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Abstract. Andrei Kolmogorov’s Grundbegriffe der Wahrscheinlichkeits-
rechnung put probability’s modern mathematical formalism in place. It also
provided a philosophy of probability—an explanation of how the formalism
can be connected to the world of experience. In this article, we examine the
sources of these two aspects of the Grundbegriffe—the work of the earlier
scholars whose ideas Kolmogorov synthesized.

Key words and phrases: Axioms for probability, Borel, classical probabil-
ity, Cournot’s principle, frequentism, Grundbegriffe der Wahrscheinlichkeits-
rechnung, history of probability, Kolmogorov, measure theory.

1. INTRODUCTION

Andrei Kolmogorov’s Grundbegriffe der Wahr-
scheinlichkeitsrechnung, which set out the axiomatic
basis for modern probability theory, appeared in 1933.
Four years later, in his opening address to an interna-
tional colloquium at the University of Geneva, Maurice
Fréchet praised Kolmogorov for organizing a theory
Émile Borel had created many years earlier by com-
bining countable additivity with classical probability.
Fréchet (1938b, page 54) put the matter this way in the
written version of his address

It was at the moment when Mr. Borel in-
troduced this new kind of additivity into the
calculus of probability—in 1909, that is to
say—that all the elements needed to for-
mulate explicitly the whole body of axioms
of (modernized classical) probability theory
came together.

It is not enough to have all the ideas in
mind, to recall them now and then; one must
make sure that their totality is sufficient,
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bring them together explicitly, and take re-
sponsibility for saying that nothing further
is needed in order to construct the theory.

This is what Mr. Kolmogorov did. This
is his achievement. (And we do not believe
he wanted to claim any others, so far as the
axiomatic theory is concerned.)

Perhaps not everyone in Fréchet’s audience agreed that
Borel had put everything on the table, but surely many
saw the Grundbegriffe as a work of synthesis. In Kol-
mogorov’s axioms and in his way of relating his ax-
ioms to the world of experience, they must have seen
traces of the work of many others—the work of Borel,
yes, but also the work of Fréchet himself, and that
of Cantelli, Chuprov, Lévy, Steinhaus, Ulam and von
Mises.

Today, what Fréchet and his contemporaries knew
is no longer known. We know Kolmogorov and what
came after; we have mostly forgotten what came be-
fore. This is the nature of intellectual progress, but it
has left many modern students with the impression that
Kolmogorov’s axiomatization was born full grown—
a sudden brilliant triumph over confusion and chaos.

To understand the synthesis represented by the
Grundbegriffe, we need a broad view of the founda-
tions of probability and the advance of measure the-
ory from 1900 to 1930. We need to understand how
measure theory became more abstract during those
decades, and we need to recall what others were saying
about axioms for probability, about Cournot’s principle
and about the relationship of probability with meas-
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ure and frequency. Our review of these topics draws
mainly on work by authors listed by Kolmogorov
in the Grundbegriffe’s bibliography, especially Sergei
Bernstein, Émile Borel, Francesco Cantelli, Maurice
Fréchet, Paul Lévy, Antoni Łomnicki, Evgeny Slutsky,
Hugo Steinhaus and Richard von Mises.

We are interested not only in Kolmogorov’s math-
ematical formalism, but also in his philosophy of
probability—how he proposed to relate the mathemat-
ical formalism to the real world. In a letter to Fréchet,
Kolmogorov (1939) wrote, “You are also right in at-
tributing to me the opinion that the formal axioma-
tization should be accompanied by an analysis of its
real meaning.” Kolmogorov devoted only two pages of
the Grundbegriffe to such an analysis, but the ques-
tion was more important to him than this brevity might
suggest. We can study any mathematical formalism we
like, but we have the right to call it probability only if
we can explain how it relates to the phenomena classi-
cally treated by probability theory.

We begin by looking at the classical foundation that
Kolmogorov’s measure-theoretic foundation replaced:
equally likely cases. In Section 2 we review how proba-
bility was defined in terms of equally likely cases, how
the rules of the calculus of probability were derived
from this definition and how this calculus was related
to the real world by Cournot’s principle. We also look
at some paradoxes discussed at the time.

In Section 3 we sketch the development of measure
theory and its increasing entanglement with probability
during the first three decades of the twentieth century.
This story centers on Borel, who introduced countable
additivity into pure mathematics in the 1890s and then
brought it to the center of probability theory, as Fréchet
noted, in 1909, when he first stated and more or less
proved the strong law of large numbers for coin toss-
ing. However, the story also features Lebesgue, Radon,
Fréchet, Daniell, Wiener, Steinhaus and Kolmogorov
himself.

Inspired partly by Borel and partly by the challenge
issued by Hilbert in 1900, a whole series of mathe-
maticians proposed abstract frameworks for probabil-
ity during the three decades we are emphasizing. In
Section 4 we look at some of these, beginning with
the doctoral dissertations by Rudolf Laemmel and Ugo
Broggi in the first decade of the century and including
an early contribution by Kolmogorov, written in 1927,
five years before he started work on the Grundbegriffe.

In Section 5 we finally turn to the Grundbegriffe it-
self. Our review of it will confirm what Fréchet said
in 1937 and what Kolmogorov says in the preface: it

was a synthesis and a manual, not a report on new re-
search. Like any textbook, its mathematics was novel
for most of its readers, but its real originality was
rhetorical and philosophical.

2. THE CLASSICAL FOUNDATION

The classical foundation of probability theory, which
begins with the notion of equally likely cases, held
sway for 200 years. Its elements were put in place early
in the eighteenth century, and they remained in place
in the early twentieth century. Even today the classical
foundation is used in teaching probability.

Although twentieth century proponents of new ap-
proaches were fond of deriding the classical foundation
as naive or circular, it can be defended. Its basic math-
ematics can be explained in a few words, and it can
be related to the real world by Cournot’s principle, the
principle that an event with small or zero probability
will not occur. This principle was advocated in France
and Russia in the early years of the twentieth century,
but disputed in Germany. Kolmogorov retained it in the
Grundbegriffe.

In this section we review the mathematics of equally
likely cases and recount the discussion of Cournot’s
principle, contrasting the support for it in France with
German efforts to find other ways to relate equally
likely cases to the real world. We also discuss two para-
doxes, contrived at the end of the nineteenth century
by Joseph Bertrand, which illustrate the care that must
be taken with the concept of relative probability. The
lack of consensus on how to make philosophical sense
of equally likely cases and the confusion revealed by
Bertrand’s paradoxes were two sources of dissatisfac-
tion with the classical theory.

2.1 The Classical Calculus

The classical definition of probability was formu-
lated by Jacob Bernoulli (1713) in Ars Conjectandi
and Abraham de Moivre in (1718) in The Doctrine of
Chances: the probability of an event is the ratio of the
number of equally likely cases that favor it to the to-
tal number of equally likely cases possible under the
circumstances.

From this definition, de Moivre derived two rules for
probability. The theorem of total probability, or the ad-
dition theorem, says that if A and B cannot both hap-
pen, then

probability of A or B happening

= # of cases favoring A or B

total # of cases
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= # of cases favoring A

total # of cases
+ # of cases favoring B

total # of cases
= (probability of A) + (probability of B).

The theorem of compound probability, or the multipli-
cation theorem, says

probability of both A and B happening

= # of cases favoring both A and B

total # of cases

= # of cases favoring A

total # of cases

· # of cases favoring both A and B

# of cases favoring A

= (probability of A)

· (probability of B if A happens).

These arguments were still standard fare in probability
textbooks at the beginning of the twentieth century, in-
cluding the great treatises by Henri Poincaré (1896) in
France, Andrei Markov (1900) in Russia and Emanuel
Czuber (1903) in Germany. Some years later we find
them in Guido Castelnuovo’s (1919) Italian textbook,
which has been held out as the acme of the genre
(Onicescu, 1967).

Geometric probability was incorporated into the
classical theory in the early nineteenth century. Instead
of counting equally likely cases, one measures their
geometric extension—their area or volume. However,
probability is still a ratio, and the rules of total and
compound probability are still theorems. This was ex-
plained by Antoine-Augustin Cournot (1843, page 29)
in his influential treatise on probability and statistics,
Exposition de la théorie des chances et des probabil-
ités. This understanding of geometric probability did
not change in the early twentieth century, when Borel
and Lebesgue expanded the class of sets for which
we can define geometric extension. We may now have
more events with which to work, but we define and
study geometric probabilities as before. Cournot would
have seen nothing novel in Felix Hausdorff’s (1914,
pages 416–417) definition of probability in the chapter
on measure theory in his treatise on set theory.

The classical calculus was enriched at the beginning
of the twentieth century by a formal and universal no-
tation for relative probabilities. Hausdorff (1901) intro-
duced the symbol pF (E) for what he called the relative
Wahrscheinlichkeit von E, posito F (relative probabil-
ity of E given F ). Hausdorff explained that this nota-
tion can be used for any two events E and F , no matter

what their temporal or logical relationship, and that it
allows one to streamline Poincaré’s proofs of the ad-
dition and multiplication theorems. Hausdorff’s nota-
tion was adopted by Czuber in 1903. Kolmogorov used
it in the Grundbegriffe, and it persisted, especially in
the German literature, until the middle of the twenti-
eth century, when it was displaced by the more flexible
P(E|F), which Harold Jeffreys (1931) introduced in
his Scientific Inference.

2.2 Cournot’s Principle

An event with very small probability is morally im-
possible: it will not happen. Equivalently, an event with
very high probability is morally certain: it will hap-
pen. This principle was first formulated within math-
ematical probability by Jacob Bernoulli. In his Ars
Conjectandi, published in 1713, Bernoulli proved a
celebrated theorem: in a sufficiently long sequence of
independent trials of an event, there is a very high prob-
ability that the frequency with which the event happens
will be close to its probability. Bernoulli explained that
we can treat the very high probability as moral cer-
tainty and so use the frequency of the event as an esti-
mate of its probability.

Probabilistic moral certainty was widely discussed
in the eighteenth century. In the 1760s, the French sa-
vant Jean d’Alembert muddled matters by questioning
whether the prototypical event of very small probabil-
ity, a long run of many happenings of an event as likely
to fail as happen on each trial, is possible at all. A run of
a hundred may be metaphysically possible, he felt, but
it is physically impossible. It has never happened and
never will happen (d’Alembert, 1761, 1767; Daston,
1979). Buffon (1777) argued that the distinction be-
tween moral and physical certainty is one of degree.
An event with probability 9999/10,000 is morally cer-
tain; an event with much greater probability, such as
the rising of the sun, is physically certain (Loveland,
2001).

Cournot, a mathematician now remembered as an
economist and a philosopher of science (Martin, 1996,
1998), gave the discussion a nineteenth century cast.
Being equipped with the idea of geometric probabil-
ity, Cournot could talk about probabilities that are van-
ishingly small. He brought physics to the foreground.
It may be mathematically possible, he argued, for a
heavy cone to stand in equilibrium on its vertex, but
it is physically impossible. The event’s probability is
vanishingly small. Similarly, it is physically impossi-
ble for the frequency of an event in a long sequence of
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trials to differ substantially from the event’s probability
(Cournot, 1843, pages 57 and 106).

In the second half of the nineteenth century, the prin-
ciple that an event with a vanishingly small probability
will not happen took on a real role in physics, most
saliently in Ludwig Boltzmann’s statistical understand-
ing of the second law of thermodynamics. As Boltz-
mann explained in the 1870s, dissipative processes
are irreversible because the probability of a state with
entropy far from the maximum is vanishingly small
(von Plato, 1994, page 80; Seneta, 1997). Also notable
was Henri Poincaré’s use of the principle in celes-
tial mechanics. Poincaré’s (1890) recurrence theorem
says that an isolated mechanical system confined to a
bounded region of its phase space will eventually re-
turn arbitrarily close to its initial state, provided only
that this initial state is not exceptional. The states for
which the recurrence does not hold are exceptional
inasmuch as they are contained in subregions whose
total volume is arbitrarily small.

Saying that an event of very small or vanishingly
small probability will not happen is one thing. Saying
that probability theory gains empirical meaning only
by ruling out the happening of such events is another.
Cournot (1843, page 78) seems to have been the first to
say explicitly that probability theory does gain empir-
ical meaning only by declaring events of vanishingly
small probability to be impossible:

. . . The physically impossible event is there-
fore the one that has infinitely small proba-
bility, and only this remark gives
substance—objective and phenomenal
value—to the theory of mathematical prob-
ability.

[The phrase “objective and phenomenal” refers to
Kant’s distinction between the noumenon, or thing-
in-itself, and the phenomenon, or object of experi-
ence (Daston, 1994).] After the Second World War,
some authors began to use “Cournot’s principle” for
the principle that an event of very small or zero proba-
bility singled out in advance will not happen, especially
when this principle is advanced as the unique means by
which a probability model is given empirical meaning.

2.2.1 The viewpoint of the French probabilists. In
the early decades of the twentieth century, probabil-
ity theory was beginning to be understood as pure
mathematics. What does this pure mathematics have
to do with the real world? The mathematicians who
revived research in probability theory in France dur-
ing these decades, Émile Borel, Jacques Hadamard,

Maurice Fréchet and Paul Lévy, made the connection
by treating events of small or zero probability as im-
possible.

Borel explained this repeatedly, often in a style more
literary than mathematical or philosophical (Borel,
1906, 1909b, 1914, 1930). Borel’s many discussions
of the considerations that go into assessing the bound-
aries of practical certainty culminated in a classifica-
tion more refined than Buffon’s. A probability of 10−6,
he decided, is negligible at the human scale, a proba-
bility of 10−15 at the terrestrial scale and a probability
of 10−50 at the cosmic scale (Borel, 1939, pages 6–7).

Hadamard, the preeminent analyst who did path-
breaking work on Markov chains in the 1920s (Bru,
2003), made the point in a different way. Probabil-
ity theory, he said, is based on two notions: the no-
tion of perfectly equivalent (equally likely) events and
the notion of a very unlikely event (Hadamard, 1922,
page 289). Perfect equivalence is a mathematical as-
sumption which cannot be verified. In practice, equiva-
lence is not perfect—one of the grains in a cup of sand
may be more likely than another to hit the ground first
when they are thrown out of the cup—but this need not
prevent us from applying the principle of the very un-
likely event. Even if the grains are not exactly the same,
the probability of any particular one hitting the ground
first is negligibly small. Hadamard was the teacher of
both Fréchet and Lévy.

Among the French mathematicians of this period, it
was Lévy who expressed most clearly the thesis that
Cournot’s principle is probability’s only bridge to re-
ality. In his Calcul des probabilités (Lévy, 1925) Lévy
emphasized the different roles of Hadamard’s two no-
tions. The notion of equally likely events, Lévy ex-
plained, suffices as a foundation for the mathematics of
probability, but so long as we base our reasoning only
on this notion, our probabilities are merely subjective.
It is the notion of a very unlikely event that permits the
results of the mathematical theory to take on practical
significance (Lévy, 1925, pages 21, 34; see also Lévy,
1937, page 3). Combining the notion of a very unlikely
event with Bernoulli’s theorem, we obtain the notion
of the objective probability of an event, a physical con-
stant that is measured by frequency. Objective proba-
bility, in Lévy’s view, is entirely analogous to length
and weight, other physical constants whose empirical
meaning is also defined by methods established for
measuring them to a reasonable approximation (Lévy,
1925, pages 29–30).

By the time he undertook to write the Grundbe-
griffe, Kolmogorov must have been very familiar with
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Lévy’s views. He had cited Lévy’s 1925 book in his
1931 article on Markov processes and subsequently,
during his visit to France, had spent a great deal of
time talking with Lévy about probability. He could
also have learned about Cournot’s principle from the
Russian literature. The champion of the principle in
Russia had been Chuprov, who became professor of
statistics in Petersburg in 1910. Chuprov put Cournot’s
principle—which he called Cournot’s lemma—at the
heart of this project; it was, he said, a basic principle
of the logic of the probable (Chuprov, 1910; Sheynin,
1996, pages 95–96). Markov, who also worked in Pe-
tersburg, learned about the burgeoning field of mathe-
matical statistics from Chuprov (Ondar, 1981), and we
see an echo of Cournot’s principle in Markov’s (1912,
page 12 of the German edition) textbook:

The closer the probability of an event is
to one, the more reason we have to expect
the event to happen and not to expect its op-
posite to happen.

In practical questions, we are forced to
regard as certain events whose probability
comes more or less close to one, and to re-
gard as impossible events whose probability
is small.

Consequently, one of the most important
tasks of probability theory is to identify
those events whose probabilities come close
to one or zero.

The Russian statistician Evgeny Slutsky discussed
Chuprov’s views in his influential article on limit the-
orems (Slutsky, 1925). Kolmogorov included Lévy’s
book and Slutsky’s article in his bibliography, but
not Chuprov’s book. An opponent of the Bolsheviks,
Chuprov was abroad when they seized power, and he
never returned home. He remained active in Sweden
and Germany, but his health soon failed, and he died
in 1926 at the age of 52.

2.2.2 Strong and weak forms of Cournot’s principle.
Cournot’s principle has many variations. Like proba-
bility, moral certainty can be subjective or objective.
Some authors make moral certainty sound truly equiv-
alent to absolute certainty; others emphasize its prag-
matic meaning.

For our story, it is important to distinguish between
the strong and weak forms of the principle (Fréchet,
1951, page 6; Martin, 2003). The strong form refers to
an event of small or zero probability that we single out
in advance of a single trial: it says the event will not

happen on that trial. The weak form says that an event
with very small probability will happen very rarely in
repeated trials.

Borel, Lévy and Kolmogorov all subscribed to
Cournot’s principle in its strong form. In this form,
the principle combines with Bernoulli’s theorem to
produce the unequivocal conclusion that an event’s
probability will be approximated by its frequency in
a particular sufficiently long sequence of independent
trials. It also provides a direct foundation for statistical
testing. If the meaning of probability resides precisely
in the nonhappening of small-probability events sin-
gled out in advance, then we need no additional prin-
ciples to justify rejecting a hypothesis that gives small
probability to an event we single out in advance and
then observe to happen.

Other authors, including Chuprov, enunciated Cour-
not’s principle in its weak form, and this can lead in a
different direction. The weak principle combines with
Bernoulli’s theorem to produce the conclusion that an
event’s probability will usually be approximated by
its frequency in a sufficiently long sequence of inde-
pendent trials, a general principle that has the weak
principle as a special case. This was pointed out in
the famous textbook by Castelnuovo (1919, page 108).
On page 3, Castelnuovo called the general principle the
empirical law of chance:

In a series of trials repeated a large num-
ber of times under identical conditions, each
of the possible events happens with a (rel-
ative) frequency that gradually equals its
probability. The approximation usually im-
proves as the number of trials increases.

Although the special case where the probability is close
to 1 is sufficient to imply the general principle, Castel-
nuovo preferred to begin his introduction to the mean-
ing of probability by enunciating the general principle,
and so he can be considered a frequentist. His approach
was influential. Maurice Fréchet and Maurice Halb-
wachs adopted it in their textbook in 1924. It brought
Fréchet to the same understanding of objective proba-
bility as Lévy: objective probability is a physical con-
stant that is measured by frequency (Fréchet, 1938a,
page 5; 1938b, pages 45–46).

The weak point of Castelnuovo and Fréchet’s po-
sition lies in the modesty of their conclusion: they
conclude only that an event’s probability is usually ap-
proximated by its frequency. When we estimate a prob-
ability from an observed frequency, we are taking a
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further step: we are assuming that what usually hap-
pens has happened in the particular case. This step
requires the strong form of Cournot’s principle. Ac-
cording to Kolmogorov (1956, page 240 of the 1965
English edition), it is a reasonable step only if we have
some reason to assume that the position of the partic-
ular case among other potential ones “is a regular one,
that is, that it has no special features.”

2.2.3 British indifference and German skepticism.
The mathematicians who worked on probability in
France in the early twentieth century were unusual in
the extent to which they delved into the philosophical
side of their subject. Poincaré had made a mark in the
philosophy of science as well as in mathematics, and
Borel, Fréchet and Lévy tried to emulate him. The sit-
uation in Britain and Germany was different.

In Britain there was little mathematical work in
probability proper in this period. In the nineteenth
century, British interest in probability had been practi-
cal and philosophical, not mathematical (Porter, 1986,
page 74ff). Robert Leslie Ellis (1849) and John Venn
(1888) accepted the usefulness of probability, but in-
sisted on defining it directly in terms of frequency,
leaving no role for Bernoulli’s theorem and Cournot’s
principle (Daston, 1994). These attitudes persisted
even after Pearson and Fisher brought Britain into a
leadership role in mathematical statistics. The British
statisticians had no puzzle to solve concerning how to
link probability to the world. They were interested in
reasoning directly about frequencies.

In contrast with Britain, Germany did see a substan-
tial amount of mathematical work in probability dur-
ing the first decades of the twentieth century, much of
it published in German by Scandinavians and eastern
Europeans, but few German mathematicians of the first
rank fancied themselves philosophers. The Germans
were already pioneering the division of labor to which
we are now accustomed, between mathematicians who
prove theorems about probability, and philosophers,
logicians, statisticians and scientists who analyze the
meaning of probability. Many German statisticians be-
lieved that one must decide what level of probabil-
ity will count as practical certainty in order to apply
probability theory (von Bortkiewicz, 1901, page 825;
Bohlmann, 1901, page 861), but German philosophers
did not give Cournot’s principle a central role.

The most cogent and influential of the German
philosophers who discussed probability in the late
nineteenth century was Johannes von Kries (1886),
whose Principien der Wahrscheinlichkeitsrechnung

first appeared in 1886. von Kries rejected what he
called the orthodox philosophy of Laplace and the
mathematicians who followed him. As von Kries saw
it, these mathematicians began with a subjective con-
cept of probability, but then claimed to establish the
existence of objective probabilities by means of a so-
called law of large numbers, which they erroneously
derived by combining Bernoulli’s theorem with the be-
lief that small probabilities can be neglected. Having
both subjective and objective probabilities at their dis-
posal, these mathematicians then used Bayes’ theorem
to reason about objective probabilities for almost any
question where many observations are available. All
this, von Kries believed, was nonsense. The notion that
an event with very small probability is impossible was,
in von Kries’ eyes, simply d’Alembert’s mistake.

von Kries believed that objective probabilities some-
times exist, but only under conditions where equally
likely cases can legitimately be identified. Two condi-
tions, he thought, are needed:

• Each case is produced by equally many of the pos-
sible arrangements of the circumstances, and this
remains true when we look back in time to earlier
circumstances that led to the current ones. In this
sense, the relative sizes of the cases are natural.

• Nothing besides these circumstances affects our ex-
pectation about the cases. In this sense, the Spiel-
räume are insensitive. [In German, Spiel means
game or play, and Raum (plural Räume) means
room or space. In most contexts, Spielraum can be
translated as leeway or room for maneuver. For von
Kries the Spielraum for each case was the set of all
arrangements of the circumstances that produce it.]

von Kries’ principle of the Spielräume was that objec-
tive probabilities can be calculated from equally likely
cases when these conditions are satisfied. He consid-
ered this principle analogous to Kant’s principle that
everything that exists has a cause. Kant thought that
we cannot reason at all without the principle of cause
and effect. von Kries thought that we cannot reason
about objective probabilities without the principle of
the Spielräume.

Even when an event has an objective probability,
von Kries saw no legitimacy in the law of large num-
bers. Bernoulli’s theorem is valid, he thought, but it
tells us only that a large deviation of an event’s fre-
quency from its probability is just as unlikely as some
other unlikely event, say a long run of successes. What
will actually happen is another matter. This disagree-
ment between Cournot and von Kries can be seen as
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a quibble about words. Do we say that an event will
not happen (Cournot) or do we say merely that it is
as unlikely as some other event we do not expect to
happen (von Kries)? Either way, we proceed as if it
will not happen. However, the quibbling has its rea-
sons. Cournot wanted to make a definite prediction, be-
cause this provides a bridge from probability theory to
the world of phenomena—the real world, as those who
have not studied Kant would say. von Kries thought he
had a different way to connect probability theory with
phenomena.

von Kries’ critique of moral certainty and the law
of large numbers was widely accepted in Germany
(Kamlah, 1983). Czuber, in the influential textbook we
have already mentioned, named Bernoulli, d’Alembert,
Buffon and De Morgan as advocates of moral certainty
and declared them all wrong; the concept of moral cer-
tainty, he said, violates the fundamental insight that
an event of ever so small a probability can still hap-
pen (Czuber, 1843, page 15; see also Meinong, 1915,
page 591).

This wariness about ruling out the happening of
events whose probability is merely very small does
not seem to have prevented acceptance of the idea that
zero probability represents impossibility. Beginning
with Wiman’s work on continued fractions in 1900,
mathematicians writing in German worked on show-
ing that various sets have measure zero, and everyone
understood that the point was to show that these sets
are impossible (see Felix Bernstein, 1912, page 419).
This suggests a great gulf between zero probability and
merely small probability. One does not sense such a
gulf in the writings of Borel and his French colleagues;
as we have seen, the vanishingly small, for them, was
merely an idealization of the very small.

von Kries’ principle of the Spielräume did not en-
dure, because no one knew how to use it, but his
project of providing a Kantian justification for the uni-
form distribution of probabilities remained alive in
German philosophy in the first decades of the twenti-
eth century (Meinong, 1915; Reichenbach, 1916). John
Maynard Keynes (1921) brought it into the English lit-
erature, where it continues to echo, to the extent that
today’s probabilists, when asked about the philosophi-
cal grounding of the classical theory of probability, are
more likely to think about arguments for a uniform dis-
tribution of probabilities than about Cournot’s princi-
ple.

2.3 Bertrand’s Paradoxes

How do we know cases are equally likely, and when
something happens, do the cases that remain possi-
ble remain equally likely? In the decades before the
Grundbegriffe, these questions were frequently dis-
cussed in the context of paradoxes formulated by
Joseph Bertrand, an influential French mathematician,
in a textbook published in 1889.

We now look at discussions by other authors of two
of Bertrand’s paradoxes: Poincaré’s discussion of the
paradox of the three jewelry boxes and Borel’s discus-
sion of the paradox of the great circle. (In the literature
of the period, “Bertrand’s paradox” usually referred
to a third paradox, concerning two possible interpre-
tations of the idea of choosing a random chord on a
circle. Determining a chord by choosing two random
points on the circumference is not the same as deter-
mining it by choosing a random distance from the cen-
ter and then a random orientation.) The paradox of the
great circle was also discussed by Kolmogorov and is
now sometimes called the Borel–Kolmogorov paradox.

2.3.1 The paradox of the three jewelry boxes. This
paradox, laid out by Bertrand (1889, pages 2–3), in-
volves three identical jewelry boxes, each with two
drawers. Box A has gold medals in both drawers, box B
has silver medals in both, and box C has a gold medal
in one and a silver medal in the other. Suppose we
choose a box at random. It will be box C with prob-
ability 1/3. Now suppose we open at random one of
the drawers in the box we have chosen. There are two
possibilities for what we find:

• We find a gold medal. In this case, only two possibil-
ities remain: the other drawer has a gold medal (we
have chosen box A) or the other drawer has a silver
medal (we have chosen box C).

• We find a silver medal. Here also, only two possibil-
ities remain: the other drawer has a gold medal (we
have chosen box C) or the other drawer has a silver
medal (we have chosen box B).

Either way, it seems, there are now two cases, one of
which is that we have chosen box C. So the probability
that we have chosen box C is now 1/2.

Bertrand himself did not accept the conclusion that
opening the drawer would change the probability of
having box C from 1/3 to 1/2, and Poincaré (1912,
pages 26–27) gave an explanation: Suppose the draw-
ers in each box are labeled (where we cannot see)
α and β , and suppose the gold medal in box C is in
drawer α. Then there are six equally likely cases for
the drawer we open:
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1. Box A, drawer α: gold medal.
2. Box A, drawer β: gold medal.
3. Box B, drawer α: silver medal.
4. Box B, drawer β: silver medal.
5. Box C, drawer α: gold medal.
6. Box C, drawer β: silver medal.

When we find a gold medal, say, in the drawer we have
opened, three of these cases remain possible: case 1,
case 2 and case 5. Of the three, only one favors our
having our hands on box C, so the probability for box C
is still 1/3.

2.3.2 The paradox of the great circle. Bertrand
(1889, pages 6–7) begins with a simple question: if we
choose at random two points on the surface of a sphere,
what is the probability that the distance between them
is less than 10′?

By symmetry, we can suppose that the first point is
known. So one way to answer the question is to calcu-
late the proportion of a sphere’s surface that lies within
10′ of a given point. This is 2.1 × 10−6.

Bertrand also found a different answer. After fix-
ing the first point, he said, we can also assume that
we know the great circle that connects the two points,
because the possible chances are the same on great
circles through the first point. There are 360 degrees—
2160 arcs of 10′ each—in this great circle. Only the
points in the two neighboring arcs are within 10′ of the
first point, and so the probability sought is 2/2160, or
9.3 × 10−4. This is many times larger than the prob-
ability found by the first method. Bertrand considered
both answers equally valid, the original question being
ill-posed. The concept of choosing points at random on
a sphere was not, he said, sufficiently precise.

In his own probability textbook Borel (1909b, pages
100–104) explained that Bertrand was mistaken.
Bertrand’s first method, based on the assumption that
equal areas on the sphere have equal chances of con-
taining the second point, is correct. His second method,
based on the assumption that equal arcs on a great cir-
cle have equal chances of containing it, is incorrect.
Writing M and M′ for the two points to be chosen at
random on the sphere, Borel explained Bertrand’s mis-
take as follows:

. . . The error begins when, after fixing the
point M and the great circle, one assumes
that the probability of M′ being on a given
arc of the great circle is proportional to the
length of that arc. If the arcs have no width,
then in order to speak rigorously, we must

assign the value zero to the probability that
M and M′ are on the circle. In order to avoid
this factor of zero, which makes any calcu-
lation impossible, one must consider a thin
bundle of great circles all going through M,
and then it is obvious that there is a greater
probability for M′ to be situated in a vicinity
90 degrees from M than in the vicinity of M
itself (Fig. 13).

To give this argument practical content, Borel dis-
cussed how one might measure the longitude of a point
on the surface of the earth. If we use astronomical ob-
servations, then we are measuring an angle, and er-
rors in the measurement of the angle correspond to
wider distances on the ground at the equator than at
the poles. If we instead use geodesic measurements,
say with a line of markers on each of many meridians,
then to keep the markers out of each other’s way, we
must make them thinner and thinner as we approach
the poles.

2.3.3 Appraisal. Poincaré, Borel and others who
understood the principles of the classical theory were
able to resolve the paradoxes that Bertrand contrived.
Two principles emerge from the resolutions they of-
fered:

• The equally likely cases must be detailed enough
to represent new information (e.g., we find a gold

FIG. 1. Borel’s Figure 13.
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medal) in all relevant detail. The remaining equally
likely cases will then remain equally likely.

• We may need to consider the real observed event of
nonzero probability that is represented in an ideal-
ized way by an event of zero probability (e.g., a ran-
domly chosen point falls on a particular meridian).
We should pass to the limit only after absorbing the
new information.

Not everyone found it easy to apply these principles,
however, and the confusion surrounding the paradoxes
was another source of dissatisfaction with the classical
theory.

3. MEASURE-THEORETIC PROBABILITY BEFORE
THE GRUNDBEGRIFFE

A discussion of the relationship between measure
and probability in the first decades of the twentieth
century must navigate many pitfalls, because measure
theory itself evolved, beginning as a theory about the
measurability of sets of real numbers and then becom-
ing more general and abstract. Probability theory fol-
lowed along, but since the meaning of measure was
changing, we can easily misunderstand things said at
the time about the relationship between the two theo-
ries.

The development of theories of measure and inte-
gration during the late nineteenth and early twenti-
eth centuries has been studied extensively (Hawkins,
1975; Pier, 1994a). Here we offer only a bare-bones
sketch, beginning with Borel and Lebesgue, and touch-
ing on those steps that proved most significant for
the foundations of probability. We discuss the work
of Carathéodory, Radon, Fréchet and Nikodym, who
made measure primary and integral secondary, as well
as the contrasting approach of Daniell, who took inte-
gration to be basic, and Wiener, who applied Daniell’s
methods to Brownian motion. Then we discuss Borel’s
strong law of large numbers, which focused attention
on measure rather than on integration. After looking
at Steinhaus’ axiomatization of Borel’s denumerable
probability, we turn to Kolmogorov’s use of measure
theory in probability in the 1920s.

3.1 Measure Theory from Borel to Fréchet

Émile Borel is considered the founder of measure
theory. Whereas Peano and Jordan had extended the
concept of length from intervals to a larger class of
sets of real numbers by approximating the sets inside
and outside with finite unions of intervals, Borel used
countable unions. His motivation came from complex

analysis. In his doctoral dissertation Borel (1895) stud-
ied certain series that were known to diverge on a
dense set of points on a closed curve and hence, it was
thought, could not be continued analytically into the
region bounded by the curve. Roughly speaking, Borel
discovered that the set of points where divergence oc-
curred, although dense, can be covered by a count-
able number of intervals with arbitrarily small total
length. Elsewhere on the curve—almost everywhere,
we would say now—the series does converge and so
analytic continuation is possible (Hawkins, 1975, Sec-
tion 4.2). This discovery led Borel to a new theory of
measurability for subsets of [0,1] (Borel, 1898).

Borel’s innovation was quickly seized upon by Henri
Lebesgue, who made it the basis for his powerful the-
ory of integration (Lebesgue, 1901). We now speak of
Lebesgue measure on the real numbers R and on the
n-dimensional space Rn, and of the Lebesgue integral
in these spaces. We need not review Lebesgue’s the-
ory, but we should mention one theorem, the precursor
of the Radon–Nikodym theorem: any countably addi-
tive and absolutely continuous set function on the real
numbers is an indefinite integral. This result first ap-
peared in (Lebesgue, 1904; Hawkins, 1975, page 145;
Pier, 1994a, page 524). He generalized it to Rn in 1910
(Hawkins, 1975, page 186).

Wacław Sierpiński (1918) gave an axiomatic treat-
ment of Lebesgue measure. In this note, important to
us because of the use Hugo Steinhaus later made of it,
Sierpiński characterized the class of Lebesgue measur-
able sets as the smallest class K of sets that satisfy the
following conditions:

I. For every set E in K , there is a nonnegative num-
ber µ(E) that will be its measure and will satisfy
conditions II, III, IV and V.

II. Every finite closed interval is in K and has its
length as its measure.

III. The class K is closed under finite and countable
unions of disjoint elements, and µ is finitely and
countably additive.

IV. If E1 ⊃ E2, and E1 and E2 are in K , then E1 \ E2
is in K .

V. If E is in K and µ(E) = 0, then any subset of E is
in K .

An arbitrary class K that satisfies these conditions is
not necessarily a field; there is no requirement that the
intersection of two of K’s elements also be in K .

Lebesgue’s measure theory was first made abstract
by Johann Radon (1913). Radon unified Lebesgue and
Stieltjes integration by generalizing integration with
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respect to Lebesgue measure to integration with respect
to any countably additive set function on the Borel sets
in Rn. The generalization included a version of the the-
orem of Lebesgue we just mentioned: if a countably
additive set function g on Rn is absolutely continu-
ous with respect to another countably additive set func-
tion f , then g is an indefinite integral with respect to f

(Hawkins, 1975, page 189).
Constantin Carathéodory was also influential in

drawing attention to measures on Euclidean spaces
other than Lebesgue measure. Carathéodory (1914)
gave axioms for outer measure in a q-dimensional
space, derived the notion of measure and applied
these ideas not only to Lebesgue measure on Euclid-
ean spaces, but also to lower dimensional measures
on Euclidean space which assign lengths to curves,
areas to surfaces and so forth (Hochkirchen, 1999).
Carathéodory also recast Lebesgue’s theory of integra-
tion to make measure even more fundamental; in his
textbook (Carathéodory, 1918) on real functions, he
defined the integral of a positive function on a subset
of Rn as the (n+1)-dimensional measure of the region
between the subset and the function’s graph (Bourbaki,
1994, page 228).

It was Fréchet who first went beyond Euclidean
space. Fréchet (1915a, b) observed that much of
Radon’s reasoning does not depend on the assumption
that one is working in Rn. One can reason in the same
way in a much larger space, such as a space of func-
tions. Any space will do, so long as the countably addi-
tive set function is defined on a σ -field of its subsets, as
Radon had required. Fréchet did not, however, manage
to generalize Radon’s theorem on absolute continuity
to the fully abstract framework. This generalization,
now called the Radon–Nikodym theorem, was obtained
by Otton Nikodym fifteen years later (Nikodym, 1930).

Did Fréchet himself have probability in mind when
he proposed a calculus that allows integration over
function space? Probably so. An integral is a mean
value. In a Euclidean space this might be a mean
value with respect to a distribution of mass or electrical
charge, but we cannot distribute mass or charge over a
space of functions. The only thing we can imagine dis-
tributing over such a space is probability or frequency.
However, Fréchet thought of probability as an appli-
cation of mathematics, not as a branch of pure mathe-
matics itself, so he did not think he was axiomatizing
probability theory.

It was Kolmogorov who first called Fréchet’s theory
a foundation for probability theory. He put the matter
this way in the preface to the Grundbegriffe:

. . . After Lebesgue’s investigations, the anal-
ogy between the measure of a set and the
probability of an event, as well as between
the integral of a function and the mathe-
matical expectation of a random variable,
was clear. This analogy could be extended
further; for example, many properties of in-
dependent random variables are completely
analogous to corresponding properties of
orthogonal functions. But in order to base
probability theory on this analogy, one still
needed to liberate the theory of measure
and integration from the geometric elements
still in the foreground with Lebesgue. This
liberation was accomplished by Fréchet.

It should not be inferred from this passage that Fréchet
and Kolmogorov used “measure” in the way we do
today. Fréchet may have liberated measure and inte-
gration from its geometric roots, but Fréchet and Kol-
mogorov continued to reserve the word measure for
geometric settings. Throughout the 1930s, what we
now call a measure, they called an additive set func-
tion. The usage to which we are now accustomed be-
came standard only after the Second World War.

3.2 Daniell’s Integral and Wiener’s
Differential Space

Percy Daniell, an Englishman working at the Rice
Institute in Houston, Texas, introduced his integral in a
series of articles (Daniell, 1918, 1919a, b, 1920) in the
Annals of Mathematics.

Like Fréchet, Daniell considered an abstract set E,
but instead of beginning with an additive set function
on subsets of E, he began with what he called an in-
tegral on E—a linear operator on some class T0 of
real-valued functions on E. The class T0 might con-
sist of all continuous functions (if E is endowed with
a topology) or perhaps all step functions. Applying
Lebesgue’s methods in this general setting, Daniell ex-
tended the linear operator to a wider class T1 of func-
tions on E, the summable functions. In this way, the
Riemann integral is extended to the Lebesgue integral,
the Stieltjes integral is extended to the Radon integral
and so on (Daniell, 1918). Using ideas from Fréchet’s
dissertation, Daniell also gave examples in infinite-
dimensional spaces (Daniell, 1919a, b). Daniell (1921)
even used his theory of integration to construct a theory
of Brownian motion. However, he did not succeed in
gaining recognition for this last contribution; it seems
to have been completely ignored until Stephen Stigler
spotted it in the 1970s (Stigler, 1973).
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The American ex-child prodigy and polymath Nor-
bert Wiener, when he came upon Daniell’s 1918 and
July 1919 articles (Daniell, 1918, 1919a), was in a
better position than Daniell himself to appreciate and
advertise their remarkable potential for probability
(Wiener, 1956; Masani, 1990). Having studied philos-
ophy as well as mathematics, Wiener was well aware
of the intellectual significance of Brownian motion and
of Einstein’s mathematical model for it.

In November 1919, Wiener submitted his first arti-
cle (Wiener, 1920) on Daniell’s integral to the Annals
of Mathematics, the journal where Daniell’s four arti-
cles on it had appeared. This article did not yet dis-
cuss Brownian motion; it merely laid out a general
method for setting up a Daniell integral when the un-
derlying space E is a function space. However, by Au-
gust 1920, Wiener was in France to explain his ideas
on Brownian motion to Fréchet and Lévy (Segal, 1992,
page 397). He followed up with a series of articles
(Wiener, 1921a, b), including a later much celebrated
article on “differential-space” (Wiener, 1923).

Wiener’s basic idea was simple. Suppose we want
to formalize the notion of Brownian motion for a fi-
nite time interval, say 0 ≤ t ≤ 1. A realized path is a
function on [0,1]. We want to define mean values for
certain functionals (real-valued functions of the real-
ized path). To set up a Daniell integral that gives these
mean values, Wiener took T0 to consist of functionals
that depend only on the path’s values at a finite number
of time points. One can find the mean value of such a
functional using Gaussian probabilities for the changes
from each time point to the next. Extending this in-
tegral by Daniell’s method, he succeeded in defining
mean values for a wide class of functionals. In particu-
lar, he obtained probabilities (mean values for indicator
functions) for certain sets of paths. He showed that the
set of continuous paths has probability 1, while the set
of differentiable paths has probability 0.

It is now commonplace to translate this work into
Kolmogorov’s measure-theoretic framework. Kiyoshi
Itô, for example, in a commentary published along
with Wiener’s articles from this period in Volume 1
of Wiener’s collected works (Wiener, 1976–1985,
page 515), wrote as follows concerning Wiener’s 1923
article:

Having investigated the differential space
from various directions, Wiener defines the
Wiener measure as a σ -additive probability
measure by means of Daniell’s theory of in-
tegral.

It should not be thought, however, that Wiener defined
a σ -additive probability measure and then found mean
values as integrals with respect to that measure. Rather,
as we just explained, he started with mean values and
used Daniell’s theory to obtain more. This Daniellian
approach to probability, making mean value basic and
probability secondary, has long taken a back seat to
Kolmogorov’s approach, but it still has its supporters
(Haberman, 1996; Whittle, 2000).

3.3 Borel’s Denumerable Probability

Impressive as it was and still is, Wiener’s work
played little role in the story leading to Kolmogorov’s
Grundbegriffe. The starring role was played instead by
Borel.

In retrospect, Borel’s use of measure theory in com-
plex analysis in the 1890s already looks like proba-
bilistic reasoning. Especially striking in this respect
is the argument Borel gave for his claim that a Tay-
lor series will usually diverge on the boundary of its
circle of convergence (Borel, 1897). In general, he as-
serted, successive coefficients of the Taylor series, or
at least successive groups of coefficients, are indepen-
dent. He showed that each group of coefficients de-
termines an arc on the circle, that the sum of lengths
of the arcs diverges and that the Taylor series will
diverge at a point on the circle if it belongs to infi-
nitely many of the arcs. The arcs being independent
and the sum of their lengths being infinite, a given point
must be in infinitely many of them. To make sense of
this argument, we must evidently take “in general” to
mean that the coefficients are chosen at random and
take “independent” to mean probabilistically indepen-
dent; the conclusion then follows by what we now call
the Borel–Cantelli lemma. Borel himself used proba-
bilistic language when he reviewed this work in 1912
(Borel, 1912; Kahane, 1994). In the 1890s, however,
Borel did not see complex analysis as a domain for
probability, which is concerned with events in the real
world.

In the new century, Borel did begin to explore the im-
plications for probability of his and Lebesgue’s work
on measure and integration (Bru, 2001). His first com-
ments came in an article in 1905 (Borel, 1905), where
he pointed out that the new theory justified Poincaré’s
intuition that a point chosen at random from a line seg-
ment would be incommensurable with probability 1
and called attention to Anders Wiman’s (1900, 1901)
work on continued fractions, which had been inspired
by the question of the stability of planetary motions, as
an application of measure theory to probability.
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Then, in 1909, Borel published a startling result—his
strong law of large numbers (Borel, 1909a). This new
result strengthened measure theory’s connection both
with geometric probability and with the heart of clas-
sical probability theory—the concept of independent
trials. Considered as a statement in geometric proba-
bility, the law says that the fraction of 1’s in the binary
expansion of a real number chosen at random from
[0,1] converges to 1

2 with probability 1. Considered as
a statement about independent trials (we may use the
language of coin tossing, though Borel did not), it says
that the fraction of heads in a denumerable sequence of
independent tosses of a fair coin converges to 1

2 with
probability 1. Borel explained the geometric interpre-
tation and he asserted that the result can be established
using measure theory (Borel, 1909a, Section I.8). How-
ever, he set measure theory aside for philosophical
reasons and provided an imperfect proof using denu-
merable versions of the rules of total and compound
probability. It was left to others, most immediately
Faber (1910, page 400) and Hausdorff (1914), to give
rigorous measure-theoretic proofs (Doob, 1989, 1994;
von Plato, 1994).

Borel’s discomfort with a measure-theoretic treat-
ment can be attributed to his unwillingness to as-
sume countable additivity for probability (Barone and
Novikoff, 1978; von Plato, 1994). He saw no logi-
cal absurdity in a countably infinite number of zero
probabilities adding to a nonzero probability, and so
instead of general appeals to countable additivity he
preferred arguments that derive probabilities as lim-
its as the number of trials increases (Borel, 1909a,
Section I.4). Such arguments seemed to him stronger
than formal appeals to countable additivity, because
they exhibit the finitary pictures that are idealized by
the infinitary pictures. He saw even more fundamen-
tal problems in the idea that Lebesgue measure can
model a random choice (von Plato, 1994, pages 36–56;
Knobloch, 2001). How can we choose a real number at
random when most real numbers are not even definable
in any constructive sense?

Although Hausdorff did not hesitate to equate Lebes-
gue measure with probability, his account of Borel’s
strong law, in his Grundzüge der Mengenlehre (Haus-
dorff, 1914, pages 419–421), treated it as a theorem
about real numbers: the set of numbers in [0,1] with
binary expansions for which the proportion of 1’s con-
verges to 1

2 has Lebesgue measure 1. Later, Francesco
Paolo Cantelli (1916a, b, 1917) rediscovered the strong
law (he neglected, in any case, to cite Borel) and ex-
tended it to the more general result that the average of

bounded random variables will converge to their mean
with arbitrarily high probability. Cantelli’s work in-
spired other authors to study the strong law and to sort
out different concepts of probabilistic convergence.

By the early 1920s, it seemed to some that there
were two different versions of Borel’s strong law—
one concerned with real numbers and one concerned
with probability. Hugo Steinhaus (1923) proposed to
clarify matters by axiomatizing Borel’s theory of de-
numerable probability along the lines of Sierpiński’s
axiomatization of Lebesgue measure. Writing A for
the set of all infinite sequences of ρ’s and η’s (ρ for
“rouge” and η for “noir”; now we are playing red or
black rather than heads or tails), Steinhaus proposed
the following axioms for a class K of subsets of A and
a real-valued function µ that gives probabilities for the
elements of K:

I. µ(E) ≥ 0 for all E ∈ K.
II. 1. For any finite sequence e of ρ’s and η’s, the

subset E of A consisting of all infinite se-
quences that begin with e is in K.

2. If two such sequences e1 and e2 differ in only
one place, then µ(E1) = µ(E2), where E1 and
E2 are the corresponding sets.

3. µ(A) = 1.
III. K is closed under finite and countable unions of

disjoint elements, and µ is finitely and countably
additive.

IV. If E1 ⊃ E2, and E1 and E2 are in K, then E1 \ E2
is in K.

V. If E is in K and µ(E) = 0, then any subset of E is
in K.

Sierpiński’s axioms for Lebesgue measure consisted
of I, III, IV and V, together with an axiom that says that
the measure µ(J ) of an interval J is its length. This
last axiom being demonstrably equivalent to Steinhaus’
axiom II, Steinhaus concluded that the theory of prob-
ability for an infinite sequence of binary trials is iso-
morphic with the theory of Lebesgue measure.

To show that his axiom II is equivalent to setting the
measures of intervals equal to their length, Steinhaus
used the Rademacher functions—the nth Rademacher
function being the function that assigns a real num-
ber the value 1 or −1 depending on whether the nth
digit in its dyadic expansion is 0 or 1. He also used
these functions, which are independent random vari-
ables, in deriving Borel’s strong law and related re-
sults. The work by Rademacher (1922) and Steinhaus
marked the beginning of the Polish school of “indepen-
dent functions,” which made important contributions to
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probability theory during the period between the wars
(Holgate, 1997).

3.4 Kolmogorov Enters the Stage

Although Steinhaus considered only binary trials
in 1923, his reference to Borel’s more general con-
cept of denumerable probability pointed to generaliza-
tions. We find such a generalization in Kolmogorov’s
first article on probability, co-authored by Khinchin
(Khinchin and Kolmogorov, 1925), which showed that
a series of discrete random variables y1 + y2 + · · · will
converge with probability 1 when the series of means
and the series of variances both converge. The first sec-
tion of the article, due to Khinchin, spells out how to
represent the random variables as functions on [0,1]:
divide the interval into segments with lengths equal
to the probabilities for y1’s possible values, then di-
vide each of these segments into smaller segments with
lengths proportional to the probabilities for y2’s possi-
ble values and so on. This, Khinchin noted with a nod
to Rademacher and Steinhaus, reduces the problem to a
problem about Lebesgue measure. This reduction was
useful because the rules for working with Lebesgue
measure were clear, while Borel’s picture of denumer-
able probability remained murky.

Dissatisfaction with this detour into Lebesgue mea-
sure must have been one impetus for the Grundbegriffe
(Doob, 1989, page 818). Kolmogorov made no such
detour in his next article on the convergence of sums
of independent random variables. In this sole-authored
article (Kolmogorov, 1928), he took probabilities and
expected values as his starting point, but even then he
did not appeal to Fréchet’s countably additive calcu-
lus. Instead, he worked with finite additivity and then
stated an explicit ad hoc definition when he passed to
a limit. For example, he defined the probability P that
the series

∑∞
n=1 yn converges by the equation

P = lim
η→0

lim
n→∞ lim

N→∞W

[
Max

∣∣∣∣∣
p∑

k=n

yk

∣∣∣∣∣
N

p=n

< η

]
,

where W(E) denotes the probability of the event E.
[This formula does not appear in the Russian
(Kolmogorov, 1986) and English (Kolmogorov, 1992)
translations provided in Kolmogorov’s collected
works; there the argument has been modernized so as
to eliminate it.] This recalls the way Borel proceeded
in 1909: think through each passage to the limit.

It was in his seminal article on Markov processes
(Kolmogorov, 1931) that Kolmogorov first explicitly
and freely used Fréchet’s calculus as his framework for

probability. In this article, Kolmogorov considered a
system with a set of states A. For any two time points
t1 and t2 (t1 < t2), any state x ∈ A and any element E in
a collection F of subsets of A, he wrote P(t1, x, t2,E)

for the probability, when the system is in state x at
time t1, that it will be in a state in E at time t2. Cit-
ing Fréchet, Kolmogorov assumed that P is countably
additive as a function of E and that F is closed un-
der differences and countable unions, and contains the
empty set, all singletons and A. However, the focus was
not on Fréchet; it was on the equation that ties together
the transition probabilities, now called the Chapman–
Kolmogorov equation. The article launched the study
of this equation by purely analytical methods, a study
that kept probabilists occupied for 50 years.

As many commentators have noted, the 1931 arti-
cle makes no reference to probabilities for trajecto-
ries. There is no suggestion that such probabilities are
needed for a stochastic process to be well defined. Con-
sistent transition probabilities, it seems, are enough.
Bachelier (1900, 1910, 1912) is cited as the first to
study continuous-time stochastic processes, but Wiener
is not cited.

4. HILBERT’S SIXTH PROBLEM

At the beginning of the twentieth century, many
mathematicians were dissatisfied with what they saw
as a lack of clarity and rigor in the probability calcu-
lus. The whole calculus seemed to be concerned with
concepts that lie outside mathematics: event, trial, ran-
domness, probability. As Henri Poincaré wrote, “one
can hardly give a satisfactory definition of probability”
(Poincaré, 1912, page 24).

The most celebrated call for clarification came from
David Hilbert. The sixth of the twenty-three open
problems that Hilbert presented to the International
Congress of Mathematicians in Paris in 1900 was to
treat axiomatically, after the model of geometry, those
parts of physics in which mathematics already played
an outstanding role, especially probability and me-
chanics (Hilbert, 1902; Hochkirchen, 1999). To explain
what he meant by axioms for probability, Hilbert cited
Georg Bohlmann, who had labeled the rules of total
and compound probability axioms rather than theorems
in his lectures on the mathematics of life insurance
(Bohlmann, 1901). In addition to a logical investiga-
tion of these axioms, Hilbert called for a “rigorous and
satisfactory development of the method of average val-
ues in mathematical physics, especially in the kinetic
theory of gases.”
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Hilbert’s call for a mathematical treatment of aver-
age values was answered in part by the work on inte-
gration that we discussed in the preceding section, but
his suggestion that the classical rules for probability
should be treated as axioms on the model of geome-
try was an additional challenge. Among the early re-
sponses, we may mention the following:

• In his Zürich dissertation, Rudolf Laemmel (1904)
discussed the rules of total and compound prob-
ability as axioms, but he stated the rule of com-
pound probability only in the case of independence,
a concept he did not explicate. (For excerpts, see
Schneider, 1988, pages 359–366.)

• In his Göttingen dissertation, directed by Hilbert
himself, Ugo Broggi (1907) gave only two axioms:
an axiom stating that the sure event has probabil-
ity 1, and an axiom stating the rule of total probabil-
ity. Following tradition, he then defined probability
as a ratio (a ratio of numbers of cases in the discrete
setting; a ratio of the Lebesgue measures of two sets
in the geometric setting) and verified his axioms. He
did not state an axiom that corresponds to the clas-
sical rule of compound probability. Instead, he gave
this name to a rule for calculating the probability of
a Cartesian product, which he derived from the defi-
nition of geometric probability in terms of Lebesgue
measure. (For excerpts, see Schneider, 1988, pages
367–377.) Broggi mistakenly claimed that his axiom
of total probability (finite additivity) implied count-
able additivity (Steinhaus, 1923).

• In an article written in 1920, published in 1923
and listed in the bibliography of the Grundbegriffe,
Antoni Łomnicki (1923) proposed that probability
should always be understood relative to a density
φ on a set M in Rr . Łomnicki defined this prob-
ability by combining two of Carathéodory’s ideas:
the idea of p-dimensional measure and the idea of
defining the integral of a function on a set as the
measure of the region between the set and the func-
tion’s graph (see Section 3.1 above). The probabil-
ity of a subset m of M, according to Łomnicki, is
the ratio of the measure of the region between m

and φ’s graph to the measure of the region between
M and this graph. If M is an r-dimensional sub-
set of Rr , then the measure being used is Lebesgue
measure on Rr+1; if M is a lower dimensional
subset of Rr , say p-dimensional, then the measure
is the (p + 1)-dimensional Carathéodory measure.
This definition covers discrete as well as continu-
ous probability: in the discrete case, M is a set of

discrete points, the function φ assigns each point
its probability, and the region between a subset m

and the graph of φ consists of a line segment for
each point in m, whose Carathéodory measure is its
length (i.e., the point’s probability). The rule of total
probability follows. Like Broggi, Łomnicki treated
the rule of compound probability as a rule for re-
lating probabilities on a Cartesian product to proba-
bilities on its components. He did not consider it an
axiom, because it holds only if the density itself is a
product density.

• In an article published in Russian, Sergei Bernstein
(1917) showed that probability theory can be foun-
ded on qualitative axioms for numerical coefficients
that measure the probabilities of propositions. He
also developed this idea in his probability text-
book (Bernstein, 1927), and Kolmogorov listed both
the article and the book in the bibliography of
the Grundbegriffe. John Maynard Keynes included
Bernstein’s article in the bibliography of his prob-
ability book (Keynes, 1921), but Bernstein’s work
was subsequently ignored by English-language au-
thors on qualitative probability. It was first sum-
marized in English in Samuel Kotz’s translation of
Leonid E. Maistrov’s (1974) history of probability.

We now discuss at greater length responses by
von Mises, Slutsky, Kolmogorov and Cantelli.

4.1 von Mises’ Collectives

The concept of a collective was introduced into
the German scientific literature by Gustav Fechner’s
(1897) Kollektivmasslehre, which appeared ten years
after the author’s death. The concept was quickly taken
up by Georg Helm (1902) and Heinrich Bruns (1906).

Fechner wrote about the concept of a Kollektivgegen-
stand (collective object) or a Kollektivreihe (collective
series). It was only later, in Meinong (1915) for ex-
ample, that we see these names abbreviated to Kollek-
tiv. As the name Kollektivreihe indicates, a Kollektiv
is a population of individuals given in a certain order;
Fechner called the ordering the Urliste. It was sup-
posed to be irregular—random, we would say. Fechner
was a practical scientist, not concerned with the the-
oretical notion of probability, but as Helm and Bruns
realized, probability theory provides a framework for
studying collectives.

The concept of a collective was developed by Richard
von Mises (1919, 1928, 1931). His contribution was to
realize that the concept can be made into a mathemat-
ical foundation for probability theory. As von Mises
defined it, a collective is an infinite sequence of out-
comes that satisfies two axioms:
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1. The relative frequency of each outcome converges
to a real number (the probability of the outcome) as
we look at longer and longer initial segments of the
sequence.

2. The relative frequency converges to the same prob-
ability in any subsequence selected without knowl-
edge of the future (we may use knowledge of the
outcomes so far in deciding whether to include the
next outcome in the subsequence).

The second property says we cannot change the odds
by selecting a subsequence of trials on which to bet;
this is von Mises’ version of the “hypothesis of the im-
possibility of a gambling system,” and it assures the
irregularity of the Urliste.

According to von Mises, the purpose of the prob-
ability calculus is to identify situations where collec-
tives exist and the probabilities in them are known, and
to derive probabilities for other collectives from these
given probabilities. He pointed to three domains where
probabilities for collectives are known: (1) games of
chance where devices are carefully constructed so
the axioms will be satisfied, (2) statistical phenom-
ena where the two axioms can be confirmed, to a rea-
sonable degree and (3) branches of theoretical physics
where the two axioms play the same hypothetical role
as other theoretical assumptions (von Mises, 1931,
pages 25–27).

von Mises derived the classical rules of probabil-
ity, such as the rules for adding and multiplying prob-
abilities, from rules for constructing new collectives
from an initial one. He had several laws of large num-
bers. The simplest was his definition of probability: the
probability of an event is the event’s limiting frequency
in a collective. Others arose as one constructed further
collectives.

The ideas of von Mises were taken up by a num-
ber of mathematicians in the 1920s and 1930s. Kol-
mogorov’s bibliography includes an article by Arthur
Copeland (1932) that proposed founding probability
theory on particular rules for selecting subsequences
in von Mises’ scheme, as well as articles by Karl
Dörge (1930), Hans Reichenbach (1932) and Erhard
Tornier (1933) that argued for related schemes. But the
most prominent mathematicians of the time, including
the Göttingen mathematicians (Mac Lane, 1995), the
French probabilists and the British statisticians, were
hostile or indifferent.

Collectives were given a rigorous mathematical basis
by Abraham Wald (1938) and Alonzo Church (1940),
but the claim that they provide a foundation for prob-
ability was refuted by Jean Ville (1939). Ville pointed

out that whereas a collective in von Mises’ sense will
not be vulnerable to a gambling system that chooses a
subsequence of trials on which to bet, it may still be
vulnerable to a more clever gambling system, which
also varies the amount of the bet and the outcome on
which to bet.

4.2 Slutsky’s Calculus of Valences and
Kolmogorov’s General Theory of Measure

In an article published in Russian Evgeny Slutsky
(1922) presented a viewpoint that greatly influenced
Kolmogorov. As Kolmogorov (1948) said in an obit-
uary for Slutsky, Slutsky was “the first to give the right
picture of the purely mathematical content of probabil-
ity theory.”

How do we make probability purely mathemati-
cal? Markov had claimed to do this in his textbook,
but Slutsky did not think Markov had succeeded, be-
cause Markov had retained the subjective notion of
equipossibility. The solution, Slutsky felt, was to re-
move both the word “probability” and the notion of
equally likely cases from the theory. Instead of begin-
ning with equally likely cases, one should begin by as-
suming merely that numbers are assigned to cases and
that when a case assigned the number α is further sub-
divided, the numbers assigned to the subcases should
add to α. The numbers assigned to cases might be equal
or they might not. The addition and multiplication the-
orems would be theorems in this abstract calculus, but
it should not be called the probability calculus. In place
of “probability,” he suggested the unfamiliar word va-
lentnost�, or “valence.” (Laemmel had earlier used
the German valenz.) Probability would be only one in-
terpretation of the calculus of valences, a calculus fully
as abstract as group theory.

Slutsky listed three distinct interpretations of the cal-
culus of valences:

1. Classical probability (equally likely cases).
2. Finite empirical sequences (frequencies).
3. Limits of relative frequencies. (Slutsky remarked

that this interpretation is particularly popular with
the English school.)

Slutsky did not think probability could be reduced to
limiting frequency, because sequences of independent
trials have properties that go beyond their possessing
limiting frequencies. Initial segments of the sequences
have properties that are not imposed by the eventual
convergence of the frequency, and the sequences must
be irregular in a way that resists the kind of selection
discussed by von Mises.
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Slutsky’s idea that probability could be an instance
of a broader abstract theory was taken up by Kol-
mogorov in a thought piece in Russian (Kolmogorov,
1929), before his forthright use of Fréchet’s theory in
his article on Markov processes in 1930 (Kolmogorov,
1931). Whereas Slutsky had mentioned frequencies as
an alternative interpretation of a general calculus, Kol-
mogorov pointed to more mathematical examples: the
distribution of digits in the decimal expansions of ir-
rationals, Lebesgue measure in an n-dimensional cube
and the density of a set A of positive integers (the limit
as n → ∞ of the fraction of the integers between 1 and
n that are in A).

The abstract theory Kolmogorov sketches is con-
cerned with a function M that assigns a nonnega-
tive number M(E) to each element E of a class of
subsets of a set A. He called M(E) the measure
(mera) of E and he called M a measure specification
(meroopredelenie). So as to accommodate all the
mathematical examples he had in mind, he assumed, in
general, neither that M is countably additive nor that
the class of subsets to which it assigns numbers is a
field. Instead, he assumed only that when E1 and E2
are disjoint and M assigns a number to two of the three
sets E1, E2 and E1 ∪ E2, it also assigns a number to
the third, and that

M(E1 ∪ E2) = M(E1) + M(E2)

then holds (cf. Steinhaus’ axioms III and IV). In the
case of probability, however, he did suggest (using dif-
ferent words) that M should be countably additive and
that the class of subsets to which it assigns numbers
should be a field, for only then can we uniquely de-
fine probabilities for countable unions and intersec-
tions, and this seems necessary to justify arguments
involving events such as the convergence of random
variables.

He defined the abstract Lebesgue integral of a func-
tion f on A, and he commented that countable ad-
ditivity is to be assumed whenever such an integral
is discussed. He wrote ME1(E2) = M(E1E2)/M(E1)

“by analogy with the usual concept of relative proba-
bility.” He defined independence for partitions, and he
commented, no doubt in reference to Borel’s strong law
and other results in number theory, that the notion of
independence is responsible for the power of probabi-
listic methods within pure mathematics.

The mathematical core of the Grundbegriffe is alre-
ady here. Many years later, in his commentary in Vol-
ume II of his collected works (Kolmogorov, 1992,
page 520), Kolmogorov said that only the set-theoretic

treatment of conditional probability and the theory of
distributions in infinite products were missing. Also
missing, though, is the bold rhetorical move that
Kolmogorov made in the Grundbegriffe—giving the
abstract theory the name probability.

4.3 The Axioms of Steinhaus and Ulam

In the 1920s and 1930s, the city of Lwów in Poland
was a vigorous center of mathematical research, led by
Hugo Steinhaus. (Though it was in Poland between the
two World Wars, Lwów is now in Ukraine. Its name
is spelled differently in different languages: Lwów in
Polish, Lviv in Ukrainian and Lvov in Russian. When
part of Austria–Hungary and, briefly, Germany, it was
Lemberg. Some articles in our bibliography refer to it
as Léopol.) In 1929, Steinhaus’ work on limit theorems
intersected with Kolmogorov’s, and his approach pro-
moted the idea that probability should be axiomatized
in the style of measure theory.

As we saw in Section 3.3, Steinhaus had already,
in 1923, formulated axioms for heads and tails iso-
morphic to Sierpiński’s axioms for Lebesgue measure.
This isomorphism had more than a philosophical pur-
pose; Steinhaus used it to prove Borel’s strong law. In
a pair of articles written in 1929 and published in 1930
(Steinhaus, 1930a, b), Steinhaus extended his approach
to limit theorems that involved an infinite sequence of
independent draws θ1, θ2, . . . from the interval [0,1].
His axioms for this case were the same as for the bi-
nary case (Steinhaus, 1930b, pages 22–23), except that
the second axiom, which determines probabilities for
initial finite sequences of heads and tails, was replaced
by an axiom that determines probabilities for initial fi-
nite sequences θ1, θ2, . . . , θn:

The probability that θi ∈ �i for i = 1, . . . , n,
where the �i are measurable subsets of
[0,1], is

|�1| · |�2| · · · |�n|,
where |�i | is the Lebesgue measure of �i .

Steinhaus presented his axioms as a “logical extra-
polation” of the classical axioms to the case of an infi-
nite number of trials (Steinhaus, 1930b, page 23). They
were more or less tacitly used, he asserted, in all clas-
sical problems, such as the problem of the gambler’s
ruin, where the game as a whole—not merely finitely
many rounds—must be considered (Steinhaus, 1930a,
page 409). As in the case of heads and tails, Steinhaus
showed that there are probabilities that uniquely satisfy



86 G. SHAFER AND V. VOVK

his axioms by setting up an isomorphism with Lebes-
gue measure on [0,1], this time using a sort of Peano
curve to map [0,1]∞ onto [0,1]. He used the isomor-
phism to prove several limit theorems, including one
that formalized Borel’s 1897 claim concerning the
circle of convergence of a Taylor series with randomly
chosen coefficients.

Steinhaus’ axioms were measure-theoretic, but they
were not yet abstract. His words suggested that his
ideas should apply to all sequences of random vari-
ables, not merely ones uniformly distributed, and he
even considered the case where the variables were
complex-valued rather than real-valued, but he did not
step outside the geometric context to consider pro-
bability on abstract spaces. This step was taken by
Stanisław Ulam, one of Steinhaus’ junior colleagues
at Lwów. At the International Congress of Mathema-
ticians in Zürich in 1932, Ulam announced that he
and another Lwów mathematician, Zbigniew Łomnicki
(a nephew of Antoni Łomnicki), had shown that pro-
duct measures can be constructed in abstract spaces
(Ulam, 1932).

Ulam and Łomnicki’s axioms for a measure m were
simple. We can put them in today’s language by sa-
ying that m is a probability measure on a σ -algebra
that is complete (includes all null sets) and contains all
singletons. Ulam announced that from a countable se-
quence of spaces with such probability measures, one
can construct a probability measure that satisfies the
same conditions on the product space.

We do not know whether Kolmogorov knew about
Ulam’s announcement when he wrote the Grundbe-
griffe. Ulam’s axioms would have held no novelty for
him, but he would presumably have found the result on
product measures interesting. When it finally appeared,
Łomnicki and Ulam (1934) listed the same axioms as
Ulam’s announcement had, but it now cited the Grund-
begriffe as authority for them. Kolmogorov (1935) ci-
ted their article in turn in a short list of introductory
literature in mathematical probability.

4.4 Cantelli’s Abstract Theory

Like Borel, Castelnuovo and Fréchet, Francesco
Paolo Cantelli turned to probability after distinguish-
ing himself in other areas of mathematics. It was only
in the 1930s, about the same time as the Grundbegriffe
appeared, that he introduced his own abstract theory
of probability. This theory, which has important affini-
ties with Kolmogorov’s, is developed most clearly in
an article included in the Grundbegriffe’s bibliography

(Cantelli, 1932) and a lecture he gave in 1933 at the
Institut Henri Poincaré in Paris (Cantelli, 1935).

Cantelli (1932) argued for a theory that makes no
appeal to empirical notions such as possibility, event,
probability or independence. This abstract theory, he
said, should begin with a set of points that have fi-
nite nonzero measure. This could be any set for which
measure is defined, perhaps a set of points on a sur-
face. He wrote m(E) for the area of a subset E. He
noted that m(E1 ∪ E2) = m(E1) + m(E2), provided
E1 and E2 are disjoint, and 0 ≤ m(E1E2)/m(Ei) ≤ 1
for i = 1,2. He called E1 and E2 multipliable when
m(E1E2) = m(E1)m(E2). Much of probability theory,
he noted, including Bernoulli’s law of large numbers
and Khinchin’s law of the iterated logarithm, can be
carried out at this abstract level.

Cantelli (1935) explained how his abstract theory re-
lates to frequencies in the world. The classical calculus
of probability, he said, should be developed for a parti-
cular class of events in the world in three steps:

1. Study experimentally the equally likely cases
(check that they happen equally frequently), thus
justifying experimentally the rules of total and com-
pound probability.

2. Develop an abstract theory based only on the
rules of total and compound probability, without re-
ference to their empirical justification.

3. Deduce probabilities from the abstract theory and
use them to predict frequencies.

His own theory, Cantelli explains, is the one obtained
in the second step.

Cantelli’s 1932 article and 1933 lecture were not
really sources for the Grundbegriffe. Kolmogorov’s
earlier work (Kolmogorov, 1929, 1931) had already
went well beyond anything Cantelli did in 1932, in
both degree of abstraction and mathematical clarity.
The 1933 lecture was more abstract, but obviously
came too late to influence the Grundbegriffe. Howe-
ver, Cantelli did develop independently of Kolmogorov
the project of combining a frequentist interpretation of
probability with an abstract axiomatization that retai-
ned in some form the classical rules of total and com-
pound probability. This project had been in the air for
30 years.

5. THE GRUNDBEGRIFFE

The Grundbegriffe was an exposition, not another
research contribution. In his preface, after acknowl-
edging Fréchet’s work, Kolmogorov said this:
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In the pertinent mathematical circles it
has been common for some time to con-
struct probability theory in accordance with
this general point of view. But a complete
presentation of the whole system, free from
superfluous complications, has been mis-
sing (though a book by Fréchet, [2] in the
bibliography, is in preparation).

Kolmogorov aimed to fill this gap, and he did so bril-
liantly and concisely, in just 62 pages. Fréchet’s much
longer book, which finally appeared in two volumes
(Fréchet, 1937–1938), is regarded by some as a mere
footnote to Kolmogorov’s achievement.

Fréchet’s own evaluation of the Grundbegriffe’s con-
tribution, quoted at the beginning of this article, is cor-
rect so far as it goes. Borel had introduced countable
additivity into probability in 1909, and in the following
20 years, many authors, including Kolmogorov, had
explored its consequences. The Grundbegriffe merely
rounded out the picture by explaining that nothing
more was needed. However, Kolmogorov’s mathema-
tical achievement, especially his definitive work on the
classical limit theorems, had given him the grounds and
the authority to say that nothing more was needed.

Moreover, Kolmogorov’s appropriation of the name
probability was an important rhetorical achievement,
with enduring implications. Slutsky in 1922 and
Kolmogorov himself in 1927 had proposed a gener-
al theory of additive set functions but had relied on
the classical theory to say that probability should be a
special case of this general theory. Now Kolmogorov
proposed axioms for probability. The numbers in his
abstract theory were probabilities, not merely valences
or mery. His philosophical justification for proceed-
ing in this way so resembled the justification that Borel
and Lévy had given for the classical theory that they
could hardly take exception.

It was not really true that nothing more was need-
ed. Those who studied Kolmogorov’s formulation in
detail soon realized that his axioms and definitions
were inadequate in a number of ways. Most salien-
tly, his treatment of conditional probability was not
adequate for the burgeoning theory of Markov process-
es. In addition, there were other points in the mo-
nograph where he could not obtain natural results at
the abstract level and had to fall back to the classi-
cal examples—discrete probabilities and probabilities
in Euclidean spaces. These shortcomings only gave im-
petus to the new theory, because the project of filling in
the gaps provided exciting work for a new generation
of probabilists.

In this section we take a fresh look at the Grund-
begriffe. We review its six axioms and two ideas that
were, as Kolmogorov himself pointed out in his pre-
face, novel at the time: the construction of probabilities
on infinite-dimensional spaces (his famous consistency
theorem) and the definition of conditional probability
using the Radon–Nikodym theorem. Then we look at
the explicitly philosophical part of the monograph: the
two pages in Chapter I where Kolmogorov explains the
empirical origin and meaning of his axioms.

5.1 The Mathematical Framework

Kolmogorov’s six axioms for probability are so fa-
miliar that it seems superfluous to repeat them, but so
concise that it is easy to do so. We do repeat them
and then we discuss the two points just mentioned:
the consistency theorem and the treatment of condi-
tional probability and expectation. As we will see, the
mathematics was due to earlier authors—Daniell in
the case of the consistency theorem and Nikodym in
the case of conditional probabilities and expectations.
Kolmogorov’s contribution, more rhetorical and philo-
sophical than mathematical, was to bring this mathe-
matics into a framework for probability.

5.1.1 The six axioms. Kolmogorov began with five
axioms concerning a set E and a set F of subsets of E,
which he called random events:

I. F is a field of sets.
II. F contains the set E.

III. To each set A from F is assigned a nonnegative
real number P(A). This number P(A) is called the
probability of the event A.

IV. The P(E) = 1.
V. If A and B are disjoint, then

P(A ∪ B) = P(A) + P(B).

He then added a sixth axiom, redundant for finite F but
independent of the first five axioms for infinite F:

VI. If A1 ⊇ A2 ⊇ · · · is a decreasing sequence of
events from F with

⋂∞
n=1 An = ∅, then

limn→∞ P(An) = 0.

This is the axiom of continuity. Given the first five ax-
ioms, it is equivalent to countable additivity.

The six axioms can be summarized by saying that
P is a nonnegative additive set function in the sense of
Fréchet with P(E) = 1.

Unlike Fréchet, who had debated countable addi-
tivity with de Finetti (Fréchet, 1930; de Finetti, 1930;
Cifarelli and Regazzini, 1996), Kolmogorov did not
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make a substantive argument for it. Instead, he said this
(page 14):

. . . Since the new axiom is essential only for
infinite fields of probability, it is hardly pos-
sible to explain its empirical meaning. . . .
In describing any actual observable random
process, we can obtain only finite fields of
probability. Infinite fields of probability oc-
cur only as idealized models of real random
processes. This understood, we limit our-
selves arbitrarily to models that satisfy Ax-
iom VI. So far this limitation has been found
expedient in the most diverse investigations.

This echoes Borel who adopted countable additi-
vity not as a matter of principle but because he had
not encountered circumstances where its rejection
seemed expedient (Borel, 1909a, Section I.5). How-
ever, Kolmogorov articulated even more clearly than
Borel the purely instrumental significance of infinity.

5.1.2 Probability distributions in infinite-dimension-
al spaces. Suppose, using modern terminology, that
(E1,F1), (E2,F2), . . . is a sequence of measurable spa-
ces. For each finite set of indices, say i1, . . . , in, write
Fi1,...,in for the induced σ -algebra in the product space∏n

j=1 Eij . Write E for the product of all the Ei and
write F for the algebra (not a σ -algebra) that con-
sists of all the cylinder subsets of E corresponding to
elements of the various Fi1,...,in . Suppose we define
consistent probability measures for all the marginal
spaces (

∏n
j=1 Eij ,F

i1,...,in). This defines a set function
on (E,F). Is it countably additive?

In general, the answer is negative; a counterexample
was given by Erik Sparre Andersen and Børge Jessen
in 1948, but as we noted in Section 4.3, Ulam had
given a positive answer for the case where the mar-
ginal measures are product measures. Kolmogorov’s
consistency theorem, in Section 4 of Chapter III of
the Grundbegriffe, gave a positive answer for another
case, where each Ei is a copy of the real numbers
and each Fi consists of the Borel sets. (Formally, we
should acknowledge, Kolmogorov had a slightly differ-
ent starting point: finite-dimensional distribution func-
tions, not finite-dimensional measures.)

In his September 1919 article (Daniell, 1919b),
Daniell had proven a closely related theorem. Although
Kolmogorov did not cite Daniell in the Grundbegriffe,
the essential mathematical content of Kolmogorov’s re-
sult is already in Daniell’s. This point was recognized
quickly; Jessen (1935) called attention to Daniell’s pri-
ority in an article that appeared in MIT’s Journal of

Mathematics and Physics, together with an article by
Wiener that also called attention to Daniell’s result. In
a commemoration of Kolmogorov’s early work, Doob
(1989) hazards the guess that Kolmogorov was una-
ware of Daniell’s result when he wrote the Grund-
begriffe. This may be true. He would not have been
the first author to repeat Daniell’s work; Jessen had
presented the result as his own to the Seventh Scan-
dinavian Mathematical Conference in 1929 and had
become aware of Daniell’s priority only in time to ac-
knowledge it in a footnote to his contribution to the
proceedings (Jessen, 1930).

It is implausible that Kolmogorov was still unaware
of Daniell’s construction after the comments by Wiener
and Jessen, but in 1948 he again ignored Daniell while
claiming the construction of probability measures on
infinite products as a Soviet achievement (Gnedenko
and Kolmogorov, 1948, Section 3.1). Perhaps this
can be dismissed as mere propaganda, but we should
also remember that the Grundbegriffe was not meant
as a contribution to pure mathematics. Daniell’s and
Kolmogorov’s theorems seem almost identical when
they are assessed as mathematical discoveries, but they
differed in context and purpose. Daniell was not think-
ing about probability, whereas the slightly different
theorem formulated by Kolmogorov was about proba-
bility. Neither Daniell nor Wiener undertook to make
probability into a conceptually independent branch
of mathematics by establishing a general method for
representing it measure-theoretically.

Kolmogorov’s theorem was more general than Dani-
ell’s in one respect—Kolmogorov considered an index
set of arbitrary cardinality, whereas Daniell considered
only denumerable cardinality. This greater generality is
merely formal, in two senses: it involves no additional
mathematical complications and it has no practical use.
The obvious use of a nondenumerable index would be
to represent continuous time, and so we might conjec-
ture that Kolmogorov was thinking of making prob-
ability statements about trajectories, as Wiener had
done in the 1920s. However, Kolmogorov’s construc-
tion does not accomplish anything in this direction.
The σ -algebra on the product obtained by the con-
struction contains too few sets; in the case of Brow-
nian motion, it does not include the set of continuous
trajectories. It took some decades of further research
to develop general methods of extension to σ -algebras
rich enough to include the infinitary events one typi-
cally wants to discuss (Doob, 1953; Bourbaki, 1994,
pages 243–245). The topological character of these
extensions and the failure of the consistency theorem
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for arbitrary Cartesian products remain two important
caveats to the Grundbegriffe’s thesis that probability is
adequately represented by the abstract notion of a prob-
ability measure.

5.1.3 Experiments and conditional probability. In
the case where A has nonzero probability, Kolmogorov
defined PA(B) in the usual way. He called it bedingte
Wahrscheinlichkeit, which translates into English as
“conditional probability.” Before the Grundbegriffe,
this term was less common than “relative probability.”

Kolmogorov’s treatment of conditional probability
and expectation was novel. It began with a set-theoretic
formalization of the concept of an experiment (Ver-
such in German). Here Kolmogorov had in mind a
subexperiment of the grand experiment defined by the
conditions S. The subexperiment may give only limi-
ted information about the outcome ξ of the grand ex-
periment. It defines a partition A of the sample space
E for the grand experiment: its outcome amounts to
specifying which element of A contains ξ . Kolmogo-
rov formally identified the subexperiment with A. Then
he introduced the idea of conditional probability rela-
tive to A:

• In the finite case, he wrote PA(B) for the random
variable whose value at each point ξ of E is PA(B),
where A is the element of A that contains ξ , and he
called this random variable the “conditional proba-
bility of B after the experiment A” (page 12). This
random variable is well defined for all the ξ in ele-
ments of A that have positive probability, and these
ξ form an event that has probability 1.

• In the general case, he represented the partition A by
a function u on E that induces it and he wrote Pu(B)

for any random variable that satisfies

P{u⊂A}(B) = E{u⊂A}Pu(B)

for every set A of possible values of u such that the
subset {ξ |u(ξ) ∈ A} of E (this is what he meant by
{u ⊂ A}) is measurable and has positive probability
(page 42). By the Radon–Nikodym theorem (only
recently proven by Nikodym), this random variable
is unique up to a set of probability 0. Kolmogorov
called it the “conditional probability of B with re-
spect to (or knowing) u.” He defined Eu(y), which
he called “the conditional expectation of the variable
y for a known value of u,” analogously (page 46).

Kolmogorov was doing no new mathematics here; the
mathematics is Nikodym’s. However, Kolmogorov was
the first to point out that Nikodym’s result can be used

to derive conditional probabilities from absolute prob-
abilities.

We should not, incidentally, jump to the conclu-
sion that Kolmogorov had abandoned the emphasis on
transition probabilities he had displayed in his 1931
article and now wanted to start the study of stochas-
tic processes with unconditional probabilities. Even
in 1935, he recommended the opposite (Kolmogorov,
1935, pages 168–169 of the English translation).

5.1.4 When is conditional probability meaningful?
To illustrate his understanding of conditional probabi-
lity, Kolmogorov discussed Bertrand’s paradox of the
great circle, which he called, with no specific reference,
a Borelian paradox. His explanation of the paradox was
simple but formal. After noting that the probability dis-
tribution for the second point conditional on a particu-
lar great circle is not uniform, he said:

This demonstrates the inadmissibility of
the idea of conditional probability with re-
spect to a given isolated hypothesis with
probability zero. One obtains a probability
distribution for the latitude on a given great
circle only when that great circle is consid-
ered as an element of a partition of the entire
surface of the sphere into great circles with
the given poles (page 45).

This explanation has become part of the culture of
probability theory, but it cannot completely replace the
more substantive explanations given by Borel.

Borel insisted that we explain how the measurement
on which we will condition is to be carried out. This
accords with Kolmogorov’s insistence that a partition
be specified, because a procedure for measurement will
determine such a partition. Kolmogorov’s explicitness
on this point was a philosophical advance. On the other
hand, Borel demanded more than the specification of a
partition. He demanded that the measurement be speci-
fied realistically enough that we can see partitions into
events of positive probability, not just a theoretical lim-
iting partition into events of probability 0.

Borel’s demand that we be told how the theoretical
partition into events of probability 0 arises as a limit
of partitions into events of positive probability again
compromises the abstract picture by introducing to-
pological ideas, but this seems to be needed so as to
rule out nonsense. This point was widely discussed
in the 1940s and 1950s. Dieudonné (1948) and Lévy
(1959) gave examples in which the conditional prob-
abilities defined by Kolmogorov do not have versions
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(functions of ξ for fixed B) that form sensible prob-
ability measures (when considered as functions of B

for fixed ξ ). Gnedenko and Kolmogorov (1949) and
Blackwell (1956) formulated conditions on measurable
spaces or probability measures that rule out such exam-
ples. For modern formulations of these conditions, see
Rogers and Williams (2000).

5.2 The empirical origin of the axioms

Kolmogorov devoted about two pages of the Grund-
begriffe to the relation between his axioms and the real
world. These two pages, a concise statement of Kolmo-
gorov’s frequentist philosophy, are so important to our
story that we quote them in full. We then discuss how
this philosophy was related to the thinking of his prede-
cessors and how it fared in the decades following 1933.

5.2.1 In Kolmogorov’s own words. Section 2 of
Chapter I of the Grundbegriffe is titled “Das Verhält-
nis zur Erfahrungswelt.” It is only two pages in length.
This subsection consists of a translation of the section
in its entirety.

The relation to the world of experience
The theory of probability is applied to the
real world of experience as follows:

1. Suppose we have a certain system of
conditions S, capable of unlimited repe-
tition.

2. We study a fixed circle of phenomena
that can arise when the conditions S are
realized. In general, these phenomena
can come out in different ways in differ-
ent cases where the conditions are rea-
lized. Let E be the set of the different
possible variants ξ1, ξ2, . . . of the out-
comes of the phenomena. Some of these
variants might actually not occur. We
include in the set E all the variants we
regard a priori as possible.

3. If the variant that actually appears when
conditions S are realized belongs to a set
A that we define in some way, then we
say that the event A has taken place.

EXAMPLE. The system of conditions
S consists of flipping a coin twice. The
circle of phenomena mentioned in point 2
consists of the appearance, on each flip,
of heads or tails. It follows that there are
four possible variants (elementary events),

namely

heads—heads, heads—tails,

tails—heads, tails—tails.

Consider the event A that there is a repe-
tition. This event consists of the first and
fourth elementary events. Every event can
similarly be regarded as a set of elementary
events.

4. Under certain conditions, that we will
not go into further here, we may assume
that an event A that does or does not oc-
cur under conditions S is assigned a real
number P(A) with the following proper-
ties:
A. One can be practically certain that

if the system of conditions S is re-
peated a large number of times, n,
and the event A occurs m times, then
the ratio m/n will differ only slightly
from P(A).

B. If P(A) is very small, then one can
be practically certain that the event A

will not occur on a single realization
of the conditions S.

Empirical deduction of the axioms. Usu-
ally one can assume that the system F of
events A,B,C . . . that come into consid-
eration and are assigned definite probabili-
ties forms a field that contains E (Axioms
I and II and the first half of Axiom III—the
existence of the probabilities). It is further
evident that 0 ≤ m/n ≤ 1 always holds, so
that the second half of Axiom III appears
completely natural. We always have m = n

for the event E, so we naturally set P(E) =
1 (Axiom IV). Finally, if A and B are mu-
tually incompatible (in other words, the sets
A and B are disjoint), then m = m1 + m2,
where m, m1 and m2 are the numbers of
experiments in which the events A ∪ B , A

and B happen, respectively. It follows that

m

n
= m1

n
+ m2

n
.

So it appears appropriate to set P(A ∪ B) =
P(A) + P(B).

REMARK I. If two assertions are both
practically certain, then the assertion that
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they are simultaneously correct is practi-
cally certain, though with a little lower
degree of certainty. But if the number of as-
sertions is very large, we cannot draw any
conclusion whatsoever about making the as-
sertions simultaneously from the practical
certainty of each of them individually. So
it in no way follows from Principle A that
m/n will differ only a little from P(A) in
every one of a very large number of series
of experiments, where each series consists
of n experiments.

REMARK II. By our axioms, the impos-
sible event (the empty set) has the probabil-
ity P(∅) = 0. But the converse inference,
from P(A) = 0 to the impossibility of A,
does not by any means follow. By Princi-
ple B, the event A’s having probability zero
implies only that it is practically impossible
that it will happen on a particular unrepe-
ated realization of the conditions S. This
by no means implies that the event A will
not appear in the course of a sufficiently
long series of experiments. When P(A) = 0
and n is very large, we can only say, by
Principle A, that the quotient m/n will be
very small—it might, for example, be equal
to 1/n.

5.2.2 The philosophical synthesis. The philosophy
set out in the two pages we have just translated is a syn-
thesis, combining elements of the German and French
traditions.

By his own testimony, Kolmogorov drew first and
foremost from von Mises. In a footnote, he put the mat-
ter this way:

. . . In laying out the assumptions needed to
make probability theory applicable to the
world of real events, the author has fol-
lowed in large measure the model provided
by Mr. von Mises . . .

The very title of this section of the Grundbegriffe, “Das
Verhältnis zur Erfahrungswelt,” echoes the title of the
passage in von Mises (1931) that Kolmogorov cites—
“Das Verhältnis der Theorie zur Erfahrungswelt”—
but Kolmogorov does not discuss collectives. As he
explained in a letter to Fréchet in 1939, he thought
only a finitary version of this concept would reflect
experience truthfully, and a finitary version, unlike

von Mises’ infinitary version, could not be made math-
ematically rigorous. So for mathematics, one should
adopt an axiomatic theory “whose practical value can
be deduced directly” from a finitary concept of collec-
tives.

Although collectives are in the background, Kolmo-
gorov starts in a way that echoes Chuprov more than
von Mises. He writes, as Chuprov (1910, page 149)
did, of a system of conditions (Komplex von Bedin-
gungen in German; kompleks usloviĭ in Russian).
Probability is relative to a system of conditions S, and
yet further conditions must be satisfied in order for
events to be assigned a probability under S. Kolmogo-
rov says nothing more about these conditions, but we
may conjecture that he was thinking of the three sour-
ces of probabilities mentioned by von Mises: gambling
devices, statistical phenomena and physical theory.

Where do von Mises’ two axioms—probability as a
limit of relative frequency and its invariance under se-
lection of subsequences—appear in Kolmogorov’s ac-
count? Principle A is obviously a finitary version of
von Mises’ axiom that identifies probability as the limit
of relative frequency. Principle B, on the other hand,
is the strong form of Cournot’s principle (see Sec-
tion 2.2.2 above). Is it a finitary version of von Mises’
principle of invariance under selection? Evidently. In
a collective, von Mises says, we have no way to sin-
gle out an unusual infinite subsequence. One finitary
version of this is that we have no way to single out an
unusual single trial. It follows that when we do select
a single trial (a single realization of the conditions S,
as Kolmogorov puts it), we should not expect anything
unusual. In the special case where the probability is
very small, the usual is that the event will not happen.

Of course, Principle B, like Principle A, is only sat-
isfied when there is a collective, that is, under certain
conditions. Kolmogorov’s insistence on this point is
confirmed by the comments we quoted in Section 2.2.2
herein on the importance and nontriviality of the step
from “usually” to “in this particular case.”

As Borel and Lévy had explained so many times,
Principle A can be deduced from Principle B togeth-
er with Bernoulli’s theorem, which is a consequence
of the axioms. In the framework that Kolmogorov sets
up, however, the deduction requires an additional as-
sumption: we must assume that Principle B applies
not only to the probabilities specified for repetitions
of conditions S, but also to the corresponding prob-
abilities (obtaining by assuming independence) for re-
petitions of n-fold repetitions of S. It is not clear
that this additional assumption is appropriate, not only
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because we might hesitate about independence (see
Shiryaev’s comments on page 120 of the third Russian
edition of the Grundbegriffe, published in 1998), but
also because the enlargement of our model to n-fold re-
petitions might involve a deterioration in its empirical
precision to the extent that we are no longer justified in
treating its high-probability predictions as practically
certain. Perhaps these considerations justify Kolmogo-
rov’s presenting Principle A as an independent princi-
ple alongside Principle B rather than as a consequence
of it.

Principle A has an independent role in Kolmogorov’s
story, however, even if we do regard it as a consequence
of Principle B together with Bernoulli’s theorem, be-
cause it comes into play at a point that precedes the
adoption of the axioms and hence the derivation of Ber-
noulli’s theorem: it is used to motivate the axioms (cf.
Bartlett, 1949). The parallel to the thinking of Lévy is
striking. In Lévy’s picture, the notion of equally like-
ly cases motivates the axioms, while Cournot’s princi-
ple links the theory with reality. The most important
change Kolmogorov makes in this picture is to replace
equally likely cases with frequency; frequency now
motivates the axioms, but Cournot’s principle remains
the most essential link with reality.

In spite of the obvious influence of Borel and Lévy,
Kolmogorov cites only von Mises in this section of
the Grundbegriffe. Philosophical works by Borel and
Lévy, along with those by Slutsky and Cantelli, do ap-
pear in the Grundbegriffe’s bibliography, but their ap-
pearance is explained only by a sentence in the preface:
“The bibliography gives some recent works that sho-
uld be of interest from a foundational viewpoint.” The
emphasis on von Mises may have been motivated in
part by political prudence. Whereas Borel and Lévy
persisted in speaking of the subjective side of proba-
bility, von Mises was an uncompromising frequentist.
Whereas Chuprov and Slutsky worked in economics
and statistics, von Mises was an applied mathemati-
cian, concerned more with aerodynamics than social
science, and the relevance of his work on collectives
to physics had been established in the Soviet litera-
ture by Khinchin (1929; see also Khinchin, 1961, and
Siegmund-Schultze, 2004). (For more on the politi-
cal context, see Blum and Mespoulet, 2003; Lorentz,
2002; Mazliak, 2003; Seneta, 2004.)

5.2.3 Why was Kolmogorov’s philosophy not more
influential? Although Kolmogorov never abandoned
his formulation of frequentism, his philosophy has not

enjoyed the enduring popularity of his axioms. Sec-
tion 2 of Chapter I of the Grundbegriffe is seldom quo-
ted. Cournot’s principle remained popular in Europe
during the 1950s (Shafer and Vovk, 2005), but never
gained substantial traction in the United States.

The lack of interest in Kolmogorov’s philosophy
during the past half century can be explained in many
ways, but one important factor is the awkwardness of
extending it to stochastic processes. The first condition
in Kolmogorov’s credo is that the system of conditions
should be capable of unlimited repetition. When we
define a stochastic process in terms of transition prob-
abilities, as in Kolmogorov (1931), this condition may
be met, for it may be possible to start a system repeat-
edly in a given state, but when we focus on probabili-
ties for sets of possible trajectories, we are in a more
awkward position. In many applications, there is only
one realized trajectory; it is not possible to repeat the
experiment to obtain another. Kolmogorov managed to
overlook this tension in the Grundbegriffe, where he
showed how to represent a discrete-time Markov chain
in terms of a single probability measure (Chapter I,
Section 6), but did not give such representations for
continuous stochastic processes. It became more dif-
ficult to ignore the tension after Doob and others suc-
ceeded in giving such representations.

6. CONCLUSION

Seven decades later, the Grundbegriffe’s mathemati-
cal ideas still set the stage for mathematical probability.
Its philosophical ideas, especially Cournot’s principle,
also remain powerful, even for those who want to go
beyond the measure-theoretic framework (Shafer and
Vovk, 2001). As we have tried to show in this article,
the endurance of these ideas is not due to Kolmogo-
rov’s originality. Rather, it is due to the presence of the
ideas in the very fabric of the work that came before.
The Grundbegriffe was a product of its own time.
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sluqaĭnyh veliqin. State Publishing House, Moscow.
Translated into English by K. L. Chung and published in 1954
as Limit Distributions for Sums of Independent Random Va-
riables, Addison–Wesley, Cambridge, MA, with an appendix
by J. L. Doob.

HABERMAN, S. J. (1996). Advanced Statistics 1. Description of
Populations. Springer, New York.

HADAMARD, J. (1922). Les principes du calcul des probabilités.
Revue de métaphysique et de morale 39 289–293. A sligh-
tly longer version of this note, with the title “Les axiomes du
calcul des probabilités,” was included in Oeuvres de Jacques
Hadamard 4 2161–2162. Centre National de la Recherche Sci-
entifique, Paris, 1968.

HAUSDORFF, F. (1901). Beiträge zur Wahrscheinlichkeitsrech-
nung. Sitzungsber. Königlich Sächs. Gesellschaft Wiss. Leipz.
Math.-Phys. Kl. 53 152–178.

HAUSDORFF, F. (1914). Grundzüge der Mengenlehre. von Veit,
Leipzig.

HAWKINS, T. (1975). Lebesgue’s Theory of Integration: Its Ori-
gins and Development, 2nd ed. Chelsea, New York. First edi-
tion 1970, Univ. Wisconsin Press, Madison. The second edition
differs only slightly from the first, but it corrects a consequ-
ential error on p. 104. Second edition reprinted in 1979 by
Chelsea, New York, and then in 2001 by the American Mat-
hematical Society, Providence, RI.

HELM, G. (1902). Die Wahrscheinlichkeitslehre als Theorie der
Kollektivbegriffe. Annalen der Naturphilosophie 1 364–384.

HILBERT, D. (1902). Mathematical problems. Bull. Amer. Math.
Soc. 8 437–479. Hilbert’s famous address to the Internatio-
nal Congress of Mathematicians in Paris in 1900, in which
he listed twenty-three open problems central to mathematics.
Translated from the German by M. W. Newson.

HOCHKIRCHEN, T. (1999). Die Axiomatisierung der Wahrsche-
inlichkeitsrechnung und ihre Kontexte: Von Hilberts sechstem
Problem zu Kolmogoroffs Grundbegriffen. Vandenhoeck and
Ruprecht, Göttingen.

HOLGATE, P. (1997). Independent functions: Probability and ana-
lysis in Poland between the wars. Biometrika 84 161–173.

JEFFREYS, H. (1931). Scientific Inference. Cambridge Univ. Press.
Second edition 1957, third 1973.

JESSEN, B. (1930). Über eine Lebesguesche Integrationstheorie
für Funktionen unendlich vieler Veränderlichen. In Den Sy-
vende Skandinaviske Mathatikerkongress I Oslo 19–22 August
1929 127–138. A. W. Brøggers Boktrykkeri, Oslo.

JESSEN, B. (1935). Some analytical problems relating to probabi-
lity. J. Math. Phys. Mass. Inst. Tech. 14 24–27.

JOHNSON, N. L. and KOTZ, S., eds. (1997). Leading Personalities
in Statistical Sciences. Wiley, New York.

KAHANE, J.-P. (1994). Des séries de Taylor au mouvement brow-
nien, avec un aperçu sur le retour. In Pier (1994b) 415–429.

KAMLAH, A. (1983). Probability as a quasi-theoretical concept—
J. V. Kries’ sophisticated account after a century. Erkenntnis
19 239–251.

KEYNES, J. M. (1921). A Treatise on Probability. Macmillan, Lon-
don.

KHINCHIN, A. YA. (1929). Uqenie Mizesa o vero�tnost�h
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