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Abstract

How should we adjust p-values to account for multiple testing? This question,
first discussed by Cournot in his Exposition de la théorie des chances and des
probabilités (1843), still puzzles statistical theorists and practitioners. Modern
game-theoretic probability, developed by Shafer and Vovk in Probability and
Finanace: It’s Only a Game! (2001), gives us a new way to think about the
problem and concrete rules for adjusting and combining p-values.
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1 Cournot’s principle and Cournotian testing

The French mathematician and philosopher Antoine-Augustin Cournot (1801–
1877), remembered by economists for his work on duopoly and on supply and
demand, is also remembered for his dictum that probability acquires objective
scientific content only by its predictions. This is Cournot’s principle [49].

To predict using a probabilistic hypothesis, you identify an event to which it
gives probability close to one: the prediction is that this event will happen. Or
you identify an event to which it gives probability close to zero: the prediction
is that this event will not happen. These predictions allow the hypothesis to
be tested: if you single out an event to which it assigns very small probability
and it happens, then the hypothesis is discredited and may need modification
or merit rejection.

Some scholars (especially Bayesians) reject Cournot’s principle on the
grounds that the actual outcome of a complex process is always an event of
small probability. This overlooks the role of the statistician, who selects a
particular event in advance as a prediction or a test.

Cournot’s writing is a good starting point for understanding aspects of statis-
tical testing still being discussed today, if only because it reminds us that issues
debated today were already on the table nearly 200 years ago. His comments
on multiple testing are particularly timely.

1.1 When is a deviation attributable to chance?

As Cournot explained, the evidence provided by a predicted event failing is
attenuated when the statistician makes many tests of similar hypotheses. Using
the example of a statistician who looks for variation in the ratio between male
and female births, first looking at whether the births are legitimate and then
considering the age, profession, and religion of the parents, the season in which
the child is born, and so on, he explained that

. . . for a statistician who undertakes a thorough investigation, the
probability of a deviation of given size not being attributable to
chance will have very different values depending on whether he has
tried more or fewer groupings before coming upon the observed de-
viation.

He went on to say that because the statistician knows how many groupings
he has tried before finding a notable deviation, the probability of its not being
attributable to chance still has an objective value for him, though it is diminished
by the number of groupings he has tried. But for a member of the public
from whom the multiple testing is hidden, the probability loses all objective
substance.1

1The passage quoted (in translation) is from Section 111 of Cournot’s Exposition de la
théorie des chances et des probabilités (1843 [7]). See [50] for additional translations from
this and Cournot’s other books.
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Cournot’s assertion that the probability of a deviation being attributable to
chance diminishes as more tests are made can be elaborated as follows. Suppose
you are looking for a deviation that would happen by chance with probability
0.005 or less. The first deviation you check is not that large, but by trying 9
more times you find one that is. The probability that you would find so large
a deviation by chance in 10 tries does not exceed 10× 0.005 = 0.05. So you are
entitled to tell the public that the hypothesis was discredited by giving a 95%
prediction that failed, but you are not entitled to make the stronger claim that
it was discredited by giving a 99.5% prediction that failed.

1.2 The concept of a p-value

Statistical testing in Cournot’s sense is now understood in terms of test statistics
and p-values.

What Cournot called a deviation we now often call a test statistic. Under
the hypothesis we are testing, this test statistic, say T , is a random variable. If
T comes out equal to t, then the p-value is the probability under the hypothesis
that T would come out that large or larger:

{p-value from observing T = t} := P(T ≥ t). (1)

Being a function of what we observe, the p-value is itself a random variable
before it is observed. Let us designate this random variable by P , and let us call
a random variable of this type a p-variable. Thus a p-value p is the observed
value of a p-variable P .

The probability that a p-variable P is less than or equal to 5% is less than or
equal to 5%. This sounds a bit convoluted, but we get accustomed to thinking
this way when we do statistical testing. More generally, a p-variable P will
satisfy

P(P ≤ p) ≤ p (2)

for every p ∈ [0, 1]. We can take (2) as the definition of a p-variable and develop
the classical theory of statistical testing from this starting point; see [51]. But
most people find it more intuitive to start with the notion of a test statistic and
define the notion of a p-value by (1).

1.2.1 Composite hypotheses

Often we test a hypothesis that only incompletely specifies probabilities for the
test statistic we use. Such a hypothesis fixes only a class of probability distri-
butions, asserting that good predictions can be made by one of the probability
distributions in the class without saying which one. We call such a class of
distributions a composite hypothesis or a statistical model. Indexing the proba-
bility distributions in the model by a parameter θ that ranges over a set T ,2 we

2The use of parameter in this context goes back at least to R. A. Fisher’s pathbreaking
1922 article, “On the mathematical foundations of theoretical statistics” [16]. The set T may
consist of real numbers, vectors, or more complicated mathematical objects. In contemporary
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generalize (1) to

{p-value from observing T = t} := sup
θ∈T

Pθ(T ≥ t).

The condition (2) that characterizes a p-variable then becomes

Pθ(P ≤ p) ≤ p

for all p ∈ [0, 1] and θ ∈ T or, equivalently,

sup
θ∈T

Pθ(P ≤ p) ≤ p

for all p ∈ [0, 1].
On the other hand, we can accommodate incompleteness or imprecision in

the specification of the probabilistic hypothesis, along with other limitations on
our ability to calculate probabilities for T and P from the hypothesis, without
formally introducing the notion of a statistical model. Instead, we say that the
hypothesis we are testing is a probability distribution P about whose probabili-
ties we have only partial knowledge or limited computational facility. Instead of
using (1) as our definition, we say that (a) the p-value p from observing T = t
is the least upper bound we can calculate on P(T ≥ t), and (b) the p-variable
P is the random variable whose realized value is this least upper bound. The
inequality (2) follows.

If the probability distribution is fully specified, the test statistic T is contin-
uous under P, and we have no difficulties in computing T ’s probabilities, then
we can replace (2) with

P(P ≤ p) = p. (3)

This says that P is uniformly distributed on [0, 1].

1.2.2 The venerability of p-values

As the quotations from Cournot demonstrate, hypothesis testing using what we
now call p-values was already a familiar statistical tool in the middle of the 19th
century. The idea is often traced back to a note published by John Arbuthnot
(1667–1735) in the Philosophical Transactions of the Royal Society of London
in 1710. Noting that male births had exceeded female births in London for 82
successive years, Arbuthnot argued that male and female births could not have
equal chances. This and other 18th and 19th centuries examples of hypothesis
testing, including some in the work of Laplace, are discussed by Stigler [55],
Hald [28], and Gorroochurn [26].

On the other hand, the framework in which statistical testing is now most
often conducted, correlation and multiple regression, was developed only in
the late 19th and early 20th centuries, primarily by British statisticians. The

usage, parameter may refer the entire object θ or to a component of θ or to an arbitrary
real-valued function of θ.
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statistical concept of correlation first emerged in the work of the gentleman
scholar and eugenicist Francis Galton (1822–1911) in the 1880s. It was taken
up by Karl Pearson (1857–1936), who organized a statistical laboratory at the
University of London and founded two journals, Biometrika in 1901 and the
Annals of Eugenics in 1925. The first exercise in multiple regression, on the
relationship between poverty and the generosity of government welfare, was
carried out in 1895 by George Udny Yule (1871–1951), who began his career
in statistics as an assistant to Pearson. R. A. Fisher (1890–1962), who shared
Galton’s and Pearson’s zeal for eugenics, extended all this work, establishing
paradigms still dominant in many areas of applied statistics. This group of
statisticians is often referred to collectively as the English or British (Yule was
a Scot) school of statistics or biometry. (See [2, 26, 40, 55].)

The word significant was used as a technical term in statistical testing well
before the beginning of the twentieth century. We find it in boldface in the first
edition of Yule’s An Introduction to the Theory of Statistics ([63], 1911, page
262): “. . . if we observe a different proportion in one sample from that which
we have observed in another, the question again arises whether this difference
may be due to fluctuations of simple sampling alone, or whether it indicates
a difference between the conditions subsisting in the universes from which the
two samples were drawn: in the latter case the difference is often said to be
significant.”

The name p-value came into use only beginning in the 1970s. The British
school used p-values as an indication of significance but did not have a formal
name for them. They sometimes used the phrase “value of P”. Fisher referred
informally to the “value of P” in his influential Statistical Methods for Research
Workers, from its first edition in 1925 to its thirteenth in 1958 (see also [18]).

Fisher’s originality with respect to p-values is sometimes exaggerated. In
1993 ([24], page 486), Steven N. Goodman wrote that, “Fisher was not the first
to use the p value, but he was the first to outline formally the logic behind its
use, as well as the means to calculate it in a wide variety of situations.” In 2001
([25], page 295), Goodman wrote that, “The references on this topic encom-
pass innumerable disciplines, going back almost to the moment that P -values
were introduced (by R.A. Fisher in the 1920s).” Citing Goodman, Campbell
Harvey [29] states that, “The idea of using a p-value for hypothesis testing was
introduced by Fisher (1925).” As of this writing, similar statements appear in
Wikipedia articles on significance testing.

1.3 The concept of a significance level

According to the Neyman-Pearson theory of testing, formulated by Jerzy Ney-
man (1894–1981) and E. S. Pearson (1895–1980) in the late 1920s, you should
decide before looking at the data on the probability of false rejection you will
tolerate.3 This probability α is the significance level. In many areas of research,

3E. S. Pearson, Karl Pearson’s son, worked in the department of statistics in London
founded by his father. Neyman collaborated with Pearson by correspondence from Poland
during the late 1920s and early 1930s, joined Pearson in London in 1934, and then immigrated
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a significance level of 5% is conventional.
The Neyman-Pearson theory does not require the use of a test statistic. It

merely asks us to specify, in advance of seeing the data, an event E (the rejection
region) that has probability α or less. We then reject the hypothesis if and only
if E happens. But as Neyman and Pearson expected and intended, their theory
is most often implemented using a test statistic T : we perform a level α test by
choosing a value c such that P(T ≥ c) = α and rejecting if T ≥ c—i.e., rejecting
if the p-value given by (1) is less than or equal to α.

Neyman and Pearson considered not only the probability of rejecting the
hypothesis when it is true (Type I error) but also the probability of failing
to reject it when it is false (Type II error). They advocated balancing the
probabilities of the two types of errors in light of the costs and benefits of the
actions associated with rejecting or failing to reject. This balancing might lead
to a value of α much larger or much smaller than 5%.

The Neyman-Pearson foundation for statistical testing is clear, mathemat-
ically interesting, and conceptually deeper than the mere notion of calculating
the probability that a deviation can be attributed to chance. For these reasons it
became dominant in mathematical statistics in the mid-twentieth century. The
idea of balancing the probabilities of Type I and Type II error was implemented
in a number of engineering and business contexts.

1.3.1 Neyman-Pearson vs. p-values

In spite of popularity of the Neyman-Pearson theory among mathematical statis-
ticians, many researchers in the natural and social sciences have continued to
focus on p-values, ignoring or paying only lip service to the notion of a fixed
significance level α. We can distinguish three arguments for this continued
emphasis on p-values:

1. The goal is a scientific conclusion or the assessment of the evidence for
or against a scientific conclusion, not an action with definable costs and
benefits.

2. When assessment of the evidence is the goal, no one wants to stop after
merely stating that the hypothesis was discredited by the occurrence of
an event E of low probability α, where E and α were fixed before looking
at the data. The scientist wants his or her public to know just how strong
the evidence against the hypothesis turned out to be. A p-value of one in
a million is surely much stronger evidence than a p-value of one in twenty,
and everyone should hear about it.

3. By providing a p-value, a scientific article enables each reader to choose
their own level of significance α.

The contrast between “forward looking” Neyman-Pearson significance levels and
“backward-looking” p-values was one element of the vigorous debate about sig-

to the United States in 1938.
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nificance testing that was already underway in the 1950s and 1960s. See, for
example, the reader published by Morrison and Henkel in 1970 [41].

Another aspect of the long-running debate around hypothesis testing, proba-
bly more important, concerns the difference between statistical significance and
substantive significance. As many authors have noted, statistically significant
differences are often reported, published, and acted upon even though they are
substantively insignificant. See [64] for one persuasive jeremiad against this
widespread and continuing phenomenon. See also Section 2.3 below.

1.3.2 Efficient test statistics

Our choice of a test statistic T or rejection region E depends on what sort of
deviation we want to detect. Usually we have in mind some alternative to the
hypothesis being tested, perhaps a different probabilistic hypothesis, or perhaps
some less precise notion of what might happen. Neyman and Pearson’s concept
of Type II error provides one way to formalize this insight.

Suppose the hypothesis being tested is a single probability distribution P
(rather than a composite hypothesis), and suppose the alternative is another
probability distribution Q (rather than a class of probability distributions or
something less precise). Then as Neyman and Pearson showed in 1933 [43], the
best trade-off between Type I and Type II errors is achieved by the likelihood
ratio, the test statistic T given by

T (y) :=
q(y)

p(y)
, (4)

where p and q are the probability densities for P and Q, respectively, and y is
the complete outcome; this is the Neyman-Pearson lemma. The name likelihood
had been coined by R. A. Fisher in 1921 [15, 11], and statisticians had been
using the notion without the name for over a century [57].

Because the hypothesis being tested is usually composite, and the alternative
usually composite or ill defined, Neyman and Pearson’s insight concerning the
likelihood ratio is not always directly usable. But as we will see in Sections 2.1
and 3.1, this ratio also emerges when we look at hypothesis testing from other
perspectives.

1.4 Are p-values and significance levels frequentist?

It is conventional to distinguish two principal schools of thought in mathematical
statistics: frequentist and Bayesian. According to frequentists, probabilities are
frequencies; according to Bayesians, they are degrees of belief. Both p-values
and Neyman-Pearson statistical testing are considered tools of the frequency
school. But as we have just seen, p-values and testing with a fixed significance
level can be understood without appealing to the notion of frequency. It is
enough that a probability close to zero be understood as a prediction, and that
we test the theory (or statistician or forecaster) producing the prediction by
checking whether the prediction is successful [27, 42].
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As an experiment, to emphasize that we can understand p-values and fixed-
level significance testing without bringing in the notion of frequency, I will call
these tools Cournotian rather than frequentist.

2 The Bayesian challenge to Cournot’s principle

Cournot’s effort to distinguish between the subjective and the objective aspects
of probability came in the wake of the monumental work of the French mathe-
matician Pierre Simon Laplace (1749–1827), who developed both Bayesian esti-
mation and non-Bayesian methods of estimation and testing without troubling
himself about possible conflicts. In the second half of the nineteenth century,
the conflicts attracted increasing attention, and debate began in earnest be-
tween those who insisted on probability’s subjectivity those who insisted on its
objectivity, and between those who gave priority to Bayesian estimation (then
called inverse probability in English) and those who favored older non-Bayesian
methods.4 In Germany, Carl Stumpf (1848–1936) argued that probability can
only be subjective, while Johannes von Kries (1853–1928) argued for an objec-
tive conception. In Britain, inverse probability was sharply criticized by John
Venn (1834–1923) and George Chrystal (1851–1911) and defended with equal
vigor by W. Allen Whitworth (1840–1905).5

The most influential mathematical statisticians of the mid twentieth century,
R. A. Fisher and Jerzy Neyman, were outspoken critics of Bayesian methods,
but Bayesian statistics also had its proponents during this period, notably the
British physical scientist Harold Jeffreys (1891–1989),6 the Italian mathemati-
cian Bruno de Finetti (1906–1985), and the American statistician Leonard J.
Savage (1917–1971). In the spirit of Laplace, Jeffreys sought to make inverse
probability objective as well as subjective; he advanced suggestions for choosing
prior probability distributions that would reflect lack of information about pa-
rameter values. De Finetti and Savage, on the other hand, favored a thoroughly
subjective interpretation of probability.

Jeffreys, de Finetti, and Savage had no use for Cournotian statistical testing.

4Campbell Harvey is mistaken when he guesses ([29], page 19) that “The long-standing
debate between the Bayesian and frequentist statisticians likely originated with Berkson’s
(1938) observation that you can reject any null hypothesis with enough data.” The names
“Bayesian” and “frequentist” came into the widespread use, however, only starting in the
1970s [14].

5See [9] for a detailed account of inverse probability from Thomas Bayes to Karl Pearson.
As Stephen M. Stigler has noted [55, 56, 58], applications of inverse probability during this
period tended to rely on Laplace’s principle that the probabilities of causes after an effect
is observed should be proportional to the probabilities the causes would have given to the
effect. This corresponds to the assumption of a uniform prior distribution. In [38], Laplace
had mentioned that an additional factor would enter if the causes were unequally probable
before the effect was observed, but this was seldom or never implemented in applications.
Bayes’s picture, in which a joint probability for cause and effect (parameter and observation, in
twentieth-century terminology) is constructed and then conditioned on the observed effect, was
not usually used, perhaps because his argument for what we now call conditional probabilities
for the parameter given the observation was unpersuasive [47].

6Jeffreys and Fisher debated the meaning of probability at length in the 1930s; see [1, 32].
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When we ask whether a hypothesis is true, they argued, we should ask about its
probability, not about whether some apparent deviation “can be attributed to
chance”. Jeffreys ridiculed the notion of a p-value as defined by Equation (1). If
we observe T = t, then why, he asked, should we add to P(T = t) the probability
P(T > t), the probability of an event that did not happen? Should we reject a
hypothesis for assigning a small probability to something that did not happen?

By the beginning of the twenty-first century, the methods for selecting es-
timates and test statistics championed by Fisher, Neyman and their successors
were proving inadequate for the increasingly complex models needed to handle
more extensive and complex data, whereas Bayesian methods were looking more
adaptable and more amenable to large-scale computation. Some philosophically-
inclined statisticians see in this development a triumph for de Finetti and Sav-
age’s thoroughly subjective point of view, but others who use Bayesian methods
still aspire to objectivity in Cournot’s sense.

To gain a deeper understanding of this state of play, let us review the
Bayesian alternative Jeffreys proposed to Cournotian testing in the 1930s.

2.1 Jeffreys’s Bayesian significance test

Jeffreys presented his Bayesian method of significance testing in a 1935 article
[34] and in his book Theory of Probability [35].7 He began by considering the
familiar situation where we ask whether a particular parameter β in a statistical
model (perhaps the coefficient of a particular independent variable in a multi-
ple regression) should be set to zero, and he took advantage of R. A. Fisher’s
non-Bayesian work on the likelihood function and the method of estimation by
maximum likelihood.

Suppose, following Fisher, that the model is sufficiently regular and the
number of observations is sufficiently large that

1. the maximum-likelihood estimator β̂ is approximately normal with mean
β and a standard deviation s well enough estimated that we can take it
as known, and

2. the likelihood function is approximately proportional to a normal density
with mean equal to the observed value of β̂ and standard deviation s.

A Bayesian analysis requires prior probabilities for β. Jeffreys assigned half his
prior probability to the null hypothesis β = 0 and distributed the other half
over β’s possible values according to a continuous probability density f(β). His
“significance test” consisted of calculating the posterior odds in favor of β = 0.
By Bayes’s theorem,

posterior odds = prior odds× likelihood ratio. (5)

7Antecedents in Jeffreys’s work with Dorothy Wrinch and in the work of others are dis-
cussed by Etz and Wagenmakers [13].
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Because P(β = 0) = P(β 6= 0) = 1/2, the prior odds reduces to unity and so (5)
reduces to

posterior odds = likelihood ratio

≈
1

s
√
2π

exp
(
− (0−β̂)2

2s2

)
∫∞
−∞

1
s
√
2π

exp
(
− (b−β̂)2

2s2

)
f(b)db

. (6)

Suppose the range of values of β that we consider reasonably possible is large
relative to the expected accuracy s of the estimate β̂. Then we may assume
that the prior density f is fairly constant over the range β̂± 3s, say, and in this
case the integral in (6) will approximate f(β̂), reducing (6) to

posterior odds ≈ 1

f(β̂)s
√

2π
exp

(
− β̂2

2s2

)
. (7)

How do these posterior odds for β = 0 compare to conclusions we might
draw from a p-value? It is natural to ask the question when the usual test
statistic |β̂/s| is just barely statistically significant, say approximately equal to
2. In this case, Jeffreys’s posterior odds can diverge sharply from the p-value:

� If β = 0, β̂/s is approximately normal with mean 0 and variance 1. The

p-value is P(|β̂/s|≥ 2) ≈ 0.05, suggesting we should reject β = 0.

� For clarity, choose the units so that s=1 and thus β̂ = 2. We assumed
that the range of reasonably possible values for β is great relative to s;
pushing this to something of an extreme, suppose the prior density f is
uniform on the range from −100 to 100. Then (7) comes out to

1

(1/200)
√

2π
exp (−2) ≈ 10.8,

corresponding to a probability of over 90% for β = 0.8

This divergence suggests that a p-value may drastically overstate the ev-
idence against a hypothesis. On the other hand, we can question the prior
probabilities for β. We are giving probability 1/2 to the precise hypothesis
β = 0 while choosing a density f that expresses great uncertainty about β.
This dissonance can be seen as a symptom of the fundamental impossibility of
using probabilities to express ignorance.9

Jeffreys’s effort to find probabilities that express ignorance was situated in
a long tradition. Laplace had used a uniform distribution of probabilities to

8The odds o in favor of an event are related to its probability p by o = p/(1− p), so that
p = o/(o+ 1). So if the posterior odds come out approximately 10.8, the posterior probability
is approximately 10.8/11.8 ≈ 0.92.

9A very spread-out density f may be based on experience rather than on ignorance. But
in this case the relevance of the experience to the particular case is always at issue, especially
when extreme probabilities are deduced from it. See [48] and the following discussion.
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express ignorance (he called this the principle of insufficient reason), and this
idea was still popular in the late 19th century and early 20th centuries, especially
among logicians and mathematicians working on geometric probability. It is still
has support among some physicists and philosophers, who see it as a foundation
for statistical mechanics. But its shortcomings were also already well known in
the late 19th century. John Maynard Keynes, who renamed it the principle
of indifference and tried unsuccessfully to defend it in a limited form ([37],
Chapter IV), listed some of the shortcomings: There is no uniform probability
distribution when there are infinitely many discrete possibilities, the meaning
of uniformity depends on the parametrization when the possibilities lie in a
continuous range, and different ways of counting arise even when there are only
a few possibilities.10 Jeffreys attempted to overcome these problems by basing
prior probabilities for parameters in statistical models on the properties of the
models, but his recommendations had their own inconsistencies.

2.2 Bayes factors

The Bayesian revival of the late twentieth and early twenty-first centuries has
largely abandoned the tradition of Laplace and Jeffreys in favor of de Finetti
and Savage’s thoroughly subjective Bayesianism. In the thoroughly subjective
view, (1) applied statisticians always have prior information and (2) rationality
demands that they somehow find probabilities that represent it.11

Suppose we drop the assumption that P(β = 0) = 1/2, on the grounds that
each person should provide their own subjective prior probability for β = 0. In
this case, (5) still tells you to multiply your prior odds by the likelihood ratio to
get your posterior odds, and that the information in the data affects your prior
odds only through the likelihood ratio. To emphasize this role for the likelihood
ratio (and perhaps to acknowledge that it too has a subjective component, the
prior density f), many statisticians now call it the Bayes factor.12

The divergence we just noted, between a p-value of 0.05 that seems to refute
β = 0 and a Bayes factor that favors it by more than 10 to 1, is still of interest
when we drop the assumption that P(β = 0) = 1/2, but we should also consider
the Bayes factors that might result from other choices for the prior f . What is
the least Bayes factor, the one least favorable to β = 0, that we could obtain?13

10See for example [55], page 127, and [46], pages 22–25.
11This view has now entered financial economics; Harvey declares in his presidential address

that, “If you are rational, you are a Bayesian.” ([29], page 18)
12The name Bayes factor was introduced by I. J. Good in the 1950s. In his 1950 book,

Probability and the Weighing of Evidence ([22], page 63), Good wrote

O(H|E)/O(H) is the factor by which the initial odds of H must be multiplied
in order to obtain the final odds. Dr. A. M. Turing suggested in a conversation
in 1940 that the word “factor” should be regarded as a technical term in this
connexion, and that it could be more fully described as the factor in favour of
the hypothesis H in virtue of the result of the experiment.

By 1956 [23], Good was calling this factor the Bayes factor. The name became more widely
used after 1995, when Robert Kass and Adrian Raftery used “Bayes factors” as the title of
an article in the Journal of the American Statistical Association [36]. See also [13].

13As Harvey notes ([29], page 21), attention was already being directed to this minimum
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Table 1: Minimum Bayes factors (MBF) corresponding to various p-values. The

second column gives to two significant figures the value of |β̂/s| that would pro-
duce the given p-value. The fourth column gives (p-value)/(p-value+MBF),
which is the prior probability for β = 0 that would produce a posterior proba-
bility equal to the p-value if the MBF were actually the Bayes factor.

p-value |β̂/s| MBF implied prior
0.05 2.0 0.15 0.25
0.02 2.3 0.067 0.23
0.01 2.6 0.036 0.22
0.005 2.8 0.019 0.20
0.001 3.3 0.0045 0.18
0.0001 3.9 0.00052 0.16
0.00001 4.4 0.000058 0.15
0.000001 4.9 0.0000064 0.14

The integral in the denominator of (6) is a weighted average of the likelihood

1

s
√

2π
exp

(
− (b− β̂)2

2s2

)
(8)

over different values of b. This average is maximized and hence the Bayes factor
is minimized when f puts all its probability on the value of b that maximizes (8),

namely the maximum-likelihood estimate β̂. So the minimum Bayes factor is

exp

(
− β̂2

2s2

)
.

Table 1 shows the minimum Bayes factors corresponding to conventional p-
values ranging from 5% to one in a million. As we see from this table, the
relationship between the two numbers is fairly stable in this range; when the
p-value is 5%, the MBF is about 3 times as large; when the p-value is one in a
million, the MBF is about 6 times as large. So we obtain a posterior probability
for β = 0 equal to the p-value if we set its prior probability to about 20%
(14% to 25% for the range of p-values in the table) and put the remaining prior

probability on the observed value of β̂.14

The Bayesian is supposed to specify f(β) before seeing the observations,
when he or she does not yet know the value of the maximum-likelihood estimate
β̂. So there is no reason to suppose that f(β) will concentrate its probability on
this value. Very possibly it will be more spread out or concentrated elsewhere,
and thus the discrepancy between the p-value and the posterior probability

Bayes factor by Edwards, Lindman and Savage in 1963 [12].
14Harvey [29] also considers the Vovk-Sellke Bayes factor (he calls it the SD-MBF), first

suggested by Vovk [59] and rediscovered by Sellke, Bayarri and Berger in 2001 [45].
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will be greater than the already noticeable discrepancy we see for the MBF.
So Jeffreys’s method of significance testing can be expected in general to be
substantially more favorable to the hypothesis being tested than the p-value.

2.3 Why omit a statistically significant variable?

Suppose, to fix ideas, that β is the coefficient of an independent variable x in
a multiple regression, where y is the dependent variable. Jeffreys presented his
Bayesian significance test as a way of deciding whether x should be included or
omitted from the model ([35], Section 5.1). This is not the same question as
whether that x has absolutely no effect on y—i.e., that β is exactly zero. We
may also be asking whether β is large enough to matter. This is the question
of substantive (or scientific or economic or material) significance, as opposed to
the statistical significance marked by a small p-value.

The cases where a statistically significant effect (p-value too small) is not
substantively significant (β too small) tend to be the same as the cases where
Jeffreys’s posterior probability for β = 0 is large in spite of the small p-value.
When the number of observations is very large, the standard deviation s of the
least-squares estimate β̂ is very small, and so even a small β̂ can be many times
as large as s and hence achieve a small p-value. When we say that β̂ is small, we
probably mean that x would make no meaningful difference in the determination
or prediction of y if its coefficient β were that small—the difference would be
substantively insignificant. But if we had initially thought x might make a
difference, then this value β̂ is also small relative to the values of β that we
initially considered reasonably possible. So Jeffreys would tell us to choose a
prior density f very spread out relative to s, and as in our numerical example,
the Bayes factor will be much more favorable to β = 0 than the p-value.

In the situation just described, where a variable x in a multiple regression
appears to be statistically but not substantively significant, Cournotians15 usu-
ally agree that it should be left out of the regression, because the confidence
interval β̂ ± 2s (this is the set of values of β that would not be rejected by a
5% test) indicates that the coefficient β is too small to make any substantive
difference, because introducing variables that can make so little difference adds
noise, and because apparent evidence for a small effect can result from small
imperfections in the model. So Jeffreys and the Cournotians arrive in the same
place by different reasoning.

2.4 Reconciling Bayes with Cournot’s principle

Although the concept of the Bayes factor as an alternative to Cournotian sig-
nificance testing is now popular among philosophically-inclined Bayesian statis-
ticians, it is less popular among applied statisticians who use Bayesian models.

It is easy to question the importance of the Bayes factor from a Bayesian
point of view. If we are uncertain about the effect of a variable x, why should

15I hasten to repeat that I have just now invented this use of “Cournotian”. The non-
Bayesian statisticians of whom I am writing may well refuse the name.
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we put nonzero probability on its effect being exactly zero, as opposed to being
relatively small? Why not instead spread all our probability continuously over
the different possible values of its coefficient β? When we do this the Bayes
factor is not so interesting. Our prior odds in favor the exact hypothesis β = 0
are zero, and so our posteriori odds will still be zero, no matter how large
the likelihood (a.k.a. Bayes factor) in (5). The Bayesian statistician who takes
this approach will remove variables from a model when their possible effect is
too small to be substantively significant on grounds consistent with the grounds
invoked by Cournotian statisticians. Rather than appeal to a confidence interval
that indicates that β has a substantively insignificant value, he or she will note a
posterior probability for the hypothesis that β has a substantively insignificant
value.

Many applied statisticians who use Bayesian methods also find a place for
Cournotian testing. The usual account of the difference between Bayesian and
Cournotian statisticians begins with the assumption that they agree on a sta-
tistical model with unknown parameters; they agree that if the value θ of the
parameters were known, the observation y would have a given probability dis-
tribution Pθ. (The objects θ and y may be single numbers, vectors of numbers,
or more complicated mathematical objects.) The Bayesian adds probabilities
for θ, obtaining a joint probability distribution for (θ, y) and then conditions
that joint probability distribution on the observation y to obtain a probability
distribution for θ. The Cournotian estimates θ in other ways and may perform
Cournotian testing to see whether particular values of θ are plausible and even
whether the entire model Pθ is plausible. But at this point we can distinguish
between thoroughly subjective Bayesians such as de Finetti and Bayesians who
take a more Cournotian view of their enterprise:

� The thoroughly subjective Bayesians see the strategy of forming the prior
distribution for θ and then the joint probability distribution for (θ, y)
as one application of a general principle that all uncertainties should be
dealt with by adopting numerical probabilities and that all evidence should
be taken into account by conditioning on such probabilities. They may
change their probabilities, but they do not step outside the probability
model to check them. De Finetti made this point in the 1950s in a discus-
sion with the French mathematician Maurice Fréchet; see [19].

� More Cournotian Bayesians view their joint probability distribution for
(θ, y) more in the way Cournotians view the statistical model Pθ; it is a
tool for making predictions and its ability to do so should be checked. The
British-American statistician George Box (1919–2103) was known for this
attitude [5, 6], and it has been defended by Andrew Gelman, Donald B.
Rubin, and others [21, 20].

The attitude of the Cournotian Bayesians is consistent with Cournot’s own
views, as he thought that probability is initially subjective and acquires an
objective status, marked by interpersonal consensus, as it is validated by expe-
rience. Similar views were expressed by Cournot’s French successors, including
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Emile Borel (1871–1956) and Paul Lévy (1886–1971), well into the twentieth
century; see [54, 49, 3, 39].

3 Game-theoretic Cournotian testing

Mathematical probability began as a theory of betting. The notion of betting
still underlies the theory’s structure and, in the last analysis, its power. An
event is probable if you can bet on it, and the most persuasive way to refute
a probabilistic prediction or a probabilistic hypothesis is to bet and win. The
modern game-theoretic framework for probability16 builds on these insights in
a way that accommodates both the subjective and the objective aspects of
probability.

Cournot’s principle becomes game-theoretic as soon as we interpret proba-
bilistic predictions as betting offers. This allows a statistician to test a proba-
bilistic hypothesis by selecting and betting on an event E to which the hypoth-
esis gives a small probability α. If he bets $α and E happens, he wins $1: he
has discredited the hypothesis by multiplying the money he risked by the large
factor 1/α.17 We can think of α as the Neyman-Pearson significance level. The
bet is merely another way of interpreting Neyman-Pearson “rejection”. Reject-
ing the hypothesis means discrediting it by multiplying one’s money by a large
factor.

The bet may be merely notional—i.e., imagined. The statistician can easily
enough make the bet, as he needs only risk pennies to make his point, but usually
the hypothesis will not really be backing its predictions up with money. The
essential requirement is that the statistician announce his bet, real or imagined,
in advance of seeing the observations.

3.1 General game-theoretic testing

The game-theoretic picture also allows the statistician to test a probabilistic
hypothesis in a more general way. He can try to multiply his money by selecting
any nonnegative variable T to which the hypothesis assigns positive expected
value E(T ), paying E(T ) and receiving in return the realized value t of T . Let
us call T the statisticians game-theoretic test statistic, and let us call the factor
by which he multiplies the money he risks,

s(t) :=
t

E(T )

the test score achieved by T . The test score s(t) is a measure of how much the
statistician has discredited the hypothesis. When s(t) > 1, we can think of its

16See my 2001 book with Vladimir Vovk [52] and papers by Vovk, myself, and others posted
at www.probabilityandfinance.com.

17Or he can bet any positive amount $C, losing it if E fails and receiving $C/α if E happens.
No matter what the value of C, he multiplies the money he risks by 1/α if E happens.
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inverse, 1/s(t), in the same way as we think of a significance level. If s(t) = 20,
the statistician has discredited the hypothesis at the significance level 0.05.

The test score is unaffected when T is multiplied by a positive constant, and
so we may assume without loss of generality that its expected value E(T ) under
the hypothesis P is unity and thus that the test score is simply T ’s realized
value t. Supposing for simplicity that P is discrete with probability density p
and setting q := Tp, we see that

1 = E(T ) =
∑
y

T (y)p(y) =
∑
y

q(y),

so that q is a probability density and thus T is a likelihood ratio:

T (y) =
q(y)

p(y)
. (9)

This is consistent with (4) and hence with Neyman and Pearson’s insights into
how a test statistic should be selected. But we obtain (9), just as Neyman and
Pearson obtained (4), only in the case where the hypothesis being tested fully
specifies the probability distribution P for the outcome y.

On the other hand, the premise that a hypothesis is discredited when we
multiply substantially the money we risk betting against it is a basic principle,
not a conclusion drawn from other principles. The principle is convincing when
we are betting at odds given by the hypothesis and equally convincing when
we are betting at less favorable odds. So a test score carries just as much
weight when E(T ) is only an upper bound on the expected value of T under a
probability distribution that is not fully specified.

Game-theoretic Cournotian testing also extends to settings where a theory
(or an individual or some sort of forecasting system) makes successive forecasts
that can be interpreted as betting offers. In this case, the statistician can test
the theory by making a sequence of gambles; see again [52].

3.2 Offering bets vs. selecting from offered bets

In order to put betting in the framework of modern game theory, we must dis-
tinguish between a player who offers bets and a player who decides which of the
offered bets to take. So it bears repeating that the game-theoretic interpretation
of Cournotian testing identifies the hypothesis being tested as the player who
offers bets. The statistician who tests the hypothesis is the player who decides
which of the offered bets to take.

Contemporary subjective Bayesianism also emphasizes betting and decision,
but it puts the statistician in the role of the player who offers bets. The statis-
tician is supposed to create his own system of probabilities (not merely test
someone else’s), and once he has created it, to follow it when dealing with the
choices nature presents—i.e., to allow nature to bet against him at the odds
he has established. As we saw in Section 2.4, this leaves no space or need for
Cournot’s principle.
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Table 2: Test scores and adjusted p-values produced by betting equal amounts
of money at the significance levels 0.05, 0.01, and 0.001. All numbers are to two
significant figures.

unadjusted p-value test score adjusted p-value
p > 0.05 0 no evidence

0.01 < p ≤ 0.05 6.7 0.15
0.001 < p ≤ 0.01 40 0.025

p ≤ 0.001 370 0.0027

3.3 Game-theoretic adjustment of p-values

A p-value does not enjoy the same clear betting interpretation as a Neyman-
Pearson significance level. The statistician identifies a test statistic T (or equiv-
alently a p-variable P ) in advance, but does not fix in advance a level of T (or
P ) on which to bet.

Why do applied statisticians sometimes report a p-value instead of fixing a
significance level α and a rejection region E in advance of seeing the data and
reporting only whether E happened? As we noted in Section 1.3, they often
do so because they want to be able to report even stronger evidence if it comes
their way. Even if they would be content to find evidence at the 5% level, they
do not want to forgo, if it appears, the stronger evidence represented by a much
smaller p-value.

The game-theoretic point of view can accommodate the desire to recognize
evidence at different levels of strength if we specify in advance all the levels we
want to recognize. Suppose, for example, that we want to recognize evidence at
significance levels 0.05, 0.01 and 0.001. So we bet a dollar on each: a dollar on
P ≤ 0.05, a dollar on P ≤ 0.01, and a dollar on P ≤ 0.001. What will happen?

� If the p-value p comes out greater than 0.05, we lose the $3 we risked. The
test score is zero. We have not discredited the hypothesis.

� If 0.01 < p ≤ 0.05, we win $20 from the first bet but lose the other two
bets. We have turned $3 into $20, achieving a test score of 20/3 ≈ 6.7,
corresponding to rejection at the significance level 3/20 = 0.15.

� If 0.001 < p ≤ 0.01, then we win $20 from the first bet and $100 from the
second. This produces a test score of 120/3 = 40, corresponding to the
significance level 3/120 = 0.025.

� If p ≤ 0.001, then we win $20 from the first bet, $100 from the second,
and $1000 from the third. This produces the test score 1120/3 ≈ 373,
corresponding to the significance level 3/1120 ≈ 0.0027.

These results can be thought of as a rule for adjusting the observed p-value, as
laid out in Table 2.
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There are, of course, many other strategies for betting on a p-variable—many
different ways of spreading our money over bets against P ≤ p for different p,
and each leads to a different rule for adjusting the p-value. It might be useful
to have a standard rule of thumb that could be used by consumers of research
when that research announces a p-value rather than rejection or failure to reject
at a fixed significance level.

3.3.1 The truncated square-root rule

One simple and easily remembered rule of thumb arises when we spread our
money, say $1, continuously over all the possible p-values from 0 to 1 according
to the probability density

f(q) =
1

2
√
q
. (10)

This means dividing [0, 1] into increments of length dq and dividing our dollar
into corresponding increments following this density, the amount $f(q)dq being
assigned to the increment at q. We bet this $f(q)dq on the p-value being q or
less, winning $ 1

q f(q)dq if we win the bet. Given the actual p-value p, we win
altogether ∫ 1

p

1

q
f(q)dq =

1

2

∫ 1

p

q−
3
2 dq = −q− 1

2

∣∣∣∣1
p

=
1
√
p
− 1

dollars. Turning $1 into this amount corresponds to winning at significance level

1
1√
p − 1

=

√
p

1−√p
, (11)

which is very close to
√
p when p is 5% or less. This is a very simple rule of

thumb: adjust a p-value by taking its square root. The adjustment is severe; to
get significance at the conventional 0.05 level, you need an unadjusted p-value
less than 0.0025; to get significance at the one in a thousand level you need an
unadjusted p-value of one in a million or less.

The density (10) puts more than 2/3 of our money on p-values greater than
0.10, and this may be unreasonable, as we would not test the hypothesis by
betting on such large p-values. We might also want to consider putting more of
our money on p-values closer to 0.05 and less on p-values that are much smaller.
This suggests that we compare the following strategies:

Rule 1 (square-root rule). Spread our money over the interval [0, 1] of p-
values using the density f(q) given by (10). As we have just seen, produces
the payoff g1 given by

g1(p) :=
1
√
p
− 1 (12)

and hence leads us to replace a p-value p by
√
p/(1−√p).
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Table 3: Three rules for adjusting p-values. Numbers are given to the nearest
percentage or to one significant figure. The last column is a recommended rule
of thumb. As the numbers in boldface show, it approximates Rule 2 well when
the p-value is less than 1%.

p-value Rule 1 Rule 2 Rule 3
√

p-value/3
0.07 0.40 0.51 0.28 0.09
0.05 0.25 0.24 0.14 0.07
0.02 0.16 0.08 0.06 0.05
0.01 0.11 0.05 0.04 0.03
0.005 0.08 0.03 0.03 0.02
0.001 0.03 0.01 0.02 0.01
0.0001 0.01 0.003 0.01 0.003
0.00001 0.003 0.001 0.01 0.001
0.000001 0.001 0.0003 0.009 0.0003

Rule 2 (truncated square-root rule). Spread our money over the interval
[0, 0.10] of p-values using the density f(q) truncated to this interval. By
a similar calculation, this produces the payoff g2 given by

g2(p) :=

{√
10
p − 10 if 0 ≤ p ≤ 0.10

0 if 0.10 < p ≤ 1
(13)

and hence leads us to replace a p-value p in the interval [0, 0.10] by√
p/10/(1−

√
10p) and to ignore a p-value exceeding 0.10.

Rule 3 (truncated logarithmic rule). Spread our money uniformly over
the interval [0, 0.10]. This produces the payoff g3 given by

g3(p) :=

{
10 ln

(
0.10
p

)
if 0 ≤ p ≤ 0.10

0 if 0.10 < p ≤ 1
(14)

and hence leads us to replace a p-value in the interval [0, 0.10] by
1/(10 ln(0.10/p)) and to ignore a p-value exceeding 0.10.

Numerical values for these three adjustments are shown in Table 3.
Which of the rules in Table 3 provides the most reasonable adjustments? I

recommend Rule 2, the truncated square-root rule. It is a little less severe than
Rule 1 (the square-root rule) for p-values less than 5%. As the last column of the
table shows, it is very well approximated for p-values less than 1% by a simple
rule of thumb: take the square root and divide by 3. Rule 3, which results from
putting more of our money on p-values near 5%, is slightly less severe on those
p-values but perhaps unreasonably severe on more extreme p-values.

Comparing Tables 1 and 3, we see that game-theoretic adjustment of small
p-values is generally much more severe than the adjustment suggested by the
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minimum Bayes factor. The game-theoretic adjustment comes into play, how-
ever, only when the statistician fails to fix a significance level in advance. Were
the statistician to state in advance, when choosing his test statistic, that he is
looking for a one in a million deviation and will reject the hypothesis only if his
p-value is this extreme, then an actual one in a million deviation can be taken
at face value.

Statisticians often think of statistical significance in terms of a test statistic
|Z|, where Z has a standard normal distribution. The p-value is 0.05 when
|Z| = 1.96. How much do we need to raise the cutoff 1.96 in order to obtain a
p-value with adjusted value 0.05 according to the truncated square-root rule?
Solving √

p/10

1−
√

10p
= 0.05

for p, we obtain p = 1/90 ≈ 0.011. This corresponds to the cutoff 2.54.
In [30], Harvey, Liu, and Zhu recommend that financial economists raise their

cutoff for statistical significance from 2 to 3 in order to account for multiple test-
ing. The analysis here suggests that, on this scale, about half this increase (the
part from 2 ≈ 1.96 to 2.54) is needed to account for the way p-values exaggerate
the significance level, before we even think about multiple testing. We can also
ask how the truncated square-root rule adjusts the p-value corresponding to the
cutoff 3, namely 0.0027. Its adjusted p-value is 0.02, which is less than 0.05 but
perhaps not enough less to account for much multiple testing.

3.3.2 Gambling on p-variables more abstractly

As we have just seen, the probabilities associated with a p-variable by the in-
equality (2) can be interpreted as betting offers made by the hypothesis the
p-variable P is testing, and we can exploit these betting offers to effectively buy
certain payoffs, such as the payoffs g1, g2, and g3 given by (12), (13), and (14),
respectively. As we saw, the price for each of these payoffs is 1.

In fact, (2) authorizes us to buy any function g of p that is nonnegative and

nonincreasing at the price
∫ 1

0
g(q)dq. It follows that 1/g(p) is a legitimate rule for

adjusting p-values for any g : [0, 1] → R that is nonnegative and nonincreasing
and integrates to 1. See [51, 10].

4 Game-theoretic multiple testing

As Cournot lucidly explained, it is difficult to impossible to judge whether an
extreme deviation is attributable to chance when a statistician discovers it by
searching across different ways of analyzing a body of data. A statistician who
remembers everything he or she has tried may be able to judge how much the
significance of the striking result finally found should be discounted. Others
are in the dark. Nowadays we call this “publication bias”: tests that do not
produce statistically significant results are not published [33, 61].
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In today’s competitive research communities, including the community of
empirical financial economics as Harvey and Ohlson describe it, the evaluation
of statistical results is even more difficult than in Cournot’s time. The quest for
striking results is pursued by numerous individuals or teams who do not observe
each other’s searches, and so no one really knows the extent of the search. As
consumers of such research, we must nevertheless evaluate its significance as
best we can. This may involve modeling the extent of the search, even if the
modeling only formalizes rather than mitigating our uncertainty.

Accounting for multiple testing is one aspect of the larger enterprise of com-
bining multiple studies or sources of evidence. In recent decades, this enterprise
has often been called meta-analysis in science and data fusion in various fields
of technology.18 The analyses by Harvey, Liu, and Zhu in [30] are impressive
and informative examples of meta-analysis. I will not attempt a general dis-
cussion of meta-analysis or data fusion here, but I will look at how Cournotian
testing, understood game-theoretically as explained in the preceding section,
can be used to combine or otherwise evaluate multiple p-values.

As consumers of research, we can evaluate p-values p1, . . . , pn game-
theoretically without actually betting. As when we adjust a single p-value,
the bet can be imaginary. But the evaluation will be convincing (to ourselves
and others) only if we have decided how to bet (or imagine betting) in advance
of seeing the actual p-values. In practice, because we are likely to see p-values
before we think about combining them, this means we need general policies for
how to bet on multiple p-values. Ideally, these policies should lead to rules as
simple as the rule just proposed for adjusting a single p-value, the truncated
square-root rule.

We can confront p-values resulting from multiple tests with two different
questions:

1. To what extent does the evidence as a whole refute the hypothesis being
tested? Or, more generally, in the case where different hypotheses were
being tested, to what extent does the evidence indicate that at least one
of the hypotheses is false?

2. If different hypotheses were being tested, to what extent does the evidence
as a whole refute the particular hypothesis tested by the p-value that came
out the smallest? Or some group of hypotheses for which tests produced
relatively low p-values?

I will consider these two questions in turn.

4.1 Testing the same hypothesis multiple times

Suppose a hypothesis is tested n times, by one or multiple researchers. The
results are reported as p-values: p1, . . . , pn. How might a consumer of this
research evaluate the overall evidence against the hypothesis?

18A number of authors, including Hedges and Olkin [31], O’Rourke [44], and Borenstein et
al. [4], have discussed the history of meta-analysis before the invention of the name. The term
data fusion encompasses Bayesian and Dempster-Shafer methods [46].
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4.1.1 One p-value from many

A crude but frequently used way of obtaining a single p-value from p-values
p1, . . . , pn is to take their minimum and multiply by n. To see that this produces
a p-value, note that because the probability of the union of a finite number of
events is always less than or equal to the sum of their probabilities,

P

(
min

1≤i≤n
Pi ≤ p

)
= P

(
n⋃
i=1

{Pi ≤ p}

)
≤

n∑
i=1

P (Pi ≤ p) ≤ np,

where Pi is the p-variable that produced the p-value pi. It follows that

P

(
n min

1≤i≤n
Pi ≤ p

)
≤ p.

In other words, nmin1≤i≤n Pi is a p-variable and hence its value, say

p := n min
1≤i≤n

pi, (15)

is a p-value. Let us call nmin1≤i≤n Pi Bonferroni’s p-variable and (15) Bonfer-
roni’s p-value.19

Another equally general way of obtaining a single p-value from p-values
p1, . . . , pn is to take twice their average:

p := 2

∑n
i=1 pi
n

. (16)

See [60] for a proof that this is a p-value.
From a game-theoretic point of view, we can treat the p-value (15) like

any other. If we come to the data with the policy of testing at a particular
significance level α, then we say that the hypothesis is discredited at level α if
p ≤ α. If instead we come to the data with the policy of betting on the p-value
using the truncated square-root rule, then we can say that the hypothesis is
discredited at level

√
p/10/(1−

√
10p) if p ≤ 0.10.

If the n p-variables P1, . . . , Pn are based on different data sets, then it may
be reasonable to assume that they are independent, and in this case the product
P1 · · ·Pn may be a more efficient test statistic. If the test statistics have continu-
ous probability distributions under the hypotheses, so that the Pi are uniformly
distributed on [0, 1] (see (3) in Section 1.2.1), then as R. A. Fisher pointed out
in [17], their independence implies that − ln(P1 · · ·Pn) has a chi-square distribu-
tion with n degrees of freedom. We can take this as our test-statistic and treat
its p-value game-theoretically. This method is usually more efficient than bet-
ting on the Bonferroni p-variable, and it will be valid even if the test statistics

19The English logician and philosopher George Boole (1815–1865) is often cited for having
noticed that the probability of a disjunction does not exceed the sum of the probabilities of
the disjuncts. But the Italian mathematician Carlo Bonferroni (1892–1960), who adduced
more general inclusion/exclusion inequalities, is usually cited when this inequality is used in
significance testing.
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do not have continuous distributions, provided they are independent. But the
assumption of independence is not generally applicable to financial economics,
where different tests are often based on overlapping data.

When we cannot assume that the Pi are independent, is there some other
function of the p-values that is more powerful than Bonferroni’s p-variable—
i.e., that consistently discredits the hypothesis more strongly when the pi are
small? Generally not. In principle, we could replace the minimum by any other
function of the pi, say T (p1, . . . , pn), that is small when the pi are small, and
define a p-value by

{p-value from observing T = t} := sup{P(T (P1, . . . , Pn) ≤ t)},

where the supremum is over all joint probability distributions P for P1, . . . , Pn
that satisfy P(Pi ≤ p) ≤ p for p ∈ [0, 1] and i = 1, . . . , n. But in general this
supremum will be difficult to calculate and often be too large to be interesting.
Experts on meta-analysis usually prefer, when possible, to leave aside the idea of
combining p-values and try instead to combine the test statistics that produced
them [31].

4.1.2 Multiple bets

The game-theoretic picture gives us another option. Instead of considering a
test statistic T (P1, . . . , Pn) and betting on its p-variable, we can bet on each of
the p-variables P1, . . . , Pn and combine the bets.

Here is one policy of this type:

1. Choose a significance level α that we will use whenever we want to combine
multiple p-values for the same hypothesis.

2. When the number of p-values we are combining is n, bet $ 1
n on Pi ≤ α

for i = 1, . . . , n.

This multiplies the dollar we risk by

N

nα
, where N is the number of Pi satisfying Pi ≤ α. (17)

The expected value of N under the hypothesis being nα or less, we expect some
rejections but do not expect the test score (17) to be much greater than 1.

An alternative policy would fix a nominal level α that we will use whenever
we combine p-values but vary the level for testing each p-variable with n, per-
haps taking it to be α/n or α/

√
n. If the policy is to spread one dollar equally

over the n p-variables and to test each at level α/n, then we will multiply the
dollar we risk by

N

α
, where N is the number of Pi satisfying nPi ≤ α. (18)

The expected value of N under the hypothesis now being α or less, we are less
likely to see any individual p-values rejecting the hypothesis. As with the test
score (17), we do not expect the text score (18) to be much greater than 1.
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The test score (18) can be compared with the test score obtained by test-
ing the Bonferroni p-variable nmin1≤i≤n Pi at level α. Risking one dollar on
nmin1≤i≤n Pi ≤ α returns $N/α when N = 0 or 1 but only $1/α when N ≥ 2.
As this is less than or equal to (18), we can say that the Bonferroni p-variable
is unnecessarily conservative from the game-theoretic point of view.

Another of the infinitely many possible policies for combining p-values is to
bet on each of the n p-variables using the truncated square-root rule. Again
distributing one dollar uniformly over the n p-variables, this produces the test
score

1

n

∑
1≤i≤n
pi≤0.10

(√
10

pi
− 10

)
. (19)

4.2 Testing multiple hypotheses

Now we come to our second question. In the case where p-values p1, . . . pn result
from tests of different hypotheses (or perhaps different aspects of a hypothesis)
to what extent does the success of our betting discredit particular hypotheses
(or particular aspects)? Can we lay the whole of the discredit at the door of the
particular hypothesis that produced the smallest p-value? Surely not. But can
we not say something about how much this particular hypothesis is discredited?

A positive response seems to require an extension of the basic principle of
game-theoretic testing, the principle that success in betting using odds given
by a hypothesis is evidence against the hypothesis. The extended principle says
that when we spread our money over bets against different hypotheses, we can
count the dollars returned by bets against particular hypotheses as evidence
against them, but that we must take account of how much money we risked
altogether in evaluating the weight of this evidence. If we accept this extended
principle, we can use the following definition:

Extended game-theoretic testing principle. Suppose we dis-
tribute one dollar over a set H of probabilistic hypotheses, betting
the amount assigned to hypothesis h ∈ H at odds given by h. For
each subset A of H, let TA be the total winnings in dollars of the
bets for hypotheses in A. We call TA the test score for A.

When using this concept of a test score, we think of the observed value t of TA
as a measure of evidence against the assertion that all the hypotheses in A are
true, and we think of this assertion as being discredited at significance level 1/t.

Suppose for example, that H contains n hypotheses, and each hypothesis
h ∈ H has been tested, producing a p-value ph. Then if we spread one dollar
over the n hypotheses and apply the truncated square-root rule to each p-
variable, then for each we obtain a test score against each hypothesis h ∈ H
of

T{h} =

{
1
n

(√
10
ph
− 10

)
if ph ≤ 0.10

0 if ph > 0.10
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Notice the discounting due to the fact that we had bet against n − 1 other
hypotheses in addition to h before focusing on h; had we decided before seeing
the p-values to test only h using its p-value ph, then our test score against it
would have been n times as large. Notice also that TH , the test score against
the assertion that all n hypotheses are true, is (19).

The extended game-theoretic testing principle can also be used when the
hypothesis space H is continuous, and it can be used to produce systems of
game-theoretic scored intervals, analogous to the confidence intervals and con-
fidence distributions derived from the Neyman-Pearson theory [62].
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[19] Maurice Fréchet. Les mathématiques et le concret. Presses Universitaires
de France, Paris, 1955. 13

[20] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. Bayesian Data Analysis. CRC Press, Boca
Raton, third edition, 2013. 13

25



[21] Andrew Gelman and Cosma Rohilla Shalizi. Philosophy and practice of
Bayesian statistics. British Journal of Mathematical and Statistical Psy-
chology, 66:8–38, 2013. 13

[22] Irving J. Good. Probability and the Weighing of Evidence. Hafner, 1950.
10

[23] Irving J. Good. The surprise index for the multivariate normal distribution.
Annals of Mathematical Statistics, 27(4):1130–1135, 1956. 10

[24] Steven N. Goodman. p values, hypothesis tests, and likelihood: Implica-
tions for epidemiology of a neglected historical debate. American Journal
of Epidemiology, 137(5):485–495, 1993. 4

[25] Steven N. Goodman. Of P-values and Bayes: A modest proposal. Epidemi-
ology, 12:295–297, 2001. 4

[26] Prakash Gorroochurn. Classic Topics on the History of Modern Mathemat-
ical Statistics from Laplace to More Recent Times. Wiley, New York, 2016.
3, 4

[27] Trygve Haavelmo. The probability approach to econometrics. Economet-
rica, 12(Supplement):1–115, 1944. 6

[28] Anders Hald. A History of Mathematical Statistics from 1750 to 1930.
Wiley, New York, 1998. 3

[29] Campbell R. Harvey. The scientific outlook in financial economics. Techni-
cal report, Duke University, 2017. http://dx.doi.org/10.2139/ssrn.2893930.
4, 7, 10, 11, 24

[30] Campbell R. Harvey, Yan Liu, and Heqing Zhu. . . . and the cross-section of
expected returns. The Review of Financial Studies, 29(1):5–68, 2016. 19,
20, 24

[31] Larry V. Hedges and Ingram Olkin. Statistical Methods for Meta-Analysis.
Academic Press, Orlando, 1985. 20, 22

[32] David Howie. Interpreting Probability: Controversies and Developments
in the Early Twentieth Century. Cambridge University Press, Cambridge,
2002. 7

[33] John P. A. Ioannidis. Why most research findings are false. PLOS Medicine,
2(8):696–701, 2005. 19

[34] Harold Jeffreys. Some tests of significance, treated by the theory of prob-
ability. Mathematical Proceedings of the Cambridge Philosophy Society,
31:203–222, 1935. 8

[35] Harold Jeffreys. Theory of Probability. Oxford University Press, Oxford,
1939. Second edition 1948, third 1961. 8, 12

26



[36] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the
American Statistical Association, 90:773–795, 1995. 10

[37] John Maynard Keynes. A Treatise on Probability. Macmillan, London,
1921. 10
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[39] Paul Lévy. Calcul de probabilités. Gauthier-Villars, Paris, 1925. 14

[40] Donald A. MacKenzie. Statistics in Britain 1865–1930. Edinburgh Uni-
versity Press, Edinburgh, 1981. 4

[41] Denton E. Morrison and Ramon E. Henkel, editors. The Significance Test
Controversy–A Reader. Aldine, Chicago, 1970. 6

[42] Jerzy Neyman. Indeterminism in science and new demands on statisticians.
Journal of the American Statistical Association, 55:625–639, 1960. 6

[43] Jerzy Neyman and Egon S. Pearson. On the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal So-
ciety (A), 36:289–337, 1933. 6

[44] Keith O’Rourke. A historical perspective on meta-analysis: dealing quan-
titatively with varying study results. Journal of the Royal Society of
Medicine, 100(12):579–582, 2007. 20

[45] Thomas Sellke, J. J. Bayarri, and James O. Berger. Calibration of p values
for testing precise null hypotheses. The American Statistician, 55(1):62–71,
2001. 11

[46] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, NJ, 1976. 10, 20

[47] Glenn Shafer. Bayes’s two arguments for the rule of conditioning. Annals
of Statistics, 10:1075–1089, 1982. 7

[48] Glenn Shafer. Lindley’s paradox. Journal of the American Statistical As-
sociation, 77:325–334, 1982. 9

[49] Glenn Shafer. From Cournot’s principle to market efficiency, March 2006.
GTP Working Paper 15. Published as Chapter 4 of: Jean-Philippe Touf-
fut, editor, Augustin Cournot: Modelling Economics. Edward Elgar, Chel-
tenham, UK, 2007. 1, 14

[50] Glenn Shafer. Cournot in English, April 2017. GTP Working Paper 48. 1

27



[51] Glenn Shafer, Alexander Shen, Nikolai Vereshchagin, and Vladimir Vovk.
Test martingales, Bayes factors, and p-values, 2010. GTP Working Paper
33. A version with the color missing from the figures appeared in Statistical
Science 26:84–101, 2011. 2, 19

[52] Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a
Game! Wiley, New York, 2001. 14, 15

[53] Glenn Shafer and Vladimir Vovk. The sources of Kolmogorov’s Grundbe-
griffe. Statistical Science, 21:70–98, 2006. 28

[54] Glenn Shafer and Vladimir Vovk. The origins and legacy of Kolmogorov’s
Grundbegriffe, April 2013. GTP Working Paper 4. Abridged version pub-
lished as “The sources of Kolmogorov’s Grundbegriffe” [53]. 14

[55] Stephen M. Stigler. The History of Statistics: The Measurement of Uncer-
tainty before 1900. Harvard University Press, Cambridge, MA, 1986. 3, 4,
7, 10

[56] Stephen M. Stigler. Laplace’s 1774 memoir on inverse probability. Statis-
tical Science, 1(3):359–378, 1986. 7

[57] Stephen M. Stigler. Statistics on the Table: The History of Statistical
Concepts and Methods. Harvard University Press, Cambridge, MA, 1999.
6

[58] Stephen M. Stigler. The Seven Pillars of Statistical Wisdom. Harvard
University Press, Cambridge, MA, 2016. 7

[59] Vladimir Vovk. A logic of probability, with applications to the foundations
of statistics (with discussion). Journal of the Royal Statistical Society B,
55(2):317–351, 1993. 11

[60] Vladimir Vovk. Combining p-values via averaging. https://arxiv.org/

abs/1212.4966v2, 2012. 21

[61] Ronald L. Wasserstein and Nicole A. Lazar. The ASA’s statement on
p-values: context, process, and purpose. The American Statistician,
70(2):129–133, 2016. 19

[62] Min-ge Xie and Kesar Singh. Confidence distribution, the frequentist distri-
bution estimator of a parameter: A review (with discussion). International
Statistical Review, 81(1):3–77, 2013. 24

[63] George Udny Yule. An Introduction to the Theory of Statistics. Griffin,
London, first edition, 1911. 4

[64] Stephen T. Ziliak and Deirdre N. McCloskey. The Cult of Statistical Signifi-
cance: How the Standard Error Cost Us Jobs, Justice, and Lives. University
of Michigan Press, Ann Arbor, 2008. 6

28

https://arxiv.org/abs/1212.4966v2
https://arxiv.org/abs/1212.4966v2

	Cournot's principle and Cournotian testing
	When is a deviation attributable to chance?
	The concept of a p-value
	Composite hypotheses
	The venerability of p-values

	The concept of a significance level
	Neyman-Pearson vs. p-values
	Efficient test statistics

	Are p-values and significance levels frequentist?

	The Bayesian challenge to Cournot's principle
	Jeffreys's Bayesian significance test
	Bayes factors
	Why omit a statistically significant variable?
	Reconciling Bayes with Cournot's principle

	Game-theoretic Cournotian testing
	General game-theoretic testing
	Offering bets vs. selecting from offered bets
	Game-theoretic adjustment of p-values
	The truncated square-root rule
	Gambling on p-variables more abstractly


	Game-theoretic multiple testing
	Testing the same hypothesis multiple times
	One p-value from many
	Multiple bets

	Testing multiple hypotheses

	Acknowledgements
	References

