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64. Problem IX. (Buffon’s Needle problem.) A plane is divided by parallel, equidis-
tant straight lines into strips; a cylindrical, very thin needle, whose length equals at most
the mutual distances of the parallels, is cast randomly onto the same. How great is the
probability, that does the needle meet one of the lines of division?

Solution. Let MN, PQ (Fig. 30) be any two adjacent lines of division; their interval
AB = a. Assume, the midpoint of the needle falls atC, so that its distance fromMN , that
is AC = x; the related probability isdx

a
. One describes fromC with the half lengthr of

the needle the arc of the circleDF , records the positionsDCE, FCGof the needle, such
thatMN is met by this arc, if it falls within the angleDCF = 2φ, the related probability
is 2φ

π
.
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From this the entire compound probability follows, thatMN is met by the needle, while
its midpoint falls overMN ,

2

πa

∫ r

0

φdx =
2

πa

∫ r

0

arccos
x

r
dx =

2r

πa
;

the same value is produced on the condition, that the midpoint of the needle comes to lie
underMN . The demanded probability is therefore

p =
4r

πa
.1

65. Historical Note. The present problem was one of the first which has been put and
solved out of the area of geometrical probability. It is noteworthy, that Buffon, whose area
of research lay distant from mathematics, was he that succeeded to the solution to such a
strange problem the correct way and thereby has laid the foundation for a new branch of
the probability calculus.
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1A second solution, at the same time a generalization of this problem. See No. 82.

1



2 EMANUEL CZUBER

He opens Chapter XXIII of his “Essai d’Arithmétique Morale” with the words: “Anal-
ysis is the only instrument by which one is served until this day in the science of proba-
bilities, to determine & to fix the ratios of risk; Geometry appeared ill-suited to a work so
delicate; however if one considers it closely, it will be easy to recognize that this advantage
of Analysis on Geometry, is completely accidental, & that risk according as it is modified
& composed, is found as a result of geometry as well as that of analysis;. . . therefore to put
Geometry in possession of its rights on the science of risk, the concern was only to invent
some games which turn on size & on their ratios, or to reckon the small number of those
of that nature which are already found.” So then he turns himself to the solution of some
problems concerning the game of “franc-carreau,” which hasin it, that one casts a coin
onto a floor tiled with equal, regular tiles and wagers, that none or one, two, three. . .joints
are covered. The principle used for the solution is correct,the separation of the favorable
and unfavorable cases though is not always correctly accomplished.2

Buffon notices further, that the problem demands “somewhatmore Geometry,” if the
cast piece possesses a form other than the circle, and then hepasses to the needle problem,
which he solves in a wholly correct manner with help of the integral calculus. The event,
that the plane is covered instead of with one but with two setsof equidistant parallels,
which they divide into congruent squares, he treats imperfectly. (See No. 68)

Apart from the simple examples concerning the “franc-carreau” game, concerning which
Buffon had made already a short memorandum in 1733 to the academy (see Histoire
de l’Academie de France pour 1733, page 43–45), was the composition of the “Essai
d’Arithmétique Morale” placed, according to Gourand’s “Histoire du Calcul des Proba-
bilités depuis ses origines jusqu’à nos jours” (Paris 1848) in the time around 1760,3 which
was therefore described as the time of the foundation of the theory of geometrical proba-
bilities.

From 1760 until 1812 nothing is recorded about the subject. In his “Théorie analy-
tique des Probabilités” appearing in the last mentioned year Laplace treats Buffon’s needle-
problem again on pages 359–362, (3rd edition, 365–369) and amore difficult case of the
same, where namely the plane has been divided into congruentrectangular areas, without
mention however the origin of these problems.4 They are constructed in Laplace’s great
work at the end of Chapter 5: “Application du Calcul des Probabilités, à la recherche des
phénomènes et de leur causes.” After he spoke of the application of the probability cal-
culus to astronomy, physiology, medicine, political economics, to the influence of moral
causes, to the investigation of games of luck, which complication does not permit a direct
treatment and where therefore observations must be taken tohelp, there is conveyed the
transition to that present problem in speech by the words: “Finally, one is able to make use
of the calculus of probabilities in order to rectify curves or square their surfaces. Without
doubt, geometers did not employ this means; but as it gives meplace to speak of a particu-
lar kind of combinations of chance, I am going to expose it in afew words.” The insertion
of the problems into the scheme is therefore peculiar; it follows in a position where one
should not suppose it.

For perhaps thirty years the new area of the probability calculus is cultivated namely by
English and French mathematicians with preference; the vastly numerous problems bear
witness to it, which especially appeared in English journals and that solutions repeatedly

2Moreover some of the results are distorted through misprints.
3See J. Todhunter “A History of the mathematical Theory of Probability from the time of Pascal to that of

Laplace” (Cambridge and London, Macmillan, 1865), page 344.
4Subsequently Laplace frequently is described as the originator of the needle-problem.
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have given occasion to an interesting exchange of opinion about the fundamentals of the
new subject.

Two works on integral calculus, in fact J. Todhunter’s “A Treatise on the Integral Cal-
culus etc.” (Cambridge and London, Macmillan, 2nd edition,1862) and B. Williamson’s
“An elementary Treatise on the Integral Calculus etc.” (London, Longmans, 3rd edition,
1880) have a special chapter devoted to the geometrical probability and the geometrical
mean-value; in the last named work this chapter has the author Crofton.

66. Comment. Buffon’s needle-problem offers further interest for this reason, that it is
one of the few about geometrical probability, which was confirmed also by experimental
means.

The essential difficulty with execution of such trials is dueto the requirement that the
experiments be so arranged so that the ideas of the random count be sustained. Random
points are assumed on a somehow bounded planar surface, then, ever greater their number,
their distribution over the surface should fall out all the more uniformly. But one finds,
that the density of the points decreases towards the boundary of the figure, that is from
this reason, since the requirement that the points should beassumed within the figure has
to a certain extent kept back from the border and therefore has a lesser point density in
their proximity. In order to encounter this influence, one must assume the points without
regard to the boundary of the figure in the extended plane, andall points, which have fallen
outside the figure, discard. Similar remarks apply over the assumption of points in lines,
in space.

Likewise by assumption special care must be used with straight lines in a plane, that all
directions, also possible positions, could appear with equal facility, that no tendency exists,
to bring about this or that directions or situations more frequent than another.

Professor Dr. R. Wolf in Zürich, who has taken away for yearsnumerous series of
experiments toward the confirmation of the law of large numbers, also extended the same
out of Buffon’s needle-problem, that had become known to himfrom L. Lalanne’s “Un
million de faits” (Paris, 3rd edition, 1843), though without establishment of the outcome.
On a table of 1 foot square a series of parallels are drawn at the mutual interval of 45 mm
and from a knitting needle a piece of length 36 mm length broken out. Of the three series
of experiments employed he has only here an interest in the third; there were executed 50
times each 100 casts, and with the “arbitrary direction” of the needle calculation to occur,
the table maintained a constant rotation. Among each 100 casts was the number of events,
where the parallel was met:

41 in 1 trial
42 “ 3 ”
43 “ 2 ”
45 “ ”
46 “ ”
47 “ ”
48 “ ”
49 “ ”
50 “ ”
51 “ ”
52 “ ”

53 in 2 trials,
54 “ 1 ”
55 “ 1 ”
56 “ 2 ”
57 “ 1 ”
58 “ 1 ”
59 “ 1 ”
60 “ 2 ”
61 “ 1 ”
62 “ 2
63 ” 1 “

2532 in 50 trials= 50× 100 casts
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From this the derived ratio of the number of favorable cases to the total number of
experiments is

p′ =
2532

5000
= 0, 5064,

whereas the theoretical formula for2r = 36 anda = 45 produces

p = 0, 5093.

The correspondence of the experiment with the theory could be described thus as a very
satisfactory one, in that the difference of both outcomes amounts to only.0, 0029.

Wolf has subjected the numbers of the first vertical series toan equalization according
to the method of least squares, in that he regards them as the results of 50 equal exact
observations; according to this count (see Wolf’s Handbuchder Mathem., Phys. etc., Book
1, page 277) itself produces the most likely number of cases under 100 casts, where the
parallels are met, equal to 50,64 with the average error±0, 84, after which the ratio of
the favorable to the number of all trials itself varies between the average limits0, 5064±
0, 0084, between which the theoretical value actually is contained.

Since Lalanne in the place cited makes the observation that one can arrive to an all the
more exact determination of the numberπ through experiments in the described manner,
the larger one makes the series of trials, so Wolf uses the outcomes of his experiments also
to this account. From the theoretical formula follows

π =
4r

a
·
1

p
;

here one sets forp that value derived from the observationp′ = 0, 5064, and calculates with
that average errorµ = ±0, 0084 the average error of the foregoing function, so provides
itself

π′ =
4r

a
·
1

p′
±

4r

a
·
1

p′2
· µ = 3, 1596± 0, 0524;

here also falls the theoretical value ofπ between these limits delivered through the experi-
ment.

Wolf’s trials admit yet occasion to speak about it, how the experiment is to be arranged
so a priori the greatest possible agreement with the theory may be expected with the given
number of the attempts. Lalanne claims namely in the place cited: “The error will be the
least possible for a given number of tests, when the lengtha of the needle will be equal to
the fourth of the product of the intervald of the divisions by the ratioπ,” thus fora = 2πr

4 ,
and this corresponding piece of information has furnished Wolf with the dimensions in his
attempts.

In a supplement to the previously cited work, which is thereby of special interest, when
therein one Professor Rud. Merian of Basel has given the theoretical solution of the said
needle-problem, Wolf says, Merian disputes the correctness of Lalanne’s foregoing piece
of information and makes the statement, that the greatest consensus between experiment
and theory itself must result ifa = 2r, that is the spacing of the parallels is made equal
to the length of the needle. Wolf disputes this, defends the Lalanne’s piece of information
and takes a new series of50 × 100 experiments, that according to Merian’s supplied rule
has delivered a less favorable outcome.

But Merian’s piece of information is indeed correct. Because p signifies the a priori
probability of an event, there is unders employed trialsm of this favorable event, then one
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might expect according to Bernoulli’s Theorem with the probability

Π =
2√
π

∫ γ

0

e−t2dt+
e−γ2

√

2πsp(1− p)

the differencep − m
s

will be included between the limits±γ

√

2p(1−p)
s

. But now with a

given value ofγ (or Π) ands these limits achieve the greatest extent forp = 1
2 , thus for

a = 2πr
4 , Lalanne’s rule is therefore completely wrong; on the otherhand they actually

become most narrow, ifp assumes the largest value compatible with the conditions ofthe
problem, that is fora = 2r or p = 2

π
. That Wolf’s second series of experiments produced

less good agreement could be explained nevertheless from the only modest number of
trials.


