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Abstract

Blaise Pascal and Christiaan Huygens developed game-theoretic foundations
for the calculus of chances — foundations that replaced appeals to frequency
with arguments based on a game’s temporal structure. Pascal argued for equal
division when chances are equal. Huygens extended the argument by considering
strategies for a player who can make any bet with any opponent so long as its
terms are equal.

These game-theoretic foundations were disregarded by Pascal’s and Huy-
gens’s 18th century successors, who found the already established foundation
of equally frequent cases more conceptually relevant and mathematically fruit-
ful. But the game-theoretic foundations can be developed in ways that merit
attention in the 21st century.
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1 The calculus of chances before Pascal and Fer-
mat

We are often told that probability theory began with an exchange of letters in
1654 between Blaise Pascal (1623–1662) and Pierre Fermat (1607–1665). As
Florence Nightingale David put it,

The name of Blaise Pascal is always linked with that of Fermat as
one of the “joint discoverers” of the probability calculus.1

We can trace this attribution back to Laplace, who told his students at the
École Normale in 1795 that probability theory

owes its birth to two French geometers of the 17th century.2

Laplace repeated these words in 1812, in the first edition of his Théorie analy-
tique,3 but he tempered them two years later in the history of probability theory
with which he concluded his Essai philosophique:

For quite a long time, people have ascertained the ratios of favor-
able to unfavorable chances in the simplest games; stakes and bets
were fixed by these ratios. But before Pascal and Fermat, no one
gave principles and methods for reducing the matter to calculation,
and no one had solved problems of this type that were even a little
complicated. So we should attribute to these two great geometers
the first elements of the science of probabilities. . . 4

Many of Laplace’s successors have found it unnecessary to qualify the attri-
bution to Pascal and Fermat. Lacroix, for example, began his 1816 probability
textbook with these words:

The probability calculus, invented by Pascal and Fermat, has never
since ceased exciting the interest and exercising the wisdom of their
most illustrious successors. . . 5

Similar unqualified statements by mathematicians and historians of mathemat-
ics abound, throughout the 19th and 20th centuries and up to the present day.
But Laplace was surely correct when he conceded that people had been count-
ing chances and using the counts to fix stakes and bets long before Pascal and
Fermat.

1[11], p. 75.
2Apparently not published at the time, Laplace’s lecture was reproduced on pp. 146–177

of Volume XIV of his complete works [33]. The words translated here come at the end of the
lecture. Except when otherwise noted, all translations are mine.

3[31], p. 3.
4[32], p. 89.
5[30], p. iii.
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1.1 Counting chances

People have been making finely balanced dice for millennia, and the best dice
players have probably been counting the chances for throws of these dice for
just as long. But the earliest documentary evidence for such counting appears
to be the Latin poem De Vetula, probably written around 1250 by a teacher of
the quadrivium (arithmetic, geometry, astronomy, and music) at the University
of Paris.6

A long poem, touching on philosophical, religious, and scientific topics, De
Vetula begins by warning its readers against the temptations of erotic love and
gambling. In the case of gambling, the author warns that a gambler faces ruin
even if he knows how to count chances, then proceeds to count them anyway
for the sum of the points on three dice. There are 216 chances, he explains, all
of equal force and frequency. But the sum of the points can range from 3 to
18, and these 16 possibilities have unequal force and frequency. There are 108
chances that the sum will be between 3 and 10, distributed unequally:

Sum of points 3 4 5 6 7 8 9 10 Total
# of chances 1 3 6 10 15 21 25 27 108

There are another 108 chances that the sum will be between 11 and 18, dis-
tributed similarly:

Sum of points 18 17 16 15 14 13 12 11 Total
# of chances 1 3 6 10 15 21 25 27 108

David Bellhouse has called De Vetula a “medieval bestseller”. It was often
quoted. Nearly 60 manuscript copies survive. The first printed edition appeared
in about 1475. Not everyone who reproduced it understood how the author
counted chances. But some did, including the editors of editions printed in
1479, 1534, and 1662.

There are at least two other surviving documents in which mathematicians
counted the chances for dice before 1654: a book by Cardano, who died in 1576,
and a letter by Galileo, who died in 1642. Neither appeared in print in its
author’s lifetime. Cardano’s Liber de Ludo Aleae was published in his collected
works in 1663,7 and Galileo’s letter appeared in his collected works in 1718.8

Both Cardano and Galileo counted the chances for the sum of points on three
dice. As Bellhouse has pointed out, Cardano’s presentation suggests that he
may have been influenced directly by De Vetula, whereas Galileo obtains the
counts in a different way.9

As mathematics developed, mathematicians’ ability to count chances im-
proved. Galileo mentions that the number of equally frequent chances is multi-
plied by 6 every time a die is added to the throw. There are 216 equal chances
in the case of three dice because 6 × 6 × 6 = 216. The author of De Vetula had
not mentioned this.

6[1, 7, 8, 43]
7[9], volume 1, pp. 262–276. English translation in [40], pp. 182–241.
8[17], pp. 591–594. English translation in [11], pp. 192–195.
9[2]
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1.2 Fixing stakes and bets

The whole point of counting chances is to use them to fix stakes and bets. The
author of De Vetula does not bother to explain how this is done, but readers
adept in mathematics would have known what to do: use the rule of three.

The universities of medieval Europe prepared young men for careers in the
priesthood, law and medicine. To learn practical mathematics, you went else-
where — to teachers who prepared young men to work in trade. We know what
these teachers taught, because countless of their manuals — commercial arith-
metics, we call them — have survived. This being a lecture in honor of George
Sarton, I pause to recall Sarton’s interest in these manuals. As he pointed out
in 1933, they were being written in both Arabic and in Spanish in Spain in the
11th century.10 They spread throughout Europe as trade developed.11

The rule of three was the main tool of the commercial arithmetics. After
learning how to add, subtract, divide and multiply, merchants and their clerks
need to understand proportions. If you buy 15 bushels of wheat for 10 shillings,
what price should you charge someone else for 3 bushels? For us, this is a
matter of algebra: 15/3 = 10/x, and so x = 2 shillings. But al-Khwarizmi’s
9th-century algebra was all in words, and the medieval commercial arithmetics
still had only words. Algebra with symbols emerged only in the Renaissance.
It was largely developed by the authors of commercial arithmetics — the Ital-
ian abbacus masters and the German reckoning masters. But even in the 19th
century, commercial arithmetics emphasized the non-symbolic rule of three, de-
ploying it in problem after problem in which you find an unknown fourth number
in a proportion from three that are known, problems about trading in goods,
dividing profits, changing currencies, pricing alloys, etc., etc. Occasionally, for
fun, an author might throw in a problem about a game.

Here are two questions that could have been answered by anyone who was
adept at the rule of three and could count the chances for three dice.

� Question 1. Three dice are to be thrown repeatedly until either a 9 or a
15 appears. Player A bets on 9 and Player B bets on 15. Player A puts 5
shillings on the table. How much should Player B put on the table?

� Question 2. What should Player A pay in order to win 80 shillings if he
throws an 11 on a single throw of three dice?

Permitting ourselves a bit of algebra rather than trying to imitate a 13th-
century abbacus teacher’s use of the rule of three, we can answer these questions
as follows.

� To answer Question 1, we recall that there are 25 chances of throwing a 9
and only 10 chances of throwing a 15. The chances have equal frequency.
So Player B wins 10 times for every 25 times Player A wins. Player A
has put 5 shillings on the table for Player B to win. If we write x for the

10[44, 18]
11See, for example, [23, 24, 25].
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amount Player B puts on the table, then Player B wins 10 × 5 shillings
every time Player A wins 25 × x. This is fair if x = 2 shillings.

� To answer Question 2, suppose Player B is the counterparty. Player A
gives x to Player B, and Player B gives back 80 shillings if Player A
throws an 11. Player A has 27 chances of getting the 80 shillings. Player
B has 216 chances of getting x. So Player A gets 27 × 80 shillings every
time Player B gets 216 × x, and this is fair if x = 10 shillings.

These answers deploy the notions of frequency and fairness. Frequency was
basic to everyone’s understanding of chances for dice. Fairness comes along
with the rule of three. Commercial arithmetics always sought the fair price.
What actually happens is another matter; the merchant will surely ask for a bit
more.

Laplace’s assertion that no one before Pascal and Fermat gave principles
and methods for calculating stakes and bets seems to be correct so far as the
surviving public record is concerned. But we do find explicit arguments for
proportionality in Cardano’s 16th-century Liber de Ludo Aleae. Concerning bets
on a throw of two dice, where there are 36 equally frequent chances, Cardano
writes as follows:

If, therefore, someone should say, “I want an ace, a deuce, or a trey”,
you know that there are 27 favorable throws, and since the circuit
is 36, the rest of the throws in which theses points will not turn up
will be 9; the odds will therefore be 3 to 1. Therefore, in 4 throws,
if fortune be equal, an ace, deuce, or trey will turn up 3 times and
only one throw will be without any of them; if, therefore, the player
who wants an ace, deuce, or trey were to wager three ducats and the
other player one, then the former would win three times and would
gain three ducats, and the other once and would win three ducats;
therefore in the circuit of 4 throws they would always be equal.
So this is the rationale of contending on equal terms; if, therefore,
one of them were to wager more, he would strive under an unfair
condition and with loss; but if less, then with gain. Similarly, if the
4 be included, there will be 32 favorable throws, and the number of
remaining throws will be only 4. Therefore, the player will place a
stake eight times as great as his opponent, because the proportion
32 to 4 is eightfold, and similarly for the other cases. . . 12

The qualification “if fortune be equal” is important here. As Bellhouse has
emphasized, Cardano’s discourse emphasized fairness, not exact prediction.13

12Pp. 200–201 of [40].
13[2]

4



2 The division problem

Among the documents that Pascal left behind was a memorandum in Latin
dated 1654, setting out his agenda for mathematical research and listing trea-
tises he plans to complete.14 It is addressed to an informal academy of Paris
mathematicians, a group whose regular meetings Pascal was attending. By all
accounts, this group descended from the equally informal scientific academy
that Marin Mersenne had organized in 1635. Pascal’s father Étienne Pascal had
been part of Mersenne’s circle, and Blaise had first become known as a mathe-
matician after his father brought him into the circle as a teenager. We do not
know exactly when in 1654 Pascal wrote the memorandum, but Jean Mesnard,
the most assiduous of his many biographers, has argued persuasively that it
was written before Pascal’s correspondence with Fermat. In the memorandum,
Pascal describes one of the topics on which he plans to write as follows:

A field of research that is completely new and concerns a matter that
is completely unexplored, namely structure of chances in games sub-
ject to chance, what we call in French faire les partys des jeux, where
the uncertainty of fate is so well overcome by the rigor of calculation
that each of two players can see themselves assigned exactly what
they have coming. This must be sought all the more vigorously by
reasoning, because there is so much less possibility to find it by expe-
rience. In fact, the uncertain outcome of a random event should be
attributed more to the chance of contingency than to the necessity of
nature. This is why the question has remained unsettled. But now,
even if it has been a rebel to experience, it could not escape from
the empire of reason. We have reduced it to an art with so much
surety, thanks to mathematics, that having gained part of mathe-
matics’ certitude, it can now advance audaciously and, by virtue of
the union thus achieved between mathematical demonstrations and
the uncertainty of chance, and by the reconciling of these apparent
opposites, it can take both names and lay claim to the surprising
title Geometry of Chance.

This paragraph’s sense of excitement is palpable; Pascal believes that he has
solved a problem others had tried and failed to solve. This problem is new as
a field of mathematical research but so familiar to his countrymen that it has a
French name. The French noun parti, here spelled party, can be translated as
“share” or as “division into shares”, and so we can translate faire les partys des
jeux as “divide into shares in games”.

Since the early 18th century, the problem of how to faire les partys has been
called le problème des partis in French and the problem of points in English.
Unfortunately, these names can be a source of confusion when we want to under-
stand just Pascal wrote to Fermat. I will instead call the problem “the division

14Mesnard provides the Latin text, a commentary, and a translation into French on pp. 1021–
1035 of Volume II of [41].
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problem”, following Anders Hald and A. W. F. Edwards (and G. Th. Guilbaud,
who suggested the name le problème de partage in 1964 [20], p. 3).

2.1 Pascal’s solution of the division problem

We learn more about what Pascal meant by faire les partys in the first five
pages of another short document that he left behind, printed but not published
and bearing the title Usage du triangle arithmétique pour detérminer les parties
qu’on doit faire entre deux jouers qui jouent en plusieurs parties.15 This title
can be translated as “Using the arithmetic triangle to determine the divisions
one should make between two players who play in several rounds”. Here I will
refer to it simply as Pascal’s Usage.

By “play in several rounds”, Pascal meant that the stakes are won by the
first player who wins a specified number of rounds. If the players agree to
stop when neither has yet won the specified number, how should the stakes be
divided?

Pascal reasons backwards from situations where the appropriate division is
clear. Suppose, for example, that Players A and B have each put 32 pistoles on
the table. Player A is one round short of winning the entire stakes, and Player
B is two rounds short. If the players were to play one more round, the division
would be clear:

� If Player A wins the round, he gets all 64 pistoles.

� If Player B wins the round, the two players are even, both being one round
short of winning. So they should split the 64 pistoles evenly, each getting
back the 32 pistoles he put up.

Player A is thus certain of getting at least 32 pistoles and has an equal chance
of getting the other 32. Pascal argues that he can therefore claim the first 32
and half of the second 32, for a total of 48, leaving 16 for Player B.

Having found what each player is entitled to when Player A is one round
short and Player B is two rounds short, we can then find what each is entitled
to when Player A is one round short and Player B is three rounds short. In
this case, another round would either give all 64 pistoles to Player A or put
the players in the situation just analyzed (Player A one round short and Player
B two rounds short), where Player A is entitled to 48 pistoles. So Player A is
entitled to (1) the 48 he will have in either case, and (2) half the remaining 16,
for a total of 56, leaving only 8 for Player B.

As Pascal explains in great detail, at this level of formality, we can reason
backwards in this way to find the entitlements of the two players no matter
how many how rounds each lacks. He then mentions that there are also two
other ways of solving the problem: using combinations and using the arithmetic
triangle. He then proceeds to explain how the arithmetic triangle enables us to
obtain the answers more quickly.

15The treatise is reproduced in Volume II of [41] and in other editions of Pascal’s works.
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We know, from Pascal’s letter to Fermat dated 29 July 1654, that Pascal
mastered this use of the arithmetic triangle only after that date. But from
the claim he made in his earlier memorandum to his Paris colleagues, we may
assume that he had discovered his method of backward recursion before begin-
ning his correspondence with Fermat. Having understood how he could use the
arithmetic triangle in the course of the correspondence, he folded his proposed
Geometry of Chance into his Usage.16

2.2 Published antecedents

There is a slight but interesting difference between the way Pascal describes the
division problem to his Paris colleagues and Fermat and the way he describes
it later, in his Usage. In the memorandum, he writes about games subject to
chance. In the letter of 29 July to Fermat, he writes about the two players
having an equal chance (le hasard est égal). Here he could be talking not only
about dice games but also about ball games and other competitions that involve
both skill and chance. Such games are subject to chance, and when players play
on equal terms it is not unusual to say that each has the same chance as the
other, even if they do not have the same skill. It is also not unusual for players
who disagree about who is more skillful to think it fair that they should bet on
even terms. But in his Usage, Pascal specifies that he is considering games of
pure chance.

This difference is of some significance, because previous solutions of the
division problem, in handwritten commercial arithmetics and in printed books
beginning with Pacioli’s Summa at the end of the 15th century, had considered
games where skill enters — ball games and archery competitions. Perhaps
the authors also had dice games in mind, not mentioning them in order to
avoid any hint of impiety, but in any case they apparently thought that their
arguments applied to games where skill also enters. Their solutions of the
division problem usually involved some application of the rule of three. The
rule of three can be applied in various ways (in particular, do we consider the
number of rounds won or the number lacking?), and so different authors obtained
different answers. None of them obtained Pascal’s answer, and historians of
probability usually express this by saying that their answers were all wrong.17

But it is also reasonable to conclude, with Tartaglia, that there is no single right
answer.

It is also reasonable to conjecture that Pascal was aware of some of the previ-
ous efforts to solve the division problem. Would Mersenne not have known about

16This speculation rests on Mesnard’s conclusion that Pascal wrote his memorandum before
his correspondence with Fermat. A. W. F. Edwards has challenged this conclusion on the
grounds that Pascal solved the division problem only after his letter of 29 July; see [14], p. 86,
reprinted in [15]. This overlooks the fact that the argument in the first five pages of Pascal’s
Usage fully solves the problem. The letter of 29 July shows Pascal struggling to obtain the
more efficient and elegant solution that he later obtains using the arithmetic triangle, but it
does not refute the hypothesis that he had already solved the problem.

17See for example [22], pp. 34–36.
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the published work of Pacioli, Cardano, and Tartaglia? Pascal’s comment about
the question remaining unsettled may be a reference to their disagreements.

2.3 Unpublished antecedents

Although none of the previously published treatments of the division problem
obtained Pascal’s solution, we have learned in recent decades that two unpub-
lished manuscripts by Italian abbacus masters, both writing around 1400, did
obtain his solution. The first, a fragment noticed in the National Central Li-
brary of Florence in 1985 by Laura Toti Rigatelli and subsequently studied by
several authors, used an intricate argument to arrive at Pascal’s answer for the
case where one player is one round short and the other is two rounds short.
The second, a commercial arithmetic noticed in the Vatican Apostolic Library
in 2003 by Raffaella Franci, develops Pascal’s method fully, even for more than
two players. Both of these manuscripts have been discussed thoroughly by Nor-
bert Meusnier.18

The author of the Vatican commercial arithmetic cautions his students not
to divulge his method for solving the division problem but to study it and
stand ready to use it, perhaps to dazzle town leaders or merchants who might
employ them to teach. This evidence of a secret tradition centuries before Pascal
raises tantalizing but unanswerable questions. How widely was the division
problem discussed by teachers of commercial arithmetic in Pascal’s time? Had
the Vatican manuscript’s method survived in an oral tradition? As Ivo Schneider
has noted, commercial arithmetic did constitute an oral tradition.19

Pascal was not one to cite predecessors. As A. W. F. Edwards has noted,

Pascal was [. . . ] a little forgetful about his sources. Practically
everything in the Traité except the solution of the important “Prob-
lem of Points” will have been known to Mersenne’s circle by 1637.
It seems likely that Pascal absorbed most of this as a young man,
and then, more than a decade later, his correspondence with Fermat
stimulated him to compose the Traité, which he did in the space
of a few weeks. The evidence is that, with the passage of time, he
had lost most of the details whilst retaining the outline. Just as a
lecturer often lectures best when, after careful preparation, he for-
gets his lecture notes, so Pascal poured forth his mature view of
the Arithmetical Triangle and its uses, uncluttered with peripheral
detail.20

It is conceivable, if unlikely, that Pascal’s solution of the division problem is
also something that he had picked up in his youth and then forgotten. All we
can say with confidence is that Pascal believed in 1654 that it was his own new
discovery.

18[36]. As Meusnier notes, the Florence manuscript is concerned with games of chess,
supporting the hypothesis that the division problem dates back at least to Arabic sources.

19[46], pp. 269–279.
20[15], p. 58.
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3 Pascal’s game-theoretic foundation

In his memorandum to his Paris colleagues, Pascal was concerned with the
problem of dividing stakes between two players. This question comes up in his
letters to Fermat, but the questions he has posed to Fermat appear to involve a
more subtle kind of division, which for clarity I will call apportionment rather
than division. How do we apportion a player’s gains to the successive rounds of
a multi-round game?

Pascal repeatedly mentions that he and Fermat have different methods for
solving questions of apportionment. Fermat was using the venerable method of
counting chances, which he wielded with a mathematical power unmatched by
any predecessor. Pascal was using backward recursion.

In a game involving multiple rounds or multiple dice, the chances we count
can also be called combinations (combinaisons in French), as each chance tells
how all the rounds or dice come out. Pascal sometimes called Fermat’s method
the method of combinations. In his first surviving letter, dated 29 July, he
mentions that he too had first used combinations but claims that his own method
is quicker, at least in some cases. In his second surviving letter, dated 24 August,
he makes a more aggressive case for his own method, claiming that it is

� more universal, applicable to any kind of apportionment under any imag-
inable conditions, and

� more fundamental, carrying its demonstration in itself.

As the correspondence continues, Fermat appears to convince Pascal that the
method of combinations is also universal and computationally efficient. On 27
October 1654, in his final letter to Fermat that year, Pascal writes,

I admire your method for apportionment, all the more because I
understand it quite well. It is entirely yours, having nothing in
common with mine, and arrives easily at the same end.

But Pascal does not retract the claim that his method is more fundamental,
and from a philosophical point of view, this is the most interesting aspect of his
contribution. He vindicates the claim he made in his memorandum by giving
an argument for his method of backward recursion that relies on reason alone,
not on experience. Because backward recursion arrives at the same end as the
established method of combinations, this is also a justification of that established
method.

Because Pascal’s method reasons about the play of the game rather than
about frequencies, we may call it game-theoretic.

3.1 Enter the Chevalier de Méré

The legend of Pascal’s and Fermat’s invention of probability was embellished
in 1837 by Siméon-Denis Poisson, who began his book on probability with this
sentence:

9



A problem about games of chance proposed to an austere Jansenist
by a man of the world was the origin of the calculus of probabilities.21

Jansen was a Dutch theologian, and Pascal was the Jansenist. The man of the
world was Antoine Gombaud, the Chevalier de Méré. Many authors have con-
cluded that Gombaud introduced Pascal to the problem of division we discussed
earlier. It is also possible, and perhaps more likely, that Gombaud’s only posed
some particular questions about apportionment.

By the early 1650s, Pascal was a close friend of the wealthy and powerful
Duke of Roannez. Gombaud, a nobleman of modest means, was occasionally
part of the Duke’s entourage. At the age of 61 (in 1668, after Pascal’s death),
he began to publish his letters and essays and became well known as a stylist
and moralist, participating in the 17th-century French debate concerning what
it means to be an honorable man (honnête homme). He made a great virtue
of having good manners and pleasing others. He practiced these virtues, and
he claimed to have taught Pascal to enjoy himself. He also claimed credit
for mathematical discoveries concerning chance. It is possible, though perhaps
unlikely, that Gombaud introduced Pascal to the whole topic of calculating
chances.

At the beginning of his letter of 29 July, Pascal mentions that he and Fer-
mat had been discussing two questions of apportionment that Gombaud had
proposed: apportionment for dice (les partis des dés), and apportionment for
rounds (les partis des parties). Fermat, he acknowledges, has answered the
questions using combinations, but at this point Pascal thinks his own method is
quicker. What were the questions? How were they related to what I have been
calling the division problem, the problem of how to faire les partys that Pascal
discussed in his memorandum to the Paris mathematicians and solved in the
first five pages of his Usage? And how are they solved by Fermat’s method and
by Pascal’s method?

In the second section of his letter of 29 July, Pascal explains how to faire les
partys in the case where two players play to win three rounds, but he does not
stop there. After explaining how to find the value to a player of each possible
position (as he later does more systematically in his Usage), he then finds, by
subtraction, how this value changes when the player wins a round. Gombaud’s
question about apportionment for rounds, it seems, concerned not the value of
a position in the game but the value of a round in the game. How much of
his opponent’s money does a player gain by winning the round? To use the
language of later centuries, the question is not about expectations but about
changes in expectations.

What exactly was Gombaud’s other question, the question about apportion-
ment for dice? Not having the previous letters between Pascal and Fermat, we
cannot be certain. But we do have an undated fragment of one previous letter
from Fermat, and it suggests some possibilities. In this fragment, Fermat says
that Pascal has asked about a player who has undertaken to get a six in 8 throws
and has already lost the first three. How much should he be compensated for

21[42]
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Figure 1: Pascal’s question to Fermat

not making his next throw? The answer depends on whether the compensation
is taken out of the stake on the table, or whether that stake will all remain for
him to try to win with one of his remaining throws. But Pascal must have made
a slip, because the answer he gave Fermat, 125/1296 of the stake, is not correct
in either case. Fermat finds a rather different question that does have 125/1296
as its correct answer.

3.2 Carrying its demonstration in itself

Whereas Fermat delighted in solving problems, Pascal was more interested in
getting to the bottom of things. What are the true principles? What is the real
starting point?

On the first two pages his Usage, Pascal explains that his method is based
on two fundamental principles. First, a player should take any portion of the
stakes that will be his regardless of whether he wins or loses. Second, if the
game is one of pure chance, there is as much chance for the one player as the
other to win a certain sum, and they want to stop playing, then they should
divide the sum equally.

Pascal makes his assertion that his method is more fundamental than the
method of combinations in his letter of 24 August, in the course of explaining
how he had defended Fermat’s use of the method of combinations to his Paris
colleague Gilles de Roberval, who taught mathematics at the Collège royal. To
understand Roberval’s objection to Fermat’s method, consider again the classic
case where Player A is one round short of winning and Player B is two rounds
short. If they are playing for 64 pistoles, as in Pascal’s presentation of the
problem in his letter of 29 July, then we can use the diagrams in Figures 1and 2
to picture Player A’s possible gains and Pascal’s argument:22

As indicated in Figure 1, Player A wins the 64 pistoles if he wins the first
round; otherwise they play a second round and Player A may win either 64 or
0. As indicated in Figure 2, Pascal concluded that Player A’s position is worth
32 pistoles right after he loses the first round and therefore 48 pistoles at the
outset. Fermat solved the problem in a different way; he supposed that two

22Pascal did not draw any such diagram; historically the first appearance of such a diagram
seems to be in an unpublished note written by Huygens in 1676. See pp. 151–155 of [28] and
pp. 380–384 of [48].
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Figure 2: Pascal’s solution

rounds are played no matter how the first comes out, so that the four equally
frequent chances are

� Player A wins the first round, Player A wins the second round;

� Player A wins the first round, Player B wins the second round;

� Player B wins the first round, Player A wins the second round;

� Player B wins the first round, Player B wins the second round.

Because Player A wins the 64 pistoles in three out of the four equally frequent
chances, he is entitled to three-fourths of the 64 pistoles at the outset. Pascal
reports to Fermat that Roberval objected to the fiction that the players would
play two rounds no matter how the first came out. He then reports what he
said to Roberval, including the following:

I responded to him that I relied not so much on this method of
combinations, which was not really appropriate for the problem, as
on my other universal method, which misses nothing and carries its
demonstration in itself, and which finds precisely the same division
as the method of combinations. . .

In other words, the method of combinations is correct only because its results
agree with Pascal’s method of backward recursion.

The method of combinations does not carry its demonstration in itself, be-
cause its counting of chances relies on experience. To see the full force of Pascal’s
argument, we need to notice that the appeal to experience becomes less and less
convincing as the number of rounds becomes greater and greater. Do we really
have enough experience to know that the 610 ways 10 throws of a die can come
out have equal frequency?

4 Huygens’s game-theoretic foundation

Although neither Pascal nor Fermat published their work on games of chance,
the problems they had discussed soon became widely known through the work
of Christiaan Huygens (1629–1695). Son of the prominent Dutch diplomat and
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poet Constantijn Huygens, Christiaan Huygens was steeped in French culture,
but his first visit to Paris was delayed by the turmoil of the times until 1655.
During that visit, he learned something about Pascal’s and Fermat’s ideas from
their Parisian colleagues.

From what he heard in Paris, Huygens saw an opportunity to apply the
new understanding of algebra that he had learned from Descartes through his
teacher Francis van Schooten, and this led him to write an account of calculation
in games of chance that Van Schooten could publish as an appendix to his
forthcoming textbook on algebra. He drafted it in Dutch in 1656. Van Schooten
translated it into Latin for the Latin version of his textbook, which appeared in
1657. The Dutch version appeared in 1660.23

By casting the matter in terms of algebra, Huygens deepened Pascal’s foun-
dational argument, making it more game-theoretic. Instead of relying on the
principle that chance gives contending players equal claims, Huygens’s argument
relies merely on the players’ willingness to contend on equal terms.

4.1 What did Huygens learn in Paris?

What did Huygens learn from the Paris mathematicians about the problems
Pascal and Fermat had discussed? In an insightful article published in 1982,24

Ernest Coumet called attention to three letters written by Huygens that cast
light on this question.

In a letter to Van Schooten dated 20 April 1656, Huygens wrote:

Here is what you wanted concerning games of chance. . . You can
judge the difficulty of this material from the fact, among others,
that Pascal, a young man with the most penetrating mind, said that
he had never encountered anything so obscure, and that nothing had
ever required more effort from him. For his part, he certainly went
deeply into the questions I consider, or most of them, as did Fermat.
But what principles did they rely on? I think no one yet knows.

On May 6, Huygens wrote again to Van Schooten:

It would be appropriate to put at the beginning, as a preface, a letter
from me giving some explanations about the material itself and who
first undertook to study it, along with what I learned in France about
Pascal’s discoveries in this domain. Very little I suppose, but just
the same I don’t think I can conceal it.

Then on July 21, Huygens wrote to the English mathematician John Wallis:

I have recently used demonstrations of this type [by algebra] in a
treatise on the use of calculation in matters of chance, which Van

23Discussion between Huygens and Van Schooten concerning the translation is preserved in
letters published in [26].

24[10], reprinted on pp. 437–452 of [35].
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Schooten proposed to publish with his own work, now being pub-
lished. I came by the opportunity in France, where mathematicians
had asked me questions like this: In how many throws can one ex-
pect to get a six with a die like those now usually used? Or to get
a double six with two dice? And many more of the same type, for
whose solution it was not at all easy to find the first principles.

The tone of these passages suggests that calculation in games of chance was not
a surprising topic for mathematicians in the 1650s. Huygens did not learn much
that was new in Paris. We also see that Huygens, like Pascal, was a seeker after
first principles.

We may surmise that the Paris mathematicians who posed the questions
to Huygens could answer some or all of them, and that they remembered that
Pascal had a way of justifying the answers that went deeper than counting
chances, but that they had never fully understood Pascal’s arguments. Perhaps
Pascal never fully explained everything he could do with his two principles.

From April 1656 to March 1657, Huygens corresponded with Pierre Carcavy
and the Paris mathematicians Roberval and Claude Mylon. The correspon-
dence with Carcavy put him in indirect touch with Pascal and Fermat, who
both provided additional questions that he added to his treatise with answers
but without solutions. Coumet saw in this correspondence a further attempt
on Huygens’s part to learn Pascal’s and Fermat’s first principles, ultimately un-
successful because he did not ask his questions directly, not wanting to reveal
how much or little he himself already understood.

Huygens’s preface did acknowledge that renowned French mathematicians
had worked on his topic. He added that

though they have tried to solve many a difficult question by corre-
sponding with each other, they have concealed their own mode of
invention. I, therefore, was obliged to examine everything from the
beginning to the end and am not yet sure that the point whence we
started was the same.

This passage can be taken as a claim by Huygens he did not learn anything
from the Parisians about how to faire les partys, but Huygens’s letters to Van
Schooten and Wallis support the skepticism about such a claim that has been
expressed by Coumet, Edwards, and Schneider. Coumet asks whether we may
be misunderstanding Huygens’s words. Did his 17th century audience read
“mode of invention” (manier van uytvinding) as merely a way of finding an
answer or, as the sentence following it might suggest, something deeper?

We may also ask whether Huygens was really unaware of what the authors
of commercial arithmetic had said about how to faire les partys, Ivo Schneider
argues that the form of De Ratiocinniis (formal propositions, with full expla-
nations, followed by problems with numerical answers but no explanations)
suggests familiarity with the work of the reckoning masters.25

25[47], p. 182.
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4.2 Only games of pure chance?

The first sentence of De Ratiocinniis, in its Latin version at least, suggests that
the treatise is concerned with games that depend only on chance. Here is the
sentence in Latin:

Etsi lusionum, quas sola sors moderator, incerti solent ese eventos,
attamen in his, quanto quis ad vincendum quam perdendum propior
sit, certam Semper habet determinatiionem.

But here it is in Huygens’s Dutch, which is now somewhat archaic:

Al-hoewel in de spelen, daer alleen het geval plaets heeft, de uytkom-
sten onseecker zijn, soo heeft nochtans de kansse, die yemandt heeft
om te winnen of te verliesen, haere seeckere bepaling.

In 1895, Ernst Willem Scott, an actuary at an insurance company in Ams-
terdam, translated this Dutch sentence into English without referring to pure
chance:

Though the results of a game can only be uncertain, the chance any
one has to win or to lose can be determined beforehand.26

But others have translated the Dutch in a way that makes it track the Latin.
The editors of Huygens’s complete works gave this translation into French in
1920:

Quoique dans les jeux de hasard pur les résultats soient incertains,
la chance qu’un joueur a de gagner ou de perdre a cependant une
valeur déterminée.27

The editors of Jacob Bernoulli’s complete works give a very similar translation
into German:

Obwohl in den Spielen, in denen nur dere Zufall entscheidet, der
Ausgang ungewiß ist, so hat trotzdem de Chance, die jemand hat,
zu gewinnen oder zu verlieren, ihre sichere Bestimmung.28

The French and German translations correspond to this translation into English:

Although outcomes in games of pure chance are uncertain, the
chance a player has to win or lose nevertheless has a definite value.

Of course the very title of Huygens’s tract, De Ratiociniis in Ludo Aleae in
Latin and Van Rekeningh in Spelen van Geluck in Dutch, tells us that Huygens
was studying games of chance. But even here there seems to have been some
vacillation. As Stigler has noted,29 the table of contents of the Latin version of

26[27], p. 316.
27[28], p. 60.
28[5], p. 10.
29[51], p. 35.
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Van Schooten’s book calls the tract Christiani Hugenii Tractatus de Ratiociniis
in Aleae Ludo, which could be translated as “Christian Huygens’s Tract on
Calculation in Gambling”.

If he was thinking only about games of pure chance, Huygens was following
Pascal. But whereas Pascal emphasized that he was considering only games of
pure chance in order to justify his second principle, Huygens makes an argu-
ment that applies equally well to the mixed games that had been considered by
authors in the tradition of the commercial arithmetics.

4.3 Using algebra

Huygens invented his own first principles, and they went deeper than Pascal’s.
A concise and insightful explanation of Huygens’s principles was provided by
Hans Freudenthal in 1980.30 Here is Freudenthal’s translation from the Dutch
of Huygens’s first proposition and his proof of it.

PROPOSITION I. If I have the same chance to get a or b
it is worth as much to me as (a + b)/2.

In order not only to prove but also to discover this rule, I put x for
what the chance is worth to me. Hence having x I must be able to
arrive at the same chance by an equitable game. Let it be the game
which I play against another with stake x, where the other is also
staking x; and let it be agreed that the one who wins shall give a
to the one who loses. This game is equitable, and it appears that
by this I have an equal chance to win a, that is, even if I lose the
game, or 2x−a if I win, because then I get the stakes 2x from which
I must give the other a. Suppose that 2x − a were as much as b,
then I would have the same chance for a and b. So I put 2x− a = b,
and it follows that x = (a + b)/2 for the value of my chance. The
proof of this is easy, because having (a+ b)/2, I can venture against
another who will also stake (a + b)/2, with the stipulation that the
one who wins the game shall give a to the other. Therefore I will
have an equal chance to get a, that is to say if I lose, or b if I win,
because then I take a + b, which is the stake, and from this I give
him a.

Huygens begins with the principle of fairness that the players must be treated
the same. If two players both put up (a + b)/2, and the winner gets a and the
loser gets b, then the two players are being treated the same.

Huygens’s proof of his first proposition is a nice illustration of the new role
of algebra in the 17th century. As Fermat had learned from Vieta and Van
Schooten had learned from Descartes, you can use algebraic equations to dis-
cover solutions to geometric or physical problems, but to achieve certainty you
must translate this discovery into a proof in the style of the Euclid and the

30[16]
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other ancients.31 In Huygens’s proposition, as in geometry, the synthetic proof
has a constructive character. It says that (a + b)/2 is the right value because I
can use this amount to reconstruct my position. In the contemporary language
of finance, it is the cost of hedging the position.32

From his first proposition, Huygens moved quickly to his third proposition:

PROPOSITION III. If the number of chances I have for a
is p, and the number of chances I have b is q, then assuming
that every chance can happen as easily, it is worth to me
as much as (pa + qb)/(p + q).

Here is the synthetic version of Huygens’s proof: a fair arrangement where I
risk (pa+qb)/(p+q) to get p chances for a and q chances for b. Consider a game
where I and p+ q− 1 other players each have an equal chance of winning. Each
player puts up (pa + qb)/(p + q) and the winner takes it all; this is evidently
fair. I make a fair side bet with each of q of my opponents: if one of us wins, he
will give the other b. I also make a fair side bet with each of my remaining p−1
opponents: if one of us wins, he will give the other a. If one of the q opponents
wins, I end up with b. If one of the p − 1 opponents wins, I end up with a. If
I win, I get the (pa + qb)/(p + q) put up by each other p + q players, myself
included, but I pay b to q opponents and a to p− 1 opponents, netting

(p + q)(pa + qb)/(p + q)?qb?(p?1)a = a.

So I have p chances for a and q chances for b.
Here Huygens has done something left undone by Pascal. He has derived

from first principles a general rule for calculating from equally possible chances
how stakes should be fixed. In the writings Pascal left behind, we see this done
only for the case where there are only two equal chances; Pascal called this a
“lemma” in his Usage.

Ivo Schneider has raised an objection to Huygens’s argument. Huygens’s
fundamental principle is that players should be treated alike. But here one
player gets to set the bets. He arranges side bets with many players, and as a
result his position is different from that of the others. As this objection illus-
trates, Huygens’s notion of fairness is not defined with mathematical precision.
We cannot say that Huygens has a game-theoretic foundation that meets the
standards of rigor of modern game theory, in which the rules of play are clearly
specified.

Huygens also uses algebra in his last proposition, which I paraphrase as
follows:

PROPOSITION XIV. Player A and Player B take turns
throwing two dice. Player A wins if he throws 7 points
before Player B throws 6 points. If Player B throws first,
what is the ratio of their chances?

31[34, 19]
32[51]; [52], p. 7.
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Whenever it is Player A’s turn to throw, he has 6 chances out of 36 to win on
that throw; whenever it is Player B’s turn, he has 5 chances out of 36 to win on
that throw. Huygens wrote a for the stakes for which they are playing; let us
simplify by setting a = 1. Huygens wrote x for the value of Player A’s chance at
the outset and y for the value of his chance if and when he gets to throw again,
after Player B has lost his first throw. At the outset, Player B has 5 chances
to win and 31 chances to put Player A in the position where the value of his
chance is y. So

x = (5/36) × 0 + (31/36) × y.

If Player B loses his first throw, then Player A has 6 chances of winning on his
first throw and 5 chances of returning to x. So

y = (6/36) × 1 + (30/36) × x.

Solving the two equations, we find that x = 30/61. So the ratio of Player A’s
chance to Player B’s is 30 to 31.

This argument may have seemed a little intricate at the time, but it is an
impressive advance on what medieval mathematicians could do. Player A first
throws two dice, and if he loses Player B throws two dice again. So solving the
problem by the rule of three requires somehow considering the 1296 chances for
the result of throwing four dice.

5 Back to frequency

Laplace got it right in 1814. The calculus of games of chance, in a mathemati-
cally rudimentary form, goes back centuries if not millennia before Pascal and
Fermat. Born from the experience of dice players, this calculus had always been
a calculus of frequencies. So it is not surprising that Pascal’s and Huygens’s
game-theoretic foundations quickly disappeared, pushed aside with little ado by
the deeply entrenched concept of equally frequent chances.

Huygens’s immediate successors in the development of the calculus of proba-
bility were Montmort, De Moivre, and Bernoulli. Each, in his own way, favored
and developed Fermat’s method of combinations, not because it was Fermat’s
method, but because it was everyone’s method.

5.1 Montmort

Pierre Rémond de Monmort (1678–1719) published his own book on games of
chance in French in 1708.33 Montmort explains that he learned the elements of
the subject from Pascal’s Usage, but he relies primarily on the method of combi-
nations. He ignores Pascal’s and Huygens’s foundational arguments, returning
to the rule of three to argue that if a player has m chances out of m + n to get
A, his expectation (sort) is mA/(m + n).34 Accused by De Moivre of following

33[38, 39]
34[38], pp. 3–4; [39], pp. 75–76.
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Huygens (because he had used some algebra), he denied having learned anything
important from Huygens, dismissing what he called Huygens’s “lemma” as mere
common sense.35 (Here he was probably referring to Huygens’s Proposition III,
perhaps also confusing it with Pascal’s lemma.)

5.2 De Moivre

Abraham De Moivre (1667–1754) published a far-reaching article on the calculus
of chances in Latin in 1711.36 He began with two principles. First, if two players
contend for the sum a, and p out of p + q chances favor the event that the first
player wins, then his expectation is worth pa/(p + q). Second, multiplication
is used to find the numbers of chances for events that have no dependence on
each other. These are essentially the medieval principles, updated by explicit
reference to multiplication and to the concept of an event. De Moivre later
explained that he had learned the elements from Huygens, but that he was
determined to use combinations rather than Huygens’s (algebraic) method.

5.3 Bernoulli

Jacob Bernoulli (1655-1705) worked on probability well before Montmort and De
Moivre, but his book on the topic was published after his death, in 1713.37 The
book begins by reproducing Huygens’s treatise with commentary. But Bernoulli
then turns to the method of combinations. His commentary on Huygens’s first
three propositions suggests that he does not find Huygens’s constructive argu-
ment necessary. He suggests that it can be replaced by reasoning that is “more
popular” and “more adapted to common comprehension”, using merely the as-
sumption that two players together are sure to win the entire stakes and should
be treated equally. He then notes that Huygens’s rules are analogous to the
rules for mixtures used in business mathematics.38

6 Conclusion

“To penetrate to the reasons of things, look at how they have gradually been
revealed in the course of time, in their progression and in their ruptures. . . .”
Such is the advice of Marie-France Bru and Bernard Bru39 Since the time of
Laplace, successive students of probability have pursued this historical method
in their quest for a clearer understanding of probability. Here are some thoughts
about how the preceding perspectives on Pascal, Fermat, and Huygens can help
us with contemporary puzzlements.

35[39], p. xxx.
36[37, 12]. See also [45, 3].
37[4, 6]
38[6], pp. 134, 138.
39[7], p. 287.
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6.1 Conceptual revolution?

The legend of Pascal and Fermat was embellished yet further in the 1970s,
when philosophers and historians reviewed the history of science in search for
examples of conceptual change. Most famously, Ian Hacking argued that the
correspondence between Pascal and Fermat marked the emergence of a dual
concept of probability, combining belief and frequency. In 1975, Hacking wrote:

Probability, as we now conceive it, came into being about 1660. It
was essentially dual, on the one hand having to do with degrees of
belief, on the other, with devices tending to produce stable long-run
frequencies.40

This thesis of a conceptual revolution for probability has been widely repeated
and further embellished, in both scholarly and popular contexts. Here, for
example, is an assessment offered by Keith Devlin, a widely read writer on
mathematics:

The Pascal-Fermat correspondence showed that it is possible to use
mathematics to see into the future.41

The history recounted in this article suggests a greater conceptual continuity.
In the case of dice at least, Pascal and Fermat connected frequency with betting
on the future in the same way as the author of De Vetula had 400 years earlier,
and we have every reason to suppose that dice players had been making the
same connection for millennia.

The advances that we see in Pascal’s and Fermat’s reasoning, then in Huy-
gens’s treatise and the following work by Montmort, De Moivre, and Bernoulli,
are primarily advances in mathematics, not conceptual changes. These schol-
ars’ increasing facility with numbers made it possible for the first time to fix
stakes and bets in games that were, as Laplace put it, even a little compli-
cated. Perhaps Pascal’s and Fermat’s most important contribution was to offer
to Huygens the more difficult problems that he stated at the end of his treatise,
with answers but without explanations. Montmort, De Moivre, and Bernoulli
all began their work on probability by solving these problems.

The arguments advanced by Pascal and Huygens did contain the seeds of
a conceptual revolution, one that retained the role of fairness but replaced fre-
quency with reasoning about the structure of the game. But this revolution was
aborted, because the connection between frequency and betting was so firmly
entrenched.

The most important conceptual development spurred by Pascal and Huy-
gens was the ambition that their mathematical successes awoke to extend their
calculations from games of chance to other problems of uncertainty, thus making
the calculus of chances a calculus of probability. We see this already in the Port
Royal Logic, in Pascal’s Pensées and then more systematically in Bernoulli and
his 18th century successors. But this is another story.

40[21], p. vi.
41[13], p. 164.
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6.2 Modernizing the game-theoretic foundation

In the 20th century, mathematical probability became pure mathematics. At-
tribution of meaning to its terms is now an exercise undertaken after the theory
is first developed by pure reason, without any intrusion of ideas about fairness
or frequency.

The pure mathematics of probability can be developed either measure-
theoretically or game-theoretically. The measure-theoretic development is an
abstract generalization of the counting of chances; probabilities and the cor-
responding expected values being taken as given.42 The game-theoretic devel-
opment is an abstract generalization of Huygens’s picture of a player who is
allowed to construct betting strategies.43 In both developments, frequencies
enter the picture through Bernoulli’s theorem and its many generalizations. In
the measure-theoretic development, these theorems say that basic probabilities
(which play the role of the classical equal chances) will be approximated by
frequencies with high probability. In the game-theoretic development, they say
that the player has a strategy that multiplies the capital he risks by a large
factor if the approximation fails. The measure-theoretic development can then
be connected with frequencies in the world through the presumption that eas-
ily specified events with high probability will happen, while the game-theoretic
development makes the same connection through the presumption that simple
betting strategies will not succeed.

The modern game-theoretic formulation begins with a game in the sense of
modern game theory, defining players, rules for play, and a rule for who wins.
This takes us away from Huygens’s and Pascal’s notion of fairness as symmetric
treatment of players. As Schneider’s objection to Huygens shows, the notion
of a strategy for betting fits awkwardly with such symmetry. The game we
need has instead one player who gives odds or prices, another who is allowed
to choose how to gamble at those odds or prices and can therefore construct
strategies, and another who decides outcomes.
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