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Abstract

In the 17th century, Blaise Pascal and Pierre Fermat proposed competing solu-
tions to the problem of points. Pascal’s was game-theoretic; he looked at the
paths play in the game might take. Fermat’s was measure-theoretic; he counted
the combinations. The duality and interplay between betting and measure has
been intrinsic to probability ever since.

In the 20th century, this duality could be seen beneath the contrasting styles
of Paul Lévy and Joseph L. Doob. Lévy’s vision was intrinsically and sometimes
explicitly game-theoretic. Intuitively, his expectations were those of a gambler;
his paths were formed by outcomes of successive bets. Doob confronted Lévy’s
intuition with the cold rigor of measure. Kiyosi Itô reconciled their visions,
clothing Lévy’s pathwise thinking in measure-theoretic rigor.

The reconciliation is now thoroughly understood in terms of measure. But
the game-theoretic intuition has been resurgent in applications to finance, and
recent work shows that the game-theoretic picture can be made as rigorous as the
measure-theoretic picture. In this rigorous game-theoretic picture, martingales
regain their identity as capital processes and are used to define the notion of
almost sure (probability one) happening and to develop a purely game-theoretic
version of Itô’s calculus. Details are provided in my forthcoming book with
Vladimir Vovk, Game-Theoretic Foundations for Probability and Finance [28].
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1 Introduction

In 1654, Blaise Pascal and Pierre Fermat proposed competing solutions to the
problem of dividing the stakes in an interrupted game, a problem that was al-
ready classical at that time.1 Two players have put up equal amounts of money.
The first to win a given number of rounds will win all the money. How should
the money be divided when play is interrupted by external circumstances? The
problem is not merely one of calculation; we must also agree on principles for
fair division.

Pascal’s solution was game-theoretic; he considered the players’ capital on
the different paths play might take. Fermat’s was measure-theoretic; he counted
cases. The duality and interplay between betting and measure has been intrinsic
to probability ever since.

In the mid-20th century, the duality between betting and measure was sym-
bolized by the contrasting visions of Paul Lévy and Joseph Doob. Lévy’s vision
was thoroughly and sometimes explicitly game-theoretic. His expectations were
those of a gambler; his paths were formed by successive outcomes in a game.
Doob confronted Lévy’s intuition with the cold precision of measure. In the early
1940s, Kiyosi Itô was able to reconcile their visions, clothing Lévy’s pathwise
thinking in measure-theoretic rigor.

Today Lévy’s picture is even more thoroughly understood in terms of mea-
sure, but the game-theoretic intuition is resurgent in applications to finance.
Recent work shows that the game-theoretic picture can be made as rigorous
as the measure-theoretic picture. Since it brings Lévy’s and Itô’s intuitions
more vividly to life, while remaining fundamentally consistent with the measure-
theoretic picture, the rigorous game-theoretic picture furthers Itô’s reconcilia-
tion of Doob and Lévy.

In this article, I review Pascal and Fermat’s arguments, the different defi-
nitions of probability to which they lead, Lévy’s game-theoretic intuition, and
Itô’s measure-theoretic elaboration of it. Then I discuss the relevance of recent
work on game-theoretic probability that is reported in depth in two books I have
co-authored with Vladimir Vovk: Probability and Finance: It’s Only a Game
(2001, [26]) and the forthcoming Game-Theoretic Foundations for Probability
and Finance [28].

2 Pascal (betting) vs. Fermat (measure)

Pascal and Fermat agreed that the division of the stakes in an interrupted game
should depend only on the possible ways the game might have continued were
it not interrupted. Suppose the two players are named Peter and Paul. When
the game is interrupted, Peter needs to win only one more round to win the

1See [25] for a review of the history of this problem in the centuries before Pascal and
Fermat. The game was usually a ball game or some other competition involving skill, not
a game of pure chance. The problem of dividing the stakes is usually called the problem of
points in English, but this can be considered a mistranslation of the French “problème des
partis”. See [16], p. 93.
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Figure 1: Game tree representing Pascal’s question to Fermat in 1654

game, but Paul needs to win two. In the story Pascal told to Fermat, each
player has put up 32 pistoles. A pistole being a gold coin with purchasing
power comparable to that of a few hundred dollars today, the total stakes of 64
pistoles was a substantial amount of money.

The game tree in Figure 1 shows what might have happened had Peter and
Paul been able to finish their game. The numbers represent how much Paul
might win: either 64 pistoles or zero pistoles. If Peter wins the first round, Paul
gets zero. If Paul wins the first round and Peter wins the second, Paul gets
zero. Paul gets the 64 pistoles only if he wins both rounds.

Pascal asked Fermat how many of the 64 pistoles should go to Paul. Fermat
answered by noting that there would be four possible outcomes if the players
played two more rounds:

1. Peter wins first; Peter wins second.

2. Peter wins first; Paul wins second.

3. Paul wins first; Peter wins second.

4. Paul wins first; Paul wins second.

Paul wins the 64 pistoles in only one of the four cases; his share is therefore 16
pistoles.

Pascal replied that the answer was correct but the argument was faulty, or
at least had proven unconvincing when he had made it to his friends, because
it was not faithful to the rules of the game. By those rules, the players would
play a second round only if Paul won the first. So there were only three ways
play could go, not four.

Pascal preferred the argument represented by Figure 2 below. If Paul won
the first game, Pascal argued, Paul would have an equal chance of winning 0 or
64, and this is worth 32. So at the outset he has an equal chance of winning 0
or a position worth 32, and this is worth 16.

Neither argument was entirely novel. Fermat’s logic of counting cases had
been widely taught in Europe since the 13th century, and Pascal’s argument
has been found in manuscripts dating from the early 15th century. But the
two arguments lead to different definitions of probability. Fermat’s argument
leads to the measure-theoretic definition developed by Maurice Fréchet, Andrei
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Figure 2: Game tree representing Pascal’s solution

Kolmogorov, Doob, and Itô [10, 9, 15]: the probability of an event A is the
total measure of the elementary events favoring A.2 Pascal’s argument leads
to a game-theoretic definition: the probability of an event A is the initial stake
needed to obtain 1 if A happens, 0 otherwise. Dividing the numbers in Figure 2
by 64, we see that we need 0.25 to get 1 if Paul wins both games.

The measure-theoretic and game-theoretic definitions are not in conflict. We
can see this by considering Markov’s inequality: if X is a nonnegative random
variable with positive expected value E(X), and c > 0, then

P{X ≥ cE(X)} ≤ 1

c
.

Because the payoff X cannot come out negative, you risk only E(X) when
you pay this amount to buy X. So the inequality says that the probability of
multiplying what you risk by c is no more than 1/c.

An event has probability zero if you can arrive at 1 when it happens risking
an arbitrarily small amount, or, equivalently, if you can arrive at ∞ risking a
finite amount. A very small probability means you can multiply the capital
risked by a very large number if the event happens. Here we are talking about
all the money you risk, not merely your own money. The capital risked includes
any line of credit on which you rely and, more generally, any money belonging
to others that you risk.

When markets are incomplete, we may have only game-theoretic upper prob-
abilities rather than game-theoretic probabilities. If no strategy delivers exactly
1 when A happens and 0 otherwise, then the upper probability of A is the initial
stake needed to obtain at least 1 when A happens and 0 otherwise. This makes
the game-theoretic definition very general.

2For a recent discussion of the counting of chances for three dice in the 13th century
poem De Vetula, see [4]. For the prehistory of Kolmogorov’s measure-theoretic axioms for
probability, see [27].
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3 Lévy on the intrinsic subjectivity of probabil-
ity

Probability can be interpreted either objectively or subjectively. The measure-
theoretic definition accommodates both interpretations and allows either to be
taken to an extreme. We can accept the measure-theoretic definition while
insisting, along with Karl Popper, that probability measures the propensity for
events to happen, with no reference to any agent or observer. We can equally
well accept it while insisting, along with Bruno de Finetti, that probability
measures only an agent’s willingness to bet, with no objective content. The
game-theoretic definition, on the other hand, has an intrinsic subjective element.
A game requires players; betting requires bettors.

Paul Lévy explicitly recognized the subjectivity of probability. Along with
Émile Borel, he contended that probability is initially subjective and can acquire
an objective status only through experience. In his 1925 book on probability
([17], p. 3), he wrote,

. . . we have taken an essentially subjective point of view. The differ-
ent cases are equally probable, because we cannot make any distinc-
tion among them.3

And in 1970 ([20], p. 206), a year before his death, he wrote,

. . . games of chance are to probability what solid bodies are to ge-
ometry, but with a difference. Solid bodies are given by nature,
whereas games of chance were created to verify a theory imagined
by the human mind, in such a way that the role of pure reason plays
an even greater role in probability than in geometry.4

In his 1925 book, Lévy developed Jacques Hadamard’s idea that probability
theory is based on two fundamental notions:

1. equally probable events (événements également probables), and

2. event of very small probability (événement très peu probable).5

Whereas the notion of equally probable events expresses probability’s subjec-
tive starting point, the notion of an event of very small probability allows us
to connect probability to objective reality: we predict that the event will not
happen. As Lévy further explained in his 1937 book ([18], p. 3),

3In the original French: . . . nous nous sommes placés au point de vue essentiellement
subjectif. Les différents cas possibles sont également probables parce que nous ne pouvons
faire entre eux aucune distinction.

4In the original French: . . . ce que les corps solides sont pour la géométrie, les jeux de
hasard sont pour le calcul des probabilités, mais avec une différence : les corps solides sont
donnés par la nature, tandis que les jeux de hasard ont été créés pour vérifier une théorie
imaginée par l’esprit humain, de sorte que le rôle de la raison pure est plus grand encore en
calcul des probabilités qu’en géométrie.

5Lévy devotes Chapter 1 to the first principle and Chapter 2 to the second. In the preface
(p. viii), he cites a 1922 article [11] in which Hadamard stated the two principles.
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We can only discuss the objective value of the notion of proba-
bility when we know the theory’s verifiable consequences. They all
flow from this principle: a sufficiently small probability can be ne-
glected. In other words: a sufficiently unlikely event can in practice
be considered impossible.6

Borel called the principle that an event of sufficiently small probability can
be considered impossible the single law of chance. Fréchet called it Cournot’s
principle.7 Other authors who enunciated the principle in the mid-20th cen-
tury include Kolmogorov and Abraham Wald. In spite of the authority of these
authors, the principle is often ridiculed on the grounds that whatever actu-
ally happens, when described with sufficient precision or detail, has exceedingly
small probability. This ridicule overlooks the subjective aspect of probability
that Lévy always emphasized. Even if they are given by a theory, probabilities
can gain objective value only after they are adopted as subjective probabilities
and used to make predictions. Prediction is meaningful only if it is limited and
not self-contradictory. So from the infinitely many events to which a theory
assigns small probability, we make a selection, predicting that certain salient
events will not happen.8 The theory gains objective status when these predic-
tions succeed.

We can make this point more clearly by elaborating the betting picture that
infused Lévy’s work but often remained under the surface. In addition to a
player who adopts the probabilities as beliefs, announcing a willingness to bet
at the corresponding odds, consider a second player, who decides which of these
betting offers to accept. We can assign this second player the task of deciding
what predictions to make, because he decides what predictions to test. He tests
a prediction by following a betting strategy that multiplies the capital he risks
by a large factor when the prediction fails.

Consonant with this intrinsically subjective and game-theoretic view of prob-
ability, Lévy thought about a stochastic process in terms of its sample paths.
Subjective probability is relative to knowledge, and the sample path records the
evolution of the subject’s knowledge. When we make the betting game explicit,
the sample path becomes a partial description of a path through the game tree,
picking out moves by a player who decides the outcomes.

On p. 360 of the second edition of his 1937 book, which appeared in 1954,
Lévy discussed the relation between his own intuitive approach and Doob’s

6In the original French: Nous ne pouvons discuter la valeur objective de la notion de
probabilité que quand nous saurons quelles sont les conséquences vérifiables de la théorie.
Elles découlent toutes de ce principe: une probabilité suffisamment petite peut être négligée;
en autre termes: un événement suffisamment peu probable peut être pratiquement considéré
comme impossible.

7For a detailed discussion of the (non-Bayesian) subjectivism of the French school of prob-
ability, see notes 97, 105, and 145 of volume 1 of [5]. Cournot’s own philosophy of probability
was much more complex; see [6] and [21].

8This selection becomes relatively objective when there are only a few simple or salient
events of small probability. If a probabilistic theory is expressed in a logical language, then
there are only countably many probability-zero events we can describe, and we can predict
that their union, which also has probability zero, will not happen. See [2].
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unrelenting rigor. He wrote:

A stochastic process is, in principle, a phenomenon in whose
evolution chance intervenes at every instant. For Doob, a stochas-
tic process is simply a random function X(t) of a variable t, which
one can assume represents time. [. . . ] This notation is often conve-
nient, though it presents as fully born in an instant what for me is
essentially a perpetual becoming.9

Lévy’s subjective and game-theoretic intuition also shines through his use of
the notion of a martingale. A martingale is the capital process determined
by a strategy for the player who tests the probabilities by making bets over
time. Doob’s unsparing reduction of probability to analysis, which followed a
path already trod by Norbert Wiener in his mathematical treatment of Brow-
nian motion and by Kolmogorov in his treatment of Markov processes [39, 14],
obscured this intuition. Lévy, in contrast to all these authors, gloried in the
martingale picture.

Lévy did not introduce this use of the word “martingale”. It was introduced
by Jean Ville in 1939. According to the dictionaries of the time (in French,
English, and other European languages), the martingale is an ill-advised strat-
egy for betting: double your bet every time you lose. Ville used the word for
any strategy for betting and then further used it to name the resulting capital
processes. Lévy was not yet using the word in 1937, but he was using the idea.
He emphasized his “condition C”,

Et−1(Xt) = 0,

which he explained in terms of betting: the rules of play for a given round may
depend on the results of previous rounds, but they should be fair. The gain on
the tth round, Xt, should have expected value zero just before the tth round.
After Doob read and reviewed Ville’s book, in 1940, both he and Lévy adopted
Ville’s terminology.

4 The game-theoretic intuition underlying Itô’s
stochastic calculus

In 1987, in the foreword to a volume of his papers ([30], p. xiii), Itô explained
the relation between his own early work and Lévy’s and Doob’s work in these
words:

Having read A. Kolmogorov’s Grundbegriffe der Wahrscheinlich-
keitsrechnung (1933) I became convinced that probability theory

9In the original French: Un processus stochastique est en principe un phénomène dans
l’évolution duquel le hasard intervient à chaque instant. Pour Doob, un processus stochastique
est simplement une fonction aléatoire X(t) d’une variable t dont on peut imaginer qu’elle
représente le temps. [. . . ] C’est une notation souvent commode, bien qu’elle donne comme
un tout né en un instant ce qui, pour moi, est essentiellement un perpétuel devenir.
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could be developed in terms of measure theory as rigorously as in
other fields of mathematics. In P. Lévy’s book Théorie de l’addition
des variables aléatoires (1937) I saw a beautiful structure of the sam-
ple paths of stochastic processes deserving the name of mathemati-
cal theory. From this book, I learned stochastic processes, Wiener’s
Brownian motion (Wiener process), Poisson process, and processes
with independent increments (differential processes). I was partic-
ularly interested in the decomposition theorem for differential pro-
cesses, the core of this book. But I had a hard time following Lévy’s
argument because of his unique intrinsic description. Fortunately I
noticed that all ambiguous points could be clarified by means of J.
L. Doob’s idea of regular versions presented in his paper “Stochas-
tic processes depending on a continuous parameter” [Trans. Amer.
Math. Soc. 42, 1938].10 Checking Lévy’s argument carefully from
Doob’s viewpoint, I was able to introduce Poisson random measures
of jumps to really understand Lévy’s spirit of the decomposition
theorem.

What does Itô mean when he calls Lévy’s description of stochastic processes
intrinsic? What do Lévy and Itô see going on inside a stochastic process? They
see the sample path. At every instant, a gambler bets and chance intervenes to
move the path and the gambler’s martingale along.

As Shinzo Watanbe has explained ([38], pp. 1–2), Itô’s astonishingly orig-
inal translation of Lévy’s sample-path intuition into Doob’s measure-theoretic
framework was already well launched in 1942:

Although the study of modern probability theory in Japan cer-
tainly started before 1940, the war disrupted communications with
other advanced countries. Under these circumstances, Itô completed
two important contributions [12, 13] that are now considered the ori-
gin of Itô’s stochastic analysis or Itô’s stochastic calculus. In the first
work, he gave a rigorous proof of what is now called the Lévy-Itô the-
orem for the structure of sample functions of Lévy processes, through
which we have a complete understanding of the Lévy-Khinchin for-
mula for canonical forms of infinitely divisible distributions. In the
second work, he developed a complete theory of stochastic differ-
ential equations determining sample functions of diffusion processes
whose laws are described by Kolmogorov’s differential equations. In
this work, he introduced the important notion of a stochastic in-
tegral and the basic formula now known as Itô’s formula or Itô’s
lemma and thus founded a kind of Newton-Leibniz differential and
integral calculus for a class of random functions now often called Itô
processes.

The only other mathematician who achieved an early mastery of Lévy’s
pathwise picture comparable to Itô’s was Lévy’s student Wolfgang Doeblin,

10The issue of the journal in which this article appeared was actually dated July 1937 [8].
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who perished as Nazi Germany overran northern France in 1939. Doeblin’s
anticipation of Itô’s stochastic calculus came to light only in the year 2000 [3].11

Itô’s viewpoint has been vindicated not only by its success as pure mathe-
matics but also by the fit between its intrinsic, essentially game-theoretic vision
and the project of providing a mathematical foundation for finance. In finance,
Itô’s integral ∫

H(X) dX

is understood as the capital process resulting from holding at each point in time
H(X) units of a security or portfolio that has the price process X. But as often
happens with applications of probability, the success of the vision has outrun
the intuition. The integrator X is a process, not just a path of a process, and the
integrand H is also a process — a complete strategy for trading in X over time,
not merely the actual trading along a particular path for X. This is more than
a verbal quibble, as Itô’s definition of the integral requires only convergence in
probability, whereas an understanding in terms of paths would seem to require
convergence for almost all paths — that is, convergence with probability one.

This tension between game-theoretic intuition and measure-theoretic math-
ematics is not easily resolved. The price of a financial security follows only one
path, and a trader can create his own capital path by varying how much of the
security he holds over time without adopting a complete strategy for how he
will invest if the security’s price evolves differently. Any mathematical theory of
trading in continuous time will be a very idealized picture of this reality, and we
would expect it to involve various topological and analytical conditions on the
paths — on the path taken by the price of the security and on the path taken
by the trader’s holdings. But why must probability be involved? Why can we
not define Itô’s integral in a probability-free manner?

The best known effort to address this question is that of Hans Föllmer,
who showed in 1981 that Itô’s integral can be defined without probabilistic
assumptions provided that H is a smooth function of the price path X and that
X has finite quadratic variation with respect to a particular sequence of finer
and finer partitions of the time interval, on which the value of the integral then
depends.

I cannot review all the work towards a probability-free Itô integral that has
followed Föllmer’s. But I want to put forward the claim that game-theoretic
probability advances our understanding of the possibilities. Before discussing
this point in continuous time, let us look more carefully at game-theoretic prob-
ability in discrete time.

5 Game-theoretic probability in discrete time

Pascal did not have our modern mathematical theory of games. But we do, and
so we can make his game-theoretic foundation mathematically precise. This

11Doeblin did not succeed in defining an Itô integral, but see [22, 23].
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involves defining the game precisely. What are the rules of play? Who are
the players? What information do the players have? What are the rules for
winning?

Consider a game with three players, Forecaster, Skeptic, and Reality, who
play in order as follows:

K0 = 1.
For n = 1, 2, . . .:

Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

Each player sees the others’ moves as they are made, and a player may also
receive other information before or during the game. The game pits Skeptic
against the other two players. Skeptic wins if these two conditions are both
satisfied:

1. Kn ≥ 0 for all n.

2. As n→∞, either Kn →∞ or 1
n

∑n
i=1(yi − pi)→ 0.

Reality decides the outcomes. Why “Reality” and not “Nature”? Because we
do not want to assert that the outcomes are determined by laws of nature. Our
mathematical results do not require Reality to follow any law. Reality can do
whatever she wants.

On each round, Reality announces either a 0 or a 1, which can encode heads
or tails, yes or no. Forecaster’s move pn can be understood as a probability for
Reality announcing yn to be 1. Skeptic is the one who bets, and K0,K1, . . . is
his capital process. This capital changes on each round. If Reality announces
1, Skeptic adds sn(1 − pn) to his capital. If Reality announces 0, Skeptic adds
−snpn. In order to win, Skeptic cannot risk more than his initial unit capital.
If his capital Kn becomes negative, he loses. Provided that he keeps Kn non-
negative, he can win in either of two ways: either (1) he becomes infinitely rich,
or (2) the difference between the average outcome and the average probability
tends to 0. This is the game-theoretic strong law of large numbers.

In Borel’s measure-theoretic strong law of large numbers, convergence hap-
pens except on a set of probability 0. Here it happens unless Skeptic gets
infinitely rich. Turning 1 into infinity becomes the definition of the probability
0. But the game-theoretic result is not merely a translation from measure the-
ory; it is a theorem in game theory. When Forecaster and Reality play against
Skeptic as a team, the game is a perfect information game with two players. So
we know from Martin’s generalization of Zermelo’s theorem12 that one of the
players has a winning strategy, and we can prove that it is Skeptic.

12Zermelo’s theorem says that in a two-player perfect-information game that ends after a
finite number of rounds and always has a winner, one of the players has a winning strategy.
Martin’s theorem generalizes this result to games in which the winner may depend on an
infinite sequence of play. For references, see Probability and Finance [26], pp. 94–98.
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As shown in Probability and Finance, many limit theorems in probability
theory can be interpreted and restated in this game-theoretic manner. Whereas
the measure-theoretic versions of these theorems say that certain events happen
except on a set of outcomes that has small or zero probability, the game-theoretic
version says that Skeptic has a strategy that multiplies the capital he risks by a
large or infinite factor if these events do not happen. The game-theoretic proofs
are constructive: they construct the strategy for Skeptic.

To illustrate this constructivity, consider this simplification of our three-
player example. Here pn is always 1

2 , and Forecaster is removed from the pro-
tocol because he no longer has a role to play.

K0 = 1.
For n = 1, 2, . . .:

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − 1

2 ).

Here, as Jean Ville noted ([7], Section 3.3), one winning strategy for Skeptic is
for him to choose his sn by the formula

sn :=
4Kn−1

n + 1

(
rn−1 −

n− 1

2

)
,

where

rn−1 :=

n−1∑
i=1

yi.

This strategy tracks how far Reality’s relative frequency of 1s is from 1
2 and

always bets on Reality moving it farther in the same direction. We can show
by induction that Skeptic’s capital from the strategy is

Kn = 2n
rn!(n− rn)!

(n + 1)!
.

From the assumption that this remains bounded, you can show that the pro-
portion of 1s, rn/n, converges to 1

2 . (Approximate the factorials using Stirling’s
formula and apply the Kullback-Leibler inequality.)

We can also develop abstract game-theoretic versions of probability’s clas-
sical limit theorems. Here the players’ move spaces are not fully specified,
just as probability spaces and random variables are often not fully specified in
measure-theoretic probability. Abstract game-theoretic probability uses a con-
cept of upper expectation, similar to the concept of upper prevision used in the
theory of imprecise probability [37, 1]. Whereas a probability measure’s expec-
tation operator is linear, an upper expectation is only subadditive and positively
homogeneous.

Here is the axiomatic definition of upper expectation used in Game-Theoretic
Foundations for Probability and Finance: Suppose Y is a nonempty set, and let
G be the set of all mappings from Y to [−∞,∞]. A mapping E from G to
[−∞,∞] is an upper expectation on Y if it satisfies these five axioms:

10



1. If f1, f2 ∈ G, then E(f1 + f2) ≤ E(f1) + E(f2).

2. If f ∈ G and c ∈ (0,∞), then E(cf) = cE(f).

3. If f1, f2 ∈ G and f1 ≤ f2, then E(f1) ≤ E(f2).

4. For each c ∈ [−∞,∞], E(c) = c.

5. If 0 ≤ f1 ≤ f2 ≤ · · · ∈ G, then E (limk→∞ fk) = limk→∞E(fk).

We interpret E(f) as the price for the payoff f . The first four axioms are the
most essential. The fifth is a weakening of measure-theoretic probability’s axiom
of countable additivity or continuity. It is often unneeded, but it sometimes
simplifies the theory.

With the notion of an upper expectation, we can formulate abstract perfect-
information protocols involving our three players. Here is an example:

K0 = 1.
FOR n = 1, 2, . . .:

Forecaster announces an upper expectation En on Y.
Skeptic announces fn ∈ G such that En(fn) ≤ Kn−1.
Reality announces yn ∈ Y.
Kn := fn(yn).

Game-Theoretic Foundations for Probability and Finance shows in detail
how this framework can be used to develop classical discrete-time probability.
Using an abstract protocol of the type just described, we can derive a global up-
per expectation that gives prices for variables that depend on the entire sequence
of moves by Skeptic’s opponents. This global upper expectation can be used
to state and derive generalizations of classical limit theorems, including Lévy’s
zero-one law, which says that the global expected value of a variable tends al-
most surely to the variable’s actual value. We can then develop new insights
and applications, including Jeffreys’s law (two successful Forecasters will pro-
duce consistent forecasts in the long run) and defensive forecasting (Forecaster
has strategies that will resist Skeptic’s statistical tests and produce decisions
with good long-run properties, regardless of how Reality plays).

Many of the results reported in Game-Theoretic Foundations for Probabil-
ity and Finance have been developed or inspired by the Japanese school of
game-theoretic probability, led since 2003 by Kei Takeuchi (Professor Emeri-
tus of the University of Tokyo and currently at Meiji Gakuin University) and
Akimichi Takemura (also Professor Emeritus of the University of Tokyo and
now the director of data science education and research at Shiga University). In
2004, Takeuchi published a book on game-theoretic probability [31]. Takemura
played a key role in the development of defensive forecasting and the game-
theoretic zero-one law [29]. Work by Takeuchi and Takemura, in collaboration
with Masayuki Kumon [32], helped launch the approach to continuous-time
game-theoretic probability presented in Game-Theoretic Foundations for Prob-
ability and Finance. To this I now turn.
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6 Game-theoretic probability in continuous
time

How do you bet in continuous time? Probability and Finance used nonstandard
analysis to formalize the idea that a trader can hold a different portfolio in
every successive infinitesimal period of time. This approach can be developed
further, in many different ways no doubt, but a more conventional idealization,
closer to Itô’s and perhaps more revealing, can be developed using standard
analysis. In this idealization, we combine trading strategies that change their
portfolio with greater and greater frequency, and then we enlarge the resulting
class of capital processes further by closing it under various limiting processes.
The class of elementary trading strategies with which we begin was studied by
Vovk in 1993 [33]. In a study that first appeared as a working paper in 2007
[32], Takeuchi and his colleagues enlarged this class of strategies by consider-
ing countably many stopping times. In subsequent papers, Vovk showed that
variations on this idea lead to results analogous to Dubins and Schwarz’s reduc-
tion of continuous martingales to Brownian motion via a time change. Nicolas
Perkowski and David Prömel then argued for tightening the resulting notion of
upper probability using liminf, so that there are more null sets, in work that
first appeared as a working paper in 2015 [24]. Vovk subsequently proposed
enlarging the class of capital processes directly using liminf, in a bold way that
may prove definitive and is presented in detail in Game-Theoretic Foundations
for Probability and Finance.13

Suppose we divide a unit of capital, assumed to be infinitely divisible, among
countably many accounts and use each account to trade at discrete points in
time. If the successive accounts use finer and finer grids of trading points, then
this looks like trading in continuous time. If we fix a strategy for the trading,
we have a game in normal form: the trader moves first, announcing a trading
strategy, and then the market moves, giving a price path. As it turns out, the
assumption that the trader cannot multiply his capital infinitely leads to the
conclusion that X’s path looks like Brownian motion modulo a time change. In
fact, the trader has strategies that make him infinitely rich instantaneously, not
merely in the long run, as soon as Brownian properties, such as the absence of
isolated zeros and the absence of monotonicity, are violated.14 This is a game-
theoretic version of the Dubins–Schwarz theorem. Unlike the usual Dubins–
Schwarz theorem, it is probability-free in the sense that no probabilities are
assumed. The Brownian properties hold with game-theoretic probability one,
but this probability is defined by the game; it means only that the trader can
multiply the capital he risks infinitely if the properties do not hold.

One Brownian property guaranteed by the Dubins–Schwarz theorem is the
existence of quadratic variation. This seems to open the way to the develop-

13Many references are given in Game-Theoretic Foundations for Probability and Finance.
See especially [33, 24, 36].

14See [34] and Chapter 13 of Game-Theoretic Foundations for Probability and Finance.
Analogous but more complicated results can be developed in discrete time; see [35].
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ment of a “probability-free” game-theoretic version of Itô’s stochastic calculus
via Föllmer’s result. To make this work, however, and to eliminate the depen-
dence of Föllmer’s construction on a particular sequence of partitions, it seems
necessary to further idealize — in a rather nonconstructive way — what the
trader can accomplish in continuous time. The key idea, due to Vovk, is to
close under liminf the set of nonnegative supermartingales obtained from trad-
ing strategies. (A supermartingale is a capital process from a trading strategy
that may waste money; it is a martingale only if no money is wasted.) This
enlarged set of nonnegative supermartingales can be used to define the notion
of instant enforcement. (A property holds with instant enforcement if some
nonnegative supermartingale becomes infinite as soon as the property fails.)
The class of continuous martingales can then be enlarged by taking limits that
are uniform over compacts modulo instant enforcement. This leads to a purely
game-theoretic version of the stochastic calculus for continuous martingales (and
semimartingales, a semimartingale being the sum of a martingale and a finite-
variation process), in which Itô’s formula and other results hold with instant
enforcement.

7 Conclusion

Vovk’s game-theoretic foundation for continuous-time stochastic processes for-
malizes Lévy’s intrinsic pathwise intuition. Because game-theoretic probability
is consistent with and complementary to measure-theoretic probability, it can
also be seen as an elaboration of Itô’s stochastic calculus.

Because this game-theoretic picture involves only emergent probabilities —
probabilities that are determined by trading opportunities — it can help us
disentangle continuous-time financial mathematics from the philosophical con-
troversies and confusions surrounding probability theory. It is my hope that it
will clarify the applicability of the stochastic calculus to finance and the limits
of that applicability. Closing a class of continuous-time capital processes under
liminf is a highly nonconstructive step; it is equivalent to a process of transfinite
induction. This puts us on notice that we are dealing with an extreme idealiza-
tion.15 When it brings clarity and simplicity, such an idealization can provide

15To underline the point that a stochastic process in continuous time is always an extreme
idealization, we can do no better than to quote Lévy once again ([19], p. 286):

. . . in a concrete case, in the case of Brownian motion for example, nature ac-
tualizes only at the microscopic level phenomena that the mathematician, to
facilitate his research, takes all the way down to the infinitely small. We think,
moreover, even though some eminent scientists have a different opinion since
the work of Heisenberg, that the notion of chance is a notion that the scientist
introduces because it is convenient and productive but that nature ignores.

In the original French: . . . dans un cas concret, dans celui du mouvement
brownien, par exemple, la nature réalise seulement à l’échelle microscopique
des phénomènes que le mathématicien, pour la commodité de ses recherches,
prolonge jusqu’à l’infiniment petit. Nous pensons, d’ailleurs, quoique depuis les
travaux d’Heisenberg d’éminents savants ne soient pas de cet avis, que la notion
de hasard est une notion que le savant introduit parce qu’elle est commode et
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great insights, but the accuracy of these insights in practical problems needs to
be measured and tested with great care. We can use the game-theoretic picture
not only to derive these insights but also to measure their accuracy as simplified
approximations to discrete-time realities. Rather than pretend that the prices
we see in financial markets are glimpses of an underlying continuous-time real-
ity, we can ask how closely actual financial games in discrete time can bring us
to the continuous-time idealization.

In the wake of the 2008 financial crisis, mathematicians debated their respon-
sibility. Have we since found a way to combine teaching the stochastic calculus
with teaching its limitations? Surely the game-theoretic framework can advance
that project.
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