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Abstract

This paper studies a non-stochastic version of Fernholz’s stochastic portfolio
theory for a simple model of stock markets with continuous price paths. It es-
tablishes non-stochastic versions of the most basic results of stochastic portfolio
theory and discusses connections with Stroock–Varadhan martingales.
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1 Introduction

Fernholz’s stochastic portfolio theory [3, 4, 5], as its name suggests, depends on
a stochastic model of stock prices. This paper proposes a non-stochastic version
of this theory based on the framework of [16] (see the end of this section for a
brief discussion of its relation to [13]).

A key finding (see, e.g., [3, Section 4], [4, Chapters 2 and 3], [5, Section 7]) of
stochastic portfolio theory is that, under certain simplifying assumptions, there
is a long-only portfolio that outperforms the capital-weighted market portfolio.
The principal aim of this paper is to give a simple non-stochastic formalization
of this phenomenon.

Section 2 defines our model of a stock market and gives a very simple result
that can be interpreted as the possibility of beating the market. The main
technical tool of this section is non-stochastic Stroock–Varadhan martingales.
We call the picture of the market painted in this section “additive”, following
the terminology of [8, 6] (but using it more widely and perhaps occasionally
abusing it). Section 3 is devoted to Fernholz martingales, which are the non-
stochastic counterpart of the “master equation” of stochastic portfolio theory,
including such interesting special cases as the entropy-weighted portfolio (as in
[3, Theorem 4.1] and [4, Theorem 2.3.4]) and diversity-weighted portfolios ([4,
Example 3.4.4], [5, Section 7], going back to at least [2]). Fernholz martingales
can be considered a boosted version of Stroock–Varadhan martingales, and the
relation between Stroock–Varadhan martingales and Fernholz martingales is
somewhat analogous to the relation between the additive Bachelier formula [14,
Section 11.2] and the multiplicative Black–Scholes formula [14, Section 11.3]
in option pricing. Both Section 2 and Section 3 give ways of “beating the
market”, and Section 4 complements them with a very different method, with
some critical comments given in Section 5. Section 6 gives a finance-theoretic
version of Jeffreys’s law, introduced in a different context by Philip Dawid: two
very successful stocks should have very similar price paths. Section 7 lists some
directions of further research. Finally, Appendix A introduces a complementary
“multiplicative” picture of financial markets, including non-stochastic notions
of a portfolio’s value and its excess growth component; they are not important
for the main part of the paper but might be more familiar to some readers.

This version of the paper is not self-contained: it uses the definitions and
notation of [16] (it also uses the definitions and notation of [4] and [5], but those,
however, will always be repeated).

Another paper treating stochastic portfolio theory in a pathwise manner is
[13]. However, that paper relies on some assumptions that are not justified by
economic considerations:

• it postulates a suitable “refining sequence of partitions”;

• it postulates the existence of a continuous covariation between each pair
of price paths w.r. to this refining sequence of partitions (in Föllmer’s [7]
sense);
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• a possible extension to non-smooth portfolio generating functions (as in [4,
Chapter 4]) would require postulating the existence of local times (perhaps
along the lines of [17]).

2 Stroock–Varadhan martingales

The notation
∫
X dY is used for the process whose value at time t is∫ t

0
X(s) dY (s), both for Itô and Lebesgue–Stieltjes integration. The brack-

ets [. . .] always signify quadratic variation and are never used in the role of
parentheses. The abbreviations “q.a.” and “ucqa” stand for “quasi always” and
“uniformly on compacts quasi always”; see [16] for definitions.

We consider a financial market in which J idealized securities, referred to
as stocks, are traded; their price paths Sj : [0,∞) → (0,∞), j = 1, . . . , J , are
assumed to be continuous functions, and they never pay dividends. As in [16,
Section 4], we fix a sufficiently rich language for defining sequences of partitions;
all notions of non-stochastic Itô calculus used in this paper (such as Itô integral
and Doléans exponential and logarithm) are relative to this language.

For convenience, we identify Sj(t) with the total market capitalization of the
jth stock at time t ∈ [0,∞). The total capitalization of the market is defined as
the process

S(t) :=

J∑
j=1

Sj(t), t ∈ [0,∞),

and the market weight of the jth stock is

µj(t) := Sj(t)/S(t), j = 1, . . . , J.

We take the total capitalization of the market as our numéraire, which allows us
to regard µ1, . . . , µJ , 1 as the traded securities (cf. [16, Section 9]), the first J of
them being just like our original securities Sj but constrained by µ1+ · · ·+µJ =
1. (In fact, the original securities Sj will never be used explicitly in the rest
of this paper apart from an informal remark and Section 6.) To avoid any
ambiguity, we will sometimes refer to a market weight µj as a unit of µj ; the
price of this security at time t is µj(t).

Let ∆J be the interior of the standard simplex in RJ ,

∆J :=
{
x = (x1, . . . , xJ) ∈ (0, 1)J | x1 + · · ·+ xJ = 1

}
(so that the market weights (µ1, . . . , µJ) take values in ∆J), and let f be a C2

function defined on an open neighbourhood dom f of ∆J in RJ . For any such
function we let Dj stand for its jth partial derivative,

Djf(x) =
∂f

∂xj
(x), x = (x1, . . . , xJ) ∈ dom f,

and Dij stand for its second partial derivative in xi and xj ,

Dijf(x) =
∂2f

∂xi∂xj
(x).
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The non-stochastic Itô formula [16] implies that

f(µ(t))−f(µ(0))− 1

2

J∑
i,j=1

∫ t

0

Dijf(µ) d[µi, µj ] =

J∑
j=1

∫ t

0

Djf(µ) dµj q.a., (1)

and so the left-hand side of (1) is a continuous martingale, which we will refer
to as the Stroock–Varadhan martingale generated by f [9, (5.4.2)]; it is a non-
stochastic version of the classical martingales used by Stroock and Varadhan in
their study of diffusion processes.

For a positive constant A, we define a stopping time τA by

τA := min

t |
J∑
j=1

[µj ](t) = A

 . (2)

We say that the market is active if
∑
j [µj ](t) → ∞ as t → ∞; equivalently, if

τA <∞ for all A. In this section we will see a very simple instance of the central
phenomenon of stochastic portfolio theory: one can beat an active market.

Setting

f(x) := −1

2

J∑
j=1

x2j , (3)

we can rewrite the continuous martingale on the left-hand side of (1) as

Y (t) :=
1

2

J∑
j=1

µj(0)2 − 1

2

J∑
j=1

µj(t)
2 +

1

2

J∑
j=1

[µj ](t) ≥ −
1

2
+

1

2

J∑
j=1

[µj ](t);

therefore, X := 2Y +1 is a nonnegative continuous martingale satisfying X(0) =
1 and

X(τA) ≥ A, (4)

with convention that X(∞) :=∞.
Performance guarantees such as (4) are often referred to as arbitrages in

stochastic portfolio theory. They cease to be arbitrages in non-stochastic theory,
since the market activity is not part of our model.

The trading strategy that achieves (4) can be computed from the right-hand
side of (1) using the definition (3): starting from initial capital of 1, we should
hold −µj(t) units of µj(t) at time t (therefore, taking a short position in µj).
The reader should remember that such representations of trading strategies are
not unique: they ignore the amount invested in the market as a whole; e.g.,
increasing the number of units of µj by 1 for all j does not affect the capital
process (since

∑
j µj = 1).

The papers [8] and [6] study the additive picture based on the notion of
Stroock–Varadhan martingales in depth within the framework of stochastic
portfolio theory. In particular, they give numerous interesting examples (in-
cluding (3)).
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3 Boosting Stroock–Varadhan martingales

Stroock–Varadhan martingales allow us to beat active markets but the growth
rate of the right-hand side of (4) in A is linear, whereas an interesting growth
rate would be exponential. This section discusses a way of boosting the
growth rate of Stroock–Varadhan martingales using the non-stochastic notion
of Doléans exponential E defined in [16]. We will need the standard equality
[16, Section 7]

E(X) = exp(X − [X]/2) q.a. (5)

Let S be a C2 positive function defined on an open neighbourhood of ∆J

in RJ . Remember that we are using the terminology of [16]. The following is a
non-stochastic version of a basic result of stochastic portfolio theory (see, e.g.,
[4, Theorem 3.1.5]).

Theorem 1. The continuous process

S(µ(t))

S(µ(0))
exp

−1

2

J∑
i,j=1

∫ t

0

DijS(µ)

S(µ)
d[µi, µj ]

 (6)

is a continuous martingale.

We will refer to (6) as the Fernholz martingale generated by S.

Proof. Let us check that the Fernholz martingale (6) is the Doléans exponential
of the Stroock–Varadhan martingale on the left-hand side of (1) for f := ln S.
Indeed, applying (5) gives the Doléans exponential

S(µ(t))

S(µ(0))
exp

(
−1

2

J∑
i,j=1

∫ t

0

Dijf(µ) d[µi, µj ]

− 1

2

J∑
i,j=1

∫ t

0

Dif(µ)Djf(µ) d[µi, µj ]

)

of the left-hand side of (1), which is equal, by the identity

Dijf =
DijS

S
− DiS

S

DjS

S
=
DijS

S
−DifDjf,

to (6).

Let us now find explicitly a trading strategy whose capital process is (6).
The Doléans exponential Y = E(X) satisfies the equation

Y (t) = Y (0) +

∫ t

0

Y dX
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[16, Remark 7.2], and so the number of units of µj held by the Fernholz mar-
tingale is equal to the current capital times the number

Dj ln S(µ) (7)

of units of µj held by the corresponding Stroock–Varadhan martingale. Taking
into account the fraction of the current capital that is not invested (i.e., held in
the market as a whole), we obtain that the fraction of the current capital held
in µj is

πj :=

(
Dj ln S(µ) + 1−

J∑
k=1

µkDk ln S(µ)

)
µj . (8)

The main part of the expression in the parentheses is (7); the rest is simply the
normalizing constant c = c(µ) making (Dj ln S(µ) + c)µj sum to 1 over j (c is
a constant in the sense of not depending on j). The factor µj in (8) turns the
number of units of µj into the capital invested in µj .

Next we consider three standard special cases of the general formula (6) for
Fernholz martingales. A positive C2 function S defined on an open neighbour-
hood of ∆J is a measure of diversity if it is symmetric and concave. All three
special cases will be generated by measures of diversity.

3.1 Fernholz’s arbitrage opportunity

In [4, Section 3.3], Fernholz describes an arbitrage opportunity for his stochastic
model of the market. Now we are interested in the measure of diversity

S(x) := 1− 1

2

J∑
j=1

x2j (9)

(cf. (3)). Theorem 1 gives the following non-stochastic version of [4, Exam-
ple 3.3.3].

Corollary 2. The Fernholz martingale generated by (9) is

S(µ(t))

S(µ(0))
exp

1

2

J∑
j=1

∫ t

0

d[µj ](s)

S(µ(s))

 . (10)

Proof. It suffices to plug DijS(x) = −1i=j in (6).

A slightly cruder but simpler version of Corollary 2 is:

Corollary 3. The Fernholz martingale Z generated by (9) satisfies

Z(t) ≥ 1

2
exp

1

2

J∑
j=1

[µj ](t)

 . (11)
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Proof. It suffices to notice that S ∈ [1/2, 1].

By (8), in the case of the measure of diversity (9) the fraction of the current
capital held in µj is

πj =

(
2− µj
S(µ)

− 1

)
µj . (12)

This portfolio is particularly tame (or admissible, in Fernholz’s [4, Section 3.3]
terminology): it is long-only, it never loses more than 50% of its value relative
to the market portfolio (by (11)), and it never invests more than 3 times more
than the market portfolio in any of the stocks.

A possible interpretation of Corollary 3 is based on the efficient market hy-
pothesis in the form that was so forcefully advocated in the bestseller [11] by
Burton G. Malkiel; for him, “the strongest evidence suggesting that markets are
generally quite efficient is that professional investors do not beat the market.”
Even if there are ways to beat the market, it is often believed that they should
involve something unusual rather than merely simple portfolios such as (12),
(15), or (18) (widely known since at least 2002). According to this interpreta-
tion, Corollary 3 implies that in efficient markets we expect market variation to
die down eventually.

If we believe that the variation in our stock market will never die down,
we are forced to admit that Corollary 3 “opens the door to superior long-term
investment returns through disciplined active investment management” [10, Sec-
tion 1.3]. This is the interpretation on which typical practical applications of
stochastic portfolio theory are based (see, e.g., [2], which, however, is based on
the stochastic versions of Corollaries 5 and 6 rather than Corollary 3).

Corollary 3 is a cruder version of Corollary 2 that replaces the first factor
in (10) by its lower bound and the denominator in the second factor by its
upper bound. Corollary 2 is more precise in that it decomposes the growth
in the portfolio’s value into two components: one related to the growth in the
diversity S(µ) of the market weights and the other related to the accumulation
of the variation of the market weights.

Notice that (11) in Corollary 3 implies

Z(τA) ≥ 1

2
eA/2 q.a., (13)

where A is a positive constant, τA is defined by (2), and Z(∞) :=∞.
Now we have two methods for achieving the same qualitative goal, X(τA)→

∞ as A → ∞. Quantitatively the additive result (4) appears weaker: it does
not feature the exponential growth rate in A. However, there is a range of
A (roughly between 0.7 and 4.3) where the Stroock–Varadhan martingale X
performs better: see Figure 1 (the green slightly concave function should be
ignored for now).
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Figure 1: The values of the Fernholz martingale Z (red convex function), the
Stroock–Varadhan martingaleX (blue linear function), and the Dubins–Schwarz
martingale X (green concave function) at time τA; the horizontal axis is labelled
by the values of A

3.2 Entropy-weighted portfolio

The archetypal measure of diversity [4, Examples 3.1.2 and 3.4.3] is the entropy
function

S(x) := −
J∑
j=1

xj lnxj . (14)

Using (8), the components of the corresponding entropy-weighted portfolio can
be computed as

πj = −µj lnµj
S(µ)

. (15)

This portfolio is also long-only. Theorem 1 now gives the following corollary (a
non-stochastic version of [4, Theorem 2.3.4]).

Corollary 4. The Fernholz martingale generated by (14) is

S(µ(t))

S(µ(0))
exp

1

2

J∑
j=1

∫ t

0

d[µj ]

µjS(µ)

 ≥ S(µ(t))

ln J
exp

 1

2 lnJ

J∑
j=1

[µj ](t)

 . (16)

Proof. For the equality in (16), it suffices to plug DijS(x) = −1i=j /xj into (6).
For the inequality, use S ≤ ln J and µj ∈ (0, 1).

It is standard in stochastic portfolio theory to assume both that the mar-
ket does not become concentrated, or almost concentrated, in a single stock
and that there is a minimal level of stock volatility; precise versions of these
assumptions are referred to as diversity and non-degeneracy, respectively. For
the purpose of this paper it will be convenient to replace non-degeneracy by
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activity,
∑
j [µj ](∞) = ∞. The inequality in Corollary 4 can be interpreted as

saying that we can beat the market unless it loses its activity or degenerates.
Corollary 3 says that, in fact, the condition of non-degeneracy alone is suffi-
cient, but Corollary 4 relies on both assumptions, activity and non-degeneracy.
If the market maintains its diversity, we expect the first factor on the right-
hand side of (16) to stay bounded below, and if, in addition, the market stays
active, we expect the second factor to grow exponentially fast. As a result, the
entropy-weighted portfolio outperforms the market.

3.3 Diversity-weighted portfolios with parameter p

Fix p ∈ (0, 1). Define the measure of diversity with parameter p ∈ (0, 1) [4,
Example 3.4.4] as

Dp(x) :=

 J∑
j=1

xpj

1/p

. (17)

By (8), the corresponding p-diversity-weighted portfolio has positive components

πj(t) :=
µj(t)

p∑J
i=1 µi(t)

p
. (18)

The following corollary is a non-stochastic version of [4, Example 3.4.4].

Corollary 5. The Fernholz martingale generated by (17) is

Dp(µ(t))

Dp(µ(0))
exp
(
(1− p)Γ∗π(t)

)
, (19)

where

Γ∗π =
1

2

J∑
j=1

∫
πj d[lnµj ]−

1

2

 J∑
j=1

∫
πj d lnµj

 . (20)

The term Γ∗π defined by (20) will be referred to as the excess growth term.

Proof. Evaluating DijDp, we can rewrite (6) as

Dp(µ(t))

Dp(µ(0))
exp

(
1− p

2

∑
j

∫ t

0

µp−2j

(∑
k

µpk

)−1
d[µj ]

+
p− 1

2

∑
i,j

∫ t

0

(µiµj)
p−1

(∑
k

µpk

)−2
d[µi, µj ]

)

=
Dp(µ(t))

Dp(µ(0))
exp

(
1− p

2

(∑
j

∫ t

0

πj
d[µj ]

µ2
j

−
∑
i,j

∫ t

0

πiπj
d[µi, µj ]

µiµj

))
,

which is equal to (19).
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Corollary 5 immediately implies:

Corollary 6. The Fernholz martingale Z generated by (17) satisfies

Z(t) ≥ J−(1−p)/p exp
(
(1− p)Γ∗π(t)

)
. (21)

Proof. Since Dp ∈ [1, J (1−p)/p], we have

Dp(µ(t))

Dp(µ(0))
≥ J−(1−p)/p

(cf. [5, (7.6)]); plugging this into (19) gives (21).

To see the intuition behind Corollaries 5 and 6, we will interpret twice the
excess growth term (20),

2Γ∗π(t) =

J∑
j=1

∫ t

0

πj d[lnµj ]−

 J∑
j=1

∫
πj d lnµj

 (t)

as a kind of variance. Define (using our fixed language) a sequence of partitions
T 1, T 2, . . . that is fine for all processes used in this paper and set, for a given
partition Tn = (Tnk )∞k=0,

µj,k := µj(T
n
k ∧ t), k = 0, 1, . . . ,

∆ lnµj,k := lnµj,k − lnµj,k−1, k = 1, 2, . . . ,

πj,k := π(µj,k), k = 0, 1, . . . ,

with the dependence on n suppressed. We can then regard

2Γ∗,nπ (t) :=

∞∑
k=1

J∑
j=1

πj,k−1(∆ lnµj,k)2 −
∞∑
k=1

 J∑
j=1

πj,k−1∆ lnµj,k

2

(22)

as the nth approximation to 2Γ∗π(t); it can be shown that

2Γ∗,nπ (t)→ 2Γ∗π(t) ucqa.

Rewriting (22) as

2Γ∗,nπ (t) =

∞∑
k=1

J∑
j=1

πj,k−1

(
∆ lnµj,k −

J∑
i=1

πi,k−1∆ lnµi,k

)2

, (23)

we can see that this expression is the cumulative variance of the logarithmic
returns ∆ lnµj,k over the time interval [Tnk−1 ∧ t, Tnk ∧ t] w.r. to the “portfolio
probability measure” Q({j}) := πj,k−1.

As already alluded to in Section 3, the stochastic versions of Corollaries 5
and 6 have been used for active portfolio management [2]. The remarks made
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above about the relation between Corollaries 2 and 3 are also applicable to
Corollaries 5 and 6; the latter replaces the first factor in (19) by its lower bound.
Corollary 5 decomposes the growth in the value of the diversity-weighted port-
folio into two components, one related to the growth in the diversity Dp(µ) of
the market weights and the other related to the accumulation of the diversity-
weighted variance of the market weights. Corollary 6 ignores the first com-
ponent, which does not make it vacuous since Dp is bounded, always being
between 1 (corresponding to a market concentrated in one stock) and J (1−p)/p

(corresponding to a market with equal capitalizations of all J stocks).

4 Beating the market using the non-stochastic
Dubins–Schwarz theorem

In this section we will see yet another method of achieving the qualitative goal
of limA→∞X(τA) = ∞ for a nonnegative supermartingale X. The result will
be weaker than those of the previous two sections, but it will shed light on a
seemingly paradoxical feature of continuous-time game-theoretic probability.

The method uses the non-stochastic Dubins–Schwarz theorem presented in
[15] and is based on the following apparent paradox, which we first discuss in-
formally. As agreed in Section 2, we regard µ1, . . . , µJ , 1 as tradable securities.
According to the non-stochastic Dubins–Schwarz theorem and a standard prop-
erty of Brownian motion, with very high lower probability all J securities will
eventually hit zero if their volatility is appreciable. When this happens, the
normalized value of the market µ1 + · · · + µJ will be 0 rather than 1, which is
impossible. Therefore, we expect an event of a low upper game-theoretic prob-
ability to happen, i.e., we expect to be able to outperform the market. This is
formalized in the following statement:

Proposition 7. For any constant A > 0, there is a nonnegative supermartingale
X such that X(0) = 1 and

X(τA) ≥ 1.25J−3/2A1/2 q.a., (24)

where τA is the stopping time (2) and X(∞) is interpreted as ∞.

Proof. For each j ∈ {1, . . . , J}, we will construct a nonnegative supermartingale
Xj satisfying Xj(0) = 1 and

Xj(τj) ≥ 1.25(A/J)1/2 q.a., (25)

where
τj := min{t | [µj ](t) = A/J}.

(In this case we can set X to the average of all J of Xj stopped at time τj .)
According to [9, (2.6.2)], the probability that a Brownian motion started from

10



1 (in fact µj is started from µj(0) < 1) does not hit zero over the time period
A/J is

1−
√

2

π

∫ ∞
(J/A)1/2

e−x
2/2 dx =

√
2

π

∫ (J/A)1/2

0

e−x
2/2 dx ≤

√
2

π
(J/A)1/2.

In combination with the non-stochastic Dubins–Schwarz result [15, Theorem 3.1]
applied to µj , this gives (25) with√

π

2
> 1.25

in place of 1.25.

The processes X in (4) and Z in (13) are nonnegative supermartingales in
the sense of [16] (in fact, nonnegative continuous martingales). On the other
hand, the process X in (24) is a nonnegative supermartingale in the sense of the
more cautious definitions given in [15]. This can be regarded as advantage of
(24) over (4) and (13). However, a disadvantage of (24) is that quantitatively
it is much weaker than both (4) and (13); the right-hand side of (24) is always
smaller than the right-hand side of (13), and it is greater than the right-hand
side of (4) only for a small range of A (approximately A ∈ (0, 0.2) for J = 2).
See Figure 1.

5 Can we really beat the market?

Sceptics have come up with several explanations for the apparent possibility of
beating the market (idealized or real) discussed in the previous sections; let me
order some of those explanations from most theoretical to most practical.

• A common feature of the portfolios discussed in this paper that outperform
the market is increased weights of smaller stocks as compared with the
market. It is well known in stochastic portfolio theory that portfolios
generated by (8) from measures of diversity S invest into smaller stocks
more heavily than the market portfolio µ does [4, Proposition 3.4.2]. If we
model the market as an infinitely countable set of securities, those market-
beating portfolios (and perhaps even the market portfolio) will cease to
exist.

• If we restrict our attention only to J largest stocks traded in an idealized
or real-world market, for a moderately large J (such as J = 500 for S&P
500), the performance of portfolios such as (12), (15), or (18) w.r. to this
smaller “market” (which is now, in fact, a large cap market index) will be
affected by the phenomenon of “leakage” [4, Example 4.3.5 and Figure 7.5].

• If we make our model more realistic by including dividends, we will no
longer be forced to conclude that portfolios such as (12), (15), and (18)
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will beat the market. If larger companies tend to pay higher dividends,
those portfolios will be disadvantaged. As a practical matter, over the last
decades, such portfolios have indeed been adversely affected by the ten-
dency of larger companies to pay higher dividends (cf., e.g., [4, Figure 7.4],
describing the performance of an index that has been used in investment
practice). The role of differential dividend rates in maintaining market
diversity is emphasized in [3].

• If we include all stocks traded in a real-world market in our model, perhaps
making J very large (but of course still finite), portfolios (12), (15), and
(18) (particularly the last two) will not be efficient since they will be forced
to invest into smaller and so less liquid stocks.

• A standard objection from the practical point of view is that transac-
tion costs are usually ignored in stochastic portfolio theory (and we have
ignored them in our non-stochastic theory).

6 Jeffreys’s law in finance

Consider two securities and choose one of them as the numéraire. We get a
market with two securities, 1 and µ, where µ ∈ (0,∞). Setting S(µ) := µp for
p ∈ (0, 1) in (6), we obtain that

µ(t)p

µ(0)p
exp

(
−p(p− 1)

2

∫ t

0

µ−2 d[µ]

)
=

(
µ(t)

µ(0)

)p
exp

(
p(1− p)

2
[lnµ](t)

)
is a continuous martingale in the market (1, µ). Setting p := 1/2 gives us the
following corollary (where “continuous martingale” is understood in the sense
of the original market).

Corollary 8. For any two stocks S1 and S2, the process√
S1(t)S2(t) exp

(
1

8

[
ln
S1

S2

]
(t)

)
(26)

is a continuous martingale.

Corollary 8 can be interpreted as a version of the phenomenon sometimes
referred to as Jeffreys’s law in statistics: if two forecasting systems are both
successful, they should be in agreement with each other; if they are not, we
will be able to outperform greatly at least one of them (see, e.g., [1]). Indeed,
according to (26), if the stocks S1 and S2 disagree in the sense of the ratio S1/S2

being very volatile, we will be able to outperform greatly their geometric mean
and, therefore, at least one of them.
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7 Conclusion

Figure 1 gives three functions g such that a final capital of g(A) is achievable
at time τA. It would be interesting to characterize the class of such functions
g. A related question is: what is the best growth rate of g(A) as A→∞? This
question can be asked in both stochastic and non-stochastic settings. These are
some directions of further research for non-stochastic theory:

• A natural direction is to try and strip other results of stochastic portfolio
theory of their stochastic assumptions. First of all, it should be possible
to extend Theorem 1 to functions S that are not smooth (as in [4, Theo-
rem 4.2.1]); the existence of local time in a non-stochastic setting is shown
in [12] and, in the case of continuous price paths, can be deduced from
the main result of [15].

• Another direction is to extend this paper’s results to general numéraires
(this paper uses the value of the market portfolio as our numéraire).

• Finally, it would be very interesting to extend some of the results to càdlàg
price paths.
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A Multiplicative picture of financial markets

This appendix will give more familiar alternative definitions of basic notions of
(non-)stochastic portfolio theory. A basic portfolio is a continuous bounded func-

tion π : ∆J → ∆J mapping ∆J to its closure in RJ ; intuitively, it maps the cur-
rent market weights µ = (µ1, . . . , µJ) to the fractions π(µ) = (π1(µ), . . . , πJ(µ))
of the current capital invested in the J stocks. For the purposes of this paper
these very primitive Markovian portfolios would have been sufficient, since they
cover all Fernholz martingales: cf. (8).

The non-stochastic notion of Doléans logarithm L is defined, alongside
Doléans exponential, in [16]. The most useful for us interpretation of Doléans
logarithm is that L(Y ) is the cumulative return of a positive price path Y , and
Doléans exponential restores the price path from its cumulative return. The
capital process of π is the Doléans exponential

Zπ := E
(∫

π(µ) dL(µ)
)

:= E

 J∑
j=1

∫
πj(µ) dL(µj)

 = E

 J∑
j=1

∫
πj(µ)

µj
dµj

 , (27)

where µ : [0,∞)→ RJ is defined by µ(t) := (µ1(t), . . . , µJ(t)), πj(µ) : [0,∞)→
R is defined by πj(µ)(t) := πj(µ(t)), and π(µ) : [0,∞) → RJ is defined by
π(µ)(t) := (π1(µ)(t), . . . , πJ(µ)(t)). The capital process Zπ is defined and con-
tinuous quasi always.

The definition (27) involves Doléans logarithm, but stochastic portfolio the-
ory emphasizes regular logarithm (cf. the logarithmic model in [4, Section 1.1]).
On the log scale the definition (27) can be rewritten as

lnZπ = ln E

 J∑
j=1

∫
πj(µ) dL(µj)

 (28)

=

J∑
j=1

∫
πj(µ) dL(µj)−

1

2

 J∑
j=1

∫
πj(µ) dL(µj)

 (29)

=

J∑
j=1

∫
πj(µ) d lnµj +

1

2

J∑
j=1

∫
πj(µ) d[lnµj ] (30)

− 1

2

 J∑
j=1

∫
πj(µ) d lnµj

 q.a. (31)

The second equality in the chain (28)–(31) follows from (5), and the third equal-
ity in (28)–(31) follows from

L(Y ) = lnYt +
1

2
[lnY ] q.a. (32)
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(showing that the first term in (29) can be represented as (30)) and a slight
generalization of

[L(Y )] = [lnY ] q.a. (33)

(showing that the second term in (29) can be rewritten as (31)). See [16, Sec-
tion 7] for (32)–(33) (and (5), as already mentioned).

The part

Γ∗π =
1

2

J∑
j=1

∫
πj(µ) d[lnµj ]−

1

2

 J∑
j=1

∫
πj(µ) d lnµj


=

1

2

J∑
j=1

∫
πj(µ) d[lnµj ]−

1

2

J∑
i,j=1

∫
πi(µ)πj(µ) d[lnµi, lnµj ]

of (28)–(31) consisting of the last two addends was called the excess growth
term in Section 3: cf. (20); it corresponds to the cumulative excess growth rate
in stochastic portfolio theory. We can use it to summarize (28)–(31) as

lnZπ =

J∑
j=1

∫
πj(µ) d lnµj + Γ∗π q.a. (34)

The addend
∑J
j=1

∫
πj(µ) d lnµj is the naive expression for the cumulative log

growth in the value of π, and Γ∗π is the adjustment required to obtain the true
cumulative log growth. Equation (23) makes the expression (34) very intuitive:
the excess growth rate of the portfolio π over the naive expression is determined
by the volatility of the market weights w.r. to π.

A particularly important special case is that of the market portfolio, π = µ.
To understand the intuition behind the excess growth term (20) in this case, we
can rewrite 2Γ∗µ as

2Γ∗µ(t) =

J∑
j=1

∫ t

0

µj(s) d[lnµj ](s)−

 J∑
j=1

∫
µj d lnµj

 (t) (35)

=

J∑
j=1

∫ t

0

µj(s) d[lnµj ](s) =

J∑
j=1

∫ t

0

d[µj ](s)

µj(s)

≥
J∑
j=1

∫ t

0

d[µj ](s) =

J∑
j=1

[µj ](t),

where we have used the fact that the subtrahend in (35), being the quadratic
variation of a monotonic function (remember that

∑
j µj = 1), is zero. We can

see that 2Γ∗µ(t) is bounded below by the total quadratic variation of the market
weights.
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