Introduction: Probability
and Finance as a Game

We propose a framework for the theory and
use of mathematical probability that rests =
more on game theory than on measure the-
ory. This new framework merits attention
on purely mathematical grounds, for it cap-
tures the basic intuitions of probability sim-
ply and effectively. It is also of philosophi-
cal and practical interest. It goes deeper into
probability’s conceptual roots than the esta
lished measure-theoretic framework, it is be
ter adapted to many practical problems, and
clarifies the close relationship between pro
ability theory and finance theory.

From the viewpoint of game theory, ou
framework is very simple. Its most essentialean Ville (1910-1988) as a student at
elements were already present in Jean Villet§e Ecole Normale Sugieurein Paris.

1939 book, Etude critique de la notion de His study of martingales helped inspire
collectif, which introduced martingales into®ur framework for probability.

probability theory. Following Ville, we consider only two players. They alternate
moves, each is immediately informed of the other's moves, and one or the other wins.

1This is the first chapter dProbability and Finance: It's Only a Gamgby Glenn Shafer and Vladimir
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In such a game, one player has a winning stratédy6), and so we do not need the
subtle solution concepts now at the center of game theory in economics and the other
social sciences.

Our framework is a straightforward but rigorous elaboration, with no extraneous
mathematical or philosophical baggage, of two ideas that are fundamental to both
probability and finance:

e ThePrincipleof Pricing by Dynamic Hedging. When simple gambles can be
combined over time to produce more complex gambles, prices for the simple
gambles determine prices for the more complex gambles.

e TheHypothesisof the Impossibility of a Gambling System. Sometimes we
hypothesize that no system for selecting gambles from those offered to us can
both (1) be certain to avoid bankruptcy and (2) have a reasonable chance of
making us rich.

The principle of pricing by dynamic hedging can be discerned in the letters of Blaise
Pascal to Pierre de Fermat in 1654, at the very beginning of mathematical probability,
and it re-emerged in the last third of the twentieth century as one of the central ideas
of finance theory. The hypothesis of the impossibility of a gambling system also has
a long history in probability theory, dating back at least to Cournot, and it is related
to the efficient-markets hypothesis, which has been studied in finance theory since
the 1970s. We show that in a rigorous game-theoretic framework, these two ideas
provide an adequate mathematical and philosophical starting point for probability
and its use in finance and many other fields. No additional apparatus such as measure
theory is needed to get probability off the ground mathematically, and no additional
assumptions or philosophical explanations are needed to put probability to use in the
world around us.

Probability becomes game-theoretic as soon as we treat the expected values in a
probability model as prices in a game. These prices may be offered to an imaginary
player who stands outside the world and bets on what the world will do, or they may
be offered to an investor whose participation in a market constitutes a bet on what the
market will do. In both cases, we can learn a great deal by thinking in game-theoretic
terms. Many of probability’s theorems turn out to be theorems about the existence of
winning strategies for the player who is betting on what the world or market will do.
The theorems are simpler and clearer in this form, and when they are in this form,
we are in a position to reduce the assumptions we make—the number of prices we
assume are offered—down to the minimum needed for the theorems to hold. This
parsimony is potentially very valuable in practical work, for it allows and encourages
clarity about the assumptions we need and are willing to take seriously.

Defining a probability measure on a sample space means recommending a definite
price for each uncertain payoff that can be defined on the sample space, a price at
which one might buy or sell the payoff. Our framework requires much less than this.
We may be given only a few prices, and some of them may be one-sided—certified
only for selling, not for buying, or vice versa. From these given prices, using dynamic
hedging, we may obtain two-sided prices for some additional payoffs, but only upper
and lower prices for others.
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The measure-theoretic framework for probability, definitively formulated by An-
drei Kolmogorov in 1933, has been praised for its philosophical neutrality: it can
guide our mathematical work with probabilities no matter what meaning we want to
give to these probabilities. Any numbers that satisfy the axioms of measure may be
called probabilities, and it is up to the user whether to interpret them as frequencies,
degrees of belief, or something else. Our game-theoretic framework is equally open
to diverse interpretations, and its greater conceptual depth enriches these interpreta-
tions. Interpretations and uses of probability differ not only in the source of prices but
also in the role played by the hypothesis of the impossibility of a gambling system.

Our framework differs most strikingly from the measure-theoretic framework
in its ability to model open processes—processes that are open to influences we
cannot model even probabilistically. This openness can, we believe, enhance the
usefulness of probability theory in domains where our ability to control and predict
is substantial but very limited in comparison with the sweep of a deterministic model
or a probability measure.

From a mathematical point of view, the first test of a framework for probability is
how elegantly it allows us to formulate and prove the subject’s principal theorems,
especially the classical limit theorems: the law of large numbers, the law of the
iterated logarithm, and the central limit theorem. In Part I, we show how our
game-theoretic framework meets this test. We contend that it does so better than
the measure-theoretic framework. Our game-theoretic proofs sometimes differ little
from standard measure-theoretic proofs, but they are more transparent. Our game-
theoretic limit theorems are more widely applicable than their measure-theoretic
counterparts, because they allow reality’s moves to be influenced by moves by other
players, including experimenters, professionals, investors, and citizens. They are
also mathematically more powerful; the measure-theoretic counterparts follow from
them as easy corollaries. In the case of the central limit theorem, we also obtain an
interesting one-sided generalization, applicable when we have only upper bounds on
the variability of individual deviations.

In Part Il, we explore the use of our framework in finance. We call Part I
“Finance without Probability” for two reasons. First, the two ideas that we consider
fundamental to probability—the principle of pricing by dynamic hedging and the
hypothesis of the impossibility of a gambling system—are also native to finance
theory, and the exploitation of them in their native form in finance theory does
not require extrinsic stochastic modeling. Second, we contend that the extrinsic
stochastic modeling that does sometimes seem to be needed in finance theory can
often be advantageously replaced by the further use of markets to set prices. Extrinsic
stochastic modeling can also be accommodated in our framework, however, and Part
Ilincludes a game-theoretic treatment of diffusion processes, the extrinsic stochastic
models that are most often used in finance and are equally important in a variety of
other fields.

In the remainder of this introduction, we elaborate our main ideas in a relatively
informal way. We explain how dynamic hedging and the impossibility of a gambling
system can be expressed in game-theoretic terms, and how this leads to game-
theoretic formulations of the classical limit theorems. Then we discuss the diversity
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of ways in which game-theoretic probability can be used, and we summarize how
our relentlessly game-theoretic point of view can strengthen the theory of finance.

1.1 A GAME WITH THE WORLD

At the center of our framework is a sequential game with two players. The game may
have many—perhaps infinitely many—rounds of play. On each round, Player | bets
on what will happen, and then Player Il decides what will happen. Both players have
perfect information; each knows about the other’s moves as soon as they are made.

In order to make their roles easier to remember, we usually call our two players
Skeptic and World. Skeptic is Player |; World is Player Il. This terminology is
inspired by the idea of testing a probabilistic theory. Skeptic, an imaginary scientist
who does not interfere with what happens in the world, tests the theory by repeatedly
gambling imaginary money at prices the theory offers. Each time, World decides
what does happen and hence how Skeptic’s imaginary capital changes. If this capital
becomestoo large, doubtis cast on the theory. Of course, not all uses of mathematical
probability, even outside of finance, are scientific. Sometimes the prices tested by
Skeptic express personal choices rather than a scientific theory, or even serve merely
as a straw man. But the idea of testing a scientific theory serves us well as a guiding
example.

In the case of finance, we sometimes substitute the names Investor and Market for
Skeptic and World. Unlike Skeptic, Investor is a real player, risking real money. On
each round of play, Investor decides what investments to hold, and Market decides
how the prices of these investments change and hence how Investor’s capital changes.

Dynamic Hedging

The principle of pricing by dynamic hedging applies to both probability and finance,
but the word “hedging” comes from finance. An investor hedges a risk by buying
and selling at market prices, possibly over a period of time, in a way that balances the

Table 1.1 Instead of the uninformative names Player | and Player II, we usually call our
players Skeptic and World, because it is easy to remember that World decides while Skeptic
only bets. In the case of finance, we often call the two players Investor and Market.

PROBABILITY FINANCE

Skeptic bets against the
probabilistic predictions
of a scientific theory.

Investor bets by choosing
a portfolio of investments.

Player | bets on
what will happen.

Market decides how the
price of each investment
changes.

Player |l decides World decides how the
what happens. predictions come out.
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risk. In some cases, the risk can be eliminated entirely. If, for example, Investor has
a financial commitment that depends on the prices of certain securities at some future
time, then he may be able to cover the commitment exactly by investing shrewdly in
the securities during the rounds of play leading up to that future time. If the initial
capital required i$«, then we may say that Investor has a strategy for turinigito

the needed future payoff. Assuming, for simplicity, that the interest rate is zero, we
may also say thaw is the game’s price for the payoff. This is the principle of pricing

by dynamic hedging. (We assume throughout this chapter and in most of the rest of
the book that the interest rate is zero. This makes our explanations and mathematics
simpler, with no real loss in generality, because the resulting theory extends readily
to the case where the interest rate is not zero§$2el.)

As it applies to probability, the principle of pricing by dynamic hedging says
simply that the prices offered to Skeptic on each round of play can be compounded to
obtain prices for payoffs that depend on more than one of World’s moves. The prices
for each round may include probabilities for what World will do on that round, and
the global prices may include probabilities for World’s whole sequence of play. We
usually assume that the prices for each round are given either at the beginning of the
game or as the game is played, and prices for longer-term gambles are derived. But
when the idea of a probability game is used to study the world, prices may sometimes
be derived in the opposite direction. The principle of pricing by dynamic hedging
then becomes merely a principle of coherence, which tells us how prices at different
times should fit together.

We impose no general rules about how many gambles are offered to Skeptic on
different rounds of the game. On some rounds, Skeptic may be offered gambles on
every aspect of World’s next move, while on other rounds, he may be offered no
gambles at all. Thus our framework always allows us to model what science models
and to leave unmodeled what science leaves unmodeled.

The Fundamental Interpretative Hypothesis

In contrast to the principle of pricing by dynamic hedging, the hypothesis of the
impossibility of a gambling system is optional in our framework. The hypothesis
boils down, as we explain if1.3, to the supposition that events with zero or low
probability are unlikely to occur (or, more generally, that events with zero or low
upper probability are unlikely to occur). This supposition is fundamental to many
uses of probability, because it makes the game to which it is applied into a theory
about the world. By adopting the hypothesis, we put ourselves in a position to test the
prices in the game: if an event with zero or low probability does occur, then we can
reject the game as a model of the world. But we do not always adopt the hypothesis.
We do not always need it when the game is between Investor and Market, and we
do not need it when we interpret probabilities subjectively, in the sense advocated by
Bruno de Finetti. For de Finetti and his fellow neosubijectivists, a person’s subjective
prices are nothing more than that; they are merely prices that systematize the person’s
choices among risky options. Sgk&4 and§2.6.
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THE FUNDAMENTAL
INTERPRETATIVE
HYPOTHESIS
There is no real market.
Because money is imaginary,
no numéraire is needed.
Hypothesis applies to Skeptic,
an imaginary player.

There is a real market.
Numeéraire must be specified.
Hypothesis may apply to
Skeptic (imaginary player)
or to Investor (real player).

THE IMPOSSIBILITY THE EFFICIENT
OF A GAMBLING MARKET
SYSTEM HYPOTHESIS

Fig. 1.1 The fundamental interpretative hypothesis in probability and finance.

We have a shorter name for the hypothesis of the impossibility of a gambling
system: we call it thdundamental interpretative hypothegi$ probability. It is
interpretative because it tells us what the prices and probabilities in the game to
which it is applied mean in the world. It is not part of our mathematics. It stands
outside the mathematics, serving as a bridge between the mathematics and the world.

When we are working in finance, where our game describes a real market, we
use yet another name for our fundamental hypothesis: we call éfflegent-market
hypothesis The efficient-market hypothesis, as applied to a particular financial
market, in which particular securities are bought and sold over time, says that an
investor (perhaps a real investor named Investor, or perhaps an imaginary investor
named Skeptic) cannot become rich trading in this market without risking bankruptcy.
In order to make such a hypothesis precise, we must specify not only whether we are
talking about Investor or Skeptic, but also theméraire—the unit of measurement
in which this player’s capital is measured. We might measure this capital in nominal
terms (making a monetary unit, such as a dollar or a rublejuneeraire), we might
measure it relative to the total value of the market (making some convenient fraction
of this total value theunéraire), or we might measure it relative to a risk-free bond
(which is then thenuméraire), and so on. Thus the efficient-market hypothesis can
take many forms. Whatever form it takes, it is subject to test, and it determines upper
and lower probabilities that have empirical meaning.

Since about 1970, economists have debated an efficient-markets hypothesis, with
marketsin the plural. This hypothesis says that financial markets are efficient in
general, in the sense that they have already eliminated opportunities for easy gain.
As we explain in Part 11§9.4 and Chapter 15), our efficient-market hypothesis has
the same rough rationale as the efficient-markets hypothesis and can often be tested in
similar ways. But it is much more specific. It requires that we specify the particular
securities that are to be included in the market, the exact rule for accumulating capital,
and thenunéraire for measuring this capital.
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Open Systems within the World

Our austere picture of a game between Skeptic and World can be filled out in a
great variety of ways. One of the most important aspects of its potential lies in the
possibility of dividing World into several players. For example, we might divide
World into three players:

Experimenter, who decides what each round of play will be about.
Forecaster, who sets the prices.
Reality, who decides the outcomes.

This division reveals the open character of our framework. The principle of pricing
by dynamic hedging requires Forecaster to give coherent prices, and the fundamental
interpretative hypothesis requires Reality to respect these prices, but otherwise all
three players representing World may be open to external information and influence.
Experimenter may have wide latitude in deciding what experiments to perform.
Forecaster may use information from outside the game to set prices. Reality may
also be influenced by unpredictable outside forces, as long as she acts within the
constraints imposed by Forecaster.

Many scientific models provide testable probabilistic predictions only subsequent
to the determination of many unmodeled auxiliary factors. The presence of Ex-
perimenter in our framework allows us to handle these models very naturally. For
example, the standard mathematical formalization of quantum mechanics in terms
of Hilbert spaces, due to John von Neumann, fits readily into our framework. The
scientist who decides what observables to measure is Experimenter, and quantum
theory is Forecaste£8.4).

Weather forecasting provides an example where information external to a model
is used for prediction. Here Forecaster may be a person or a very complex computer
program that escapes precise mathematical definition because it is constantly under
development. In either case, Forecaster will use extensive external information—
weather maps, past experience, etc. If Forecaster is required to announce every
evening a probability for rain on the following day, then there is no need for Experi-
menter; the game has only three players, who move in this order:

Forecaster, Skeptic, Reality.

Forecaster announces odds for rain the next day, Skeptic decides whether to bet for
or against rain and how much, and Reality decides whether it rains. The fundamental
interpretative hypothesis, which says that Skeptic cannot get rich, can be tested by
any strategy for betting at Forecaster’s odds.

It is more difficult to make sense of the weather forecasting problem in the
measure-theoretic framework. The obvious approach is to regard the forecaster's
probabilities as conditional probabilities given what has happened so far. But be-
cause the forecaster is expected to learn from his experience in giving probability
forecasts, and because he uses very complex and unpredictable external information,
it makes no sense to interpret his forecasts as conditional probabilities in a proba-
bility distribution formulated at the outset. And the forecaster does not construct a
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probability distribution along the way; this would involve constructing probabilities
for what will happen on the next day not only conditional on what has happened so
far but also conditional on what might have happened so far.

In the 1980s, A. Philip Dawid proposed that the forecasting success of a proba-
bility distribution for a sequence of events should be evaluated using only the actual
outcomes and the sequence of forecasts (conditional probabilities) to which these
outcomes give rise, without reference to other aspects of the probability distribution.
This is Dawid’'sprequential principle[82]. In our game-theoretic framework, the
prequential principle is satisfied automatically, because the probability forecasts pro-
vided by Forecaster and the outcomes provided by Reality are all we have. So long
as Forecaster does not adopt a strategy, no probability distribution is even defined.

The explicit openness of our framework makes it well suited to modeling systems
that are open to external influence and information, in the spirit of the nonpara-
metric, semiparametric, and martingale models of modern statistics and the even
looser predictive methods developed in the study of machine learning. It also fits
the open spirit of modern science, as emphasized by Karl Popper [250]. In the
nineteenth century, many scientists subscribed to a deterministic philosophy inspired
by Newtonian physics: at every moment, every future aspect of the world should be
predictable by a superior intelligence who knows initial conditions and the laws of
nature. In the twentieth century, determinism was strongly called into question by
further advances in physics, especially in quantum mechanics, which now insists that
some fundamental phenomena can be predicted only probabilistically. Probabilists
sometimes imagine that this defeat allows a retreat to a probabilistic generalization of
determinism: science should give us probabilities for everything that might happen
in the future. In fact, however, science now describes only islands of order in an
unruly universe. Modern scientific theories make precise probabilistic predictions
only about some aspects of the world, and often only after experiments have been
designed and prepared. The game-theoretic framework asks for no more.

Skeptic and World Always Alternate Moves

Most of the mathematics in this book is developed for particular examples, and as we
have just explained, many of these examples divide World into multiple players. Itis
importantto notice that this division of World into multiple players does not invalidate
the simple picture in which Skeptic and World alternate moves, with Skeptic betting
on what World will do next, because we will continue to use this simple picture in
our general discussions, in the next section and in later chapters.

One way of seeing that the simple picture is preserved is to imagine that Skeptic
moves just before each of the players who constitute World, but that only the move
just before Reality can result in a nonzero payoff for Skeptic. Another way, which
we will find convenient when World is divided into Forecaster and Reality, is to add
just one dummy move by Skeptic, at the beginning of the game, and then to group
each of Forecaster’s later moves with the preceding move by Reality, so that the order
of play becomes
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Skeptic, Forecaster, Skeptic, (Reality, Forecaster),
Skeptic, (Reality, Forecaster), . . ..

Either way, Skeptic alternates moves with World.

The Science of Finance

Other players sometimes intrude into the game between Investor and Market. Finance
is not merely practice; there is a theory of finance, and our study of it will sometimes
require that we bring Forecaster and Skeptic into the game. This happens in several
different ways. In Chapter 14, where we give a game-theoretic reading of the usual
stochastic treatment of option pricing, Forecaster represents a probabilistic theory
about the behavior of the market, and Skeptic tests this theory. In our study of the
efficient-market hypothesis (Chapter 15), in contrast, the role of Forecaster is played
by Opening Market, who sets the prices at which Investor, and perhaps also Skeptic,
can buy securities. The role of Reality is then played by Closing Market, who decides
how these investments come out.

In much of Part Il, however, especially in Chapters 10-13, we study games
that involve Investor and Market alone. These may be the most important market
games that we study, because they allow conclusions based solely on the structure
of the market, without appeal to any theory about the efficiency of the market or the
stochastic behavior of prices.

1.2 THE PROTOCOL FOR A PROBABILITY GAME

Specifying a game fully means specifying the moves available to the players—we
call this theprotocolfor the game—and the rule for determining the winner. Both of
these elements can be varied in our game between Skeptic and World, leading to many
different games, all of which we cglrobability gamesThe protocol determines the
sample space and the prices (in general, upper and lower prices) for variables. The
rule for determining the winner can be adapted to the particular theorem we want to
prove or the particular problem where we want to use the framework. In this section
we consider only the protocol.

The general theory sketched in this section applies to most of the games studied
in this book, including those where Investor is substituted for Skeptic and Market for
World. (The main exceptions are the games we use in Chapter 13 to price American
options.) We will develop this general theory in more detail in Chapters 7 and 8.

The Sample Space

The protocol for a probability game specifies the moves available to each player,
Skeptic and World, on each round. This determines, in particular, the sequences of
moves World may make. These sequences—the possible complete sequences of play
by World—constitute theample spactor the game. We designate the sample space
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Fig. 1.2 Anunrealistic sample space for changes in the price of a stock. The steps in the tree
represent possible moves by World (in this case, the market). The nodes (situations) record
the moves made by World so far. The initial situation is designated.bjhe terminal nodes

record complete sequences of play by World and hence can be identified with the paths that
constitute the sample space. The example is unrealistic because in a real stock market there is
a wide range of possible changes for a stock’s price at each step, not just two or three.

by €2, and we call its elemenfzaths The moves available to World may depend on
moves he has previously made. But we assume that they do not depend on moves
Skeptic has made. Skeptic’s bets do not affect what is possible in the world, although
World may consider them in deciding what to do next.

We can represent the dependence of World’s possible moves on his previous moves
in terms of a tree whose paths form the sample space, as in Figure 1.2. Each node
in the tree represents stuation and the branches immediately to the right of a
nonterminal situation represent the moves World may make in that situation. The
initial situation is designated by.

Figure 1.2 is finite: there are only finitely many paths, and every path terminates
after a finite number of moves. We do not assume finiteness in general, but we do
pay particular attention to the case where every path terminates; in this case we say
the game igerminating If there is a bound on the length of the paths, then we say
the game has finite horizon If none of the paths terminate, we say the game has an
infinite horizon

In general, we think of a situation (a node in the tree) as the sequence of moves
made by World so far, as explained in the caption of Figure 1.2. So in a terminating
game, we may identify the terminal situation on each path with that path; both are
the same sequence of moves by World.

In measure-theoretic probability theory, a real-valued function on the sample
space is called eandom variable Avoiding the implication that we have defined a
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Fig. 1.3 Forming a nonnegative linear combination of two gambles. In the first gamble
Skeptic paysn, in order to get, b1, or ¢; in return, depending on how things come out. In
the second gamble, he pays in order to getus, b2, Or ¢z in return.

probability measure on the sample space, and also whatever other ideas the reader
may associate with the word “random”, we call such a function simphgréable

In the example of Figure 1.2, the variables include the prices for the stock for each
of the next three days, the average of the three prices, the largest of the three prices,
and so on. We also follow established terminology by calling a subset of the sample
space arvent

Moves and Strategies for Skeptic

To complete the protocol for a probability game, we must also specify the moves
Skeptic may make in each situation. Each move for Skeptic is a gamble, defined by a
price to be paid immediately and a payoff that depends on World’s following move.
The gambles among which Skeptic may choose may depend on the situation, but we
always allow him to combine available gambles and to take any fraction or multiple
of any available gamble. We also allow him to borrow money freely without paying
interest. So he can take any nonnegative linear combination of any two available
gambles, as indicated in Figure 1.3.

We call the protocobymmetricif Skeptic is allowed to take either side of any
available gamble. This means that whenever he can buy the pawtfthe price
m, he can also selt at the pricen. Sellingz for m is the same as buyingx for
—m (Figure 1.4). So a symmetric protocol is one in which the gambles available to
Skeptic in each situation form a linear space; he may take any linear combination
of the available gambles, whether or not the coefficients in the linear combination
are nonnegative. If we neglect bid-ask spreads and transaction costs, then protocols
based on market prices are symmetric, because one may buy as well as sell a security
at its market price. Protocols corresponding to complete probability measures are
also symmetric. But many of the protocols we will study in this book are asymmetric.

A strategyfor Skeptic is a plan for how to gamble in each nonterminal situation he
might encounter. His strategy together with his initial capital determine his capital
in every situation, including terminal situations. Given a strategnd a situation,
we write 7 (t) for Skeptic’s capital irt if he starts with capitad and followsP. In
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e
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Fig. 1.4 Taking the gamble on the left means payimgand receivingz, b, or c in return.
Taking the other side means receivimgand payingz, b, or ¢ in return—i.e., paying-m and
receiving—a, —b, or —c in return. This is the same as taking the gamble on the right.

Simulated
M eaning Net payoff satisfactorily
by P if
Buy z for « Paya, getz T —aQ KP >z -«
Sellz for o Geta, payz a—z KP >a—x

Table 1.2 How a strategyP in a probability game can simulate the purchase or sale of a
variablez.

the terminating case, we may also speak of the capital a strategy produces at the end
of the game. Because we identify each path with its terminal situation, we may write
K (¢) for Skeptic’s final capital when he followR and World takes the path

Upper and Lower Prices

By adopting different strategies in a probability game, Skeptic can simulate the
purchase and sale of variables. We can price variables by considering when this
succeeds. In order to explain this idea as clearly as possible, we make the simplifying
assumption that the game is terminating.

A strategy simulates a transaction satisfactorily for Skeptic if it produces at least
as good a net payoff. Table 1.2 summarizes how this applies to buying and selling
a variabler. As indicated thereP simulates buying: for a satisfactorily ifC” >
x — . This means that

K7 (&) > z(¢) —a

for every path¢ in the sample spac®. When Skeptic has a strate@y satisfying
K? > x — a, we say hecan buyz for o. Similarly, when he has a strate@y
satisfying” > a — x, we say heean sellz for a. These are two sides of the same
coin: sellingz for « is the same as buyingx for —a.

Given a variable:, we set

Ez := inf {a | there is some strated such thatC” > z — a} .2 (1.1)

2We use:= to mean “equal by definition”; the right-hand side of the equation is the definition of the
left-hand side.
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We call E = the upper priceof 2 or thecostof z; it is the lowest price at which
Skeptic can buyr. (Because we have made no compactness assumptions about
the protocol—and will make none in the sequel—the infimum in (1.1) may not be
attained, and so strictly speaking we can only be sure that Skeptic can fory
E z + € for everye > 0. But it would be tedious to mention this constantly, and so we
ask the reader to indulge the slight abuse of language involved in saying that Skeptic
can buyz for E z.)

Similarly, we set

Ex :=sup {a | there is some stratedy such thatC” > o — x} . (1.2)

We call E = the lower priceof « or thescrap valueof z; it is the highest price at
which Skeptic can selt.

It follows from (1.1) and (1.2), and also directly from the fact that selliffgr «
is the same as buyingzx for —q, that

Ez = — E[-2]

for every variabler.

The idea of hedging provides another way of talking about upper and lower prices.
If we have an obligation to pay something at the end of the game, then we hedge this
obligation by trading in such a way as to cover the payment no matter what happens.
So we say that the strate@/hedgeghe obligationy if

KP(€) > y(€) (1.3)

for every path¢ in the sample spac®. Selling a variable: for « results in a net
obligation ofz — « at the end of the game. $dhedges selling: for « if P hedges
x — «, that is, if P simulates buying: for a. Similarly, P hedges buying: for a
if P simulates selling: for . SoE z is the lowest price at which selling can be
hedged, and = is the highest price at which buying it can be hedged, as indicated
in Table 1.3.

These definitions implicitly place Skeptic at the beginning of the game, in the
initial situationd. They can also be applied, however, to any other situation; we

Table 1.3 Upper and lower price described in terms of simulation and described in terms of
hedging. Because hedging the saleca$ the same as simulating the purchase odind vice
versa, the two descriptions are equivalent.
Description in terms
Name of the simulation of
buying and selling

Description in terms
of hedging

Lowest price at which Lowest selling price for

Ez Upper price ofc Skeptic can buy: x Skeptic can hedge

Highest price at which  Highest buying price for

Ex Lower price ofz Skeptic can selt x Skeptic can hedge
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simply consider Skeptic’s strategies for play from that situation onward. We write
E; x andE, = for the upper and lower price, respectively, of the variablie the
situationt.

Upper and lower prices are interesting only if the gambles Skeptic is offered do
not give him an opportunity to make money for certain. If this condition is satisfied
in situationt, we say that the protocol ioherentn ¢. In this case,

EthEx

for every variabler, and
E;0=E,0=0,

where0 denotes the variable whose valudisn every path if2.

WhenE, » = E; z, we call their common value thexact priceor simply theprice
for z in t and designate it by, . Such prices have the properties of expected values
in measure-theoretic probability theory, but we avoid the term “expected value” in
order to avoid suggesting that we have defined a probability measure on our sample
space. We do, however, use the word “variance”; wigm exists, we set

Viz :=Ei(z —Eez)® and V,z:=E,(z — E:2)?,

and we call them, respectively, th@per varianceof z in ¢ and thelower variance
ofzint. fV,z andV, z are equal, we writ&/, = for their common value; this is
the (game-theoretigarianceof z in t.

When the game is not terminating, definitions (1.1), (1.2), and (1.3) do not work,
becauseP may fail to determine a final capital for Skeptic when World takes an
infinite path; if there is no terminal situation on the patithenkC” (¢) may or may
not converge to a definite value asmoves alongs. Of the several ways to fix
this, we prefer the simplest: we say ttRathedges if on every pathé the capital
K (t) eventually reacheg(¢) and stays at or above it, and we similarly modify (1.1)
and (1.2). We will study this definition if8.3. On the whole, we make relatively
little use of upper and lower price for nonterminating probability games, but as we
explain in the next section, we do pay great attention to one special case, the case of
probabilities exactly equal to zero or one.

1.3 THE FUNDAMENTAL INTERPRETATIVE HYPOTHESIS

The fundamental interpretative hypothesis asserts that no strategy for Skeptic can both
(1) be certain to avoid bankruptcy and (2) have a reasonable chance of making Skeptic
rich. Because it contains the undefined term “reasonable chance”, this hypothesis
is not a mathematical statement; it is neither an axiom nor a theorem. Rather it
is an interpretative statement. It gives meaning in the world to the prices in the
probability game. Once we have asserted that Skeptic does not have a reasonable
chance of multiplying his initial capital substantially, we can identify other likely and
unlikely events and calibrate just how likely or unlikely they are. An eventis unlikely
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if its happening would give an opening for Skeptic to multiply his initial capital
substantially, and it is the more unlikely the more substantial this multiplication is.

We use two distinct versions of the fundamental interpretative hypothesis, one
finitary and onanfinitary:

e The Finitary Hypothesis. No strategy for Skeptic can both (1) be certain to
avoid bankruptcy and (2) have a reasonable chance of multiplying his initial
capital by a large factor. (We usually use this version in terminating games.)

e Thelnfinitary Hypothesis. No strategy for Skeptic can both (1) be certain to
avoid bankruptcy and (2) have a reasonable chance of making him infinitely
rich. (We usually use this version in infinite-horizon games.)

Because our experience with the world is finite, the finitary hypothesis is of more
practical use, but the infinitary hypothesis often permits clearer and more elegant
mathematical statements. As we will show in Part I, the two forms lead to the
two types of classical limit theorems. The finitary hypothesis leads to the weak limit
theorems: the weak law of large numbers and the central limit theorem. The infinitary
hypothesis leads to the strong limit theorems: the strong law of large numbers and
the law of the iterated logarithm.

It is easy for World to satisfy the fundamental interpretative hypothesis in a
probability game with a coherent protocol, for he can always move so that Skeptic
does not make money. But becoming rich is not Skeptic’s only goal in the games we
study. In many of these games, Skeptic waéitherif he becomes riclor if World’s
moves satisfy some other conditidh If Skeptic has a winning strategy in such a
game, then the fundamental interpretative hypothesis authorizes us to conclude that
E will happen. In order to keep Skeptic from becoming rich, World must move so
as to satisfyF.

Low Probability and High Probability

In its finitary form, the fundamental interpretative hypothesis provides meaning to
small upper probabilities and large lower probabilities.

We can define upper and lower probabilities formally as soon as we have the
concepts of upper and lower price. As we mentioned earliegvantis a subset of
the sample space. Given an evéhtwe define itdndicator variable g by

_[1lif¢eE
I=(¢) '—{ 0if £ ¢ E.

Then we define itsipper probabilityby
PE:=EIg (1.4)

and itslower probabilityby

=
&=
I
I=
=
sl

(1.5)
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P{E} P{E}
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No meaning except in conjunction

E'is unlikely. with the probabilities of other events.
P{E} P{E}
\ Ly \ L \
‘ [ ‘ ‘ [ ‘
IP{E} IP{E}
E is likely. No meaning except in conjunction

with the probabilities of other events.

Fig. 1.5 Only extreme probabilities have meaning in isolation.

Assuming the protocol is coherent, upper and lower probability obey
0<PE<PE<I1 (1.6)

and _
PE=1-PE". (1.7)

Here E€ is thecomplemenof E in Q—the set of paths for World that are noti
or the event thatl does not happen.

What meaning can be attachedld andP E? The fundamental interpretative
hypothesis answers this question when the two numbers are very close to zero.
Suppose, for example, th&FE = 0.001. (In this caseP E is also close to zero;
by (1.6), it is between 0 and 0.001.) Then Skeptic can buyor 0.001. Because
Ig > 0, the purchase does not open him to possible bankruptcy, and yet it results in a
thousandfold increase in his investmerftihappens. The fundamental interpretative
hypothesis says that this increase is unlikely and hence implie&ttsatinlikely.

Similarly, we may say thaF is very likely to happen if2 E and hence alsB E
are very close to one. Indeed,lfE is close to one, then by (1.7F,E ¢ is close
to zero, and hence it is unlikely th&t® will happen—that is, it is likely that will
happen.

These interpretations are summarized in Figure 1.® AfandP E are neither
both close to zero nor both close to one, as on the right in the figure, then they have
little or no meaning in isolation. But if they are both close to zero, then we may say
that £ has “low probability” and is unlikely to happen. And if they are both close to
one, then we may say that has “high probability” and is likely to happen.

Strictly speaking, we should speak of the probabilityfbnly if P E andP E
are exactly equal, for then their common value may be called the (game-theoretic)
probability of E. But as the figure indicates, it is much more meaningful for the two
values to both be close to zero or both be close to one than for them to be exactly
equal.
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The most important examples of low and high probability in this book occur in
the two weak laws that we study in Chapters 6 and 7: the weak law of large numbers
and the central limit theorem. The weak law of large numbers, in its simplest form,
says that when Skeptic is offered even odds on each of a long sequence of events,
the probability is high that the fraction of the events that happen will fall within
a small interval around/2: an interval that may be narrowed as the number of
the events increases. The central limit theorem gives numerical estimates of this
high probability. According to our definition of high probability, these theorems say
something about Skeptic’s opportunities to make money. The law of large numbers
says that Skeptic has a winning strategy in a game that he wins if World either stays
close tol /2 or allows Skeptic to multiply his stake substantially, and the central limit
theorem calibrates the tradeoff between how far World can stray frtnand how
much he can constrain Skeptic’s wealth.

Middling probabilities, although they do not have meaning in isolation, can acquire
collective meaning from the limit theorems. The law of large numbers tells us, for
example, that many probabilities for successive events all equgl2@roduce a
very high probability that the relative frequency of the events will approxirhéze

Probability Zero and Probability One

As we have just emphasized, the finitary version of our fundamental hypothesis gives
meaning to probabilities very close to zero or one. Skeptic is unlikely to become
very rich, and therefore an event with a very low probability is unlikely to occur. The
infinitary version sharpens this by giving meaning to probabilities exactly equal to
zero or one. It is practically impossible for Skeptic to become infinitely rich, and
therefore an event that makes this possible is practically certain not to occur.
Formally, we say that an eve#t is practically impossiblaf Skeptic, beginning
with some finite positive capital, has a strategy that guarantees that

¢ his capital does not become negative (he does not go bankrupt), and

o if £ happens, his capital increases without bound (he becomes infinitely rich).

We say that an everft is practically certain or that it happenglmost surely if
its complementE© is practically impossible. It follows immediately from these
definitions that a practically impossible event has upper probability (and hence also
lower probability) zero, and that a practically certain event has lower probability (and
hence also upper probability) ong3(3).

The size of Skeptic’s initial capital does not matter in the definitions of practical
certainty and practical impossibility, provided it is positive. If the stratBgyill do
what is required when his initial capitalisthen the strateggp will accomplish the
same trick when his initial capital &8 Requiring that Skeptic’s capital not become
negative is equivalent to forbidding him to borrow money, because if he dared to
gamble on borrowed money, World could force his capital to become negative.
The real condition, however, is not that he never borrow but that his borrowing be



This is the first chapter dProbability and Finance: It's Only a Gamgby Glenn Shafer and Vladimir Vovk.
18 Copyright© 2001 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.

bounded. Managing on initial capitaltogether with borrowing limited té is the
same as managing on initial capita- b.

As we show in Chapters 3, 4, and 5, these definitions allow us to state and prove
game-theoretic versions of the classical strong limit theorems—the strong law of
large numbers and the law of the iterated logarithm. In its simplest form, the game-
theoretic strong law of large numbers says that when Skeptic is offered even odds
on each of an infinite sequence of events, the fraction of the events that happen will
almost certainly converge tb/2. The law of the iterated logarithm gives the best
possible bound on the rate of convergence.

Beyond Frequencies

As we explainin some detail in Chapter 2, the law of large numbers, together with the
empiricist philosophy of the time, led in the nineteenth and early twentieth centuries
to a widespread conviction that the theory of probability should be founded on the
concept of relative frequency. If many independent trials are made of an event with
probabilityp, then the law of large numbers says that the event will happstihe

time and faill — p of the time. This is true whether we consider all the trials, or
only every other trial, or only some other subsequence selected in advance. And this
appears to be the principal empirical meaning of probability. So why not turn the
theory around, as Richard von Mises proposed in the 1920s, and say that a probability
is merely a relative frequency that is invariant under selection of subsequences?

As it turned out, von Mises was mistaken to emphasize frequency to the exclusion
of other statistical regularities. The predictions about a sequence of events made
by probability theory do not all follow from the invariant convergence of relative
frequency. In the late 1930s, Jean Ville pointed out a very salient and decisive
example: the predictions that the law of the iterated logarithm makes about the rate
and oscillation of the convergence. Von Mises’s theory has now been superseded
by the theory of algorithmic complexity, which is concerned with the properties of
sequences whose complexity makes them difficult to predict, and invariant relative
frequency is only one of many such properties.

Frequency has also greatly receded in prominence within measure-theoretic prob-
ability. Where independent identically distributed random variables were once the
central object of study, we now study stochastic processes in which the probabilities
of events depend on preceding outcomes in complex ways. These models sometimes
make predictions about frequencies, but instead of relating a frequency to a single
probability, they may predict that a frequency will approximate the average of a se-
guence of probabilities. In general, emphasis has shifted from sums of independent
random variables to martingales.

For some decades, it has been clear to mathematical probabilists that martingales
are fundamental to their subject. Martingales remain, however, only an advanced
topic in measure-theoretic probability theory. Our game-theoretic framework puts
what is fundamental at the beginning. Martingales come at the beginning, because
they are the capital processes for Skeptic. The fundamental interpretative hypothesis,
applied to a particular nonnegative martingale, says that the world will behave in such



This is the first chapter dProbability and Finance: It's Only a Gamgby Glenn Shafer and Viadimir Vovk.
Copyright(©2001 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc19

a way that the martingale remains bounded. And the many predictions that follow
include the convergence of relative frequencies.

1.4 THE MANY INTERPRETATIONS OF PROBABILITY

Contemporary philosophical discussions often divide probabilities into two broad
classes:

e objective probabilitieswhich describe frequencies and other regularities in the
world, and

e subjective probabilitieswhich describe a person’s preferences, real or hypo-
thetical, in risk taking.

Our game-theoretic framework accommodates both kinds of probabilities and en-
riches our understanding of them, while opening up other possibilities as well.

Three Major Interpretations

From our point of view, it makes sense to distinguish three major ways of using the
idea of a probability game, which differ in how prices are established and in the role
of the fundamental interpretative hypothesis, as indicated in Table 1.4.

Games of statistical regularity express the objective conception of probability
within our framework. In a game of statistical regularity, the gambles offered to
Skeptic may derive from a scientific theory, from frequencies observed in the past, or
from some relatively poorly understood forecasting method. Whatever the source, we
adopt the fundamental interpretative hypothesis, and this makes statistical regularity
the ultimate authority: the prices and probabilities determined by the gambles offered
to Skeptic must be validated by experience. We expect events assigned small upper
probabilities not to happen, and we expect prices to be reflected in average values.

Table 1.4 Three classes of probability games.

Authority for Role of the Fundamental
thePrices Interpretative Hypothesis

Games of Statistical Statistical

. o Adopted

Regularity regularities

Games of Belief Persona} choices Not adopted
among risks

Market Games Market for Optional

financial securities
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Games of belief bring the neosubjectivist conception of probability into our frame-
work. A game of belief may draw on scientific theories or statistical regularities to
determine the gambles offered on individual rounds. But the presence of these gam-
bles in the game derives from some individual’s commitment to use them to rank and
choose among risks. The individual does not adopt the fundamental interpretative
hypothesis, and so his prices cannot be falsified by what actually happens. The upper
and lower prices and probabilities in the game are not the individual’'s hypotheses
about what will happen; they merely indicate the risks he will take. A low probability
does not mean the individual thinks an event will not happen; it merely means he is
willing to bet heavily against it.

Market games are distinguished by the source of their prices: these prices are
determined by supply and demand in some market. We may or may not adopt the
hypothesis that the market is efficient. If we do adopt it, then we may test it or use it
to draw various conclusions (see, e.g., the discussion of the lowa Electronic Markets
on p. 71). If we do not adopt it, even provisionally, then the game can still be useful
as a framework for understanding the hedging of market risks.

Our understanding of objective and subjective probability in terms of probability
games differs from the usual explanations of these concepts in its emphasis on sequen-
tial experience. Objective probability is often understood in terms of a population,
whose members are not necessarily examined in sequence, and most expositions of
subjective probability emphasize the coherence of one’s belief about different events
without regard to how those events might be arranged in time. But we do experi-
ence the world through time, and so the game-theoretic framework offers valuable
insights for both the objective and the subjective conceptions. Objective probabili-
ties can only be tested over time, and the idea of a probability game imposes itself
whenever we want to understand the testing process. The experience anticipated by
subjective probabilities must also be arrayed in time, and probability games are the
natural framework in which to understand how subjective probabilities change as that
experience unfolds.

Looking at Interpretations in Two Dimensions

The uses and interpretations of probability are actually very diverse—so much so that
we expect most readers to be uncomfortable with the standard dichotomy between
objective and subjective probability and with the equally restrictive categories of
Table 1.4. A more flexible categorization of the diverse possibilities for using the
mathematical idea of a probability game can be developed by distinguishing uses
along two dimensions: (1) the source of the prices, and (2) the attitude taken towards
the fundamental interpretative hypothesis. This is illustrated in Figure 1.6.

We use quantum mechanics as an example of a scientific theory for which the
fundamental interpretative hypothesis is well supported. From a measure-theoretic
point of view, quantum mechanics is sometimes seen as anomalous, because of the
influence exercised on its probabilistic predictions by the selection of measurements
by observers, and because its various potential predictions, before a measurement
is selected, do not find simple expression in terms of a single probability measure.
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Scientific Quantum
SOURCE OF Theory mechanics
THE PRICES .
Observed HYPOthCSIS Statistical modeling
Regularities testing and estimation
Personal Neosubjective Decision analysis
Choices probability Weather forecasting
: Testing Inference based
H
Market cdging the EMH on the EMH
Irrelevant Working . Believed Well
Hypothesis Supported

STATUS OF THE FUNDAMENTAL INTERPRETATIVE
HYPOTHESIS

Fig. 1.6 Some typical ways of using and interpreting a probability game, arrayed in two
dimensions. (Here EMH is an acronym for the efficient-market hypothesis.)

From our game-theoretic point of view, however, these features are prototypical rather
than anomalous. No scientific theory can support probabilistic predictions without
protocols for the interface between the phenomenon being predicted and the various
observers, controllers, and other external agents who work to bring and keep the
phenomenon into relation with the theory.

Statistical modeling, testing, and estimation, as practiced across the natural and
social sciences, is represented in Figure 1.6 in the row labeled “observed regularities”.
We speak of regularities rather than frequencies because the empirical information
on which statistical models are based is usually too complex to be summarized by
frequencies across identical or exchangeable circumstances.

As we have already noted, the fundamental interpretative hypothesis is irrelevant
to the neosubjectivist conception of probability, because a person has no obligation
to take any stance concerning whether his or her subjective probabilities and prices
satisfy the hypothesis. On the other hand, an individual might conjecture that his or
her probabilities and prices do satisfy the hypothesis, with confidence ranging from
“working hypothesis” to “well supported”. The probabilities used in decision analysis
and weather forecasting can fall anywhere in this range. We must also consider
another dimension, not indicated in the figure: With respect to whose knowledge is
the fundamental interpretative hypothesis asserted? An individual might peers odds
that he or she is not willing to offer to more knowledgeable observers.

Finally, the bottom row of Figure 1.6 lists some uses of probability games in
finance, a topic to which we will turn shortly.



This is the first chapter dProbability and Finance: It's Only a Gamgby Glenn Shafer and Vladimir Vovk.
22 Copyright(©2001 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.

Folk Stochasticism

In our listing of different ways probability theory can be used, we have not talked
about using it to study stochastic mechanisms that generate phenomena in the world.
Although quite popular, this way of talking is not encouraged by our framework.

What is a stochastic mechanism? What does it mean to suppose that a phe-
nomenon, say the weather at a particular time and place, is generated by chance
according to a particular probability measure? Scientists and statisticians who use
probability theory often answer this question with a self-consciously outlandish
metaphor: A demigod tosses a coin or draws from a deck of cards to decide what the
weather will be, and our job is to discover the bias of the coin or the proportions of
different types of cards in the deck (see, e.g., [23], p. 5).

In Realism and the Aim of Sciené&rl Popper argued that objective probabilities
should be understood as t®pensitie®f certain physical systems to produce certain
results. Research workers who speak of stochastic mechanisms sometimes appeal to
the philosophical literature on propensities, but more often they simply assume that
the measure-theoretic framework authorizes their way of talking. It authorizes us to
use probability measures to model the world, and what can a probability measure
model other than a stochastic mechanism—something like a roulette wheel that
produces random results?

The idea of a probability game encourages a somewhat different understanding.
Because the player who determines the outcome in a probability game does not
necessarily do so by tossing a coin or drawing a card, we can get started without a
complete probability measure, such as might be defined by a biased coin or a deck
of cards. So we can accommodate the idea that the phenomenon we are modeling
might have only limited regularities, which permit the pricing of only some of its
uncertainties.

The metaphor in which the flow of events is determined by chance drives statis-
ticians to hypothesize full probability measures for the phenomena they study and
to make these measures yet more extensive and complicated whenever their details
are contradicted by empirical data. In contrast, our metaphor, in which outcomes
are determined arbitrarily within constraints imposed by certain prices, encourages a
minimalist philosophy. We may put forward only prices we consider well justified,
and we may react to empirical refutation by withdrawing some of these prices rather
than adding more.

We do, however, use some of the language associated with the folk stochasticism
we otherwise avoid. For example, we sometimes say that a phenomenon is governed
by a probability measure or by some more restrained set of prices. This works in our
framework, because government only sets limits or general directions; it does not
determine all details. In our games, Reality is governed in this sense by the prices
announced by Forecaster: these prices set boundaries that Reality must respect in
order to avoid allowing Skeptic to become rich. In Chapter 14 we explain what it
means for Reality to be governed in this sense by a stochastic differential equation.
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1.5 GAME-THEORETIC PROBABILITY IN FINANCE

Our study of finance theory in Part Il is a case study of our minimalist philosophy of
probability modeling. Finance is a particularly promising field for such a case study,
because it starts with a copious supply of prices—market prices for stocks, bonds,
futures, and other financial securities—with which we may be able to do something
without hypothesizing additional prices based on observed regularities or theory.

We explore two distinct paths. The path along which we spend the most time takes
us into the pricing of options. Along the other path, we investigate the hypothesis
that market prices are efficient, in the sense that an investor cannot become very rich
relative to the market without risking bankruptcy. This hypothesis is widely used in
the existing literature, but always in combination with stochastic assumptions. We
show that these assumptions are not always needed. For example, we show that
market efficiency alone can justify the advice to hold the market portfolio.

We conclude this introductory chapter with a brief preview of our approach to
option pricing and with some comments about how our framework handles continuous
time. A more extensive introduction to Part Il is provided by Chapter 9.

The Difficulty in Pricing Options

The worldwide market in derivative financial securities has grown explosively in
recent years. The total nominal value of transactions in this market now exceeds
the total value of the goods and services the world produces. Many of these trans-
actions are in organized exchanges, where prices for standardized derivatives are
determined by supply and demand. A larger volume of transactions, however, is in
over-the-counter derivatives, purchased directly by individuals and corporations from
investment banks and other financial intermediaries. These transactions typically in-
volve hedging by both parties. The individual or corporation buys the derivative (a
future payoff that depends, for example, on future stock or bond prices or on future
interest or currency exchange rates) in order to hedge a risk arising in the course
of their business. The issuer of the derivative, say an investment banker, buys and
sells other financial instruments in order to hedge the risk acquired by selling the
derivative. The cost of the banker’s hedging determines the price of the derivative.

The bulk of the derivatives business is in futures, forwards, and swaps, whose
payoffs depend linearly on the future market value of existing securities or currencies.
These derivatives are usually hedged without considerations of probability [154]. But
there is also a substantial market in options, whose payoffs depend nonlinearly on
future prices. An option must be hedged dynamically, over the period leading up to
its maturity, and according to established theory, the success of such hedging depends
on stochastic assumptions. (See [128], p. xii, for some recent statistics on the total
sales of different types of derivatives.)

For readers not yet familiar with options, the artificial examples in Figure 1.7 may
be helpful. In both examples, we consider a stock that today sel&faishare and
tomorrow will either (1) go down in price t85, (2) go up in price td10, or (3)
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Tomorrow’s Tomorrow’s
Today’s share price * Today’s share price x
share price $5 $0 share price $5 $0
$8 $8 $8 $0
$10 $100 $10 $100
Example 1 Example 2

Fig. 1.7 The price of a share is no8. In Example 1, we assume that it will go up$0

or down to$5 tomorrow. In Example 2, its price is also permitted to stay unchanged. In both
cases, we are interested in the value today of the derivative Example 1z has a definite
value:E z = $60. This price forz can be hedged exactly by buying 20 shares of the stock. If
the stock down fron$8 to $5, the loss of$3 per share wipes out tH&0, but if it goes up to

$10, the gain of$2 per share is just enough to provide the additidhidl needed to provide's

$100 payoff. In Example 2, no price far can be hedged exactly. Instead we hBve= $60
andEz = $0. We should emphasize again that both examples are unrealistic. In a real
financial market there is a whole range of possibilities—not just two or three possibilities—for
how the price of a security can change over a single trading period.

(in Example 2) stay unchanged in price. Suppose you want to purchase an option to
buy 50 shares tomorrow at today’s price$gt If you buy this option and the price
goes up, you will buy the stock &8 and resell it at$10, netting$2 per share, or
$100. What price should you pay today for the option? What is the value today of a
payoffz that takes the valugl100 if the price of the stock goes up and the vafile
otherwise? As explained in the caption to the figuris worth$60 in Example 1, for

this price can be hedged exactly. In Example 2, however, no priaedan be hedged
exactly. The option in Example 1 can be priced because its payoff is actually a linear
function of the stock price. When there are only two possible values for a stock price,
any function of that price is linear and hence can be hedged. In Example 2, where
the stock price has three possible values, the payoff of the option is nonlinear. In
real stock markets, there is a whole range of possible values for the price of a stock
at some future time, and hence there are many nonlinear derivatives that cannot be
priced by hedging in the stock itself without additional assumptions.

A range of possible values can be obtained by a sequence of binary branchings.
This fact can be combined with the idea of dynamic hedging, as in Figure 1.8, to
provide a misleadingly simple solution to our problem. The solution is so simple that
we might be tempted to believe in some imaginary shadow market, speedier and more
liquid than the real market, where changes in stock prices really are binary but produce
the less restricted changes seen in the slonmiing real market. Unfortunately, there
is no traction in this idea, for we can hedge only in real markets. Inreal stock markets,
many different price changes are possible over the time periods during which we hold
stock, and so we can never hedge exactly. The best we can do is hedge in a way that
works on average, counting on the errors to average out. This is why probabilistic
assumptions are needed.
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Tomorrow’s
closing
Price at price *
tomorrow $5 $0

Today’s noon

price $7

58 <<:::::::::: 8 S0
59 <

Fig. 1.8 Inthis exampleE z = $25. To hedge this price, we first buy 25 shares of the stock
today. We adjust this hedge at noon tomorrow, either by selling the 25 shares (if the price has
gone down td§7) or by buying another 25 shares (if the price has gone §8)o

$10 $100

The probabilistic models most widely used for option pricing are usually formu-
lated, for mathematical tractability, in continuous time. These models include the
celebrated Black-Scholes model, as well as models that permit jumps. As it turns
out, binomial trees, although unrealistic as models of the market, can serve as com-
putationally useful approximations to these widely used (although perhaps equally
unrealistic, alas) continuous-time models. This point, first demonstrated in the late
1970s [66, 67, 256], has made binomial trees a standard topic in textbooks on option
pricing.

Making More Use of the Market

The most common probability model for option pricing in continuous time, the Black-
Scholes model, assumes that the underlying stock price follows a geometric Brownian
motion. Under this assumption, options can be priced by a formula—the Black-
Scholes formula—that contains a parameter representing the volatility of the stock
price; the value of this parameter is usually estimated from past fluctuations. The
assumption of geometric Brownian motion can be interpreted from our thoroughly
game-theoretic point of view (Chapter 14). But if we are willing to make more use
of the market, we can instead eliminate it (Chapters 10-13). The simplest options
on some stocks now trade in sufficient volume that their prices are determined by
supply and demand rather than by the Black-Scholes formula. We propose to rely
on this trend, by having the market itself price one type of option, with a range of
maturity dates. If this traded option pays a smooth and strictly convex function of the
stock price at maturity, then other derivatives can be priced using the Black-Scholes
formula, provided that we reinterpret the parameter in the formula and determine its
value from the price of the traded option. Instead of assuming that the prices of the
stock and the traded option are governed by some stochastic model, we assume only
certain limits on the fluctuation of these prices. Our market approach also extends to
the Poisson model for jump§%2.3).
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Probability Games in Continuous Time

Our discussion of option pricing in Part Il involves an issue that is important both
for our treatment of probability and for our treatment of finance: how can the game-
theoretic framework accommodate continuous time? Measure theory’s claim to
serve as a foundation for probability has been based in part on its ability to deal with
continuous time. In order to compete as a mathematical theory, our game-theoretic
framework must also meet this challenge.

It is not immediately clear how to make sense of the idea of a game in which two
players alternate moves continuously. A real number does not have an immediate
predecessor or an immediate successor, and hence we cannot divide a continuum of
time into points where Skeptic moves and immediately following points where World
moves. Fortunately, we now have at our disposal a rigorous approach to continuous
mathematics—nonstandard analysis—that does allow us to think of continuous time
as being composed of discrete infinitesimal steps, each with an immediate prede-
cessor and an immediate successor. First introduced by Abraham Robinson in the
1960s, long after the measure-theoretic framework for probability was established,
nonstandard analysis is still unfamiliar and even intimidating for many applied math-
ematicians. But it provides a ready framework for putting our probability games into
continuous time, with the great advantage that it allows a very clear understanding
of how the infinite depends on the finite.

In Chapter 10, where we introduce our market approach to pricing options, we
work in discrete time, just as real hedging does. Instead of obtaining an exact price
for an option, we obtain upper and lower prices, both approximated by an expression
similar to the familiar Black-Scholes formula. The accuracy of the approximation
can be bounded in terms of the jaggedness of the market prices of the underlying
security and the traded derivative. All this is very realistic but also unattractive and
hard to follow because the approximations are crude, messy, and often arbitrary. In
Chapter 11, we give a nonstandard version of the same theory. The nonstandard
version, as it turns out, is simple and transparent. Moreover, the nonstandard version
clearly says nothing that is not already in the discrete version, because it follows
from the discrete version by theansfer principle a general principle of nonstan-
dard analysis that sometimes allows one to move between nonstandard and standard
statements [136].

Some readers will see the need to appeal to nonstandard analysis as a shortcoming
of our framework. There are unexpected benefits, however, in the clarity with which
the transfer principle allows us to analyze the relation between discrete-time and
continuous-time results. Although the discrete theory of Chapter 10 is very crude,
its ability to calibrate the practical accuracy of our new purely game-theoretic Black-
Scholes method goes well beyond what has been achieved by discrete-time analyses
of the stochastic Black-Scholes method.

After introducing our approach to continuous time in Chapter 11, we use it to
elaborate and extend our methods for option pricing (Chapters 12—-13) and to give a
general game-theoretic account of diffusion processes (Chapter 14), without working
through corresponding discrete theory. This is appropriate, because the discrete
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theory will depend on the details of particular problems where the ideas are put to
use. Discrete theory should be developed, however, in conjunction with any effort to
put these ideas into practice. In our view, discrete theory should always be developed
when continuous-time models are used, so that the accuracy of the continuous-time
results can be studied quantitatively.
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