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Abstract

When testing a statistical hypothesis, is it legitimate to deliberate on the
basis of initial data about whether and how to collect further data? The funda-
mental principle for testing by betting says yes, provided that you are testing by
betting and do not risk more capital than initially committed. Standard statis-
tical theory uses Cournot’s principle, which does not allow such optional con-
tinuation. Cournot’s principle can be extended to allow optional continuation
when testing is carried out by multiplying likelihood ratios, but the extension
lacks the simplicity and generality of testing by betting.
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1 Introduction

Statistical testing requires a mathematical theory of probability together with
a principle that specifies how probabilities can be discredited by observations.

� The principle used to make traditional probability theory into a theory of
statistical testing is sometimes called Cournot’s principle.1 This principle
authorizes a statistician to select an event to which a probability distri-
bution assigns small probability and to regard its happening as evidence
against the distribution.

� Game-theoretic probability is a mathematical theory in which probability
distributions function as betting offers (Shafer and Vovk, 2001, 2019). To
make it into a theory of statistical testing, we can use a principle that I
have called the fundamental principle for testing by betting.2 This princi-
ple, which is related to but distinct from Cournot’s principle, authorizes a
statistician to interpret success in betting against a probability distribu-
tion as evidence against the distribution.

Which of these two principles is best adapted to optional continuation? Do they
both have precise formulations that assert the validity of certain statistical tests
under optional continuation?

Optional continuation, as the term is used here, refers to the practice of
deliberating, after seeing some initial data, whether and how to continue col-
lecting data. Such continuation may involve observations or experiments not
contemplated at the outset. It is distinguished from optional stopping, which
refers only to the possibility of deciding at the outset to curtail a fully planned
experiment or other study.

In this article, I conclude that the fundamental principle for testing by bet-
ting does assert the validity of optional continuation for the type of testing it
considers. Cournot’s principle, in its classical formulation, does not. It can be
extended to assert the validity of optional continuation when testing is carried
out by multiplying likelihood ratios, but the extension lacks the simplicity and
generality of the fundamental principle for testing by betting.

2 Optional continuation in statistical practice and theory

Optional continuation has long been part of statistical practice. It is implicit,
for example, in the idea of meta-analysis. But it has proven difficult to bring it
under the purview of statistical theory.

1See Shafer and Vovk (2006), Shafer (2007, 2022), and the many references therein for the
history of Cournot’s principle. The principle has sometimes been ridiculed by philosophers, see
for example Diaconis and Skyrms (2018). But it has been articulated in one way or another by
a panoply of mathematicians and statisticians, including Jacob Bernoulli, Antoine-Augustin
Cournot himself, Émile Borel, Andrei Kolmgorov, Richard von Mises, and Charles Stein.

2Vovk and I have used various names for this principle. In 2001, we called it the fundamen-
tal interpretative hypothesis of probability (Shafer and Vovk, 2001, pp. 5, 14, 62). In 2019,
we called it the game-theoretic version of Cournot’s principle (Shafer and Vovk, 2019, pp.
226–227).
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The term “optional continuation” with the meaning used here first appeared
in print in Allard Hendriksen’s master’s thesis at the University of Leiden (Hen-
driksen, 2017), written under the supervision of Peter Grünwald. Hendriksen
wrote on page 3 of the thesis,

“Optional continuation” is the practice of combining evidence of
studies that were done because of promising results of previous re-
search on the same subject.

The term has subsequently been used in other work by Günwald’s machine-
learning research group at CWI in Amsterdam (Grünwald et al., 2021, 2023).
But as of June 13, 2023, it had not yet appeared in any of the 34 statistics
journals in JSTOR.

The older term “optional stopping” was introduced by the Duke mathemati-
cian Joseph Albert Greenwood (Greenwood, 1938). Greenwood sought empirical
adjustments to account for the way Joseph Rhine’s laboratory was conducting
and analyzing its experiments on extra-sensory perception. Rhine stopped ex-
perimenting with each subject when a success rate thought to be statistically
significant was achieved, then combined the z-scores achieved by successive sub-
jects.

Greenwood’s problem was brought to wider attention in mathematical statis-
tics by William Feller in a critique of the ESP work (Feller, 1940, pp. 272, 286–
292) and in the first edition of his textbook on probability (Feller, 1950, pp. 140,
190, 197). In subsequent work in probability, “optional stopping” has referred
to stopping rules that can be adopted in advance without annulling a desired
property of a stochastic process, usually the property of being a martingale; see
Doob (1953).

In his book on sequential analysis (Wald, 1947), Abraham Wald considered
only “sequential sampling plans” chosen in advance. While allowing early stop-
ping when there was enough evidence to make a decision, these plans specified
whether or not to stop and how to continue if stopping was not mandated, all
as a function of outcomes so far. In a review of the book (Barnard, 1947),
George Barnard wrote that sequential analysis marked “the entry of statistical
considerations into the very process of experimentation itself.” We know that
the process of experimentation often involves not only plans adopted in advance
but also opportunistic changes in plans, based on new insights and unexpected
information.

Barnard seems not to have followed up on his insight concerning the role of
statistics in the process of experimentation; he does not discuss it, for example
in his major article on statistical inference (Barnard, 1949). But in a subsequent
article entitled “Sequential experimentation”, R. A. Fisher wrote about the need
for sequential deliberation in these terms (Fisher, 1952, p. 183):

The present use of the term sequential is intended to be of a broader
import than the formal use of the word as associated with the sys-
tematic procedure known as sequential analysis. The experimenter
does not regard his material as wholly passive but instead looks to
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what may be learnt from it with a view to the improvement and
extension of the enquiry. This willingness to learn from it how to
proceed is the essential quality of sequential procedures. Wald in-
troduced the sequential test, but the sequential idea is much older.
For example, what is the policy of a research unit? It is that in time
we may learn to do better and follow up our more promising results.
The essence of sequential experimentation is a series of experiments
each of which depends on what has gone before. For example, in
a sample survey scheme, as explained by Yates, a pilot survey is
intended to supply a basis for efficiently planning the subsequent
stages of a survey. . . .

Until the recent work on optional continuation, this insight about statistical
practice has remained outside the ambit of statistical theory.

3 A betting game with optional continuation

The simplest game used in game-theoretic probability has three players: Fore-
caster makes probability predictions, Skeptic bets against them, and Reality
announces the outcomes. In our 2001 and 2019 books, Shafer and Vovk (2001,
2019), Vovk and I discussed the role this game can play in statistics but empha-
sized its mathematics, proving theorems about what each player can accomplish
with various strategies.

The game is a perfect-information game, in the sense that Forecaster and
Skeptic move in turn and see each other’s moves. We can vary the rules of the
game, but we need not impose any further condition on what information any
player might have or acquire in the course of the game, or how the players might
collaborate. Forecaster and Skeptic might be the same person. Forecaster and
Reality might be the same person.

If Forecaster keeps forecasting, Skeptic can keep betting. Forecaster need
not follow a plan or strategy about what to forecast next or how to forecast it.3

Even if Forecaster follows a strategy, Skeptic need not have a plan or strategy
for when or how to bet on the forecasts. Thus optional continuation is built
into the game, for both Forecaster and Skeptic. Skeptic can decide whether and
how to continue selecting from Forecaster’s betting offers, but Forecaster can
decide what experiments or observations to make and what forecasts (perhaps
probabilities) to give for them.

In our 2001 and 2019 books, Vovk and I used the example of quantum me-
chanics to illustrate game-theoretic probability’s capacity for optional continua-
tion; see (Shafer and Vovk, 2001, pp. 189–191) and (Shafer and Vovk, 2019, pp.
215–217). In this example, we split Forecaster into two players, Observer and
Quantum Mechanics. Observer selects the experiment, and Quantum Mechan-
ics makes the probability forecast. Formally, the game continues indefinitely,
but both Observer and Skeptic can effectively stop it by making null moves.

3To see how probability’s limit theorems can be generalized to accommodate Forecaster’s
freedom, see (Shafer and Vovk, 2019, §7.5).
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Although optional continuation is built into the game, we need this principle
to use the game in statistical testing:

Principle 1 (Fundamental principle for testing by betting). Successive bets
against a forecaster that begin with unit capital and never risk more discredit
the forecaster to the extent that the final capital is large.4

In one sense, this says it all. But some elaboration may be useful:

1. The principle is fundamental, not the consequence of some more extensive
philosophy or methodology. We do not begin by saying that the fore-
caster’s probabilities are or should be objective, subjective, personal, “fre-
quentist”, or whatever. We are testing the forecaster qua forecaster, and
so we are testing his forecasts qua forecasts; the question is only whether
they are good forecasts, relative to the knowledge and skill of whoever is
doing the testing.

2. The forecaster may give a probability for a single event A, a probability
distribution for an outcome X, or something less than a probability or a
probability distribution:

� If the forecaster gives a probability, you may bet on either side at the
corresponding odds.

� If the forecaster gives a probability distribution for X, you may buy
or sell any payoff S(X) for its expected value.

� If the forecaster gives only an estimate E of X, you may buy or sell
X for E.

� If the forecaster repeatedly gives a new probability for A or new
estimate for X, say daily, you may buy or sell tomorrow’s price for
today’s price.

� If the forecaster gives upper and lower previsions, you may buy at
the upper or sell at the lower.

3. You begin with unit capital only for mathematical convenience. The dis-
credit is measured by the ratio (final capital)/(initial capital).

4. If you make several bets against the same forecaster (or the same theory or
closely related theories), each starting with its own capital, then you are
not allowed to report only the cases where you discredited the forecaster.
Instead, you must report the overall result, the sum of your final capital
over all the bets divided by the sum of your initial capital over all the
bets.

5. When betting against successive forecasts, each bet uses only the capital
remaining from the previous bet. You may not borrow or otherwise raise
more capital in order to continue betting. This is what never risk more
than the initial capital means.

4I first formulated the principle in this way in my SIPTA lectures (Shafer, 2020).
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6. When you stop, you must compare your initial capital with your final
capital. You cannot claim to have discredited the forecaster because you
had reached a higher level of capital in the interim. This acknowledges
the fact that you do not have the money if you keep betting and lose it.5

I have stated the fundamental principle for testing by betting in 26 words,
then taken a page to explain it. Is the principle simple? In any case, it is coher-
ent and teachable. In contexts where the forecasts are only single probabilities
or estimates, the principle can be taught even to those who have never studied
mathematical probability. Moreover, the principle builds on ideas about bet-
ting that most people acquire before ever studying mathematical probability.
Too many predictions contradicted by experience discredit the person making
them. If you lose too much money betting on something, you are not much of
an expert about it. Etc.

4 Cournot’s principle in classical form

What principles must we add to traditional probability theory to allow optional
continuation?

Before answering this question, we answer a more basic question: How are
we authorized to discredit a probability distribution P using observations? The
classical answer is Cournot’s principle: we select an event E that has small
probability P (E) (call E our test event). The probability distribution P is
discredited if E happens; we prefer to believe that the probabilities are incorrect
rather than think that this improbable event happened.

Principle 2 (Cournot’s principle). If we specify an event E in advance, and
E happens, then we may take α, the probability of E, as a measure of evidence
against P . The magnitude of discredit is measured by how small α and thus how
large 1/α is.

We may call 1/α our test score:

test score =

{
1/α if E happen

0 if E does not happen.
(1)

Although Cournot’s principle has long been fundamental to statistical the-
ory, current philosophical fashion has made it difficult to teach. A frequent
objection is that some event of small probability always happens. When we
hear this objection, we emphasize “specified in advance”, which requires less
emphasis in game-theoretic probability, because a bet, by definition, is made in
advance.

5The anonymous 13th-century author who left us with the earliest surviving calculation of
the chances for a throw of three dice warned us (Hexter et al., 2020, p. 172): “Addeque, quod
lusor se continuare lucrando nescit, perdendo nescit dimittere ludum.” Not knowing how to
maintain his luck when winning, the gambler does not know how to quit when losing.
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In some cases, we may substitute “simple to describe” for “specified in ad-
vance”. This also goes without saying in game-theoretic probability, because a
bet cannot be made and implemented unless the event is relatively simple.

Cournot’s principle can be considered a special case of the fundamental
principle for testing, because 1/α is the capital that would result from E’s
happening if you bet unit capital on E.

5 Extending Cournot’s principle to test variables

This extension of Cournot’s principle does not require us to specify in an advance
a goal 1/α for the strength of the evidence.

Suppose S is a nonnegative random variable, chosen in advance and so not
too hard to describe, with EP (S) = 1 (call S our test variable). Our next
principle says that a realized value s of S discredits P to the extent that s is
much larger than 1.

Principle 3 (Authorization to test with a test variable). If we specify a test
variable S in advance, then we may take s, the observed value of S, as a measure
of evidence against P . We then interpret s (our test score) on the same scale as
we use in Cournot’s principle. In other words, when s = 1/α, it has the same
weight against P as the happening of a pre-specified event E when P (E) = α.

Cournot’s principle is the special case of Principle 3 where S is given by (1).
Principle 3 adds the possibility of a more graduated report on the strength of
the evidence against P .6

It might seem that the greater flexibility offered by a test variable S comes at
a price. When s is the realized value, the events {S = s} and {S ≤ s} happen,
and Markov’s inequality tells us that our score 1/P (E) would have been at least
as great, often greater, had we chosen one of these events as our test event E.
But of course we could not have made these choices, because we did not know
s in advance.

Like the classical form of Cournot’s principle, Principle 3 can be considered
a special case of the fundamental principle for testing by betting. The observed
value s of the test variable S is the capital that would result from buying S for
its expected value.

6 Extending Cournot’s principle to test martingales

Now suppose we want to test a probability distribution P for a stochastic process
X := X1, X2, . . . , and we observe the Xt successively. We use a test martingale,
a nonnegative martingale S1, S2, . . . with EP (S1) = 1, again chosen in advance
and hence relatively simple. The value st of St may become known to us only
when we have observed X1, . . . , Xt. To interpret st, we adopt this principle:

6A more widely used way of obtaining a more graduated report is to use p-values; see §9.
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Principle 4 (Authorization to test with a test martingale). If we specify a
test martingale S1, S2, . . . in advance, then at all times t we may take st, the
observed value of St, as the current measure of evidence against P . If we want,
we may stop at time t and continue to regard st as our measure of evidence
against P . We may interpret each st (each test score) on the same scale as
we use in Principles 2 and 3. In other words, when st = 1/α, it has the same
weight against P as the happening of a pre-specified event E with P (E) = α.

Principle 3 is the special case of Principle 4 where P says that all the St are
equal to each other, so that nothing can be accomplished by continuing past
t = 1.

Like Cournot’s principle and our previous extensions of it, Principle 4 can
be considered a special case of the fundamental principle of testing by betting.
For each t, st is the capital obtained at time t if we first buy S1 and then
at every step invest all our winnings so far in St. But we are still testing a
mathematical object, a probability distribution P . Forecaster is following a
fixed strategy, which tells him to use P ’s successive conditional probabilities
as forecasts, and Skeptic’s strategy (the test martingale) is also specified in
advance. Neither Forecaster nor Skeptic has a role that allows them to exercise
optional continuation. So Principle 4 is not a principle of optional continuation
in the sense of this article. It is, however, a principle of optional stopping.

Although the statement of 4 does not mention betting, I do not recall seeing
the principle explained or advocated without a betting story.

7 Improvised testing (optional continuation for Skeptic)

Principle 4 authorizes the statistician to use a test martingale specified in ad-
vance. Improvisation is not yet authorized. For this, we need some further
principle. As with Principle 4, we are testing a probability distribution P for a
stochastic process X := X1, X2, . . . , and we observe the Xt successively. When
x1, . . . , xt−1 are possible values of X1, . . . , Xt−1, we call a nonnegative variable
S(Xt) a round-t test variable given x1, . . . , xt−1 if EP (S(Xt)|x1, . . . , xt−1) = 1;
when t = 1, this reduces to EP (S(X1)) = 1. We can formulate a principle for
improvisation in testing as follows:

Principle 5 (Authorization to wing it when testing). Suppose we set s0 = 1,
specify a round-1 test variable, say S1(X1), and then, beginning with t = 1,

1. we observe Xt’s value xt,

2. we set st := st−1St(xt), and

3. we specify a round-(t+ 1) test variable given x1, . . . , xt, say St+1(Xt+1).

Suppose we continue for as long as we want and stop whenever we want (after
step 2 for some t). Then at all times t until after we stop, we may take st as
the current measure of evidence against P . We may interpret st on the same
scale as we use in Principles 2, 3, and 4.
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Principle 5 generalizes Principle 4, and like Principle 4, it can be considered
a special case of the fundamental principle for testing by betting. Skeptic is
now a free player, not constrained to follow a strategy specified in advance.

8 Improvised probabilities (optional continuation for Forecaster)

Principle 5 authorizes a statistician testing a probability distribution to im-
provise. But this still does not bring us to R. A. Fisher’s vision, where the
statistician helps construct over time not only a test but also the probabilities
being tested. In this vision, statistician and scientists brainstorm to design an
experiment with outcome X1, to which they assign probabilities based on some
theory they want to test, and after observing X1 = x1, they brainstorm again
about what they have learned and design a possibly unanticipated experiment
with outcome X2, and so on.

It is tempting to try to square traditional probability with Barnard’s vision
by imagining that this collaboration defines a probability distribution P progres-
sively. The first design includes a probability distribution P1 for X1. The second
includes a probability distribution P2 for X2, etc. The product P1 × · · · × Pk,
where k is where the research team stops, is a probability distribution P .

But the statistician did not set out to test P1 × · · · × Pk. She and her
colleagues waited to design the second experiment and its X2 and P2 until
they had seen x1. Had x1 come out differently, their subsequent brainstorming
might have produced a different X2 and P2, and so on. If there is a probability
distribution being tested, it would seem to involve conditional probabilities for
X2 given all the different x1 that might be observed (and perhaps also all the
other ways the research team’s information and thinking might evolve while the
first experiment was being performed). And so on.

Some decades ago Dawid (1984, 1991), A. Philip Dawid bravely argued that
these dependencies should not matter—that we can design significance tests,
confidence intervals, and Bayesian procedures that are unaffected by probabil-
ities, somehow true or somehow invented, involving the might-have-beens. As
these might-have-beens do not matter, we can just pretend that we have the
requisite independence. This is Dawid’s prequential model. Although some
statisticians (including myself) found it appealing, others found it confusing.
What are we really testing? Are we testing a huge and not fully specified prob-
ability distribution P whose unspecified probabilities include probabilities for
actions of the research team doing the testing?

Leaving all this aside, can we formulate a principle that authorizes us to use
Dawid’s insight to construct test scores? Here’s a try.

Principle 6 (A prequential testing principle). Suppose we set s0 = 1, construct
an experiment that will produce a variable X1, a probability distribution P1 for
X1, and a test variable S1 for P1, and then, beginning with t = 1,

1. we observe Xt’s value xt,

2. we set st := st−1St(xt), and
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3. we construct an experiment (perhaps newly conceived) that will yield a
variable Xt+1, a probability distribution Pt+1 for Xt+1, and a test variable
St+1 for Pt+1.

Suppose we continue for as long as we want and stop whenever we want (after
step 2 for some t). Then at all times t until after we stop, we may take st as
the current measure of evidence against the Pt we have constructed so far all
being valid. We may interpret st on the same scale as we use in Principles 2,
3, 4, and 5.

Principle 5 is a special case of Principle 6. And Principle 6, like our pre-
ceding extensions of Cournot’s principle, can be considered a special case of the
fundamental principle for testing by betting. Now both Forecaster and Skeptic
are free agents, not constrained to follow any strategy specified in advance.

The principle’s consistency with testing in the game-theoretic framework is
not surprising, as that framework was partly inspired by Dawid’s prequential
model.

9 The role of Ville’s inequality.

Ville’s inequality says that if S1, S2, . . . is a test martingale, then

P

(
sup
t≥1

St ≥
1

α

)
≤ α.

Some people (including myself) have sometimes said that Ville’s inequality au-
thorizes optional continuation. This is a careless formulation. First because a
theorem is never more than mathematics; it cannot authorize anything. Sec-
ondly because the principle it suggests is not an optional continuation principle
developed in this article.

Ville’s inequality tells us that 1/ supt≥1 St is a “p-variable” and so 1/ supt≥1 st
is a p-value. Well, almost. It is at least implicit in the notion of a p-value, as
statisticians understand and use the term, that we have observed it and know
we have observed it. We do not expect this for 1/ supt≥1 st. But we do observe
upper bounds. At time t, we have observed the upper bound 1/ sup1≤i≤t si,
and an upper bound on a p-value is a p-value. So most statisticians who use
p-values would probably accept this principle:

Principle 7 (The dynamic p-value principle). As we continue to make observa-
tions, we may always use the current 1/ sup1≤i≤t si just as statisticians usually
use a p-value.

This principle is implicit in the use of confidence sequences, which go back to
Darling and Robbins (1967).

Principle 7 can be considered an optional stopping principle, because it au-
thorizes us to use 1/ sup1≤i≤t si like a p-value if we stop at time t. But it is
more than an optional stopping principle, because it authorizes us both to use
1/ sup1≤i≤t si like a p-value at time t and also to continue. It is not an optional
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continuation principle in the sense of this article, because it does not authorize
us to change the later experiment (the probabilities for future Xs) or the test
martingale.

As an optional stopping principle, Principle 7 can be compared with Princi-
ple 4. Neither is stronger than the other. Principle 4 authorizes us to use st as
a measure of our evidence against P and to continue doing so if we stop. But
it does not allow us to continue using st if we do not stop and hence does not
authorize us to use the sometimes larger sup1≤i≤t si (Shafer et al., 2011). But it
gives 1/st the force of a fixed significance level, which is greater than the force
of a p-value.

Ville’s inequality and Principle 7 have generalizations in game-theoretic
statistics, where they use game-theoretic definitions of upper and lower proba-
bility and expected value. See (Shafer and Vovk, 2019, Exercise 2.10).

10 Conclusion

We have shown that the traditional principle for testing a probability distri-
bution (Cournot’s principle) can be extended so that it fully accommodates
optional continuation and yet does not explicitly use game-theoretic probability
or ideas about betting. Is this extension worth the trouble?

The clear message of the exercise is that the fundamental principle of testing
by betting, coupled with game-theoretic probability, provides a theoretical basis
for optional continuation that is simpler, clearer, and more general. Readers
will judge for themselves, but I submit that Principle 6 is overly complex, ill-
motivated, and impossible to teach without reference to betting. It remains,
moreover, less general than the fundamental principle of testing by betting,
because it requires Forecaster’s moves on each round of a forecasting game to
be a probability distribution.

Our exercise has also illustrated the new clarity brought to statistical the-
ory by game-theoretic probability’s distinction between Forecaster and Skeptic.
This distinction has helped us see the complexity of the notion of optional con-
tinuation. Optional continuation for Forecaster is a step further than optional
continuation for Skeptic.
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