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Since the establishment of one such lottery in this city, all the arrangements are so
generally known that it would be altogether superfluous to give a description of them.
Likewise the majority of the questions that one is able to formulate on the probability
of the events which take place in this lottery are no longer unknown, seeing that their
solution is deduced easily from the principles established in the science of probabilities.
But, when one requires the probability of the sequences which can be found among the
five numbers which one draws each time, the question is so difficult that one encounters
the greatest obstacles to arrive at the solution.

Now, one has a sequence, when two or more of the five numbers which one draws
each time follow themselves immediately according to the natural order of numbers;
whence one understands that it must imply a sequence of two or three or four or all five
numbers. Thus, when there are among the five drawn numbers, for example, these two:
7 and 8, this is a sequence of two; if there are these three numbers 25, 26, 27, these
will be a sequence of three; and likewise several. One could think that, since there are
only 90 numbers in this lottery, it would be convenient to regard these two: 90 and 1
as a sequence of two; but it is more natural to exclude them and to keep solely to the
natural order of the numbers.

Now, it is good to render this question more general, and therefore, I will suppose
that instead of 90 tickets there are in all n tickets marked with the numbers

1, 2, 3, 4, . . . , n,

and that one draws at random some number which is m. This put, one requires what
is the probability that there is found among these m drawn numbers either a sequence
of two, or one of three, or one of four etc., or at the same time two sequences of two,
or one of two and one of three etc., or finally, that there are no sequences found at all.
There are therefore several questions that each case furnishes, of which the number
will be as much greater than the number m of drawn tickets will be great.

But, in order to arrive to the solution of all these questions, it is absolutely necessary
to begin with the case m = 2, where one draws only two from n tickets; from there I
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will pass to that where one draws 3 of them, so that m = 3; next to that where m = 4
and m = 5 and m = 6 etc., as far as the difficulties of calculation permit me to push
these researches.

PROBLEM 1

1. The number of tickets marked with the numbers 1, 2, 3, 4 etc. being = n, when
one draws two tickets, what is the probability that there will be a sequence or not?

SOLUTION

One knows that the number of all possible cases which are able to take place in the
two drawn numbers is

=
n(n− 1)

1 · 2
where one does not regard the order of these two numbers, such that, for example, the
drawn numbers 7 and 10 form the same case as if they had been drawn 10 and 7. In
this number of cases, n(n−1)

1·2 , they contain those where there is a sequence as well as
those where there is not. Now, it is easy to make the denumeration of all cases which
contain a sequence, which are: 1,2; 2,3; 3,4; 4,5; etc. up to the last n− 1, n; of which
the number is evidently = n − 1. But the probability of any event is expressed by a
fraction of which the numerator is the number of cases where this event occurs, and the
denominator is the number of all possible cases; whence one gets the probability that
the two drawn numbers contain a sequence

=
2(n− 1)

n(n− 1)
=

2

n
.

Therefore, that it is not in sequence, the probability will be

= 1− 2

n
=
n− 2

n
.

COROLLARY 1

2. Therefore, the number of numbers which follow in their natural order being = n,
if one draws two of them, so that the number of all the possible cases = n(n−1)

1·2 , the
number of cases which contain a sequence is

= n− 1

and the number of cases which do not

=
(n− 1)(n− 2)

1 · 2
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COROLLARY 2

3. And therefore, the probability that the two drawn numbers contain a sequence is

=
2(n− 1)

n(n− 1)
=

2

n
,

and the probability that the two drawn numbers do not give a sequence is

=
(n− 1)(n− 2)

n(n− 1)
=
n− 2

n
.

COROLLARY 3

4. Therefore, if the number of tickets, n, being 90 and if one would extract only
two, the probability of a sequence would be 1

45 , and that there would not be a sequence
= 44

45 . Or indeed, one could wager 1 against 44 that there will be no sequence.

REMARK.

5. It is evident that the number of cases which give a sequence, being added to the
number of cases which do not give them, ought to produce the number of all possible
cases, which is = n(n−1)

1·2 ; and thence I have concluded that, since the number of cases
of a sequence would be

= n− 1,

the number of cases to the contrary ought to be

=
(n− 1)(n− 2)

1 · 2
But one is able to find also the same number by actual denumeration. Let one

suppose one of the drawn numbers is a; and since the other is known to be neither
a − 1 nor a + 1, it must be one of the others, of which the number is n − 3, so that
each number gives n− 3 cases, whence the number of all cases would be = n(n− 3);
but it is necessary to consider that, if one takes for a either the first 1, or the last, n, the
number of cases becomes greater by a unit, since in the first case the number a− 1 and
in the other a+1 are not excluded. Consequently, the found number n(n− 3) must be
increased by two, whence it becomes

= nn− 3n+ 2 = (n− 1)(n− 2).

But here each case is counted twice, since, putting the two drawn numbers a and b, this
same case is reported as much for the number a as for the number b; whence I conclude
that the number of cases free of sequences is only the half of (n− 1)(n− 2) and hence

=
(n− 1)(n− 2)

1 · 2
I have added expressly this operation, in order to better make known the precautions

that it is necessary to take in the following.
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PROBLEM 2

6. The number of tickets marked with the natural numbers 1, 2, 3, 4, etc. being some
number= n, if one draws three at random, to find all the probabilities with regard to
the sequences.

SOLUTION

Here there are three cases to develop in regard to the sequences, that I will represent
in the following manner:

I. a, a+ 1, a+ 2

this which is a sequence of three.

II. a, a+ 1, b,

this which is a sequence of two, the third number b, being neither a+ 2 nor a− 1.

III. a, b, c,

where the numbers a, b, c do not comprise a sequence.
These three cases together must produce all the possible cases of which the number

is

=
n(n− 1)(n− 2)

1 · 2 · 3
Therefore we make the denumeration of all the cases in each of these three species.

For the first, a, a + 1, a + 2, the denumeration is very easy, since all these cases
are

(1, 2, 3), (2, 3, 4), (3, 4, 5) etc.,

up to the last
(n− 2, n− 1, n),

of which the number is = n− 2; and thus, the probability that a sequence of three take
place

=
2 · 3

n(n− 1)
.

For the second species, a, a + 1, b, we have only to consider all the sequences of
two, which are in number n− 1, and to remark that each receives still one of the other
numbers with the exception of the four a− 1, a, a+1, a+2, such that the number of
values of b would be n − 4. But it is necessary to consider that for the first sequence,
1,2, and the last, n− 1, n, the number of values of b is n− 3; and thus, the number of
all the cases is

(n− 1)(n− 4) + 2 = nn− 5n+ 6 = (n− 2)(n− 3);

which number is already correct, since anyone of these cases cannot occur twice.
Therefore, the probability that this species occurs is

=
2 · 3 (n− 3)

n(n− 1)
.
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For the third species, a, b, c, taking the number a at will, the two others, b and c,
must be taken from the interrupted sequence of numbers

1, 2, 3, . . . a− 2, | a+ 2, a+ 3, a+ 4, . . . n,

where the number of terms of the first part is = a − 2 and the other = n − a − 1; but
such that b and c do not make a sequence. We suppose that both are taken from the first
part, of which the number of terms is = a− 2; and since the sequence of numbers 1, 2,
3, 4, . . . n furnish (n−1)(n−2)

1·2 combinations of two without a sequence, the number of
these cases is

=
(a− 3)(a− 4)

1 · 2
.

In the same way, if both are taken from the other part a+ 2, a+ 3, . . . n, of which the
number of terms is = n− a− 1, the number of cases is

=
(n− a− 2)(n− a− 3)

1 · 2
.

Now, if one takes one from the first and the other from the second part, each combina-
tion is free of a sequence, and thus the number of cases will be = (a− 2)(n− a− 1);
whence the number of all the cases for each number a will be

(a− 3)(a− 4) + (n− a− 2)(n− a− 3) + 2(a− 2)(n− a− 1)

1 · 2
,

which reduces to
nn− 9n+ 22

2
.

But this denumeration does not take place when the number a is either 1 or 2 or n or
n − 1, which is necessary to consider separately. Therefore taking place for n − 4
values of a, the number of cases will be

=
(n− 4)(nn− 9n+ 22)

2
.

Now, the two cases a = 1 and a = n each give as many cases

(n− 3)(n− 4)

2
,

and the two cases a = 2 and a = n− 1 each give

(n− 4)(n− 5)

2
;

therefore, the number of cases which correspond to these four values altogether will be

2(n− 3)(n− 4)

2
+

2(n− 4)(n− 5)

2
=

2(n− 4)(2n− 8)

2
=

(n− 4)(4n− 16)

2
,

which, being added to the preceding number, produces

(n− 4)(nn− 5n+ 6)

2
=

(n− 2)(n− 3)(n− 4)

1 · 2
.
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Finally, it is necessary to observe that each triple of numbers a, b, c is counted here
three times, since each is able to be drawn instead of a, and thus the correct number of
all the cases of this third species reduces to

(n− 2)(n− 3)(n− 4)

1 · 2 · 3
.

Whence the probability that among the three drawn numbers there is no sequence, will
be

=
(n− 2)(n− 3)(n− 4)

n(n− 1)(n− 2)
=

(n− 3)(n− 4)

n(n− 1)
.

COROLLARY 1

7. Therefore having three species to consider, when one draws three from n tickets,
which are

I. a, a+ 1, a+ 2, II. a, a+ 1, b and III. a, b, c,

the number of cases for each of these species is:
for the first, a, a+ 1, a+ 2,

n− 2,

for the second, a, a+ 1, b,

2(n− 2)(n− 3)

1 · 2

for the third, a, b, c,
(n− 2)(n− 3)(n− 4)

1 · 2 · 3
.

COROLLARY 2

8. Therefore, in order that there is found in the three drawn numbers a sequence of
three, a, a+ 1, a+ 2, the probability is

=
2 · 3

n(n− 1)
.

In order that there is found only a sequence of two, the probability is

= 2 · 3(n− 3)

n(n− 1)
,

and in order that there is no sequence, the probability is

=
(n− 3)(n− 4)

n(n− 1)
.
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COROLLARY 3

9. If one requires the cases where there is found at least one sequence of two among
the three drawn numbers, the number of favorable cases is

= n− 2 + (n− 2)(n− 3) = (n− 2)2

and therefore the probability

=
2 · 3(n− 2)

n(n− 1)
.

REMARK

10. It is evident here that the numbers of cases which occur to each of our three
species, being added together, produce the number of all the possible cases, which is

=
n(n− 1)(n− 2)

1 · 2 · 3
;

all as the nature of the question demands, for it since it is in effect

n− 2 +
2(n− 2)(n− 3)

1 · 2
+

(n− 2)(n− 3)(n− 4)

1 · 2 · 3
=
n(n− 1)(n− 2)

1 · 2 · 3
;

and in the same manner, the sum of the probabilities which correspond to these three
species must equal unity, which is the character of a complete certitude.

For this reason, I would have been able to truly dispense with the embarrassing
reasoning by which I made the denumeration of the cases of the third species. But I
have added it expressly in order to better make visible the correctness, seeing that it
bears overtly the impression of the truth, so that it would not seem suspect, when I
am obliged to resort to it in the following. Certainly, since I have arrived finally to an
expression so simple, one would scarcely doubt that there would be also another route
sufficiently simple which leads to the same conclusion, that which merits principally
the attention of those who apply themselves to this type of researches.

PROBLEM 3

11. The number of tickets marked with the natural numbers 1, 2, 3, 4 etc. being
= n, if one draws 4 at random, to find all the probabilities that there are able to occur
in regard to the sequences.

SOLUTION

Among the four drawn numbers, it is necessary to distinguish 5 different species
with respect to the sequences, of which the nature ought to be represented in the fol-
lowing manner:

I. a, a+ 1, a+ 2, a+ 3; II. a, a+ 1, a+ 2, b; III. a, a+ 1, b, b+ 1;
IV. a, a+ 1, b, c; V. a, b, c, d;
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such that the first contains a sequence of 4, the second one of 3, III. two sequences
of two, IV. a single sequence of 2 and V. contains no sequence. Therefore it concerns
making the denumeration of the cases for each of these species, of which the sum must
be equal to the number of all the possible cases, which is

=
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
.

I. The number of cases where the first species takes place is

= n− 3,

since these cases are

(1, 2, 3, 4), (2, 3, 4, 5), . . . (n− 3, n− 2, n− 1, n),

and thus the probability this species occurs will be

=
2 · 3 · 4

n(n− 1)(n− 2)
.

II. For the species a, a + 1, a + 2, b, the number of all the possible sequences of
three being = n− 2 [§ 7], the number b must be taken either from this progression

1, 2, 3, . . . a− 2,

or from this
a+ 4, a+ 5, . . . n;

therefore, the number of appropriate values for b is

= a− 2 + n− a− 3 = n− 5,

provided that a is neither 1 nor a + 2 = n. We put aside these two cases; and the
number of the others being = n − 4, of which each is able to exist in n − 5 various
different ways, the number of cases is

= (n− 4)(n− 5).

But the first sequence 1, 2, 3, is able to be combined with n − 4 different numbers b,
and also the same for the last, n− 2, n− 1, n; whence the number of all the cases for
this species is

= (n− 4)(n− 5) + 2(n− 4) = (n− 3)(n− 4),

of which all are different, and thus the probability that this species exists is

= 2 · 3 · 4(n− 3)(n− 4)

n(n− 1)(n− 2)(n− 3)
= 2 · 3 · 4(n− 4)

n(n− 1)(n− 2)
.
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III. For the third species, a, a+1, b, b+1, the first sequence, a, a+1, being taken
at will, this which is able to be made in n−1 different ways [§ 2], the second sequence,
b, b+ 1, must be taken either from this progression

1, 2, 3, . . . a− 2,

this which is able to occur in a− 3 ways, or from this

a+ 3, a+ 4, a+ 5, . . . n,

this which is able to occur in n− a− 3 ways, provided that the number a is not 1 or 2,
and a+ 1 neither n nor n− 1; we put to the side these 4 cases; and the number of the
others being n− 5, of which each is able to occur in n− 6 ways, the number of cases
will be = (n−5)(n−6). But the first sequence 1, 2, is able to be combined with n−4
other similar sequences, likewise the last, n − 1, n; and the second, 2, 3, with n − 5,
likewise the last but one, n− 2, n− 1; therefore, to the number of cases already found,
it is necessary again to add

2(n− 4) + 2(n− 5) = 4n− 18,

such that the entire number of cases is

nn− 11n+ 30 + 4n− 18 = nn− 7n+ 12 = (n− 3)(n− 4).

But here each case is encountered twice, according as one considers in the first place
either the one or the other sequence. Consequently, the correct number of cases which
produce these third species is

=
(n− 3)(n− 4)

1 · 2
and the probability that this case exists

=
3 · 4(n− 3)(n− 4)

n(n− 1)(n− 2)(n− 3)
=

3 · 4(n− 4)

n(n− 1)(n− 2)
.

IV. For the fourth species, a, a+1, b, c, the sequence a, a+1 being taken at will,
this which can be made in n− 1 different ways, the two other numbers b and c must be
taken in these two progressions

1, 2, 3, . . . a− 2, | a+ 3, a+ 4, . . . n,

such that they do not comprise a sequence. Therefore, taking both from the first pro-
gression, of which the number of terms is a− 2, this is able to be made in

(a− 3)(a− 4)

1 · 2
different ways [§ 2]; similarly, if one takes both from the other progression, of which
the number of terms is n− a− 2, this is able to occur in as many ways as

(n− a− 3)(n− a− 4)

1 · 2
.
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Now, taking b from the first and c from the second progression, the number of cases is

= (a− 2)(n− a− 2),

provided that one excepts the first two and the last two sequences. Therefore the num-
ber of these where this denumeration takes place being = n− 5, of which each is able
to occur as many times as

(a− 3)(a− 4)

1 · 2
+

(n− a− 3)(n− a− 4)

1 · 2
+ (a− 2)(n− a− 2),

this which reduces to
nn− 11n+ 32

1 · 2
,

which it is necessary to multiply by n− 5.
Now, the first sequence, 1, 2, gives as many cases as

(n− 4)(n− 5)

1 · 2
,

and as many the last, n− 1, n; and the second, 2, 3, gives

(n− 5)(n− 6)

1 · 2

cases and as many the second last; such that the number of these 4 cases is

= (n− 4)(n− 5) + (n− 5)(n− 6) = (n− 5)(2n− 10) = 2nn− 20n+ 50,

which, being added to the preceding, gives

n− 5

2
(nn− 11n+ 32 + 4n− 20) =

(n− 5)(n− 4)(n− 3)

1 · 2

for the number of all the cases which produce this species, and therefore the probability
that it exists is

=
3 · 4(n− 4)(n− 5)

n(n− 1)(n− 2)
.

V. The fifth species has no need to be developed separately, since the number of
cases of all five species must be

=
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
;

therefore we add together the cases found for the four species, of which the sum is

n− 3 + (n− 3)((n− 4) +
(n− 3)(n− 4)

1 · 2
+

(n− 3)(n− 4)(n− 5)

1 · 2

=
(n− 3)(nn− 6n+ 10)

1 · 2
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which, being subtracted from n(n−1)(n−2)(n−3)
1·2·3·4 , leaves

n− 3

24
(n(n− 1)(n− 2)− 12(nn− 6n+ 10)) =

(n− 3)(n− 4)(n− 5)(n− 6)

1 · 2 · 3 · 4

for the number of all the cases where there is no sequence among the 4 drawn numbers;
whence the probability that this species exists is

=
(n− 4)(n− 5)(n− 6)

n(n− 1)(n− 2)
.

COROLLARY 1

12. Therefore here are the numbers of cases which produce each of the five reported
species:

Number of cases
I. Species a, a+ 1, a+ 2, a+ 3 n−3

1

II. Species a, a+ 1, a+ 2, b 2(n−3)(n−4)
1·2

III. Species a, a+ 1, b, b+ 1 (n−3)(n−4)
1·2

IV. Species a, a+ 1, b, c 3(n−3)(n−4)(n−5)
1·2·3

V. Species a, b, c, d (n−3)(n−4)(n−5)(n−6)
1·2·3·4 .

I have expressed these numbers so that one can maybe form soon an induction for
some more complicated questions.

COROLLARY 2

13. In the same manner I will express the probability that each of these five species
exist:

Probability
I. Species a, a+ 1, a+ 2, a+ 3 2·3·4

n(n−1)(n−2)

II. Species a, a+ 1, a+ 2, b 2 · 3·4(n−4)
n(n−1)(n−2)

III. Species a, a+ 1, b, b+ 1 3·4(n−4)
n(n−1)(n−2)

IV. Species a, a+ 1, b, c 3 · 4(n−4)(n−5)
n(n−1)(n−2)

V. Species a, b, c, d (n−4)(n−5)(n−6)
n(n−1)(n−2) .

PROBLEM 4

14. The number of tickets marked with the natural numbers 1, 2, 3, etc. being some
number= n, if one draws 5 at random, to find all of the probabilities which are able to
take place with regard to sequences.
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SOLUTION

Among the 5 drawn numbers it is necessary to distinguish the following species to
which all the possible cases, of which the number is

=
n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 2 · 3 · 4 · 5
,

reduce themselves.

I. Species a, a+ 1, a+ 2, a+ 3, a+ 4, where there is a sequence of 5.

II. Species a, a+ 1, a+ 2, a+ 3, b, where there is only a sequence of 4.

III. Species a, a + 1, a + 2, b, b + 1, where there is only a sequence of three and
one of two.

IV. Species a, a+ 1, a+ 2, b, c, where there is one of three.

V. Species a, a+ 1, b, b+ 1, c, where there are only two of two.

VI. Species a, a+ 1, b, c, d, where there is only one of two.

VII. Species a, b, c, d, e where there is no sequence.

We examine separately each of these 7 species.1

I. The first only contains this case:

(1, 2, 3, 4, 5), (2, 3, 4, 5, 6) etc. up to (n− 4, n− 3, n− 2, n− 1, n),

of which the number is = n− 4, and therefore the probability [that it is a sequence of
five]

=
2 · 3 · 4 · 5

n(n− 1)(n− 2)(n− 3)
.

II. In the second species, the sequence a, a+1, a+2, a+3 is able to vary in n−3
different ways; and the number b must be taken from one of the two progressions

1, 2, 3, . . . a− 2 or a+ 5, a+ 6, . . . n,

the number of these values is

= a− 2 + (n− a− 4) = n− 6,

with the exception of the first and last sequence. Therefore putting these two apart, the
number of the others being n− 5, those of the cases will be

= (n− 5)(n− 6).

1This phrase of the manuscript is not found in the original edition.
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Now, for the first sequence, 1, 2, 3, 4, the number of values of b is = n− 5 and also for
the last. Therefore we add still these 2(n−5) cases to the number found (n−5)(n−6),
and we will have the number of all the cases which correspond to this species

= (n− 5)(n− 4) = 2 · (n− 4)(n− 5)

1 · 2
,

whence one extracts the probability [that there is a sequence of four]

= 2 · 3 · 4 · 5(n− 5)

n(n− 1)(n− 2)(n− 3)
.

III. In the third species, a, a+1, a+2, b, b+1, the first sequence of three, a, a+
1, a + 2, is able to take place in n − 2 different ways, and the other sequence of two,
b, b+ 1, must be taken either from this progression

1, 2, 3, . . . a− 2,

whence their number will be = a− 3, or from this progression

a+ 4, a+ 5, . . . n,

whence the number of cases becomes = n−a−4; and therefore, the number of values
of b is = n−7, excepting the first two and the last two sequences of three. The number
of the others being therefore = n− 2− 4 = n− 6, and each receiving n− 7 cases, the
number of cases is

= (n− 6)(n− 7).

But the first, 1, 2, 3, admits n− 5 cases and the second n− 6; whence the first two and
the last two provide again

2(n− 5) + 2(n− 6) = 4n− 22

cases, which being added to (n − 6)(n − 7) produces the number of all the cases of
this species

= nn− 9n+ 20 = (n− 4)(n− 5) = 2 · (n− 4)(n− 5)

1 · 2
as in the preceding; whence the probability [that there is a sequence of three and one
of two] is also

= 2 · 3 · 4 · 5(n− 5)

n(n− 1)(n− 2)(n− 3)
.

IV. In the fourth species, a, a+ 1, a+ 2, b, c, the sequence of three takes place in
n− 2 cases; and the two numbers b and c must be taken from these two progressions

1, 2, 3, . . . a− 2, | a+ 4, a+ 5, . . . n,

nevertheless such that they not make a sequence. We take first both in the first progres-
sion, and the number of cases is

(a− 3)(a− 4)

1 · 2
;
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but if we take them from the other, the number of cases is

=
(n− a− 3)9n− a− 4)

1 · 2
;

finally, taking one from the one and the other from the other, the number of cases is

= (a− 2)(n− a− 3).

Thus, for each sequence of three, we have as many cases

(a− 3)(a− 4)

1 · 2
+

(n− a− 4)(n− a− 5)

1 · 2
+ (a− 2)(n− a− 3) =

nn− 13n+ 44

1 · 2
,

excepting the first two and the last two sequences; therefore, the number of those where
this denumeration is correct being = n − 2 − 4 = n − 6, the number of cases which
correspond to them is

(n− 6)(nn− 13n+ 44)

2
.

Now, the first and the last sequence each give

(n− 5)(n− 6)

2

cases, and the second and the next to last each

(n− 6)(n− 7)

2
;

therefore, to the number of cases found it is necessary again to add (n− 6)(2n− 12),
whence results the sum

(n− 6)(nn− 9n+ 20)

2
=

(n− 4)(n− 5)(n− 6)

1 · 2
,

which expresses the number of cases for this species; and therefore the probability [that
there is a single sequence of three] is

3 · 4 · 5 · (n− 5)(n− 6)

n(n− 1)(n− 2)(n− 3)
.

V. For the fifth species, a, a+1, b, b+1, c, we consider the number c; and the two
sequences of two must be taken from these two progressions

1, 2, 3, . . . c− 2, | c+ 2, c+ 3, . . . n.

If one takes both from the first, the number of cases [§ 11, III] is

=
(c− 5)(c− 6)

2
,
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and if one takes from the other, it is

=
(n− c− 4)(n− c− 5)

2
.

But, the one being taken from the first and the other from the last, the number of cases
will be

= (c− 3)(n− c− 2);

therefore, for each number c, the number of cases will be

(c− 5)(c− 6)

2
+

(n− c− 4)(n− c− 5)

2
+ (c− 3)(n− c− 2) =

nn− 15n+ 62

2
.

But it is necessary to exclude the first four and the last four numbers c, so that this
denumeration only takes place for n− 8 values of c, to which correspond this number
of cases

(n− 8)(nn− 15n+ 62)

2
.

Let now the other values which admit the following cases:

Number of cases
if c = 1 or c = n, (n−5)(n−6)

2 ,

if c = 2 or c = n− 1, (n−6)(n−7)
2 ,

if c = 3 or c = n− 2, (n−7)(n−8)
2 ,

if c = 4 or c = n− 3, (n−8)(n−9)
2 + n− 6,

of which the sum is = 2nn − 27n + 94, and of which the double, 4nn − 54n + 188,
must be added to the preceding number

n3 − 23nn+ 182n− 496

2

in order to have the number of cases

n3 − 15nn+ 74n− 120

2
=

(n− 4)(n− 5)(n− 6)

1 · 2
,

and therefore the probability [that there are two sequences of two]

= 3 · 4 · 5 · (n− 5)(n− 6)

n(n− 1)(n− 2)(n− 3)
,

which is precisely the same as that of the preceding species.
VI. For the sixth species, a, a+ 1, b, c, d, I will trace another route in considering

the least of the numbers a, b, c, d. Therefore let firstly a be the least; and the three
singletons b, c, d will be taken in this progression

a+ 3, a+ 4, . . . n,
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of which the number of terms is = n− a− 2, and therefore the number of cases [§ 7]

=
(n− a− 4)(n− a− 5)(n− a− 6)

1 · 2 · 3
,

whence we will have for each number a the following cases:

if a is the number of cases will be now the sum of this progression is found
1 (n−5)(n−6)(n−7)

1·2·3
2 (n−6)(n−7)(n−8)

1·2·3
3 (n−7)(n−8)(n−9)

1·2·3 = (n−4)(n−5)(n−6)(n−7)
1·2·3·4

... . . . . . . . . . . . .
n− 7 3·2·1

1·2·3

Next, if one of the solitary numbers, d, is least, the four others, a, a+ 1, b, c, will
be taken from the progression

d+ 2, d+ 3, . . . n,

of which the number of terms is = n − d − 1. Now then, the number of cases [§ 11,
IV] is

=
3(n− d− 4)(n− d− 5)(n− d− 6)

1 · 2 · 3
.

Consequently:

if d is the number of cases will be now the sum of this progression is found
1 3(n−5)(n−6)(n−7)

1·2·3
2 3(n−6)(n−7)(n−8)

1·2·3 = 3(n−4)(n−5)(n−6)(n−7)
1·2·3·4

... . . . . . . . . . . . .
n− 7 3 · 3·2·11·2·3

Consequently, the sum of all the cases which produce this species is

= 4 · (n− 4)(n− 5)(n− 6)(n− 7)

1 · 2 · 3 · 4
,

and therefore the probability [that there is only a single sequence of two]

= 4 · 5(n− 5)(n− 6)(n− 7)

n(n− 1)(n− 2)(n− 3)
.

VII. Finally, for the seventh species, the number of all the cases which produce it is

=
(n− 4)(n− 5)(n− 6)(n− 7)(n− 8)

1 · 2 · 3 · 4 · 5
and therefore the probability [that this is no sequence]

=
(n− 5)(n− 6)(n− 7)(n− 8)

n(n− 1)(n− 2)(n− 3)
.
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COROLLARY 1

15. We place before the eyes at the same time the numbers of the cases and the
probabilities that we come to find for the seven species of drawings, when one draws
five numbers from n.

Number of cases Probability
I. a, a+ 1, a+ 2, a+ 3, a+ 4 n−4

1
2·3·4·5

n(n−1)(n−2)(n−3)

II. a, a+ 1, a+ 2, a+ 3, b 2 · (n−4)(n−5)
1·2 2 · 3·4·5(n−5)

n(n−1)(n−2)(n−3)

III. a, a+ 1, a+ 2, b, b+ 1 2 · (n−4)(n−5)
1·2 2 · 3·4·5(n−5)

n(n−1)(n−2)(n−3)

IV. a, a+ 1, a+ 2, b, c 3 · (n−4)(n−5)(n−6)
1·2·3 3 · 4·5(n−5)(n−6)

n(n−1)(n−2)(n−3)

V. a, a+ 1, b, b+ 1, c 3 · (n−4)(n−5)(n−6)
1·2·3 3 · 4·5(n−5)(n−6)

n(n−1)(n−2)(n−3)

VI. a, a+ 1, b, c, d 4 · (n−4)(n−5)(n−6)(n−7)
1·2·3·4 4 · 5(n−5)(n−6)(n−7)

n(n−1)(n−2)(n−3)

V. a, b, c, d, e (n−4)(n−5)(n−6)(n−7)(n−8)
1·2·3·4·5

(n−5)(n−6)(n−7)(n−8)
n(n−1)(n−2)(n−3)

COROLLARY 2

15[a].2 If one requires the probability that there is at least one sequence of two
among the five drawn numbers, all the species, except the last, satisfy, and since the
sum of all the probabilities is 1, the sought probability is

= 1− (n− 5)(n− 6)(n− 7)(n− 8)

n(n− 1)(n− 2)(n− 3)
.

COROLLARY 3

16. If one requires the probability that there is, among the five drawn numbers, at
least two sequences of two, since a sequence of 3 contains two of 2 in itself, all the
species, without the last two, satisfy, and therefore the sought probability will be

= 1− (n− 5)(n− 6)(n− 7)(n+ 12)

n(n− 1)(n− 2)(n− 3)
.

COROLLARY 4

17. Now, the probability that there will be found among the 5 drawn numbers [at
least] a sequence of three will be

3 · 4 · 5(2 + 4(n− 5) + (n− 5)(n− 6))

n(n− 1)(n− 2)(n− 3)
=

3 · 4 · 5(n− 4)

n(n− 1)(n− 2)
,

and that there is [at least] a sequence of 4, the probability will be

=
2 · 3 · 4 · 5(n− 4)

n(n− 1)(n− 2)(n− 3)

2The original edition places here, by error, the number 15 for a second time.
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Finally, that there is a sequence of all five, the probability is

=
2 · 3 · 4 · 5

n(n− 1)(n− 2)(n− 3)
.

APPLICATION TO THE GENOISE LOTTERY

18. In order to apply these formulas to the Genoise Lottery, where one draws each
time 5 numbers from 90, we will have n = 90, and in order to mark more distinctly the
different cases with respect to the sequences, I will employ the following types:

(1) marks a single number, out of the entire sequence,
(2) marks a sequence of two,
(3) marks a sequence of three,
(4) marks a sequence of four,
(5) marks a sequence of all five.

This put, we will have for each of the seven different species the following proba-
bilities:

Specie Probability=
I. (5) 2·3·4·5

90·89·88·87=
1

511 038

II. (4), (1) 2·3·4·5·85
90·89·88·87=

85
511 038

III. (3), (2) 2·3·4·5·85
90·89·88·87=

85
511 038

IV. (3), (1), (1) 3·4·5·85·84
90·89·88·87=

3570
511 038

V. (2), (2), (1) 3·4·5·85·84
90·89·88·87=

3570
511 038

VI. (2), (1), (1), (1) 4·5·85·84·83
90·89·88·87 =

98770
511 038

VII. (1), (1), (1), (1), (1) 85·84·83·82
90·89·88·87=

404 957
511 038

From this I draw the following conclusions:
1 ˚ . That among the five drawn numbers there is found at least one sequence of

two, the probability is 106 081
511 038 ; therefore, if one were permitted to bet on this case, the

gain must be fixed at 4 817
1000 times the wager,3 and if one gives only 4 times the wager,

the Lottery will gain [817 on 4817 or] 17 percent.
2 ˚ . That among the 5 drawn numbers there is found at least two sequences of 2,

either one of three, or several, the probability is= 7311
511038 ; and therefore, in permitting

to bet on this case, the gain must be fixed at 69 9
10 times the wager; therefore, if one

gives only 50 times the wager, the Lottery will gain 199 on 699 or 28 1
2 percent.

3 ˚ . That among the five drawn numbers there is found a sequence of three or
several, the probability is = 3741

511038 ; and therefore, in permitting to bet on this case, the
gain must be fixed at 136 6

10 times the wager; therefore, if one gives only 90 times the
wager, one will gain 466 on 1366 or else 34 1

9 percent.

3By the equality of the mathematical expectations, one obtains, in designating by m the wager, the
equation x · 106 081

511 038
· m = m, whence the ratio of x of the gain to the wager, x = 511038 : 106081 =

4.81743 . . .
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4 ˚ That among the five drawn numbers there is found a sequence of 4, or of all
five, the probability is = 86

511038 ; and therefore, if one bets on this case, the gain must
be fixed at 5942 3

10 times the wager;4 therefore, if the Lottery gives only 3000 times the
wager, it will gain 2942 3

10 on 5942 3
10 or else 49 1

2 percent.

REMARK

19. Any difficulty that had appeared at first in extending these researches to some
greater number of drawn tickets, the particular route that I have employed in the solu-
tion of this problem for species VI renders these researches very easy, so that one will
be in a state of extending them likewise to as great number of drawn tickets as one will
wish. This entire method reverts to finding the sum of such a descending progression

k(k − 1)(k − 2) · · · (k −m+ 1)

1 · 2 · 3 · · ·m
+

(k − 1)(k − 2) · · · (k −m)

1 · 2 · 3 · · ·m
+ etc.,

up to the one that the terms vanish. Now, one knows that the sum of this progression is
expressed very simply as

(k + 1)k(k − 1)(k − 2) · · · (k −m+ 1)

1 · 2 · 3 · 4 · · · (m+ 1)
.

I will use therefore this method to resolve the following problem.

PROBLEM 5

20. The number of tickets marked with the natural numbers 1, 2, 3, etc. being some
number= n, if one draws six at random, to find all the probabilities which are able to
take place with regard to the sequences.

SOLUTION

It is easy to establish all the different species which are able to be encountered
among the six drawn numbers, that I will develop one after the other.

I. Species. a, a+ 1, a+ 2, a+ 3, a+ 4, a+ 5.

The number of cases is here obviously = n−5
1 ; therefore, since the number of all

possible cases is

=
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 2 · 3 · 4 · 5 · 6
,

the probability that this species takes place is

=
2 · 3 · 4 · 5 · 6

n(n− 1)(n− 2)(n− 3)(n− 4)
.

II. Species. a, a+ 1, a+ 2, a+ 3, a+ 4, b.
4The original has: . . .fixed at 5940 times the wager; therefore. . .he will win 2940 on 5940. . .
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Let a be the least of the drawn numbers; and b must be taken from this progression

a+ 6, a+ 7, a+ 8, . . . n,

of which the number of terms is = n− a− 5, which gives the number of all values of
b for each number a. But if b is the least of the drawn numbers, the sequence of five,
a, a+ 1, a+ 2, a+ 3, a+ 4, must be taken from this progression

b+ 2, b+ 3, . . . n,

of which the number of terms is = n− b− 1; this which, by problem 4 [§ 14, I], is able
to occur in

n− b− 5

1

different ways. Thus, to find the number of cases, we have only to sum the two follow-
ing progressions:

if a is values of b if b is values of a
1 n−6

1 1 n−6
1

2 n−7
1 2 n−7

1
3 n−8

1 3 n−8
1

etc. etc. etc. etc.
sum= (n−5)(n−6)

1·2 sum= (n−5)(n−6)
1·2

Therefore, the number of cases is

= 2 · (n− 5)(n− 6)

1 · 2
,

and the probability

= 2 · 3 · 4 · 5 · 6(n− 6)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

III. Species. a, a+ 1, a+ 2, a+ 3, b, b+ 1.

If a is the least of the drawn numbers, the sequence of two, b, b+ 1, must be taken
from this progression

a+ 5, a+ 6, a+ 7, . . . n,

of which the number of terms = n− a− 4. Therefore, by problem 1 [§ 2], the number
of values of b is

=
n− a− 5

1
.

If b is the least of the 6 drawn numbers, the sequence of four, a, a+1, a+2, a+3,
must be taken from this progression

b+ 3, b+ 4, . . . n,
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of which the number of terms = n − b − 2. Therefore, by problem 3 [§ 11, I], the
number of values of a is

=
n− b− 5

1
.

Therefore here are the two progressions that we have to sum:

if a is values of b if b is values of a
1 n−6

1 1 n−6
1

2 n−7
1 2 n−7

1
3 n−8

1 3 n−8
1

etc. etc. etc. etc.
sum= (n−5)(n−6)

1·2 sum= (n−5)(n−6)
1·2

Therefore, the number of cases is

= 2 · (n− 5)(n− 6)

1 · 2
,

and the probability

= 2 · 3 · 4 · 5 · 6(n− 6)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

IV. Species. a, a+ 1, a+ 2, a+ 3, b, c.

Let a be the least of the drawn numbers; and the two singletons b, c, must be taken
from this progression

a+ 5, a+ 6, . . . n,

of which the number of terms = n− a− 4. Therefore, by problem 1 [§ 2], the number
of cases is

=
(n− a− 5)(n− a− 6)

1 · 2
.

Let one of the single numbers, c, be the least; and the sequence of 4 with the other
solitary, a, a+ 1, a+ 2, a+ 3, b, must be taken from this progression

c+ 2, c+ 3, . . . n,

of which the number of terms = n − c − 1. Therefore, by problem 4 [§ 15, II], the
number of cases is

= 2 · (n− c− 5)(n− c− 6)

1 · 2
.

We will have therefore to sum the following two progressions:

if a is the number of cases if c is the number of cases
1 (n−6)(n−7)

1·2 1 2 · (n−6)(n−7)
1·2

2 (n−7)(n−8)
1·2 2 2 · (n−7)(n−8)

1·2
3 (n−8)(n−9)

1·2 3 (n−8)(n−9)
1·2

etc. etc. etc. etc.
sum= (n−5)(n−6)(n−7)

1·2·3 sum= 2 · (n−5)(n−6)(n−7)
1·2·3
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Therefore, the number of cases is

= 3 · (n− 5)(n− 6)(n− 7)

1 · 2 · 3
,

and the probability

= 3 · 4 · 5 · 6(n− 6)(n− 7)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

V. Species. a, a+ 1, a+ 2, b, b+ 1, b+ 2.

Since there are here two similar sequences of three, it is indifferent which of the
two numbers a and b is the least; and the sequence of three, a, a + 1, a + 2, must be
taken from this progression

b+ 4, b+ 5, . . . n,

of which the number of terms is = n−b−3. Therefore, by problem 2 [§ 7], the number
of cases is

=
n− b− 5

1
,

and the progression to sum

n− 6

1
,
n− 7

1
,
n− 8

1
etc.

Therefore, the number of cases is

=
(n− 5(n− 6)

1 · 2
,

and the probability

=
3 · 4 · 5 · 6(n− 6)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

VI. Species. a, a+ 1, a+ 2, b, b+ 1, c.

If a is the least of the drawn numbers, the others, b, b + 1, c, must be taken from
this progression

a+ 4, a+ 5, . . . n,

of which the number of terms = n− a− 3; whence, [by] problem 2 [§ 7], the number
of cases is

= 2 · (n− a− 5)(n− a− 6)

1 · 2
,

and putting a = 1, one has

2 · (n− 6)(n− 7)

1 · 2
.

If b is the least of the drawn numbers, the others, a, a+ 1, a+ 2, c,must be taken
from this progression

b+ 3, b+ 4, . . . n,
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of which the number of terms is n− b−2; whence, by problem 3 [§ 11, II], the number
of cases is

= 2 · (n− b− 5)(n− b− 6)

1 · 2
,

and putting b = 1, one has

2 · (n− 6)(n− 7)

1 · 2
.

If c is the least, the others, a, a + 1, a + 2, b, b + 1, must be taken from this
progression

c+ 2, c+ 3, . . . n,

of which the number of terms = n−c−1, whence, by problem 4 [§ 15, III], the number
of cases is

= 2 · (n− c− 5)(n− c− 6)

1 · 2
,

and putting c = 1, one has

2 · (n− 6)(n− 7)

1 · 2
.

The three progressions to sum reduce therefore to this alone

6 · (n− 6)(n− 7)

1 · 2
+ 6 · (n− 7)(n− 8)

1 · 2
+ 6 · (n− 8)(n− 9)

1 · 2
+ etc.

Therefore, the number of cases is

= 6 · (n− 5)(n− 6)(n− 7)

1 · 2 · 3
,

and the probability

= 6 · 4 · 5 · 6(n− 6)(n− 7)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

VII. Species. a, a+ 1, a+ 2, b, c, d.

If a [is] the least of the drawn numbers, instead of which one is able at first to take
unity, the others, b, c, d, must be taken from this progression

5, 6, 7, . . . n,

of which the number of terms = n − 4. Therefore, by problem 2 [§ 7], the number of
cases is

=
(n− 6)(n− 7)(n− 8)

1 · 2 · 3
.

If one of the singletons is least, as d = 1, the others, a, a+ 1, a+ 2, b, c, must be
taken from this progression

3, 4, 5, . . . n,
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of which the number of terms = n−2. Therefore, by problem 4 [§ 15, IV], the number
of cases

= 3 · (n− 6)(n− 7)(n− 8)

1 · 2 · 3
.

The concern therefore is to sum the descending progression which begins with

4 · (n− 6)(n− 7)(n− 8)

1 · 2 · 3
.

Therefore, the number of all the cases is

= 4 · (n− 5)(n− 6)(n− 7)(n− 8)

1 · 2 · 3 · 4
,

and the probability

= 4 · 5 · 6(n− 6)(n− 7)(n− 8)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

VIII. Species. a, a+ 1, b, b+ 1, c, c+ 1.

Here, there is only one case to consider. Therefore let c = 1: and the others,
a, a+ 1, b, b+ 1, must be drawn from this progression

4, 5, 6, . . . n,

of which the number of terms = n− 3, whence by problem 3 [§ 12, III], the number of
cases

=
(n− 6)(n− 7)

1 · 2
,

which gives the progression to sum. Therefore, the number of all the cases is

=
(n− 5)(n− 6)(n− 7)

1 · 2 · 3
,

and the probability

=
4 · 5 · 6(n− 6)(n− 7)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

IX. Species. a, a+ 1, b, b+ 1, c, d.

Let a = 1; and the others, b, b+ 1, c, d, must be drawn from this progression

4, 5, 6, . . . n,

of which the number of terms = n−3. Therefore, by problem 3 [§ 12, IV], the number
of cases

= 3 · (n− 6)(n− 7)(n− 8)

1 · 2 · 3
,

and in this formula is already contained the position b = 1.
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Let d = 1, where the letter c is already included; the others, a, a + 1, b, b + 1, c,
must be drawn from this progression

3, 4, 5, . . . n,

of which the number of terms = n− 2. Therefore, by problem 4 [§ 15, V], the number
of cases

= 3 · (n− 6)(n− 7)(n− 8)

1 · 2 · 3
,

and therefore one has only to sum the descending progression which begins with the
term

= 6 · (n− 6)(n− 7)(n− 8)

1 · 2 · 3
.

Whence the number of all the cases

= 6 · (n− 5)(n− 6)(n− 7)(n− 8)

1 · 2 · 3 · 4
,

and the probability

= 6 · 5 · 6(n− 6)(n− 7)(n− 8)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

X. Species. a, a+ 1, b, c, d, e.

Let firstly a = 1; and the four singleton numbers b, c, d, e must be drawn from
this progression

4, 5, 6, . . . n,

of which the number of terms = n − 3; and, by problem 3 [§ 12, V], the number of
cases

=
(n− 6)(n− 7)(n− 8)(n− 9)

1 · 2 · 3 · 4
.

Let next one of the singletons, e,= 1; and the others, a, a + 1, b, c, d, must be
drawn from this progression

3, 4, 5, . . . n,

of which the number of terms = n − 2; and, by problem 4 [§ 15, VI], the number of
cases

= 4 · (n− 6)(n− 7)(n− 8)(n− 9)

1 · 2 · 3 · 4
,

such that the concern is to sum the descending progression which begins with the term

5 · (n− 6)(n− 7)(n− 8)(n− 9)

1 · 2 · 3 · 4
.

Therefore, the number of all the cases

= 5 · (n− 5)(n− 6)(n− 7)(n− 8)(n− 9)

1 · 2 · 3 · 4 · 5
,

and the probability

= 5 · 6(n− 6)(n− 7)(n− 8)(n− 9)

n(n− 1)(n− 2)(n− 3)(n− 4)
.
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XI. Species. a, b, c, d, e, f .

Here, there is only one case to consider, we put f = 1; and the others, a, b, c, d, e,
must be drawn from this progression

3, 4, 5, . . . n,

of which the number of terms = n− 2. Thus, by problem 4 [§ 15, VII], the number of
cases

=
(n− 6)(n− 7)(n− 8)(n− 9)(n− 10)

1 · 2 · 3 · 4 · 5
.

Therefore, the number of all the cases

=
(n− 5)(n− 6)(n− 7)(n− 8)(n− 9)(n− 10)

1 · 2 · 3 · 4 · 5 · 6
,

and the probability

=
(n− 6)(n− 7)(n− 8)(n− 9)(n− 10)

n(n− 1)(n− 2)(n− 3)(n− 4)
.

COROLLARY 1

21. In order to put all this more clearly before the eyes, I will make use of the same
characters to mark the different species of sequences as I have exhibited § 18, and we
will have for each species:

Species Number of cases Probability
I. (6) n−5

1
2·3·4·5·6

n(n−1)(n−2)(n−3)(n−4)

II. (5)+(1) 2 · (n−5)(n−6)
1·2 2 · 3·4·5·6(n−6)

n(n−1)(n−2)(n−3)(n−4)

III. (4)+(2) 2 · (n−5)(n−6)
1·2 2 · 3·4·5·6(n−6)

n(n−1)(n−2)(n−3)(n−4)

IV. (4)+2(1) 3 · (n−5)(n−6)(n−7)
1·2·3 3 · 4·5·6(n−6)(n−7)

n(n−1)(n−2)(n−3)(n−4)

V. 2(3) (n−5)(n−6)
1·2

3·4·5·6(n−6)
n(n−1)(n−2)(n−3)(n−4)

VI. (3)+(2)+(1) 6 · (n−5)(n−6)(n−7)
1·2·3 6 · 4·5·6(n−6)(n−7)

n(n−1)(n−2)(n−3)(n−4)

VII. (3)+3(1) 4 · (n−5)(n−6)(n−7)(n−8)
1·2·3·4 4 · 5·6(n−6)(n−7)(n−8)

n(n−1)(n−2)(n−3)(n−4)

VIII. 3(2) (n−5)(n−6)(n−7)
1·2·3

4·5·6(n−6)(n−7)
n(n−1)(n−2)(n−3)(n−4)

IX. 2(2)+2(1) 6 · (n−5)(n−6)(n−7)(n−8)
1·2·3·4 6 · 5·6(n−6)(n−7)(n−8)

n(n−1)(n−2)(n−3)(n−4)

X. (2)+4(1) 5 · (n−5)(n−6)(n−7)(n−8)(n−9)
1·2·3·4·5 5 · 6(n−6)(n−7)(n−8)(n−9)

n(n−1)(n−2)(n−3)(n−4)

XI. 6(1) (n−5)(n−6)(n−7)(n−8)(n−9)(n−10)
1·2·3·4·5·6

(n−6)(n−7)(n−8)(n−9)(n−10)
n(n−1)(n−2)(n−3)(n−4) .
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COROLLARY 2

22. The law of these expressions for the number of the cases of each species is quite
evident, since the number of factors in the numerators is the same as those of the differ-
ent letters by which I have characterized before the different species, in commencing
with n − 5 and diminishing them by one unit; now, the denominator contains always
as many factors, in commencing by 1, 2, 3, etc. But the law of the numeric coefficients
is not so evident; however, it will become enough in representing the numbers of cases
in the following manner.

Species Number of cases
1(6) n−5

1
1(5)+1(1) n−5·n−6

1·1
1(4)+1(2) n−5·n−6

1·1
1(4)+2(1) n−5·n−6·n−7

1·1·2
2(3) n−5·n−6

1·1
1(3)+1(2)+1(1) n−5·n−6·n−7

1·1·1
1(3)+3(1) n−5·n−6·n−7·n−8

1·1·2·3
3(2) n−5·n−6·n−7

1·2·3
2(2)+2(1) n−5·n−6·n−7·n−8

1·2·1·2
1(2)+4(1) n−5·n−6·n−7·n−8·n−9

1·1·2·3·4
6(1) n−5·n−6·n−7·n−8·n−9·n−10

1·2·3·4·5·6

where the denominators manifestly follow the coefficients of the sequences of each
order, which characterize each species.

REMARK

23. Therefore here we are now in a position to render these researches altogether
general; however, one cannot begin with the general problem, since each number of
drawn tickets depends upon all the preceding. But, although this last method that I
come to use is of such great advantage, nonetheless it is to be presumed that one will
discover one more simple.

GENERAL PROBLEM

24. The number of tickets marked with the natural numbers 1, 2, 3, 4 etc. being
some number= n, if one draws m tickets at random, to determine all the probabilities
which are able to take place with regard to sequences.

SOLUTION

In order to distinguish the different kinds of sequences which are able to be found
in each drawing of m numbers, I will use these signs [§ 18]:

(1) marks a solitary number,
(2) marks a sequence of two numbers,
(3) marks a sequence of three numbers,
(4) marks a sequence of four numbers

etc.
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This put, each drawing will be characterized by such a formula

α(a) + β(b) + γ(c) + δ(d) + etc.,

this which signifies that there are α sequences of a numbers, β sequences of b numbers,
γ sequences of c numbers, δ sequences of d numbers etc.; and since the number of
drawn numbers = m, it is necessary that there be

αa+ βb+ γc+ δd+ etc. = m.

Now we put moreover
α+ β + γ + δ + etc. = k;

and the number of all the cases which produce the said drawing

α(a) + β(b) + γ(c) + δ(d) + etc.,

will be expressed so

(n−m+ 1)(n−m)(n−m− 1) · · · (n−m− k + 2)

1 · 2 · · ·α · 1 · 2 · · ·β · 1 · 2 · · · γ · 1 · 2 · · · δ · etc.

which number being divided by the number of all the possible cases, which is

=
n(n− 1)(n− 2) · · · (n−m+ 1)

1 · 2 · 3 · · ·m
,

will give the probability that this same case exists. This is in what consists the complete
solution of our problem.

COROLLARY 1

25. One will have therefore as many species of drawings as it is possible to find the
different formulas

α(a) + β(b) + γ(c) + δ(d) + etc.,

of which the sum αa + βb + γc + δd+etc. let it = m, that is to say as many as it
is possible to partition the number m into parts in different ways; thus, taking for m
successively the numbers 1, 2, 3, 4 etc., the numbers of species will form the following
progression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176 etc.

of which I have explained the nature in my researches on the partition of numbers.5

5This concerns the memoirs 158, 191 and 394 (following the index of Eneström): “Observationes ana-
lyticae variae de combinationibus,” Comment. acad. sc. Petrop. 13 (1741/3), 1751, p. 64, “De partitione
numerorum,” Novi comment. acad. sc. Petrop. 3 (1750/1), 1753, p. 125, “De partitione numerorum in partes
tam numero quam specie datas,” Novi comment. acad. sc. Petrop. 14 (1769): I, 1770, p. 168; LEONHARDI
EULER I Opera Omnia, series I, vol. 2, p. 163 et 254, vol. 3, p. 131 (see also the prefaces to these two
volumes written by the editor M. F. Rudio). Moreover, Euler has dedicated to the partition of numbers chap-
ter XVI of the first volume of his work Introductio in analysin infinitorum, Laussanne 1748, p. 253–275;
Leonhardi Euleri Opera Omnia, series I, vol. 8, p. 313–338.
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COROLLARY 2

26. The number of factors which compose the number of cases for each species
α(a) + β(b) + γ(c) + δ(d)+etc. is always equal to the number

k = α+ β + γ + δ + etc.,

which marks into how many parts the number m is partitioned. And taking all the
species together where k has the same value, the number of cases are jointly this sum

(m− 1)(m− 2) · · · (m− k − 1)

1 · 2 · · · (k − 1)
· (n−m+ 1)(n−m)(n−m− 1) · · · (n−m− k + 2)

1 · 2 · 3 · · · k

Therefore the number of cases of all species which belong
if k is to this value of k are
1 n−m+1

1 ,

2 m−1
1 · (n−m+1)(n−m)

1·2 ,

3 m−1
1 · m−2

2 · (n−m+1)(n−m)(n−m−1)
1·2·3 ,

4 m−1
1 · m−2

2 · m−3
3 · (n−m+1)(n−m)(n−m−1)(n−m−2)

1·2·3·4
etc. etc.

and all these numbers of cases added together must produce the number of all the
possible cases, which is

n(n− 1)(n− 2)(n− 3) · · · (n−m+ 1)

1 · 2 · 3 · 4 · · ·m
.

COROLLARY 3

27. The first species being 1(m), where all m drawn numbers form one sequence,
one will have k = 1, and the number of cases is

n−m+ 1

1
;

but the last species being m(1), where there is no sequence, there must be k = m, and
the number of cases

(n−m+ 1)(n−m)(n−m− 1) · · · (n− 2m+ 2)

1 · 2 · 3 · · ·m

Therefore, the probability that there is no sequence among the m drawn numbers is

(n−m+ 1)(n−m)(n−m− 1) · · · (n− 2m+ 2)

n(n− 1)(n− 2) · · · (n−m+ 1)
,

or else
(n−m)(n−m− 1)(n−m− 2) · · · (n− 2m+ 2)

n(n− 1)(n− 2) · · · (n−m+ 2)
,

Now, this same formula expresses also the probability that of m − 1 given numbers
none are found among the m drawn numbers.

29



EXAMPLE

28. We make application where of n tickets marked with the numbers 1, 2, 3, . . . n
one draws 7 tickets; and one will find the number of cases which produce each of the
15 species which are able to take place in a drawing of seven numbers.

Species Number of cases.
I. (7) n−6

1 ,

II. (6)+1 (n−6)(n−7)
1·1 ,

III. (5)+2 (n−6)(n−7)
1·1 ,

IV. (4)+3 (n−6)(n−7)
1·1 ,

V. (5)+2(1) (n−6)(n−7)(n−8)
1·1·2 ,

VI. (4)+(2)+(1) (n−6)(n−7)(n−8)
1·1·1 ,

VII. (2(3)+(1) (n−6)(n−7)(n−8)
1·2·1 ,

VIII. (3)+2(2) (n−6)(n−7)(n−8)
1·1·2 ,

IX. (4)+3(1) (n−6)(n−7)(n−8)(n−9)
1·1·2·3 ,

X. (3)+(2)+2(1) (n−6)(n−7)(n−8)(n−9)
1·1·1·2 ,

XI. 3(2)+(1) (n−6)(n−7)(n−8)(n−9)
1·2·3·1 ,

XII. (3)+4(1) (n−6)(n−7)(n−8)(n−9)(n−10)
1·1·2·3·4 ,

XIII. 2(2)+3(1) (n−6)(n−7)(n−8)(n−9)(n−10)
1·2·1·2·3 ,

XIV. (2)+5(1) (n−6)(n−7)(n−8)(n−9)(n−10)(n−11)
1·1·2·3·4·5 ,

XV. 7(1) (n−6)(n−7)(n−8)(n−9)(n−10)(n−11)(n−12)
1·2·3·4·5·6·7 .

Each of these numbers divided by the number of all the possible cases, which is

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

1 · 2 · 3 · 4 · 5 · 6 · 7

gives the probability that the corresponding species exists.
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