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Abstract

This document presents a translation from French into English of
a passage from pp. 55–63 of Jean Ville’s Étude critique de la notion
de collectif, which was published in 1939.

1 Introduction

In the passage translated here, Jean Ville gives an example of an event that is
assigned probability zero by classical probability theory but cannot be ruled
out by conditions of the type Richard von Mises used to define his concept
of a collective. Ville and others considered the existence of such examples
a shortcoming of von Mises’s theory, and this motivated Ville to introduce
martingales into probability theory.

For various historical reasons, Ville’s counterexample to von Mises the-
ory has not always been noticed. Von Mises’s approach is still sometimes
discussed as if it were in contention to serve as a foundation for probability
theory, without reference to the counterexample. One reason for this neglect
may be linguistic. Ville’s book has never been translated into English, and
the only detailed explanation of his counterexample that has appeared in En-
glish, by Loveland, carries its own considerable overhead. So this translation
may help right the balance.
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Ville’s work first appeared in his doctoral dissertation, which he defended
in 1939 at the University of Paris. His book, Étude critique de la notion de
collectif, consisting of the dissertation and an additional introductory chap-
ter, was published after the defense. Ville had obtained his results, however,
during a stay in Vienna in 1934–35, where he participated in Karl Menger’s
colloquium, which was also frequented by von Mises and Abraham Wald, and
he had announced his results in the Comptes rendus in 1936. We translate
the announcement in an appendix.

The passage translated here is concerned only with Ville’s counterexam-
ple to von Mises’s concept of a collective; it does not include any of Ville’s
positive theory, in which he removed the defect he detected by generalizing
von Mises’s concept of a selection, which uses outcomes of previous trials in
deciding whether to include the next trial in a subsequence in which frequen-
cies are to be checked, to the concept of a martingale, which uses previous
trials to decide what portion of one’s current capital to risk on the next
trial. Instead of requiring only that each subsequence extracted by a selec-
tion have the right frequencies, Ville required that the capital achieved by
any martingale should remain bounded. Ville’s positive theory is the basis
of the modern game-theoretic foundation for probability (see Shafer & Vovk,
2001).

The passage translated begins near the top of p. 55, in the middle of §4
of Chapter II. It includes all of §5 and §6 and concludes at the end of §6 in
the middle of p. 63.

Earlier in Chapter II, Ville discusses the concept of collective developed
by von Mises and Wald. We may summarize his discussion as follows:

1. In the case Ville emphasizes, where the outcome of each trial is either a
0 or a 1, the question is how to extract a subsequence from a sequence
x = x1x2 . . . of 0s and 1s.

2. As Ville explains, a selection S is defined by a sequence f0, f1, f2, . . .
of functions. Here fn is a function of n binary variables and itself takes
the values 0 and 1. The subsequence of x extracted by S includes xn

if and only if fn−1(x
1 . . . xn−1) = 1.

3. There is a selection that leaves every sequence unchanged; this is the
selection for which fn(x1 . . . xn) = 1 for all n and all x1 . . . xn.

4. A system of selections S is a countably infinite set of selections that
includes the selection that leaves every sequence unchanged.

2



5. The sequence x is a collective with respect to a system of selections S
and a number p ∈ (0, 1) if for every selection S ∈ S that extracts an
infinite subsequence from x,1 the proportion of 1s in an initial segment
of the extracted subsequence converges, as the length of initial segment
goes to infinity, to p.

6. Ville writes K(S, p) for the set of all collectives with respect to S and
p.

7. As Wald had pointed out, K(S, p) is always nonempty. For any system
of selections S and any p ∈ (0, 1), there is at least one sequence x
that qualifies as a collective with respect to S and p. If fact, the set
of sequences that do qualify have p-measure one.2 This implies Ville’s
Theorem 3, with which we begin the translation.

2 Translation

Theorem 3 Suppose p ∈ (0, 1), and suppose A is a set of sequences of 0s
and 1s represented by a subset of (0, 1). Then a necessary condition for being
able to exclude a sequence x from A by a requirement of irregularity based
on the notion of selection (i.e., a necessary condition for finding a system of
selections S such that no x ∈ K(S, p) is in A) is that A have p-measure zero.

The converse of this theorem comes naturally to mind, but it is false. In
fact:

Theorem 4 Given any number p between 0 and 1, one can construct a set
G of p-measure zero such that for any countably infinite system of selections
S, the sets x ∈ K(S, p) and G have at least one point in common.

This theorem is a consequence of the following theorem:

1If fm(x1 . . . xm) = 0 for all m larger than some integer N , then the extracted subse-
quence stops, remaining finite rather continuing as an infinite sequence.

2This means that this set has probability one with respect to the probability distribution
for x1, x2, . . . obtained by assuming that the xn are independent random variables, each
equal to 1 with probability p and 0 with probability 1− p.
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Theorem 4 ′ Suppose S is a countably infinite set of selections, p ∈ [0, 1],
and φ(µ) is a continuous increasing function that always takes positive values
and satisfies

lim
µ→∞

1

µ
φ(µ) = 0 and lim

µ→∞
φ(µ) = ∞

but may diverge to infinity arbitrarily slowly.
Then there exists a collective x of type K(S, p) with the following property.

For any selection A in the system S that extracts an infinite sequence from x,
there exist two positive numbers α and β such that for every positive integer
µ, the number ν of 1s among the first µ terms of the extracted sequence
satisfies

−α

µ
≤ ν

µ
− p <

α

µ
+ β

φ(µ)

µ
. (19)

First let us show that Theorem 4′ implies Theorem 4.
If we consider a sequence of independent trials in which an event can hap-

pen with probability p, it is well known (see, for example, Lévy [1], p. 258ff)
that if fµ represents the frequency of success in the first µ trials, then for
any positive number δ, the inequality

|fµ − p| > δ√
µ

(20)

happens infinitely many times with probability one. So if we set

φ(µ) = µε (0 < ε <
1

2
)

in the statement of Theorem 4′, and we designate by G the set of points
x corresponding to sequences for which the inequality (20) happens only a
finite number of times (we may take δ = 1, for example), we see that G has
p-measure zero and at least one point in common with the set K(S, p) for
any S, thus establishing Theorem 4.

We will demonstrate Theorem 4′ by constructing a collective of type
K(S, p) satisfying its conclusions. For this construction, we need to set out
some preliminary definitions:
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5. The composition of selections

Definition 4 Given two selections A1 and A2, defined by sequences of func-
tions {f 1

i } and {f 2
i }, respectively (Def. 2, p. 42), let A be the selection defined

by the sequence {gi}, where

gi = 1− (1− f 1
i )(1− f 2

i ).

We call A the sum of A1 and A2 and write

A = A1 + A2.

The selection A chooses a term if and only if either A1 or A2 chooses it. From
the preceding definition, one can easily figure out definitions of the selections

A1 + A2 + · · ·+ An and
∞∑
i=1

Ai.

Definition 5 Given two selections A1 and A2, defined by {f 1
i } and {f 2

i },
respectively, let B be the selection defined by {gi}, where

gi = f 1
i f 2

i .

We call B the inner product of A1 and A2 and write

A = A1A2.

B is the selection that chooses a term if and only if A1 and A2 choose it
simultaneously. The operations of sum and inner product are commutative
and associative.

Definition 6 If A1 is a selection defined by {f 1
i }, the selection C defined by

{gi}, where
gi = 1− f 1

i ,

is called A1’s complementary selection; we write

C = 1− A1.

C is the selection that chooses a term if and only if A1 does not choose it.
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Definition 7 If A1 is a selection, and a is a number equal to 0 or 1, we
write aA1 for the selection that is identical to A1 if a = 1 and equal to 1−A1

if a = 0.

The operations introduced by definitions 4 to 7 together constitute what
we call the composition of selections. We will define yet one more operation
on selections.

Definition 8 Given a selection A1 defined by {f 1
i } and a positive integer m,

we define a selection E by {gi}, where

gi = f 1
i if

i∑
j=0

f 1
j ≤ m,

gi = 0 if
i∑

j=0

f 1
j > m,

and we call it A1’s initial segment of length m, and we write

E = A
(m)
1 .

The selection E chooses a term only if that term is chosen by A1 and A1 has
chosen fewer than m earlier terms.

6. Construction of a collective of type K(S, p). Let us now construct
a collective that satisfies the conditions of Theorem 4′. We begin with a
number p, a countably infinite system S of selections A1, A2, . . . , An, . . . ,
and a function φ(µ) satisfying the hypothesis. We will define new selections,
study them, use their properties to construct a particular sequence, show
that this sequence is a collective with respect to the new selections, and then
show that it is a collective with respect to S.

1◦ Composing selections A1, A2, . . . , An. The equation 2α = φ(µ) or

α log 2 = log φ(µ) (21)

determines an inverse µ = ψ(α). Let {mi} be a sequence of integers such
that

mi > ψ(i + 1)− ψ(i). (22)
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For each finite sequence a1a2 . . . am of 0s and 1s, we define two selections
Ba1a2...am and Ca1a2...am as follows:

Ba1 = a1A1, Ca1 = B
(m1)

a1 ,

Ba1a2 = (1− Ca1)a1A1a
2A2, Ca1a2 = B

(m2)

a1a2 ,

and, in general,

{
Ba1a2...an−1an = (1− Ca1)(1− Ca1a2) . . . (1− Ca1a2...an−1)a1A1a

2A2 . . . anAn

Ca1a2...an = B
(mn)

a1a2...an .

(23)
The B are the new selections of which we spoke. The C are initial seg-

ments of the B.

2◦ Properties of the selections B and C. Consider an arbitrary sequence
of 0s and 1s:

x = x1x2 . . . xi . . . (xi = 0 or 1).

Consider a particular term, say xm. No two distinct selections Ca1a2...an and
Cα1α2...αν can choose xm at the same time. Suppose in fact that the two
selections do choose xm and yet there is a position i for which ai 6= αi.
Assume, to fix ideas, that ai = 1 and αi = 0. By the first of the relations
in (23), we see that xm’s being chosen by Ca1a2...an implies its being chosen
by Ai, and its being chosen by Cα1α2...αν implies its being chosen by 1− Ai.
By Definition 7, this is a contradiction.

If no such position i exists, then the selections are distinct only if ν 6= n,
say ν > n, and the selections are of the form

Ca1a2...an , Ca1a2...anαn+1...αn+ν .

Again, by the first of the relations in (23), we see that a term chosen
by Ca1a2...an can be chosen neither by Ba1a2...anαn+1...αn+ν nor, a fortiori, by
Ca1a2...anαn+1...αn+ν . So there is still a contradiction.

Inversely, each term of x is chosen by one of the selections Ca1a2...an.
Indeed, suppose this were not so, and let xm be a term chosen by none of the
selections. For every n, xm is chosen either by An or by 1 − An. Let anAn
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be the one of the two that does choose xm, and consider the sequence {an}
and the corresponding sequence

Ca1 , Ca1a2 , . . . , Ca1a2...an , . . . (24)

According to the first of the relations in (23), the fact that xm is chosen by
none of the C means that it is chosen by all the Ba1a2...an corresponding to
the selections in the sequence (24). According to the second of the relations
in (23), each of the Ca1a2...an , because they do not choose xm, must choose mn

terms among the first m terms of x, and this leads to a contradiction, because
no two of these selections can choose the same term and

∑∞
n=1 mn = ∞.

So we have shown that xm is chosen by one and only one of the se-
lections in the sequence (24), say Ca1a2...an . We notice that it is cho-
sen by the selections Ba1 , Ba1a2 , . . . , Ba1a2...an , because it is not chosen by
Ca1 , Ca1a2 , . . . , Ca1a2...an−1 . We deduce from this that each of these last selec-
tions had already chosen, respectively, m1,m2, . . . , mn−1 terms in x.

To summarize: If we write Ca1a2...an(xm) for the sequence extracted from
the first m terms of x by the selection Ca1a2...an, then

• each of the first m terms of x belongs to exactly one sequence
Ca1a2...an(xm), and

• if the sequence Ca1a2...an(xm) contains at least one term, then each of the
sequences Ca1a2...ai(xm), (i < n), contains exactly mi terms (a1a2 . . . ai

being an initial segment of a1a2 . . . an).

3◦ Construction of a particular sequence x. Starting with the selections
B and C and the number p, we form a sequence x as follows.

First set x1 = 1. Suppose, as an inductive hypothesis, that we have been
able to determine x1, x2, . . . , xm so that in each nonempty Ca1a2...an(xm), the
number of terms equal to one equals or exceeds by no more than one the
product of p and the number of terms in Ca1a2...an(xm). No matter what value
we choose for xm+1, we can determine which sequence Ca1a2...an(xm+1) it will
belong to. The subscripts of that sequence will be functions of x1, x2, . . . , xm.
Write (m) for these subscripts, so that C(m) is the selection Ca1a2...an such
that C(m)(xm+1) contains xm+1. If C(m)(xm) is empty, so that xm+1 is the
first term of C(m)(xm+1), we set xm+1 = 1. If C(m)(xm) contains µ terms, of
which ν are ones, we have

pµ ≤ ν < pµ + 1
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by the inductive hypothesis.
We then have

p(µ + 1) ≤ ν < p(µ + 1) + 1 or p(µ + 1) ≤ ν + 1 < p(µ + 1) + 1

We set xm+1 = 0 in the first case, xm+1 = 1 in the second case. Then all
the sequences Ca1a2...an(xm+1) will have the same property as the sequences
Ca1a2...an(xm).

The process of forming the sequence x continues indefinitely.

4◦ The sequence x is a collective with respect to B. For this section §4◦, fix
n and indices a1a2 . . . an, and consider the selection Ba1a2...an and the sequence
it extracts from the first m terms of x, Ba1a2...an(xm). The terms of a sequence
of the form Ca1a2...anα1α2...αs(xm) all belong to Ba1a2...an(xm); inversely, every
term in the latter sequence belongs to one and only one sequence of that
form.3 Let µ be the number of terms of Ba1a2...an(xm) among which ν is equal
to 1; let s0 be the largest of the values of s for which there are αi such that
the sequence Ca1a2...anα1α2...αs(xm) is nonempty, and let Ca1a2...anβ1β2...βs0 (xm)
be one such nonempty sequence. The sequences

Ca1a2...an(xm), Ca1a2...anβ1(xm), . . . , Ca1a2...anβ1β2...βs0−1(xm)

contain mn,mn+1, . . . , mn+s0−1 terms, respectively. The first relation,

µ ≥ mn + mn+1 + · · ·+ mn+s0−1 (25)

follows. Because every sequence Ca1a2...anα1α2...αs0+1(xm) is empty, and there
are 2s sequences of the form Ca1a2...anα1α2...αs(xm), we conclude that

µ ≤ mn + 2mn+1 + · · ·+ 2n+s0mn+s0 . (26)

When s = 0, relations (25) and (26) become µ ≥ 0 and µ ≤ mn, respec-
tively.

Let r be the number of nonempty sequences Ca1a2...anα1α2...αs(xm). (We
are still keeping the ai fixed but allowing the αj to vary.) From the definition
of s0, we conclude that

r ≤ 1 + 2 + · · ·+ 2s0 < 2s0+1. (27)

3Translator’s note: The exposition now becomes a little more compressed. Towards
the end of §2◦, Ville had noted that any term in a C will be in all earlier Bs; this is evident
from (23). He had not stated so explicitly that every term in a B will be in some later C,
but this is also clear from (23), for the new αi can always be chosen so that the term is in
αiAi, keeping it in the corresponding B until it appears in a C.
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If these nonempty sequences contain µ1, µ2, . . . , µr terms, respectively, of
which ν1, ν2, . . . , νr are equal to one, we have

{
µ1 + µ2 + · · ·+ µr = µ,

ν1 + ν2 + · · ·+ νr = ν.
(28)

On the other hand, the way the sequence x is constructed guarantees

pµj ≤ νj < pµj + 1 (j = 1, 2, . . . , r), (29)

and so, by summation,

pµ ≤ ν < pµ + r < pµ + 2s0+1. (30)

We will then have, by (22) and (25),

µ + ψ(n) > ψ(n + s0).

This means, by the definition of ψ, that

2n+s0 < φ[µ + ψ(n)] = φ(µ + ρ). [ρ = φ(n)]

Taking (30) into account, with the selection Ba1a2...an unchanged, we have

0 ≤ ν

µ
− p <

φ(µ + ρ)

µ2n−1
, (31)

So if limm→∞ µ = ∞ while n and hence ρ remain fixed, we see that

lim
m→∞

ν

µ
= p.

5◦ The sequence x will satisfy the conclusions of Theorem 4′. Let An be
one of the selections in the system S, and write An(xm) for the sequence
extracted by An from the first m terms of x. The terms of An(xm) belong

a. either to the sequences Ca1a2...as(xm) (s < n),

b. or to the sequences Ba1a2...an−1 .
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If An(x), the sequence extracted from x by An, is infinite, we can neglect
the terms of type (a), of which there are only a finite number, say N .

So we write
An = D +

∑
Ba1a2...an−1 , (32)

where D is a selection that chooses N terms. The summation is over all
values of the indices a1, a2, . . . , an−1 (Definition 4). Let µ0 be the number of
terms in D(xm). Number all the sequences of the form Ba1a2...an−1(xm) from
1 to s, where s = 2n−1, and let µ1, . . . , µs be the numbers of terms contained
in the corresponding Ba1a2...an−1(xm). Let ν0, ν1, . . . , νs be the numbers of
terms equal to 1 in these respective sequences. If An(xm) contains µ terms,
of which ν are equal to 1, we will have, taking (31) into account,

{
µ = µ0 + µ1 + · · ·+ µs (µ0 = N)

ν = ν0 + ν1 + · · ·+ νs (0 ≤ ν0 ≤ µ0 = N)

{
pµi ≤ νi < pµi + 21−nφ(µi + ρ) [ρ = ψ(n)], (i = 1, 2, . . . , s),

pN ≤ ν0 + pN ≤ pN + N.

So, by summation,

pµ ≤ ν + pN < pµ + N + 21−n

s∑
i=1

φ(µi + ρ),

or, because φ is an increasing function

−pN

µ
≤ ν

µ
− p <

qN

µ
+

φ(µ + ρ)

µ
(q = 1− p). (33)

This means that if limm→∞ µ = ∞, then

lim
m→∞

ν

µ
= p.

So x is indeed a collective of type K(S, p). Moreover, we obtain (19) by
substituting

α = n and β = lim sup
0<µ<∞

φ(µ + ρ)

φ(µ)

in (33). Theorem 4′ is thus demonstrated.
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Remark. Consider the frequency of 1s in the sequence x that we have
just constructed. Each of the first m terms of x belong to a sequence
Ca1a2...an(xm). But each of these sequences, by construction, contain a num-
ber of 1s equal or exceeding by no more than on the product of p and4 the
number of its terms. It follows that the frequency of 1s among the first m
terms of x is always ≥ p. For any S and p, one can construct a collective in
which the frequency tends to its limit unilaterally.

4Translator’s note: The original inadvertently omits the phrase “the product of p and”.
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A Ville’s 1936 announcement

On the notion of a collective.
Note by Mr. Jean-André Ville, presented by Mr. Émile Borel.5

We propose to study the notion of irregularity of a sequence (Regel-
losigkeit) used by Mr. von Mises in his definition of a collective.6

1. Let us represent by a sequence of 0s and 1s the outcomes of an infinite
sequence of independent trials, all with the same probability p.7 To simplify
the exposition, we assume that p = 1/2.

Mr. Wald defined a collective relative to a countably infinite system of
selections.8 We can associate a point of the line segment (0, 1) with each
collective. It is easily shown that for a given countably infinite system of
selections, the set of points in (0, 1) that do not represent collectives with
respect to S has measure zero. We have shown that the converse if false:
there are sets of measure zero such that for any S, there are points in the set
that represent collectives relative to S.

2. To obtain a theory without this asymmetry, we substitute the notion
of a martingale for that of a selection. We continue to assume that p = 1/2.
Consider a player who begins with unit capital and plans to play indefinitely,
risking on each round a certain proportion of the amount he then has, a
proportion that depends in a specified way on the sequence of outcomes
already obtained. The martingale he follows can be defined unambiguously
just as Mr. Wald defines a selection function. A sequence x is a collective
with respect to a martingale M if the capital sequence the player gets by
following the martingale has a finite upper bound in the course of play.9

With this notion: for any M, the set of points representing collectives
relative to M has measure one, and conversely: for any set of A of measure
zero, there is a martingale M such that none of the points of A are collectives
with respect to M.

5Comptes rendus, 203, pp. 26–27, 1936
6Footnote in the original: Wahrscheinlichkeitsrechnung, Leipzig und Wien, 1931.
7Footnote in the original: See my note in the Comptes rendus, 202, 1936, p. 1393.
8Footnote in the original: Comptes rendus, 202, 1936, p. 180.
9Whereas Wald considered a countably infinite set of selections, Ville makes do with a

single martingale. This is possible because a countably infinite collection of martingales
can be averaged to produce a single martingale. Because it diverges to infinity whenever
any of the martingales being averaged do so, this single martingale is all we need.
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