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ABSTRACTION FAITE DU SIGNE,
DEVIENNE UN MINIMUM.*
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We suppose that one has already an approximate value of the two elements that
one considers. We designate by the variable x the correction which must affect the first
element, and by the variable y the correction that it is necessary to bring to the second.
Among the diverse hypotheses that one will be able to make on the values of x and
of y, one alone will satisfy to the first of the given observations; and, for each other
hypothesis, the error of this observation will be designated by a function of x and of y,
in which, seeing the smallness supposed of the corrections to make, one will be able
to neglect the powers of the variables superior to the first. In general, whatever be the
number of given observations, their respective errors will be able to be represented by
as many polynomials of the first degree in x and y. Let

ar+bix+cry=ey,

ay +brx+cry = ez,

an +bpx+cyy=ey,

these same polynomials (n being the number of given observations). The question will
be reduced to determine for x and y a system of values such that the greatest of the
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polynomials that one considers, setting aside the sign, becomes a minimum; and if one
makes
—a; —bix—c1y=-ept1,

—ay —byx — 2y = eyq2,

—day — bnx —Cpy = €2y

it is evident that it will suffice to seek the system of the values of x and y, for which the
one of the polynomials ey, e,...,€,,€,+1,€n12,--.,€2,, Which will have the greatest
positive value, will become a minimum.

The method! that we have proposed for the solution of the analogous problem
relative to any number of elements, is reduced in the present case to that which follows.

1° One will begin by supposing in all the elements at the same time one of the
variables null, for example, y = 0, and one will determine the other variable x in a
manner that the greatest of the polynomials, which will have a positive value, is a
minimum. Let & be the value of x thus determined. For the system of values

x=0o, y=0

two polynomials e, e, will become superior to all the others, and thereafter the system
of which there is question will satisfy the equation

€p =¢€q

it is besides easy to prove that, in the two polynomials e,, e,, the coefficients of x will
be necessarily of contrary signs.

2° One will examine if, in order to make diminish the common value of the two
polynomials e, e, it is necessary to make increase or diminish y.

3° We suppose that in order to make diminish the common value of the two polyno-
mials e, e, one is obliged to make y increase, one will seek among all the polynomials
remaining a third polynomial such, that by equating this last polynomial to the first two,
one obtains for y the smallest positive value possible. Let e, be the third polynomial of
which there is question. The double equation

e, =e;=er
will determine for x and y a new system of values that I will represent by
x=ay, y=p

and this system will be able to be the one which must resolve the proposed question.
It will resolve it effectively, if for some values of y superior to 8; the polynomial
e, equal to the one of the polynomials e, e, where the coefficient of x has a contrary

This method was the object of the Memoir which I have presented to the Institute 28 February 1814,
and for which Messers Laplace and Poisson have been named commissioners. It is likewise at the demand
of these two commissioners that the present extract has been written.



sign, becomes superior to the value common to the three polynomials e, e,, e, corre-
sponding to the system

x=oa, y=Pp

In the contrary case, let e, be the one of the two polynomials e,, e, where the
coefficient of x is the sign opposed to the coefficient of the same variable in e,: one
will seek a new polynomial e such that the double equation

ep,=e =ée

determines the smallest positive value possible of y — ;. Then one will obtain a new
system of values of x and of y, which I will designate by

x=0, y=p,

and which will be able to resolve the question proposed in many cases.

By continuing likewise, one will test successively many systems of values of x and
of y. For each of these systems three polynomials at least will become at the same time
positive, equals among them and superior to all the others. The number of the tests will
never be able to surpass therefore the number of systems which enjoy this remarkable
property. The question is now to determine the limit of this last number.

In order to arrive to it, it is necessary to observe that, if one gives to the two variables
x and y some determined values, one will be able to form relatively to the system of
these values, three different hypotheses. In fact it will be able to be made; 1° that
for the system of which the question is one polynomial alone becomes superior to all
the others; 2° that two polynomials e, e, become equal between them and superior to
all the others; 3° that at least three polynomials e, e,, e, are equal among them and
superior to all the others. If the first hypothesis takes place, it will yet subsist, when
one will make x and y vary separately between certain limits. If the second hypothesis
takes place, it will yet subsist, when one will make x and y vary between certain limits,
in a manner however that the equation e, = ¢, is always satisfied. But if the third
hypothesis takes place, it will subsist uniquely for the system of values of x and of y
determined by the double equation

ep=e,;=e.

According as one or the other of these three cases will take place, I will say that the
given system is of the first, of the second or of the third order. This put, theorems 4,
5, 9 and 10 of the Memoir presented to the Institute, will suffice in order to determine
the limit of the number of tests that one will be obliged to make, in the case where one
considers only two elements. We are going to reduce these four theorems to that which
they must be in particular case of which there is question.

THEOREM IV. — If one passes successively in review all the possible systems of
values of x and y, one will find that the systems of the first order have the systems of
the second order for respective limits, and that these have themselves the systems of
the third order for limits.

Demonstration. — As for each system of values of x and of y it is necessary that
at least one polynomial surpasses all the others, the diverse systems of values of x and



of y will be found apportioned by groups, if I am able to express myself thus, among
the diverse given polynomials. In some of these groups the values of the variables will
remain always finite, in others they will be able to be extended to infinity. Moreover,
as one will not be able to exit from a group without passing into another, one will
encounter necessarily in this passage from the systems for which the two polynomials
at the same time will become superior to all the others. Thus the systems of the second
order will serve as respective limits to the different groups among which the systems
of the first order will be found partitioned.

We consider now any system of the second order, for example, one of those for
which the two polynomials e, e, become at the same time equals among them and
superior to all the others. If one made x and y vary at the same time, but in a manner
to leave the equation e, = ¢, always subsist, one will obtain, at least between certain
limits, anew systems of the second order similar to the one that one considers, and for
each of these systems the common value of the two polynomials e, e, will be superior
to that of all the other polynomials. But if one makes increase or decrease one of the
variables, y for example, in a continued manner, a moment will arrive where the two
polynomials e, e, are found equal to a third. Thus the sequence of the systems of the
third order which correspond to one same equation between two given polynomials,
will have in general for limits two combinations of the third order, one of these limits
being relative to the constant values of y, and the other to some decreasing values of
the same variable. It nevertheless is able to happen that one of these two limits extends
to infinity.

Remark. — It is easy to give to the preceding theorem a geometric interpretation.
In fact, we imagine that the diverse polynomials

€1,€2,...,€p,€n41,€n42,...,E2,

all of the first degree in x and y, represent the ordinates of as many planes different
from one another, and that one has only regard to the portion of each in these planes
which, for certain values of x and of y, become superior to all the others. The portions
of the diverse planes which enjoy this property will form a convex polyhedron open in
its superior part; and, if through any point of the plane of x,y one erects an ordinate,
this ordinate will encounter a face, an edge, or a vertex of the polyhedron, according
as the system of values of x and of y which determines the foot of the ordinate will
be of the first, of the second or of the third order. This put, the preceding theorem is
reduced to saying that the projections of the faces of the polyhedron have for limits
the projections of the edges, and that those here have themselves the projections of the
vertices for limits.

THEOREM V. — [f to the number of groups formed by the systems of the first order
one adds the number of the systems of the third order, the sum will surpass by one unit
the number of the sequences formed by the diverse systems of the second order.

Demonstration. — It follows from the preceding theorem: 1° that the groups
formed by the diverse systems of the first order have for limits the systems of the
second order; 2° that the systems of the second order which serve as limits to a like
group of systems of the first order, are partitioned into many sequences, of which each
has itself for limits two systems of the third order, at least however, if one of these lim-
its does not extend toward infinity. If therefore one increases by one unit the number



of systems of the third order in order to take place some limits which diverge toward
infinity, one will find placed in some circumstances completely similar to that which
would take place if the systems of the first and of the second order would be able to be
extended only to some finite values of x and y. Let now

M be the number of the groups formed by the systems of the first order;

M, be the number of the sequences formed by the systems of the second order;

M3 the number of the systems of the third order;

M3+ 1 will be this last number increased by unity; and, in order to demonstrate the
theorem enunciated above, it will suffice to see that one has

3) My +M;=M,+1.

One arrives easily there as it follows.

We have already remarked that to each system of the first order corresponded a
polynomial superior to all the others; to each system of the second order, two polyno-
mials superior to all the others; and to each system of the third order, three or a greater
number of polynomials superior to all the others. This put, it will be easy to see that, if
the systems of the first order which correspond to the polynomial e,, are not able to be
extended to some infinite values of x and of y, the sequences of systems of the second
order corresponding to this same polynomial will be in number equal to the one of the
systems of the third order which serve as limit to them. For each sequence of systems
of the second order will have necessarily for limits two systems of the third order, and
reciprocally each of these last will serve as limits to two sequences of systems of the
second. Let now e, be a polynomial which, conjointly with the polynomial e, cor-
respond to a sequence of systems of the second order; and we suppose again that the
systems of the first order which correspond to the polynomial e, is not able to be ex-
tended to infinity, the system of the third order which will correspond at the same time
to the two polynomials e, e, will be in number two. Thence the number of sequences
of systems of the second order, which will correspond to the polynomial e, without cor-
responding to the polynomial e,, will surpass by one unit the number of the systems
of the third order, which will correspond to the first polynomial without corresponding
to the second: whence it is easy to conclude that the number of the sequences of sys-
tems of the second order which will correspond to one of the polynomials e, e¢,, will
surpass by one unit the number of the systems of the third order corresponding to these
same polynomials. In general we designate under the name of contiguous systems of
the first order, those which have for common limit a like sequence of systems of the
second order; and let e, ey, €, ey, e, ... be a sequence of polynomials corresponding
to some systems of the first order, all contiguous to one another, and in which the val-
ues of the variables are not able to be extended to infinity. One will show, by some
reasonings similar to the previous: 1° that the number of the sequences of systems of
the second order corresponding to one of the three polynomials e, e, e,, surpasses
by two units the number of the systems of the third order which correspond to them;
2° that the number of the sequences of systems of the second order which correspond
to one of the four polynomials e, e,, e, ey, surpass by three units the number of the
systems of the third order corresponding to these same polynomials, etc. If therefore
one designates:



— by Nj the number of the polynomials e, ey, e, e, e, .. .;

— by N, the number of the sequences of systems of the second order which corre-
spond to one of them;

— by N3 the number of the systems of the third order which correspond to one of
these same polynomials, one will have generally

N> =N3;+N;—1,
or
(6) Ni+N3 =N, +1.

Besides, if one supposes that the sequence e, ¢, e, €5, ¢, ... contains all the given
polynomials, with the exception of a single one, and if one wishes to pass from the
hypothesis where some systems of the first and of the second order are extended to
infinity, to that in which all the systems would be able to be extended only to some
finite values of x and of y, it will be necessary to make

Ni=M;—1,
Ny =My,
N3 =Msz+1.

This put, equation (6) will become
My +M; =M+ 1.

QED

Remark. — The preceding theorem is able to be interpreted, in Geometry, in the
following manner.

In a polyhedron open in its superior part, the sum made of the number of faces and
of the number of vertices surpasses by one unit the number of edges.

In order to deduce this proposition from the theorem of Euler, it suffices to consider
a closed polyhedron, and to imagine that in this polyhedron the diverse edges which
unite in one same vertex taken in the superior part, depart the one from the other and
diverge toward infinity.

THEOREM IX. — Each system of the third order serves as limit at least to three
sequences of systems of the second order.

Demonstration. — In fact, each system of the third order corresponds at least to
three polynomials e, ey, e,, ... Moreover, among the sequences of systems of the sec-
ond order which correspond to one of these polynomials, there are always necessarily
two which have for common limit the system of the third order that one considers; and
reciprocally the sequences of systems of the second order, which have this last for limit,
correspond always to two of the polynomials of which there is concern. Hence the num-
ber of these sequences is always equal to the one of the polynomials e, ey, e,, .. it is
thus at least equal to 3.



Geometric interpretation. — At least three edges of a polyhedron are reunited
always at each of its vertices.

Corollary. — Let always M3 be the number of the systems of the third order, and
M, the number of the sequences formed by the systems of the second order. Since
each system of the third order serves as limit at least to three sequences of systems of
the second order, and since each sequence has for limits a single one or at most two
systems of the third order, one will have necessarily

3M; < 2M,;.

This inequality, joined to equation (3) suffices, as one is going to see, in order to deter-
mine a limit of the number of tests which the proposed method requires.

THEOREM X. — The number of tests that the proposed method requires never
surpasses the double of the number of polynomials which can become superior to all
the others.

Demonstration. — In effect, the number of tests which the proposed method re-
quires never surpasses the number of the systems of the third order designated above
by M;. Besides the number of the polynomials which are able to become superior to
all the others, is equal to the number of the systems of the first order designated by M.
It will suffice therefore to show that one has always

M, <2M;.
Now one has, by virtue of equation (3),
3) My +1= M5+ M,

and, by virtue of the theorem

1
M5+ §M3 <M,.

By adding, member to member, this last inequality to equation (3), one will have

1
1+§M3 <M1,

and hence
M3 <2(M;—1) <3M,.

QED

Geometric interpretation. — In a polyhedron open at its superior part, the number
of vertices is not able to surpass the double of the number of the faces.

Corollary. — As the number of polynomials which are able to become superior to
all the others is at most equal to the number of the polynomials which one considers,
that is to say, to the double of the number of observations, the number of tests that
the proposed method requires is never able to surpass the quadruple of the number of
observations. Thus the limit of the number of tests is simply proportional to the number
of given observations.



