)→
(0,∞)2 defined by ω(t) := (I(t), S(t)), t ∈ [0,∞). Intuitively, I is the price
path of an index and S is that of a stock or another financial security. The
assumption I(0) = 1 is made for simplicity and without loss of generality.

We equip Ω with the σ-algebra F generated by the functions ω ∈ Ω 7→ ω(t),
t ∈ [0,∞) (i.e., the smallest σ-algebra making them measurable). We often
consider subsets of Ω and functions on Ω that are measurable with respect to
F . As shown in [18], the requirement of measurability is essential: without
measurability, it is too easy to become infinitely rich infinitely quickly.

An event is an arbitrary subset of Ω (we will add the qualifier “F-
measurable” when needed), a random vector is an F-measurable function
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of the type Ω → Rd for some d ∈ {1, 2, . . .}, and an extended random variable
is an F-measurable function of the type Ω → [−∞,∞]. A stopping time is an
extended random variable τ : Ω→ [0,∞] such that, for all ω and ω′ in Ω,(

ω|[0,τ(ω)] = ω′|[0,τ(ω)]
)

=⇒ τ(ω) = τ(ω′),

where f |A stands for the restriction of f to the intersection of A and f ’s domain.
A random vector X is said to be τ -measurable, where τ is a stopping time, if,
for all ω and ω′ in Ω,(

ω|[0,τ(ω)] = ω′|[0,τ(ω)]
)

=⇒ X(ω) = X(ω′).

As customary in probability theory, we will often omit explicit mention of ω ∈ Ω
when it is clear from the context.

A simple trading strategy G is a pair ((τ1, τ2, . . .), (h1, h2, . . .)), where:

• τ1 ≤ τ2 ≤ · · · is a nondecreasing sequence of stopping times such that, for
each ω ∈ Ω, limn→∞ τn(ω) =∞;

• for each n = 1, 2, . . ., hn is a bounded τn-measurable R2-valued random
vector.

A process is a function X : [0,∞) × Ω → [−∞,∞]. A process X is continuous
if each of its paths, t ∈ [0,∞) 7→ Xt(ω), is a continuous function. The simple
capital process KG,c corresponding to a simple trading strategy G and initial
capital c ∈ R is defined by

KG,ct (ω) := c+

∞∑
n=1

hn(ω) ·
(
ω(τn+1 ∧ t)− ω(τn ∧ t)

)
, t ∈ [0,∞), ω ∈ Ω,

where “·” stands for dot product and the zero terms in the sum are ignored
(which makes the sum finite for each t).

The vector hn(ω) tells the trader how many units of I and S to hold between

time τn(ω) and τn+1(ω), and thus KG,ct (ω) is his capital at time t. Negative
components for hn indicate short selling. Because I and S are continuous, a
strategy G can sell one or both of them short and yet produce a nonnegative
simple capital process KG,c; the τn and hn can be chosen so that the short
selling always stops before KG,ct (ω) gets below zero.

For ω = (I, S) and t ∈ [0,∞), we often let It(ω) stand for I(t) and St(ω)
for S(t). When we omit ω, this makes It (resp. St) synonymous with I(t) (resp.
S(t)).

Let us say that a class C of processes (not necessarily continuous) is lim inf-
closed if the process

Xt(ω) := lim inf
k→∞

Xk
t (ω) (1)

is in C whenever each processXk is in C. A nonnegative processX is a test super-
martingale if it belongs to the smallest lim inf-closed class of processes contain-
ing all nonnegative simple capital processes. Intuitively, test supermartingales
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are nonnegative capital processes (as they can be approximated by nonnegative
simple capital processes; in fact, they can lose capital as the approximation is
in the sense of lim inf).

We call processes of the type Xt(ω)/It(ω), where X is a test supermartingale,
test I-supermartingales; they are like test supermartingales but use I as the
numéraire. Notice that test supermartingales and test I-supermartingales are
not required to satisfy any continuity properties (such as being càdlàg).

The initial value X0 of a test supermartingale X is always a constant. Given
a subset E of Ω, we set

P(E) := inf
{
X0

∣∣ ∀ω ∈ Ω : lim inf
t→∞

Xt(ω) ≥ 1E(ω)
}

(2)

and
PI (E) := inf

{
X0

∣∣ ∀ω ∈ Ω : lim inf
t→∞

Xt(ω)/It(ω) ≥ 1E(ω)
}
, (3)

X ranging in each case over the test supermartingales.1 We call P(E) E’s upper
probability, and we call PI (E) its I-upper probability. The definition (3) can be
rewritten as

PI (E) = inf
{
X0

∣∣ ∀ω ∈ Ω : lim inf
t→∞

Xt(ω) ≥ 1E(ω)
}
, (4)

X ranging over the test I-supermartingales.
Recalling that I0(ω) = 1 for all ω ∈ Ω, we see from (3) that a value of PI (E)

close to zero indicates the existence of a trading strategy that beats the index
I by a large factor if E happens. The EIH for I says that we should not expect
to beat I by a large factor, and so we should not expect E to happen. The EIH
for E has a lot of empirical support when I is an index, such as the S&P500,
which can be approximately traded with low transaction costs; see, e.g., [7, 8].

We do not interpret small values of P(E) in the same way. Saying that E
will not happen when P(E) is small would amount to adopting an efficiency
hypothesis for cash or for a bank account (recall that the interest rate is zero)—
i.e., to asserting that no trading strategy will beat holding cash by a large factor.
We do not assert this. In fact, the EIH for nontrivial I implies the opposite. It
implies that we can expect holding I to beat holding cash by an infinite factor as
time goes to infinity; this is a consequence of our results for the equity premium
in Sections 4 and 5. (The efficiency hypothesis for cash, in contrast, implies
that the price of I, or any other traded security, will tend to a constant. See
Theorem 3.1 in [16].)

Remark 2.1. The EIH can be considered to be a special case of Cournot’s principle
[11].

Remark 2.2. An equivalent definition of the class C of test supermartingales can
be given using transfinite induction over the countable ordinals α (see, e.g., [2], 0.8).
Namely, define Cα as follows:

1Here, as always in game-theoretic probability, upper probability is a special case of upper
expected value. Upper expected values E(F ) and EI (F ), where F : Ω → [0,∞], are defined
by substituting the function F for 1E in (2) and (3), respectively. We do not use EI in this
paper but do use E on one occasion.
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• C0 is the class of all nonnegative simple capital processes;

• for α > 0, X ∈ Cα if and only if there exists a sequence X1, X2, . . . of processes
in C<α := ∪β<αCβ such that (1) holds.

It is easy to check that the class of all test supermartingales is the union of the nested
family Cα over all countable ordinals α. The class of a test supermartingale X is
defined to be the smallest α such that X ∈ Cα; in this case we will also say that X is
of class α.

Remark 2.3. The hierarchy (Cα) described in Remark 2.2 is somewhat analogous to
the Baire hierarchy of Borel functions on a Polish space: see, e.g., [6], Section 24.

Remark 2.4. We can split the requirement that a class of processes be lim inf-closed
into two: that it be min-closed (if a finite number of processes are in the class, there
minimum is also required to be in the class) and that it be lim-closed (if processes
X1, X2, . . . are in the class and the limit X := limk→∞X

k exists, X is also required
to be in the class).

Remark 2.5. Our definition of upper probability is similar to the one given by
Perkowski and Prömel [9] (who modified the definition given in [16]). The main differ-
ences are that Perkowski and Prömel define the upper probability (2) using the test
supermartingales in the class C1 rather than C (in the notation of Remark 2.2) and
that they consider a finite horizon (our time interval is [0,∞) instead of their [0, T ]).
The proofs of our results given below work for any Cn, n ≥ 2, in place of C.

Remark 2.6. The motivation for our terminology is the analogy with measure-
theoretic probability. Namely, let us suppose that I and S are local martingales on a
measure-theoretic probability space. Each simple capital process is a local martingale.
Since each nonnegative local martingale is a supermartingale ([10], p. 123), nonnega-
tive simple capital processes are supermartingales. By Fatou’s lemma, lim infkX

k is
a supermartingale whenever Xk are nonnegative supermartingales:

E
(

lim inf
k

Xk
t | Fs

)
≤ lim inf

k
E(Xk

t | Fs) ≤ lim inf
k

Xk
s ,

where 0 ≤ s < t. Therefore, our definition gives a subset of the set of all nonnega-
tive measure-theoretic supermartingales. (We are using the definition of a measure-
theoretic supermartingale that does not impose any continuity conditions, as in [10],
Definition II.1.1.)

Remark 2.7. Let us check that, in the measure-theoretic setting of Remark 2.6
(where I and S are local martingales), P(E) ≥ P(E) for each F-measurable E. (In
this sense our definition (2) of P is not too permissive, unlike the definition ignoring
measurability in [18].) It suffices to establish the “maximal inequality” for nonnegative
measure-theoretic supermartingales X with X0 a constant in the form

P
(

lim inf
t→∞

Xt ≥ 1
)
≤ X0.

To check this, notice that, for each ε ∈ (0, 1),

P
(

lim inf
t→∞

Xt ≥ 1
)
≤ P(Xt ≥ 1− ε from some t on)

= lim inf
T→∞

P(Xt ≥ 1− ε for all t ≥ T )
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≤ lim inf
T→∞

P(XT ≥ 1− ε) ≤ X0

1− ε

(the equality, where the lim inf is in fact lim, follows from the axiom of continuity of
probability measures).

Remark 2.8. Let us say that X is a class α test I-supermartingale, where α is a
countable ordinal, if XI is a class α test supermartingale, as defined in Remark 2.2.
For each countable ordinal α and each class α test I-supermartingale we fix a sequence
Xk of test I-supermartingales of smaller classes such that X = lim infk→∞X

k (as
usual, we are using the axiom of choice freely).

The following lemma says that the definition (4) is robust in that the lim inf
in it can be replaced by lim sup or even sup. (The analogous statement is, of
course, true for (2) as well.)

Lemma 2.9. For any E ⊆ Ω,

PI (E) = inf
{
X0

∣∣ ∀ω ∈ Ω : sup
t∈[0,∞)

Xt(ω) ≥ 1E(ω)
}
, (5)

X ranging over the test I-supermartingales.

Proof. The only nontrivial part of the equality in (5) is the inequality “≤”, and
it is clear that we can replace “ ≥ 1E(ω)” by “ > 1E(ω)”. This is what we will
be proving.

For each test I-supermartingale X with X0 < 1 we will define another test
I-supermartingale X∗, satisfying X∗0 = X0, as follows. If X is a simple capital
process, set

X∗t :=

{
Xt if sups∈[0,t]Xs < 1

1 otherwise

(intuitively, the trader spends all his capital to buy and hold the index as
soon as X reaches 1). If X is a class α test I-supermartingale, we set
X∗ = lim infk→∞(Xk)∗, where Xk is the fixed sequence of I-supermartingales
of classes smaller than that of X (see Remark 2.8).

It suffices to check that lim inft→∞X∗t = 1 whenever suptXt > 1. We will
prove that X∗t = 1 whenever sups≤tXs > 1. Fix a t. The proof is by transfinite
induction. For nonnegative simple capital processes this is true by definition.
Now let X be a class α test I-supermartingale such that sups≤tXs > 1. Fix

s ≤ t such that Xs > 1. Then Xs = lim infk→∞Xk
s for the fixed Xk of smaller

classes, and we have Xk
s > 1 from some k on. By the inductive assumption,

(Xk)∗t = 1 from some k on, which implies X∗t = 1.

We call a subset of [0,∞)×Ω a time-dependent property (or simply a property
of t and ω). We say that a time-dependent property E holds quasi-always (q.a.)
if there exists a test supermartingale (or equivalently, a test I-supermartingale)
X such that X0 = 1 and, for all t ∈ [0,∞) and ω ∈ Ω,

(∃s < t : (s, ω) /∈ E) =⇒ Xt(ω) =∞. (6)
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To put it differently, the trader can become infinitely rich as soon as such E
is violated. Many of the results in this paper involve showing that some time-
dependent property (such as the existence of relative quadratic variation or
growth rate up to time t) holds quasi-always and therefore can be expected to
hold always under the EIH.

Remark 2.10. In previous work on the topics of this paper (see for example [16]),
we used only the very weak form of the EIH that states an event will not happen if it
allows a trader to become infinitely rich infinitely quick. This weak hypothesis follows
from the efficiency hypothesis for cash (which implies that an event with P-probability
zero will not happen) just as easily as from the EIH for I (which implies that an event
with PI -probability zero will not happen). Indeed, if we set

FailE := {ω ∈ Ω | (s, ω) 6∈ E for some s ∈ [0,∞)}

when E is a time-dependent property, then E holding quasi-always implies P(FailE) =
PI (FailE) = 0; see (6). For this reason, we did not introduce PI in this previous work.
Instead we discussed our results in terms of P, which is easier to define.

3 Existence of some basic quantities (1)

In this section we do the preparatory work needed to state our results about the
equity premium; namely, we show the existence of all the quantities required in
their statements.

All quantities will be defined in terms of the sequences of stopping times
Tn0 := 0 and

Tnk (ω) := inf
{
t > Tnk−1(ω) |

∣∣I(t)− I(Tnk−1)
∣∣ = 2−n

}
(7)

for k = 1, 2, . . .; here n is a positive integer, n ∈ {1, 2, . . .}. The quadratic
variation of I on the log scale (or relative quadratic variation of I) can be
measured by the sums of squares of the relative increments of I(t),

ΣI,nt (ω) :=

∞∑
k=1

(
I(Tnk ∧ t)− I(Tnk−1 ∧ t)

I(Tnk−1 ∧ t)

)2

, n = 1, 2, . . . . (8)

It follows from Theorem 3.1 in [16] and the properties of measure-theoretic
Brownian motion that the limit of ΣI,n as n→∞ exists quasi-always; however,
we will also check this independently in Section 6. The limit will be denoted
ΣIt (ω). Moreover, the convergence is uniform over any compact time interval,
so the limit is continuous quasi-always. (Formally, the property “ΣI,ns → ΣIs as
n→∞ uniformly over s ∈ [0, t]” of t and ω holds quasi-always.)

Remark 3.1. Quasi-always, the limit

lim
n→∞

∞∑
k=1

(ln I(Tnk ∧ t)− ln I(Tnk−1 ∧ t))2

exists and is equal to ΣIt .
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The quantity ΣIt measures the accumulated volatility of the index by time t.
It can be interpreted as the intrinsic time that elapsed by the moment t of
physical time; unlike physical time, intrinsic time flows faster during intensive
trading.

We will simplify our exposition by requiring that Reality ensure that the
function ΣI exists and ΣI∞ = ∞. (Essentially, that the market exists forever
and trading in it never dies out.)

The cumulative relative growth of the index I by time t is

MI,n
t (ω) :=

∞∑
k=1

I(Tnk ∧ t)− I(Tnk−1 ∧ t)
I(Tnk−1 ∧ t)

, n = 1, 2, . . . . (9)

The existence of the limit of MI,n as n→∞ and a simple expression for it are
provided by the following lemma.

Lemma 3.2. The limit MI := limn→∞MI,n exists and satisfies, quasi-always,

MI
t = ln I(t) +

1

2
ΣIt .

Proof. Let us show that the limit exists and is uniform over any compact time
interval quasi-always. Applying Taylor’s expansion

ln(1 +mk) = mk −
1

2
m2
k +O

(
|mk|3

)
to

mk :=
I(Tnk ∧ t)− I(Tnk−1 ∧ t)

I(Tnk−1 ∧ t)
, (10)

we obtain

ln I(t) =

∞∑
k=1

ln
I(Tnk ∧ t)
I(Tnk−1 ∧ t)

= MI,n
t − 1

2
ΣI,nt +O

( ∞∑
k=1

∣∣∣∣I(Tnk ∧ t)− I(Tnk−1 ∧ t)
I(Tnk−1 ∧ t)

∣∣∣∣3
)
,

and it remains to notice that the last added, O(· · · ), is o(1) since the denomi-
nator in it can be ignored (remember that I is positive) and the variation index
of I is at most 2 [16], quasi-always.

4 Equity premium (1): reduction to the Black–
Scholes model

In this section we will state two forms of our equity premium result: as a central
limit theorem (which is trivial in the context of Brownian motion) and as a law
of the iterated logarithm (LIL). Remember that we assume that I(0) = 1.
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Lemma 4.1. Set τt := inf{s | ΣIs ≥ t} for each t ∈ [0,∞). As function of t,
ln I(τt) + t/2 is Brownian motion with respect to P.

Formally, Lemma 4.1 says that the pushforward of the upper probability P is the
standard Wiener measure W on C[0,∞) under the following mapping φ : Ω→
C[0,∞): ω = (I, S) ∈ Ω is mapped to the path t ∈ [0,∞) 7→ ln I(τt) + t/2. The
domain of φ is the set of (I, S) such that ΣI∞ =∞, which was our requirement
for Reality in Section 3.

Proof of Lemma 4.1. Let E be a Borel set in C[0,∞). The set φ−1(E) is time-
superinvariant (as defined in [16], Section 3). According to Theorem 3.1 in [16],
P(φ−1(E)) coincides with the standard Wiener measure W(φ−1(E)) of φ−1(E).
This measure W is concentrated on the positive functions f whose quadratic
variation is the identity. Applying the time transformation f ′(t′) := f(t), where

t′ :=
∫ t
0
f−2(s) ds to those functions, we obtain a probability measure P (the

pushforward of W under f 7→ f ′) concentrated on the functions whose relative
quadratic variation Σ is the identity; we know that W(φ−1(E)) = P (φ−1(E)).
By the standard measure-theoretic Dubins–Schwarz theorem, P will coincide
with the distribution of the measure-theoretic martingale

Gt := eWt−t/2, (11)

W being the standard Brownian motion (started at 0). (Notice that (11) is
a special case of geometric Brownian motion, i.e., the Black–Scholes model.)
Therefore,

P(φ−1(E)) = W(φ−1(E)) = P (φ−1(E)) = W(E).

Remark 4.2. Lemma 4.1 can be strengthened to say that, for any nonnegative time-
superinvariant Borel functional F : Ω → [0,∞), E(F ◦ φ) =

∫
F dW. Moreover,

the same argument as in the proof of Lemma 4.1 (but using Theorem 6.3 instead of
Theorem 3.1 in [16]) shows that the last line of the proof can be replaced by

E(F ◦ φ) =

∫
(F ◦ φ) dW =

∫
(F ◦ φ) dP =

∫
F dW.

Corollary 4.3. As function of t, ln I(τt)− t/2 is Brownian motion with respect
to PI .

Proof. According to Lemma 4.1, Wt := ln I(τt) + t/2 is standard Brownian
motion w.r. to P. To change the numéraire we apply Girsanov’s theorem (see,
e.g., [5], Corollary 3.5.2; this version, unlike Theorem 3.5.1 in [5], does not
require the usual conditions). It suffices to show, for each T > 0, that ln I(τt)−
t/2, t ∈ [0, T ], is Brownian motion over [0, T ] with respect to PI . Fix such a
T . By Girsanov’s theorem, W̃t := Wt − t = ln I(τt)− t/2 is standard Brownian
motion w.r. to the measure P̃ on C[0, T ] whose density with respect to P (as
defined in the proof of Lemma 4.1 but restricted to C[0, T ]) is

ZT := eWT−T/2 = I(τT ).
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Let φ̃ : Ω → C[0, T ] map each ω = (I, S) ∈ Ω to the path t ∈ [0, T ] 7→
ln I(τt)− t/2; we will continue to use the notation φ for the function that maps
each ω = (I, S) ∈ Ω to the path t ∈ [0, T ] 7→ ln I(τt) + t/2. Let us check
that P̃ is the pushforward of PI under φ̃: for each Borel E ⊆ C[0, T ], by the
definition (3) and Remark 4.2,

PI (φ̃−1(E)) = inf
{
X0

∣∣ ∀ω ∈ Ω : XτT (ω)/IτT (ω) ≥ 1φ̃−1(E)(ω)
}

= inf
{
X0

∣∣ ∀ω ∈ Ω : XτT (ω) ≥ IτT (ω) 1φ̃−1(E)(ω)
}

= E
(
IτT 1φ̃−1(E)

)
= E

(
IτT 1E ◦φ̃

)
= EP

(
ZT 1E ◦W̃

)
= EP̃

(
1E ◦W̃

)
= W(E).

Let us first derive a central limit theorem for the index from Corollary 4.3.
Let zp be the upper p-quantile of the standard Gaussian distribution N0,1; i.e.,
zp is defined by the requirement that P(ξ ≥ zp) = p, where ξ ∼ N0,1.

Corollary 4.4. If δ > 0 and T > 0 are positive constants,

PI
{
|ln I(τT )− T/2| < zδ/2

√
T
}

= 1− δ. (12)

We can interpret (12) by saying that there is a prudent trading strategy that
beats the index by a factor of nearly 1/δ unless I(τT ) is close to eT/2 in the
sense

I(τT ) ∈
(
eT/2−zδ/2

√
T , eT/2+zδ/2

√
T
)
.

In other words, the efficient index can be expected to outperform cash eT/2-fold.
The case δ ≥ 1 in Corollary 4.4 is trivial, but we do not exclude it to simplify
its statement; the upper quantile zp is understood to be −∞ when p ≥ 1.

If we are only interested in a lower or upper bound on I, we can use the
following corollary.

Corollary 4.5. Let δ and T be as before. Then

PI
{

ln I(τT )− T/2 > −zδ
√
T
}

= 1− δ

and
PI
{

ln I(τT )− T/2 < zδ
√
T
}

= 1− δ.

Corollaries 4.4 and 4.5 follow immediately from Corollary 4.3.
Corollary 4.3 also immediately implies the following law of the iterated log-

arithm for the equity premium:

Corollary 4.6. It is PI -almost certain that

lim sup
t→∞

ln I(t)− ΣIt /2√
2ΣIt ln ln ΣIt

= 1

and

lim inf
t→∞

ln I(t)− ΣIt /2√
2ΣIt ln ln ΣIt

= −1.

10



5 Equity-premium (2): mixing method

In this section we will discuss an alternative approach to the equity premium
phenomenon, which will also be used to derive a probability-free CAPM in
Section 7. The test I-supermartingale whose existence is implicitly asserted
in (12) is, in a sense, reckless: it beats the index 1/δ-fold if the event in the
curly braces fails to happen but can (and does) lose everything if it happens. In
this section we will discuss safer (more conservative) trading strategies instead
of “all-or-nothing” trading strategies fine-tuned to the event of interest (such as
the one in (12)).

Lemma 5.1. For each ε ∈ R, the process

exp

(
ε(MI

t − ΣIt )−
ε2

2
ΣIt

)
(13)

is a test I-supermartingale q.a.

Remark 5.2. In other words, Lemma 5.1 says that the process (13) coincides with a
test I-supermartingale quasi-always. This notion of a test supermartingale q.a. can be
regarded as a generalization of the notion of a test supermartingale, and the former
can be used in place of the latter when defining the notion of “quasi-always”. However,
it is easy to check that in fact this procedure does not extend our original notion of
“quasi-always”.

Proof of Lemma 5.1. Let us show that (13) is a class 1 test I-supermartingale
(see Remark 2.8 for the definition).

The value of the index I at time TnK is
∏K
k=1(1 +mk) (where mk is defined

by (10)). Let us consider the simple capital process whose value at time TnK is∏K
k=1(1 + (1 + ε)mk) (which should be stopped as soon as the capital hits 0).

Intuitively, we are mixing the returns mk of I and the returns 0 of cash (and this
is a convex mixture when ε ∈ [−1, 0]); when |ε| is small (which case is important
for limit theorems such as the law of the iterated logarithm in Corollary 5.6),
the new simple capital process can be regarded as a perturbation of I.

We can see that

ln

K∏
k=1

(1 + (1 + ε)mk)− ln

K∏
k=1

(1 +mk)

is the value at time TnK of the log of a test I-supermartingale (of class 0). In
combination with Taylor’s expansion, this implies that

ε

K∑
k=1

mk − ε
K∑
k=1

m2
k −

ε2

2

K∑
k=1

m2
k +O

(
K∑
k=1

|mk|3
)

is the value at time TnK of the log of a test I-supermartingale. Passing to the
limit as n→∞ (and remembering that the variation index of I over a compact
time interval does not exceed 2 quasi-always [16]), we obtain that

ε(MI
t − ΣIt )−

ε2

2
ΣIt

11



is the log of a test I-supermartingale (of class 1) q.a.

Corollary 5.3. For any ε > 0 and δ > 0,

PI

{
∀t ∈ [0,∞) :

∣∣MI
t − ΣIt

∣∣ < 1

ε
ln

2

δ
+
ε

2
ΣIt

}
≥ 1− δ.

Proof. Fix ε > 0 and δ > 0. By Lemmas 2.9 and 5.1, with lower I-probability
at least 1− δ/2 we will have

∀t ∈ [0,∞) : ε(MI
t − ΣIt )−

ε2

2
ΣIt < ln

2

δ
.

Dividing both sides by ε and considering the same test I-supermartingale but
with −ε in place of ε, we obtain

∀t ∈ [0,∞) :
∣∣MI

t − ΣIt
∣∣ < 1

ε
ln

2

δ
+
ε

2
ΣIt ,

with lower probability at least 1− δ.

The following corollary is in the spirit of Corollary 4.4.

Corollary 5.4. If δ > 0, ε > 0, and τT := inf{t | ΣIt ≥ T} for some constant
T > 0,

PI

{∣∣MI
τT − T

∣∣ < 1

ε
ln

2

δ
+
ε

2
T

}
≥ 1− δ. (14)

It is natural to optimize the ε in (14) given δ and T ,

min
ε>0

(
1

ε
ln

2

δ
+
ε

2
T

)
=

√
2T ln

2

δ
, (15)

which gives our final corollary in this direction.

Corollary 5.5. If δ > 0 and τT := inf{t | ΣIt ≥ T} for some constant T > 0,

PI

{∣∣MI
τT − T

∣∣ <√2T ln
2

δ

}
≥ 1− δ,

or, equivalently (by Lemma 3.2),

PI

{
|ln IτT − T/2| <

√
2T ln

2

δ

}
≥ 1− δ. (16)

It is instructive to compare (16) and (12), which are obtained using two very
different methods (especially that for the more general CAPM-type results of
the following sections we will be able to use only the second, more conservative,
method). The difference between the two inequalities for I(τT ) asserted with

12
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Figure 1: The functions X (in red, lower) and η (in blue, higher) over [10−5, 0.5]

lower probability of (at least) 1 − δ boils down to the difference between the
functions

X(q) := zq and η(q) :=

√
2 ln

1

q
,

in the notation of Hastings [3], who considers q ∈ (0, 0.5]. Hastings gives two
approximations to X(q) (pp. 191–192, reproduced in [1], 26.2.22 and 26.2.23) as
the optimal, in a minimax sense, product of η(q) and a rational function of η(q)
(the two approximations correspond to different degrees of the polynomials in
the numerator and denominator of the rational function).

It is easy to check that X(q) ∼ η(q) as q → 0. Figure 1 compares the two
functions over the range q ∈ [10−5, 0.5] (q = 0.5 corresponding to the trivial
value δ = 1).

It is easy to prove the validity part of a LIL for the equity premium using
Ville’s [12] method.

Corollary 5.6. Almost surely w.r. to PI ,

lim sup
t→∞

∣∣MI
t − ΣIt

∣∣√
2ΣIt ln ln ΣIt

≤ 1.

Proof. This is part of Corollary 4.6 (combined with Lemma 3.2), so there is
nothing to prove. But alternatively, we could mix the processes (which quasi-
always coincide with test I-supermartingales: cf. Lemma 5.1)

exp

(
−εMI

t + εΣIt −
ε2

2
ΣIt

)

13



and

exp

(
εMI

t − εΣIt −
ε2

2
ΣIt

)
over ε > 0 of the form (1 +κ)−k, k = 1, 2, . . ., with weights wk = k−1−δ (so that
wk → 0 slowly while still

∑
k wk < ∞) for small κ > 0 and δ > 0. For details,

see Section 7, where we will prove a more general statement.

Intuitively, our new mixing method still allows us to derive the upper LIL
since X(δ/2) ∼ η(δ/2) as δ → 0, and the LIL is about almost sure convergence
and so corresponds to small δ.

6 Existence of some basic quantities (2)

This section continues the series of definitions that we started in Section 3.
Now we consider another traded security S. Since it is a traded security, we
can define ΣS and MS analogously to ΣI and MI ; however, this would involve
stopping times defined in terms of S rather than I. It is more convenient to
have just one family of stopping times. Therefore, we now define the sequence
of stopping times Tnk , k = 0, 1, 2, . . ., inductively by Tn0 (ω) := 0 and

Tnk (ω) := inf
{
t > Tnk−1(ω) |

∣∣I(t)− I(Tnk−1)
∣∣ ∨ ∣∣S(t)− S(Tnk−1)

∣∣ = 2−n
}

(17)

for k = 1, 2, . . . . We let Tn(ω) stand for the nth partition, i.e., the set

Tn(ω) := {Tnk (ω) | k = 0, 1, . . .} ;

under our new definition, the partitions are not necessarily nested, T 1 ⊆ T 2 ⊆
· · · (as was the case for our old definition (7)).

The following lemma says that we can redefine ΣI,nt as (8) using the new
partitions.

Lemma 6.1. The limit in (8) exists and is uniform over any compact time
interval quasi-always for both partitions (7) and (17); the limits coincide quasi-
always.

Proof. As shown in [17], the limit of (8) as n → ∞ exists and is uniform over
any compact time interval quasi-always if we ignore the denominator; namely,
the sequence

AI,n
t (ω) :=

∞∑
k=1

(
I(Tnk ∧ t)− I(Tnk−1 ∧ t)

)2
, n = 1, 2, . . . ,

converges to a function AI uniformly over any compact time interval quasi-
always. The function AI is the same (quasi-always) for the sequences of par-
titions (7) and (17): to check this, apply the argument given in Section 5 of
[17] to the nth partitions in sequences (7) and (17) rather than to the (n− 1)th

14



and nth partitions in the same sequence of partitions. It is clear that ΣI is the
Riemann–Stiltjes integral

ΣIt =

∫ t

0

dAI
s

I2(s)

and that the statement of uniform convergence carries over to ΣI,n.

Next we state the analogue of Lemma 6.1 for MI .

Lemma 6.2. The limit in (9) exists and is uniform over any compact time
interval quasi-always for both partitions (7) and (17); the limits coincide quasi-
always.

Proof. The existence of the limit quasi-always is shown in [17], Section 4 (and
the earlier work [9] by Perkowski and Prömel); the limit is nothing else than
the Itô integral

MI
t =

∫ t

0

dI(s)

I(s)
.

The coincidence of the functions MI quasi-always for the sequences of parti-
tions (7) and (17) follows from the argument given in Section 4 of [17] applied
to the nth partitions in (7) and (17) rather than to the (n − 1)th and nth
partitions in the same sequence.

Using S in place of I, we obtain the definitions of ΣS and MS . The analogues
of Lemmas 6.1 and 6.2 still hold.

As we are also interested in the covariance between (the returns of) S and
I, we define

ΣS,I,nt (ω) :=

∞∑
k=1

S(Tnk ∧ t)− S(Tnk−1 ∧ t)
S(Tnk−1 ∧ t)

I(Tnk ∧ t)− I(Tnk−1 ∧ t)
I(Tnk−1 ∧ t)

,

n = 1, 2, . . . , (18)

and then set ΣS,I to the limit as n→∞. The existence of the limit quasi-always
is asserted in our next lemma.

Lemma 6.3. The limit of (18) as n → ∞ exists quasi-always uniformly over
any compact time interval.

Proof. First we notice that, if the denominators in (18) are ignored, the limit

AS,I
t (ω) of

AS,I,n
t (ω) :=

∞∑
k=1

(
S(Tnk ∧ t)− S(Tnk−1 ∧ t)

) (
I(Tnk ∧ t)− I(Tnk−1 ∧ t)

)
=

1

2

(
AS+I,n
t −AS,n

t −AI,n
t

)

15



will exist quasi-always uniformly over any compact time interval; moreover, it
will have bounded variation over any compact time interval q.a. It remains to
notice that (18) are approximating sums for the Riemann–Stiltjes integral

ΣS,It =

∫ t

0

dAS,I
s

S(s)I(s)
.

The last quantity that we will need quantifies the difference between the
returns of S and I:

∆S,I,n
t (ω) :=

∞∑
k=1

(
S(Tnk ∧ t)− S(Tnk−1 ∧ t)

S(Tnk−1 ∧ t)
−
I(Tnk ∧ t)− I(Tnk−1 ∧ t)

I(Tnk−1 ∧ t)

)2

,

n = 1, 2, . . . ; (19)

we then set ∆S,I
t to the limit as n→∞. The final lemma of this section shows

that the limit as n → ∞ exists quasi-always and is closely related to the other
quantities introduced in this section.

Lemma 6.4. The limit ∆S,I
t of (19) as n → ∞ exists uniformly over any

compact time interval quasi-always and satisfies

∆S,I
t = ΣSt + ΣIt − 2ΣS,It q.a.

Proof. It suffices to notice that, using the notation mk and sk for the returns
of S and I (mk is defined by (10) and sk is defined in the same way using S in
place of I),

∆S,I,n
t =

∞∑
k=1

(sk −mk)2 =

∞∑
k=1

s2k +

∞∑
k=1

m2
k − 2

∞∑
k=1

skmk,

and pass to the limit as n→∞.

7 Capital Asset Pricing Model

Let us use the same mixing method as in Section 5, except that now we will
apply it to I and S rather than to I and cash.

Lemma 7.1. For each ε ∈ R, the process

exp

(
ε(MS

t −MI
t + ΣIt − ΣS,It )− ε2

2
∆S,I
t

)
(20)

is a test I-supermartingale q.a.

Proof. The value of the index I at time TnK is
∏K
k=1(1 +mk), and the value of

the security S at time TnK is
∏K
k=1(1 + sk), where as before we use sk for the

analogue of mk for S. Let us consider the simple capital process whose value
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at time TnK is
∏K
k=1(1 + (1− ε)mk + εsk) (except that it is stopped if and when

it hits 0); it can be considered to be a mixture (convex mixture when ε ∈ [0, 1])
of I and S. We can see that

ln

K∏
k=1

(1 + (1− ε)mk + εsk)− ln

K∏
k=1

(1 +mk)

is the log of a test I-supermartingale at time TnK for all K, which implies the
analogous statement for

ε

K∑
k=1

sk − ε
K∑
k=1

mk + ε

K∑
k=1

m2
k − ε

K∑
k=1

skmk

− ε2

2

K∑
k=1

m2
k + ε2

K∑
k=1

skmk −
ε2

2

K∑
k=1

s2k

+O

(
K∑
k=1

|sk|3
)

+O

(
K∑
k=1

|mk|3
)
.

Passing to the limit as n→∞, we obtain that

εMS
t − εMI

t + εΣIt − εΣ
S,I
t − ε2

2
∆S,I
t

is the log of a test I-supermartingale q.a.

Corollary 7.2. For any ε > 0 and δ > 0,

PI

{
∀t ∈ [0,∞) :

∣∣∣MS
t −MI

t + ΣIt − ΣS,It

∣∣∣ < 1

ε
ln

2

δ
+
ε

2
∆S,I
t

}
≥ 1− δ.

Proof. For ε > 0, the fact that (20) is a test I-supermartingale implies that

∀t ∈ [0,∞) : ε
(

MS
t −MI

t + ΣIt − ΣS,It

)
< ln

2

δ
+
ε2

2
∆S,I
t (21)

with lower I-probability at least 1− δ/2. It remains to divide both sides of the
inequality in (21) by ε and consider the same test I-supermartingale but with
−ε in place of ε (which should be stopped as soon as the capital hits 0).

The following corollary is in the spirit of Corollaries 4.4 and 5.4; however,
now we wait until I and S become sufficiently different.

Corollary 7.3. If δ > 0, ε > 0, and τT := inf{t | ∆S,I
t ≥ T} for some constant

T > 0,

PI

{∣∣MS
τT −MI

τT + ΣIτT − ΣS,IτT
∣∣ < 1

ε
ln

2

δ
+
ε

2
T

}
≥ 1− δ. (22)

Our convention is that the event in the curly braces in (22) happens when τT =
∞ (i.e., when the security essentially coincides with the index).
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It is natural to optimize the ε in (22) given δ and T , as we did in (15), which
gives us the following corollary.

Corollary 7.4. If δ > 0 and τT := inf{t | ∆S,I
t ≥ T} for some constant T > 0,

PI

{∣∣MS
τT −MI

τT + ΣIτT − ΣS,IτT
∣∣ <√2T ln

2

δ

}
≥ 1− δ.

We will now give a complete proof of the validity part of a LIL for the
CAPM; the following proposition generalizes Corollary 5.6 (we obtain the latter
by taking cash as S).

Proposition 7.5. Almost surely w.r. to PI ,

∆S,I
t →∞ =⇒ lim sup

t→∞

∣∣∣MS
t −MI

t + ΣIt − ΣS,It

∣∣∣√
2∆S,I

t ln ln ∆S,I
t

≤ 1. (23)

Proof. We will implement in detail the idea mentioned in the proof of Corol-
lary 5.6, namely, we will mix the processes

exp

(
εMS

t − εMI
t + εΣIt − εΣ

S,I
t − ε2

2
∆S,I
t

)
(24)

and

exp

(
−εMS

t + εMI
t − εΣIt + εΣS,It − ε2

2
∆S,I
t

)
,

which quasi-always are test I-supermartingales (see Lemma 7.1), over ε > 0
of the form (1 + κ)−k, k = 1, 2, . . ., with weights wk = k−1−δ. We will only
prove (23) with the operation of taking the absolute value omitted (the proof
for the case where it is replaced by negation is analogous), and so we will only
consider (24).

Since
∑
k wk converges,

∑
k

wk exp

(
εkMS

t − εkMI
t + εkΣIt − εkΣS,It − ε2k

2
∆S,I
t

)
is also a test I-supermartingale with finite initial capital; therefore, it is bounded
PI -a.s. (cf. Lemma 2.9), and so we have

MS
t −MI

t + ΣIt − ΣS,It ≤ − lnwk +O(1)

εk
+
εk
2

∆S,I
t PI -a.s.,

i.e.,

MS
t −MI

t + ΣIt − ΣS,It ≤ (1 + δ) ln k +O(1)

εk
+
εk
2

∆S,I
t PI -a.s.
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The value of ε = εk that minimizes the right-hand side (let’s forget for a minute
that ε is a function of k and ignore the O(1)) is

ε =

√
2

(1 + δ) ln k

∆S,I
t

.

Let us choose k such that this is approximately true, namely,

εk+2 = (1 + κ)−k−2 ≤

√
2

(1 + δ) ln k

∆S,I
t

≤ (1 + κ)−k = εk; (25)

it is easy to check that such k exist when ∆S,I
t is sufficiently large (for k =

1, the right-hand inequality in (25) always holds provided ∆S,I
t > 0; if the

left-hand side inequality does not hold, we can then increment k by 1 until
both inequalities in (25) hold, which will eventually happen for ∆S,I

t sufficiently
large). This gives us

MS
t −MI

t + ΣIt − ΣS,It ≤ 2(1 + κ)2
√

(1 + δ)(ln k +O(1))
1

2
∆S,I
t PI -a.s. (26)

The right-hand inequality in (25) can be rewritten as

k ln(1 + κ) ≤ 1

2

(
ln ∆S,I

t − ln 2− ln(1 + δ)− ln ln k
)
≤ 1

2
ln ∆S,I

t

(for large k), and plugging this into (26) gives

MS
t −MI

t + ΣIt − ΣS,It

≤ 2(1 + κ)2

√
(1 + δ)

(
ln

1

2
+ ln ln ∆S,I

t − ln ln(1 + κ) +O(1)

)
1

2
∆S,I
t

PI -a.s.

It remains to mix over sequences of κ→ 0 and δ → 0.

Theoretical performance deficit

By Lemma 3.2, the key component MS
t −MI

t + ΣIt −ΣS,It of Lemma 7.1, Corol-
laries 7.2–7.4, and Proposition 7.5 can be rewritten as follows:

MS
t −MI

t + ΣIt − ΣS,It = lnSτT − ln IτT +
1

2
ΣSτT +

1

2
ΣIτT − ΣS,IτT

= lnSτT − ln IτT +
1

2
∆S,I
τT .

The subtrahend 1
2∆S,I

τT can be interpreted as measuring the lack of diversification
in S as compared with I; we call it the theoretical performance deficit. Let us
now rewrite Lemma 7.1, Corollaries 7.2–7.4, and Proposition 7.5 (in this order)
in terms of the theoretical performance deficit.
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Corollary 7.6. For each ε ∈ R, the process

exp

(
ε

(
lnSt − ln It +

1

2
∆S,I
t

)
− ε2

2
∆S,I
t

)
is a test I-supermartingale q.a.

Corollary 7.7. For any ε > 0 and δ > 0,

PI

{
∀t ∈ [0,∞) :

∣∣∣∣lnSt − ln It +
1

2
∆S,I
t

∣∣∣∣ < 1

ε
ln

2

δ
+
ε

2
∆S,I
t

}
≥ 1− δ.

Corollary 7.8. If δ > 0, ε > 0, and τT := inf{t | ∆S,I
t ≥ T} for some constant

T > 0,

PI

{∣∣∣∣lnSτT − ln IτT +
1

2
∆S,I
τT

∣∣∣∣ < 1

ε
ln

2

δ
+
ε

2
T

}
≥ 1− δ.

Corollary 7.9. If δ > 0 and τT := inf{t | ∆S,I
t ≥ T} for some constant T > 0,

PI

{∣∣∣∣lnSτT − ln IτT +
1

2
∆S,I
τT

∣∣∣∣ <
√

2T ln
2

δ

}
≥ 1− δ.

Corollary 7.10. Almost surely w.r. to PI ,

∆S,I
t →∞ =⇒ lim sup

t→∞

∣∣∣lnS(t)− ln I(t) + 1
2∆S,I

t

∣∣∣√
2∆S,I

t ln ln ∆S,I
t

≤ 1.

Informally, according to Corollaries 7.6–7.10, for large t the EIH for I implies

lnS(t) ≈ ln I(t)− 1

2
∆S,I
t .

Substituting cash for S, we obtain various statements of Sections 4–5 from those
corollaries; e.g., Lemma 5.1 is a special case of Corollary 7.6.

8 A probability-free version of Girsanov’s theo-
rem

In conclusion of this paper we discuss mathematical (this section) and practi-
cal (the next one) implications of our results. In this section we introduce a
probability-free notion of a continuous martingale and show how it can be used
to simplify the results in the previous sections.

A continuous process X is a continuous I-martingale if it takes values in R
and, for each c ∈ R, both c+Xt∧τ+ and c−Xt∧τ− are test I-supermartingales
q.a., where τ+ := inf{t | c + Xt ≤ 0} and τ− := inf{t | c −Xt ≤ 0} (using the
inequalities c ±Xt ≤ 0 rather than the equalities c ±Xt = 0 takes care of the
case c� 0).
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Remark 8.1. Our use of the term “martingale” does not mean that our notion is
particularly close to the measure-theoretic notion of a continuous martingale: e.g.,
measure-theoretic continuous local martingales fit our definition just as well. All our
terminology in this paper is provisional.

Corollary 8.2. The process MI
t − ΣIt is a continuous I-martingale.

Proof. Let X be the process (13). For any c and any ε > 0, the process c +
(X − 1)/ε is a test I-supermartingale q.a. if stopped upon reaching 0. Passing
to the limit as ε → 0 and similarly considering negative values of ε, we obtain
the statement of the corollary.

The following result, which is essentially a probability-free version of Gir-
sanov’s theorem (see, e.g., [4], (II.3.12)), can be regarded as the key mathemat-
ical result of this paper implying most of the other results.

Theorem 8.3. The process MS
t − ΣS,It is a continuous I-martingale.

Proof. Applying the argument in the proof of Corollary 8.2 to Lemma 7.1, we
obtain that the process

MS
t −MI

t + ΣIt − ΣS,It (27)

is a continuous I-martingale. Combining this with the statement of Corollary 8.2
we obtain the statement of the theorem.

Corollary 8.2 is a special case of Theorem 8.3: it can be obtained by setting
S := I. To derive Lemma 7.1 (of which Lemma 5.1 is an easy corollary cor-
responding to S = 0), we can use the following probability-free version of the
Doléans exponential.

Lemma 8.4. If X is a continuous I-martingale with quadratic variation [X] :=
[X,X], exp(X − [X]/2) is a test I-supermartingale q.a.

A proof of Lemma 8.4 can be found in [21]. In combination with Corol-
lary 8.2, this lemma implies Lemma 5.1, and in combination with (27) being a
continuous I-martingale it implies Lemma 7.1.

Finally, we state the analogues of Lemma 7.1, Corollary 7.4, and Proposi-
tion 7.5 for the I-martingale of Theorem 8.3; they can be considered as simplified
versions of the CAPM.

Lemma 8.5. For each ε ∈ R, the process

exp

(
ε(MS

t − ΣS,It )− ε2

2
ΣSt

)
is a test I-supermartingale q.a.

Corollary 8.6. If δ > 0 and τT := inf{t | ΣSt ≥ T} for some constant T > 0,

PI

{∣∣MS
τT − ΣS,IτT

∣∣ <√2T ln
2

δ

}
≥ 1− δ.
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Corollary 8.7. Almost surely w.r. to PI ,

ΣSt →∞ =⇒ lim sup
t→∞

∣∣∣MS
t − ΣS,It

∣∣∣√
2ΣSt ln ln ΣSt

≤ 1.

9 Comparisons to the standard CAPM

Assuming zero interested rates (Rf = 0), the standard CAPM says, in the
standard framework of measure-theoretic probability, that

E(Ri) =
Cov(Ri, Rm)

Var(Rm)
E(Rm)

in the notation of [22], where E(Ri) is the expected return of the ith security,
E(Rm) is the expected return of the market, Var(Rm) is the variance of the
return of the market, and Cov(Ri, Rm) is the covariance between the returns of
the ith security and the market.

Replacing the theoretical expected values (including those implicit in
Var(Rm) and Cov(Ri, Rm)) by the empirical averages, we obtain an approxi-
mate equality

MS
t ≈

ΣS,It
ΣIt

MI
t . (28)

This approximate equality is still true in our probability-free framework (under
the assumptions ΣIt � 1 and ΣSt � 1): indeed, our equity premium result
implies MI

t ≈ ΣIt (see, e.g., Corollary 5.6), which makes (28) equivalent to

MS
t ≈ ΣS,It , our game-theoretic CAPM (see, e.g., Corollary 8.7).
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