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1. PREFACE
The following translations were undertaken to provide easy access to a landmark in the
historical development of the ideas of probability and statistical inference. First, the fourth
part of Ars Conjectandi by James Bernoulli (1713) is presented in its entirety, and, second,
excerpts are presented from correspondence between Leibnitz and Bernoulli, as found in
Leibnitz (1855). The excerpts date from 1703 and 1704, not long before Bernoulli’s death
on 16 August 1705. In them, Bernoulli describes the main mathematical result of the Pars
Quarta of Ars Conjectandi and debates with Leibnitz its implications. The correspondence
also suggests that Bernoulli was dissatisfied with his mathematical demonstration in Pars
Quarta and indeed this was the reason for the postponement of publication until after his
death.

In contemporary notation, Bernoulli shows that, if
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then
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PN = 1

for fixed p and t. He also provided a lower bound for PN sufficient to enable him to
compute a value of N large enough to ensure a PN as close to unity as desired. A math-
ematician of Bernoulli’s stature would surely have recognized the crudeness of the lower
bound for PN , and thus it is a plausible conjecture that it was his inability to compute PN
more accurately which led Bernoulli to postpone publication. In his introduction to the
posthumous Ars Conjectandi, James’ nephew Nicholas admits his own inability to perfect
the work and calls on Montmort and de Moivre to direct their energies thereto (see David,
(1962), p. 134). As is well-known, de Moivre succeeded in providing the normal approx-
imation to PN where p = 1

2 and Laplace achieved the case of general p (see Todhunter
(1865)).

Considering the background and tools at his disposal, it was a remarkable achievement
for Bernoulli to formulate and demonstrate a version of the law of large numbers, and
then to formulate even without solution a problem whose solution led to the central limit
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2 BING SUNG

theorem. It seems unfair in this light to berate Bernoulli, as did Pearson (1925), for the
crudeness of his lower bound.

The early chapters of Pars Quarta give Bernoulli’s general attitudes to what proba-
bilities are (degrees of certainty) and how they are to be found. His exposition of this
treacherous topic is vigorous, original and colorful. In the final analysis, he found himself
unable in most real world situations to enumerate and weight all the proofs or cases for and
against any outcome. Thus he was led to formulate the idea of repeated trials for learning
a posteriori what is hidden a priori,and thence he came to his theorem.

Bernoulli scored important firsts in the history of statistical inference. He clearly sepa-
rated the notion of sample value from that of population value, for he explicitly set out to
infer the latter from the former. At the same time, he wrote down the sampling distribution
of the sample frequency given the population frequency and clearly regarded this distribu-
tion and the theorem based on it to be fundamental for inference. Thus Bernoulli ought
to be regarded as the founder of the broad school of inference, including the approaches
of Fisher and of Neyman and Pearson, which attempts to make inferences on the basis of
sampling distributions.

Although Bernoulli’s theorem is expressed in terms of a known population frequency p,
its use was clearly intended for the situation where p is unknown while a sample frequency
p̂ is known. In present day terms, the question is: does the validity of the statement Pr(∣p̂−
p∣ < �) > 1 − � before sampling with given p also carry with it the validity of the same
statement after sampling with p̂ known and p unknown? Fisher’s fiducial argument answers
this type of question in the affirmative while Neyman’s confidence argument side-steps the
question. Bernoulli did not explicitly formulate the question, and he apparently regarded
the appeal of his theorem to be self-evident, much as many people now regard the appeal
of the confidence argument to be self-evident.

Both Todhunter (1865) and David (1962) point out that, in the correspondence trans-
lated below, Leibnitz queried Bernoulli’s inverse use of his theorem. It needs to be made
clear, however, that Leibnitz was not raising the technical issue of the previous paragraph.
Rather he presented a general argument against any method of trying to determine the char-
acteristics of an infinite population from a finite sample. I find the Leibnitz argument worth
pondering even today. And, of course, the issue raised implicitly by Bernoulli is very much
alive and underlies the contemporary search for good methods of statistical reasoning.
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2. PART FOUR OF THE ART OF CONJECTURING SHOWING
THE USE AND APPLICATION OF THE PRECEDING TREATISE

IN CIVIL, MORAL, AND ECONOMIC AFFAIRS

CHAPTER I
Certain preliminaries about the Certainty,

Probability, Necessity, and Contingency of Events

The certainty of any event is observed either objectively and in itself, and it does not
signify anything other than the very truth of the existence or the future existence of that
event; or the certainty is observed subjectively and according to ourselves, and it lies in the
measure of our knowledge about this truth of present or future existence.

All things which exist or are acted upon under the sun — past, present, or future things
— always have the greatest certainty in themselves and objectively. This is true about
present and past things: since by the very fact that they are or have been, they cannot be or
have been nonexistent. Nor should it be doubted in regard to future things which, even if
not by the inevitable necessity of some fate, nevertheless must happen in the future accord-
ing to the plan of a sometime divine supervision and a sometime divine predetermination;
for unless whatever lies in the future will occur for certain, it is not clear in what way
the praise of the omniscience and omnipotence of the greatest Creator can remain undi-
minished. In addition, some people argue about how this certainty of future existence can
agree with dependency upon or independency of secondary causes; but since this issue has
nothing to do with our goal, we do not wish to touch on it.

A judgment of certainty made according to ourselves is not the same for all things
but varies in many ways, sometimes more and sometimes less. Consider those things
upon which it is so agreed that we can in no way doubt their existence or future existence
(this may happen through revelation, understanding, perception, experience, one’s own
observation, or some other way): such things delight in the greatest and absolute certainty.
All other things have a less perfect measure of certainty in our minds, greater or smaller
according as the probabilities — which urge that the thing exists, will exist, or has existed
— are greater or smaller.

For probability is a degree of certainty and differs from absolute certainty as a part
differs from the whole. If, for example, the whole and absolute certainty — which we
designate by the letter a or by the unity symbol 1 — is supposed to consist of five probabil-
ities or parts, three of which stand for the existence or future existence of some event, the
remaining two standing against its existence or future existence, this event is said to have
3/5 a or 3/5 certainty.

Therefore, a thing which has a larger part of certainty is called more probable than
another thing; although only that thing whose probability notably exceeds half the certainty
is called, out of common expression, positively probable. I say notably; for a thing whose
probability is about half the certainty is called dubious or doubtful. And so, that which
has 1/5 certainty is more probable that that which has 1/10 certainty, although neither is
positively probable.

That which has a very little part of certainty is possible; that which has no or infinitely
little certainty is impossible. Thus, that which has 1/20 or 1/30 certainty is possible.

That is morally certain whose probability nearly equals the whole certainty, so that a
morally certain event cannot be perceived not to happen: on the other hand, that is morally
impossible which has merely as much probability as renders the certainty of failure moral
certainty. Thus, if one thing is considered morally certain which has 999/1000 certainty,
another thing will be morally impossible which has only 1/1000 certainty.
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That is necessary which cannot fail to exist in the present, to exist in the future, or to
have existed in the past. This is brought about either by physical necessity: in this way it
is necessary for fire to burn, for a triangle to have three angles equal to two right angles,
for a full moon which occurs while the moon is at a nodal point to be subject to eclipse;
or this is brought about by hypothetical necessity, by which every single thing — as long
as it exists or has existed, or is supposed to exist or to have existed — must exist or have
existed: in this sense it is necessary that Peter writes, Peter whom I know and suppose to
write; or finally, this is brought about by the necessity of agreement or understanding: in
this way a dice-thrower who has thrown a six with the die is said to win necessarily if it
had been so previously agreed among the players that victory depends on the throw of a
six.

A contingent thing (both an independent thing which relies on the judgment of a ratio-
nal being and a fortuitous or lucky thing which relies on chance or fortune) is something
which may not exist now, not exist in the future, or not have existed in the past; I mean
things which have a remote but not imminent possibility of occurring: for contingency does
not always completely exclude necessity, even with regard to secondary causes. I explain
this statement in the following examples: It is most certain that when the die’s position,
velocity, distance from the dice-table, and momentum with which it left the hand of the
thrower have been given, the die cannot fall otherwise than it actually does fall; likewise,
it is most certain that when the present constituency of the air has been given, when the
mass, position, movement, direction, and velocity of the winds, vapors, and clouds have
been given, and when the laws of mechanics have been given — laws according to which
all these things mutually affect each other in turn — the storm of tomorrow cannot occur
in any other way than the way in which it will actually occur; so that these effects fol-
low from their own closely related causes with no less necessity than the phenomena of
eclipses follow from the movement of the luminary bodies: and nevertheless, experience
has maintained that eclipses alone are calculated by necessities, but that the fall of the die
and the future occurrence of a storm are calculated by contingencies. There is no reason
for this fact other than that those data which are supposed to determine later events (and
especially such data which are in nature) have nevertheless not been learned well enough
by us. If they have been learned well enough by us, the studies of geometry and physics
have not been well enough refined so that these effects can be calculated from data in the
same way that eclipses can be computed and predicted from the observed principles of
astronomy. Therefore, just as much as the fall of a die and the occurrence of a storm, these
very eclipses — before astronomy had been advanced to such a degree of perfection —
needed to be referred among future contingencies. Hence it follows that what can seem to
be to one person at one time a contingent event may be at another time to another person
(indeed, to the very same person) a necessary event after its causes have been learned; so
that contingency especially may also depend upon our knowledge, in so far as we see no
objection for a thing’s non-existence or non-future-existence although here and now, by
dint of a cause close but unknown to us, it exists or may happen out of stark necessity.

Good fortune (un Bonheur, ein Glück) and adverse fortune (un Malheur, ein Unglück)
are said to occur when good or bad happens to us: not any at all good or bad, but a good or
bad which was more likely — or at least just as likely — not to have happened to us. And
so, fortune is the better or the worse the less likely it was that the event would turn out to
be good or bad.

Thus, he is remarkably fortunate who has found a treasure by digging up the earth,
because this does not happen once in digging a thousand times. If twenty deserters —
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one of whom must be killed by hanging as an example for the others — vie for life in
a game of chance, those nineteen are not properly called fortunate who have obtained a
kinder fate; but rather the twentieth is called most unfortunate to whom the black fate has
fallen. And so, your friend who has escaped unharmed from a battle in which a very small
part of the battlers dies should not be declared fortunate, unless, perhaps, you think that he
should be called fortunate because he was singled out by the good luck which is basic to
the preservation of life.

CHAPTER II
About Science & Conjecture, About the Art of
Conjecturing. About Proofs of Conjectures.
Certain General Axioms Pertaining Hereto.

We are said to know or to understand those things which are certain and beyond doubt;
all other things we are said merely to conjecture or guess about.

To conjecture about something is to measure its probability; and therefore, the art of
conjecturing or the stochastic art is defined by us as the art of measuring as exactly as
possible the probabilities of things with this end in mind: that in our decisions or actions
we may be able always to choose or to follow what has been perceived as being superior,
more advantageous, safer, or better considered; in this alone lies all the wisdom of the
philosopher and all the discretion of the statesman.

Probabilities are estimated by the number and the weight of proofs, proofs which in any
way ascertain or show that some thing exists, will exist, or has existed. Moreover, I judge
the power of a proof by its weight.

Proofs themselves are either intrinsic, usually artificial, and taken from places relating to
the thing’s cause, effect, subject, accessory, or sign, or relating to any other circumstance
which seems to have any connection whatsoever with proving the thing; or proofs are
extrinsic, not artificial, and are derived from the authority and testimony of men. Take
this example: Titius is found dead on the road and Maevius is accused of committing the
murder; the proofs for the accusation are these:

(1) That it is well-known that Maevius regarded Titius with hatred (a proof for cause,
for this hatred itself could have driven Maevius to kill.)

(2) That upon being interrogated, Maevius turned pale and answered apprehensively
(a proof for effect; for paleness and fear itself could have proceeded from his own
cognizance of having committed a crime.)

(3) That a bloodstained sword was found in Maevius’ house (sign).
(4) That on the day that Titius was slain on the road, Maevius traveled over that same

road (circumstance of place and time.)
(5) And finally, that Gaius alleges that on the day before the murder he had interceded

in a dispute between Titius and Maevius (testimony.)
Moreover, before we draw nearer to our purpose — which is to show how one should

use these proofs for conjectures in measuring probabilities — it is desirable to set forth
some general rules or axioms which simple thought is wont to dictate to any man of sound
mind, and which are also continually observed by more judicious men in the experience of
civil life.

1. There must not be a place for conjectures in things about which one may attain
complete certainty. Therefore, it would be useless if an astronomer, from the fact that he
perceived eclipses occurring two or three times a year, chose to prophesy whether or not
some full moon is subject to eclipse, for one can obtain the truth of the matter by means of
definite calculation. And so, if a thief, upon being interrogated, answered that he sold the
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stolen object to Sempronius, the case would be handled foolishly by a judge who—from
the expression and tone of the man as he talked, or from the quality of the object stolen in
the theft, or from some other circumstances of the theft—chooses to conjecture about the
probability of the statement even when Sempronius is at hand; for the judge will be able to
learn from Sempronius about the whole matter with certainty and with ease.

2. It is not enough to weigh one or another proof, but everything must be sought out
which can come within our realm of knowledge and which appears to have any connection
at all with proving the thing. For example: three ships set sail from port; after some time
it is announced that one of them suffered shipwreck; which one is guessed to be the one
that was destroyed? If I considered merely the number of ships, I would conclude that
the misfortune could have happened to each of them with equal chance; but because I
remember that one of them had been eaten away by rot and old age more than the others,
had been badly equipped with masts and sails, and had been commanded by a new and
inexperienced captain, I consider that this ship, more probably than the others, was the one
to perish.

3. One must attend not only to those things which serve to prove the thing, but also to
all those things which can be adduced to prove the opposite of the thing, so that after both
sides are weighed it will be clear which of them has more weight. It is asked about a friend
who has been away from his homeland for a very long time whether he can be declared
dead. These proofs serve for the affirmative: that although every effort has been made,
nothing has become known of him for all of twenty years; that men who wander about
are exposed to a great many perils of life, perils from which men who remain at home
are exempt; that therefore he may have ended his life in the sea, he may have died on the
road, he may have been killed in battle, he may have perished from disease or misfortune
in some place where he was known by no one; that if he were among the living, he must
now be of that age which few men reach even if they have lived at home; that he would
have written even if he dwelled along the outermost regions of India because he knew
that an inheritance awaited him at home; and there are other proofs. However, one must
not acquiesce to these proofs, but rather the following proofs, which support the negative,
must be set forth in opposition: It is well-known that the man was lazy, took hold of the
pen painfully, and held his friends in contempt; perhaps he was led away as a captive of
the Barbarians so that he was not able to write; perhaps also he wrote several times from
India, but the letters were lost due either to the carelessness of the letter-carriers or to the
shipwreck of the mailboat; finally, it is well-known that many people have remained away
for a longer time and nevertheless have finally returned safe and sound.

4. Remote and general proofs are sufficient for judging about general events; but for
forming conjectures about specific events, more closely related and special proofs must
be added, if only they can be obtained. And so, when it is asked abstractly how much
more probable it is that a young man of twenty years will outlive an old man of sixty
years than that the latter will outlive the former, there is nothing besides the difference of
age and years which you can consider; but when the conversation is particularly about the
specific young man Peter and the specific old man Paul, one must attend moreover to their
individual complexions and the concern with which each looks after his own health. For
if Peter is sickly, if he indulges in his fancies, if he lives intemperately, it can happen that
Paul, although more advanced in age, may nevertheless most reasonably be able to foster
hope for a longer life.

5. In uncertain and dubious matters our actions should be suspended until more light
has come to bear upon the matter; but if the occasion allows no delay of action, the choice



TRANSLATIONS FROM JAMES BERNOULLI 7

that must be made from two alternatives is that which seems more suitable, safer, wiser, or
more probable, although neither choice is positively suitable, safe, wise or probable. Thus,
in a fire which has arisen and from which you cannot otherwise escape except by leaping
headlong either from the top of the roof or from a lower story of the building, it will prove
better to choose the latter because it is safer, although leaping from either place is neither
purely safe nor effected without the danger of injury.

6. That which can be useful on some occasion and harmful on no occasion is to be
preferred to that which is useful on no occasion and harmful on no occasion: therefore, it
aims at this statement which I quote in our vernacular: hilft es nicht/ so schadet es nicht.1

This sentence follows immediately from the preceding one; for what can be useful is better,
safer, and more desirable — with other things being equal — than that which cannot be
useful.

7. One must not decide about the value of human actions from their outcomes; since
the most stupid actions sometimes enjoy the best success, and, on the other hand, the most
prudent actions occasionally enjoy the worst success. Hence, the poet writes: I hope that
he is without success who thinks that deeds must be judged by their outcomes. And so, if
someone undertakes to throw three sixes with three dice on his first turn, even if he perhaps
wins, he is still considered to have acted stupidly. One must censure the perverse judgments
of the common rabble by whom a man is considered more excellent the more fortunate he
is; nay, as far as the common rabble are concerned, a crime which brings prosperity and
happiness is usually called a virtue. Ovennus wrote elegantly about this:

For that which turned out happily, though it was ill-advised,
Ancus is considered wise, Ancus who was merely a fool;

For that which had been wisely foreseen, if it turns out badly,
Cato himself will be a fool in the judgment of the people.

The Book of Epigrams, 11. 216 ff.
8. In our judgments we must beware lest we attribute to things more than is fitting to

attribute, lest we consider something which is more probable than other things to be abso-
lutely certain, and lest we foist this more probable thing upon other people as something
absolutely certain. For one must see to it that the credibility which we attribute to things
is proportional to the degree of certainty which every single thing possesses and which is
less than absolute certainty to the same degree that the probability of the thing is less than
1; as we put it in our vernacular: Man muß ein jedes in seinem Wert und Unwert beruhen
lassen.2

9. Because it is still rarely possible to obtain total certainty, necessity and use desire
that what is merely morally certain be regarded as absolutely certain. Hence, it would be
useful if, by the authority of the magistracy, limits were set up and fixed concerning moral
certainty. I mean, if it were fixed whether 99/100 certainty would suffice for producing
moral certainty, or whether 999/1000 certainty would be required. Note that then a judge
could not be biased, but he would have a guideline which he would continually observe in
passing judgment.

Everyone educated by the daily experience of things can, by his own exertion, pound
out still more axioms of this kind; we can hardly remember all of them, however, outside
of a given situation.

1If it doesn’t help, it doesn’t harm.
2One must let each thing lie in its worth and worthlessness.
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CHAPTER III
About Various Kinds of Proofs and How Their Weights

Should be Valued For Reckoning The Probabilities of Things

He who examines various proofs upon which an opinion or conjecture is based must
notice a threefold difference among them: for some of them necessarily exist and indicate
the thing contingently; others exist contingently and indicate the thing necessarily; and still
others both exist and indicate the thing contingently. I clarify this difference in examples:
My brother has not sent a letter to me for a long time; I wonder whether sloth or business
are to blame; I also am afraid that he may perhaps be dead. Here there are three proofs for
the interrupted writing: Sloth, Death, and Business. The first of these exists necessarily—
by hypothetical necessity, since I know and assume my brother to be lazy—but indicates
the interrupted writing contingently; for this sloth did not necessarily prevent him from
writing. The second proof exists contingently—for my brother may still be alive—but
indicates the interrupted writing necessarily, since a dead man cannot write. The third
proof exists contingently, for he may or may not have business, and if he has any business,
it is not necessarily such that it prevents him from writing.

Another example: I take a dice-player to whom the prize must be given, according to
the rule of the game, if he throws seven points with two dice, and I wish to guess how much
hope he has of winning. Here the proof for victory is the throw of seven, a throw which
indicates the victory necessarily (by the necessity, of course, of the agreement entered upon
by the players), but exists only contingently; for other numbers of points beside seven are
able to fall.

Beyond this distinction among proofs there is also another difference one should ob-
serve: some proofs are pure and others are mixed. I call those pure which in certain cases
prove the thing in such a way that in other cases they prove nothing positively; I call those
mixed which in some cases prove the thing in such a way that in other cases they prove
the opposite of the thing. Take this example: In a mob of rowdy men a man is stabbed
with a sword, and, according to the trusted testimony of worthy men who are observing the
mob from a distance, it is agreed that the person who committed the crime was wearing a
black cloak. If among the rowdy men Gracchus and three others are found clad in tunics
of that color, this tunic is a proof that the murder was committed by Gracchus, but it is
mixed: since in one case it proves his guilt and in three cases it proves his innocence, in
that, obviously, the murder was perpetrated either by him or by one of the other three men,
and the murder could not have been perpetrated by one of the three men unless Gracchus
is supposed innocent of the crime. But if indeed Gracchus grows pale in the subsequent
hearing, this pallor of his face is a pure proof, for it proves Gracchus’s guilt if it arises from
a guilty conscience, but it does not in turn prove his innocence if it springs from another
source: for it may happen that Gracchus grows pale for another reason but nevertheless is
still the murderer.

From what has been said previously, it is clear that the power which any proof has
depends upon a multitude of cases in which it can exist or not exist, in which it can indicate
or not indicate the thing, or even in which it can indicate the opposite of the thing. And so,
the degree of certainty or the probability which this proof generates can be computed from
these cases by the method discussed in the first part just as the fates of gamblers in games
of chance are accustomed to be investigated.

In order to show this, we assume that b is the number of cases for which it can happen
that some proof exists; that c is the number of cases for which it can happen that this proof
does not exist; and that a = b + c. Likewise, we assume that � is the number of cases
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for which it can happen that it indicates the thing; that  is the number of cases for which
it can happen that it does not indicate the thing or that it indicates its opposite; and that
� = � + . Moreover, I assume that all cases are equally possible, or that they all can
happen with equal ease; for in other cases discretion must be applied, and any case which
occurs rather readily must be counted as many times as it occurs more readily than others.
For example, a case which occurs three times more readily than the other cases must be
counted as three cases, each of which can occur with ease equal to that of any of the other
cases.

1. And so, if a proof exists contingently and indicates the thing necessarily, there will
be, from the above assertions, b cases for which it can exist and therefore indicate the thing
(or 1), and c cases for which it cannot exist and so does not indicate anything. This yields
(by Corollary I, Prop. III of the first part) b⋅1+c⋅0a = b

a , so that such a proof proves b
a of the

thing or of the certainty of the thing.
2. Next, let the proof exist necessarily and indicate the thing contingently: there will

be, by hypothesis, � cases for which it can happen that it indicates the thing, and  cases
for which it can happen that it does not indicate the thing or indicates the opposite of the
thing; this now makes the force of the proof for proving the thing �⋅a+⋅0

� = �
� . Therefore,

a proof of this kind proves �
� of the certainty of the thing, and moreover if it is mixed, it

proves in the same way ⋅1+�⋅0
� = 

� of the certainty of the opposite of the thing.
3. Suppose that some proof exists contingently and indicates the thing contingently, and

suppose I immediately assume that it exists (in which case, by what has been shown above,
it is known to prove �

� of the thing and, if it is mixed, � of the opposite): since there are
b cases for which it can exist and c cases for which it cannot exist and hence can prove

nothing, this proof will have for proving the thing the value
b( �� )+c(0)

a = b�
a� ; and if it is

mixed, it will have for proving the opposite value
b( � )+c(0)

a = b
a� .

4. Furthermore, if several proofs are at hand for proving the same thing and if they are
as shown below:

Proof: 1st. 2nd. 3rd. 4th 5th ⋅ ⋅ ⋅
The Total Number of Cases: a d g p s

Proving the Thing: b e ℎ q t
Not Proving, Or Proving the Opposite: c f i r u

the power of the proof resulting from the union of all the proofs is estimated in the follow-
ing way: First, let all the proofs be pure; the weight of the first proof will be separately
equal to b

a = a−c
a (or �

� if it indicates the thing contingently, or b�
a� if it also exists con-

tingently.) Then, let another proof be added which proves the thing (or 1) in e = d − f
cases and proves nothing in f cases; in these last f cases, only the weight of the first proof,
which has been shown to be a−c

a , is effective. The weight produced from both arguments

will be
(d−f)⋅1+f( a−ca )

d = ad−cf
ad = 1 − cf

ad . Now, let a third proof be joined; there will
be ℎ or g − i cases which prove the thing, and i cases for which there is no proof and for
which only the two earlier proofs retain their power of proof ad−cf

ad . Whence the force of
all three is

(g − i) ⋅ 1 + i
(
ad−cf
ad

)
g

=
adg − cfi
adg

= 1− cfi

adg
.

And so on successively if more proofs are at hand. From this it is clear that all these proofs
joined together induce a probability which is less than the absolute certainty of the thing (or
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unity) by that part of unity arising from the division of the product of all the non-proving
cases by the product of all the cases in all the proofs.

5. Now let all the proofs be mixed: Since the number of proving cases of the first proof
is b, of the second e, of the third ℎ, etc., and since the number of proving-the-contrary cases
is c, f, i, etc., the probability of the thing to the probability of the opposite of the thing—
by force of the first proof alone—is as b is to c; and by force of the second proof alone is as
e is to f ; and by force of the third proof alone is as ℎ is to i; and so on. Whence it is clear
enough that the total force of proving the thing resulting from the union of all the proofs
is made up of the forces of all the individual proofs; i.e., it is clear that the probability of
the thing to the probability of the opposite of the thing is in the ratio beℎ etc. to cfi etc.,
so that the absolute probability of the thing is beℎ

beℎ+cfi , and the absolute probability of the

opposite of the thing is cfi
beℎ+cfi .

6. Moreover, let some proofs be pure (e.g., the first three) and some mixed (e.g., two
others.) First I consider only the pure ones which, by paragraph 4 above, prove adg−cfi

adg of

the certainty of the thing, lacking unity by cfi
adg . Therefore, there are, as it were, adg − cfi

cases in which these three proofs taken jointly prove the thing (or 1), and cfi cases in
which they prove nothing and in which they therefore yield a place for proving the thing to
the mixed proofs alone. Furthermore, these two mixed proofs—by the preceding paragraph
5—prove qt

qt+ru of the thing and ru
qt+ru of the opposite of the thing. And so the probability

of the thing resulting from all the proofs is3

(adg − cfi) ⋅ 1 + (cfi)
(

qt
qt+ru

)
adg

=
adgqt+ adgru− cfiru

adgqt+ adqru
= 1− cifru

adg(qt+ ru)
,

which is lacking from complete certainty or unity by the product of cfi
adg (the number by

which the probability of the thing resulting from the pure proofs lacks unity, according to
paragraph 4) and ru

qt+ru , the absolute probability of the opposite of the thing drawn from
the mixed proofs, according to the preceding paragraph 5.

7. But if besides the proofs which serve to prove the thing other pure proofs offer
themselves, proofs by which the opposite of the thing is advised, the proofs of both kinds
must be weighed separately according to the preceding rules in order that there then may
exist a ratio between the probability of the thing and the probability of the opposite of the
thing. Whence it must be noted that if the proofs adduced for each side are strong enough,
it can happen that the absolute probability of each side notably exceeds half the certainty;
i.e., that each of the alternatives is rendered probable, although relatively speaking one is
less probable than the other. And so it can happen that a thing has 2/3 certainty and its
opposite possesses 3/4 certainty; in this way each of the alternatives will be probable, but
nevertheless the thing is less probable than its opposite, and is the ratio 2/3 to 3/4, or 8 to
9.

I cannot conceal the fact here that in the specific application of these many rules, I
foresee many things happening which can often cause one to be badly mistaken if he does
not proceed cautiously in discerning proofs. For sometimes proofs can appear to be distinct
when they constitute, in fact, one and the same proof; or, in turn, they seem to be one proof
when they are, in fact, distinct proofs; also, in a proof such things are sometimes assumed
which make the proof of the contrary impossible; and so on. As an illustration of this fact I

3“. . . This formula is inaccurate. For the supposition q = 0 amounts to having one argument absolutely deci-
sive against the conclusion, while yet the formula leaves still a certain probability for the conclusion.” Todhunter
(1865).
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adduce only one or two examples: I assume in the example of Gracchus mentioned above
that the men who saw the brawl are trustworthy; that these men saw the murderer had red
hair; and that Gracchus was noted, along with two others, to have red hair, but that neither
of the other two was garbed in a black tunic. If now, from the evidence that three others
besides Gracchus were garbed in black and that two others besides Gracchus were noted
with red hair, someone wished to infer by paragraph 5 above that the probability of guilt
to the probability of innocence in Gracchus’s case is composed of the product 1/3 and
1/2—i.e., is 1/6—and hence that Gracchus is much more probably innocent than guilty,
he would be inferring very wrongly. For here there are not really two proofs but only one
and the same proof supported by the two simultaneous circumstances of the color of the
garments and the color of the hair. These two circumstances, when joined together in the
person of Gracchus alone, show for sure that no one else could have been the murderer.

Take another example: There is doubt about whether the date fixed on a certain contract
was fraudulently written in advance. This can be a proof for the negative: that the docu-
ment was signed by the hand of a Notary—i.e., a public and sworn person—for whom the
committing of this crime is very unlikely since he could not have done it without the great-
est danger to his honor and fortune; and on this account also, scarcely one out of fifty may
be found who would dare to perpetrate this kind of fraud. But proofs for the affirmative
can be the following: that the reputation of this Notary is spoken of very poorly; that he
could expect a lot of profit from this fraud; and finally, that he swears to such things which
have no probability—e.g., if he had written that someone lent another person 10,000 gold
pieces at the time when this someone, in the estimation of everyone, could scarcely have
had 100 gold pieces in all his worldly goods. Here, if you trust only in the proof supported
by the nature of the position of the undersignee, you could think that the probability of
the authenticity of the document is about 49/50. But if you weigh the contrary proofs,
you are bound to acknowledge that it could hardly happen that there is a mistake in the
document; and so, it is morally certain that fraud took place in this affair; that is, it is about
999/1000 probable. But now it must not be concluded that the probability of authenticity
to the probability of fraud, by paragraph 7, is in the ratio of 49/50 to 999/1000, i.e., in a
ratio of near equality: for by the very assumption that this Notary is of befouled reputation,
I am assuming also that he cannot be considered in the number of those 49 honest Notaries
who detest fraud, but rather that he is the fiftieth who does not have any scruples and who
serves faithlessly in his office. In short, this assumption razes and destroys all the force of
that proof which at one time could have shown the authenticity of the document.

CHAPTER IV
About the two Ways of investigating the Numbers of Cases.

How one must view the Way which is based on Trials.
The Main Problem for the Way based on Trials.

And other Matters pertaining hereto.

It has been shown in the preceding chapter — from the numbers of cases in which
proofs of any given thing can exist or not exist, can indicate or not indicate or even indicate
the opposite — how the strengths of these proofs and the probabilities proportional to
them can be calculated and estimated. And there we concluded that for correctly forming
conjectures about anything at all, nothing is required other than that the number of these
cases be accurately determined and that it be found out how much more easily some cases
can happen than others. But here, finally, we seem to have met our problem, since this may
be done only in a very few cases and almost nowhere other than in games of chance the
inventors of which, in order to provide equal chances for the players, took pains to set up
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so that the numbers of cases would be known and fixed for which gain or loss must follow,
and so that all these cases could happen with equal ease. For in several other occurrences
which depend upon either the work of nature or the judgment of men, this by no means is
the situation. And so, for example, the numbers of cases in dice are known: for in each die
there are clearly as many cases as there are sides, and they are all equally likely. Because
of the similarity of the sides and the balanced weight of the die, there is no reason why
one of the sides should be more prone to fall than another, as there would be reason if the
sides were of different shapes or if the die was made of a material heavier on one side than
on another. And so likewise, the numbers of chances for drawing forth a white or black
pebble from an urn are known, and it is known that all chances are equally likely: for the
numbers of pebbles of each kind are known and determinate, and there is no reason why
this pebble or that pebble should come forth rather than any other one.

But what mortal will ever determine, for example, the number of diseases — i.e., the
number of cases — which are able to seize upon the uncountable parts of the human body
at any age and which can inflict death upon us? And what mortal will ever determine how
much more likely this disease than that disease, pestilence than dropsy, dropsy than fever
will destroy a man so that then a conjecture can be formed about the relationship between
life and death in future generations? Who likewise will reckon up the innumerable cases of
mutations to which the air is daily exposed, so that he can then guess after any given month,
not to mention after any given year, what the constitution of the air will be? Again, who
has well enough examined the nature of the human mind or the amazing structure of our
body so that in games which depend wholly or in part on the acumen of the former or the
agility of the latter, he could dare to determine the cases in which this player or that can win
or lose? For these and other such things depend upon causes completely hidden from us,
and since moreover these things will forever deceive our effort because of the innumerable
variety of their combinations, it would clearly be unwise to wish to learn anything in this
way.

But indeed, another way is open to us here by which we may obtain what is sought;
and what you cannot deduce a priori, you can at least deduce a posteriori — i.e., you
will be able to make a deduction from many observed outcomes of similar events. For it
must be presumed that every single thing is able to happen and not to happen in as many
cases as it was previously observed to have happened and not to have happened in like
circumstances. For if, for example, an experiment was once conducted on 300 men of the
age and constitution of which Titius is now, and you observed that 200 of them had died
before passing the next ten years and that the others had further prolonged their lives, you
could safely enough conclude that the number of cases in which Titius must pay his debt to
nature within the next ten years is twice the number of cases in which he can pay his debt
after ten years. And so, if anyone has observed the weather for the past several years and
has noted how many times it was calm or rainy; or if anyone has judiciously watched two
players and has seen how many times this one or that one has emerged victorious: in this
way he has detected what the ratio probably is between the number of cases in which the
same events, with similar circumstances prevailing, are able to happen and not to happen
later on.

And this empirical way of determining the numbers of cases by trials is neither new
nor unusual, for the celebrated author of the Ars Cogitandi,4 a man of great insight and
intelligence, prescribes a similar method in Chapter 12 & ff. of the last part of this work;

4The author of this work which first appeared in 1664 in Paris is anonymous. [This is not true. The author is
Arnauld.–RJP]
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and everyone constantly observes the same thing in daily life. Further, it cannot escape
anyone that for judging in this way about any event at all, it is not enough to use one or two
trials, but rather a great number of trials is required. And sometimes the stupidest man —
by some instinct of nature per se and by no previous instruction (this is truly amazing) —
knows for sure that the more observations of this sort that are taken, the less danger will be
of straying from the mark. Moreover, although this fact is known naturally to all, a proof
in which this is evinced from first principles is by no means obvious, and therefore it is
incumbent upon me to give such a proof here, since I think I would be doing too poor a job
if I stood still in proving this one thing of which no one is aware.

Something further must be contemplated here which perhaps no one has thought about
till now. It certainly remains to be inquired whether after the number of observations
has been increased, the probability is increased of attaining the true ratio between the
numbers of cases in which some event can happen and in which it cannot happen, so that
this probability finally exceeds any given degree of certainty; or whether the problem has,
so to speak, its own asymptote — that is, whether some degree of certainty is given which
one can never exceed, so that however many observations are made, we can never be more
than 1/2 or 2/3 or 3/4 certain that we have detected the true ratio of the cases. So that
what I mean may be seen in an example, I assume that in a certain urn there are hidden
— without your knowledge — three thousand white pebbles and two thousand black ones,
and that you, in order to investigate their numbers by experiments, draw one pebble after
another (replacing each time that pebble which you drew out before you draw the next one,
so that the total number of pebbles in the urn is not diminished), and that you observe how
often a white pebble comes out and how often a black one comes out. It is asked whether
you can do this so many times that it will be ten times, a hundred times, a thousand times,
etc., more probable that the numbers of times in which you choose a white pebble and in
which you choose a black pebble will have the same 3 : 2 ratio which the numbers of white
and black pebbles actually have, than that these numbers will have any other ratio different
from 3 : 2. For if this is not the case, I admit that we will be through with our attempt
at exploring the numbers of cases by trials. But if this is the case and if, finally, moral
certainty is reached in this way (I will show in the following chapter how this is actually
done), we will have investigated the numbers of cases a posteriori almost as accurately as
if they had been known to us a priori.

And according to Axiom 9 Chapter II, this is amply sufficient in civil life, where what is
morally certain is considered as absolutely certain in order to form our conjectures in any
situation that may arise no less scientifically than in games of chance. And in fact, if, for
example, we replace the urn by the atmosphere or the human body (both of which contain
fuel for various mutations and diseases as the urn contains pebbles), we will in the same
way be able to determine by observations how much more easily this or that event can take
place in the regions of the atmosphere or the human body.

However, lest these remarks be misunderstood, it must be noted that I do not wish for
this ratio, which we undertake to determine by trials, to be accepted as precise and accurate
(for then the contrary would result from this, and it would be the more unlikely that the true
ratio had been found the greater the number of observations made); but rather, the ratio is
taken in some approximation: i.e., it is bounded by two limits. Moreover, these limits can
be set up as close together as one wishes. Indeed, if in the example of the urn mentioned
above we take two ratios — e.g., 301/200 & 299/200, or 3001/2000 & 2999/2000, etc.
— one of which is a little larger, the other a little smaller than 1 1

2 , it will be shown that for
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any given probability, it is more likely that the ratio obtained by frequently repeated trials
will fall within these limits of 1 1

2 than outside these limits.
Therefore, this is the problem which I now set forth and make known after I have already

pondered over it for twenty years. Both its novelty and its very great usefulness, coupled
with its just as great difficulty, can exceed in weight and value all the remaining chapters
of this thesis. However, before I go into its solution, let me briefly do away with objections
which some learned men have placed in opposition to these ideas.

1. First, they say in objection that the ratio of pebbles is of one kind and that the
ratio of diseases or mutations of the air is of another kind; that the number of pebbles is
determinate but the number of diseases or mutations is indeterminate and uncertain. To this
I answer that with respect to our knowledge both numbers are taken to be equally uncertain
and indeterminate. But anything that is inherently uncertain and indeterminate cannot be
understood by us any more than it can be understood that something has been and has not
been created by God: for whatever God has made, by this very fact of creation He has also
made it determinate.

2. Secondly, they say in objection that the number of pebbles is finite but the number
of diseases, etc., is infinite. To this I answer that the latter number is vastly huge rather
than infinite. But let us grant, for the sake of argument, that it is infinite; it is known that
there also can exist between two infinite numbers a determinate ratio which is expressible
by finite numbers either accurately or, at the very least, as closely as one wishes. Of such a
kind, certainly, is the determinate ratio of the circumference of a circle to its diameter, a ra-
tio which cannot be expressed accurately except by the infinitely continued decimal places
of Ludolphus , but which, nevertheless, is bounded by Archimedes, Metius, and Ludolph
himself5 within limits which are very sufficient for practical application. Whence, a ratio
between two infinite which is expressible as accurately as one wants by finite numbers may
also be determined by finite trials.

3. Thirdly, they say that the number of diseases does not remain constantly the same, but
new diseases sprout up every day. To this I answer that we cannot deny that the diseases
may be multiplied by the passage of time, and it is certain that he who would wish to
conclude about antediluvian times on the basis of today’s observations would grossly error
from the truth. But then nothing follows other than that sometimes new observations must
be made, just as new observations would have to be made in the case of the pebbles if their
number is assumed to be changed in the urn.

CHAPTER V
The Solution to the Preceding Problem

In order to explain this long proof with as much brevity and clarity as possible, I will
try to reduce everything to abstract mathematics from which I draw forth the lemmas that
follow. After these lemmas have been shown, their stark application will yield the other
things.

Lemma 1: Take any series of natural numbers 0, 1, 2, 3, 4, etc., the last and greatest
member of which is r + s and an intermediate term of which is r. r is bounded on either
side by r − 1 and r + 1. If this series is continued until the last term becomes a multiple
of the number r + s (I mean until it becomes nr + ns, n a natural number), and if the
intermediate terms r, r + 1, and r − 1 are increased in the same way so that they become

5Archimedes (c. 287 – 212 BC); Adriaen Anthonisz — whose pseudonym was Metius — (1527–1607 AD);
Ludolph van Ceulen (1540–1610 AD): these are the people Bernoulli is referring to.
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nr, nr + n, and nr − n respectively, the original series initially taken:

0, 1, 2, 3, 4, . . . , r − 1, r, r + 1, . . . ,

is changed into this series:

0, 1, 2, 3, 4, . . . , nr − n, . . . , nr, . . . , nr + n, . . . , nr + ns.

Indeed, with an increasing value of n, the number of terms greater than nr up to and
including nr+ n (= the number of terms less than nr down to and including nr− n) will
increase, as will the number of terms greater than nr+n up to an including nr+ns and the
number of terms less than nr − n down to and including 0. However, no matter how large
an n is taken, the number of terms greater than nr + n up to and including nr + ns will
never be more than (s− 1) times the number of terms greater than nr up to and including
nr+ n; and also, the number of terms between nr− n down to and including 0 will never
be more than (r−1) times the number of terms less than nr down to and including nr−n.
For after performing a subtraction, it is clear that the number of terms greater than nr + n
up to and including nr + ns is ns − n; and the number of terms less than nr − n down
to and including 0 is nr − n. And it is always true that ns − n : n as s − 1 : 1, and that
nr − n : n as r − 1 : 1.6

Lemma 2: The number of terms in the expansion of the binomial (r + s) raised to any
positive integral power is one more than the value of that power. For there are three terms
in the expansion of (r+ s)2, four terms in the expansion of (r+ s)3, five terms in (r+ s)4,
etc., as is known.

Lemma 3: In any expansion of the binomial (r+s) raised to a power which is a multiple
of the binomial — that is, raised to a power t where t = nr + rs, n a natural number —
if some terms precede and other terms follow a certain term M such that the number of
all those preceding is in the ratio to the number of all those following as s is to r, (or if,
restating this, the exponents of the r and of the s terms inM are in the ratio r : s), then this
term M will be the largest one in the expansion, and the closer a term is to M , the larger
is its value. Moreover, the ratio between this term M and another term V a given distance
from M is smaller than the ratio between V and another term W the same distance away
from V .7

Proof 1: It is known by mathematicians that the binomial (r + s) raised to the power
nt — i.e., (r + s)nt — is expressed by the following sum:

xnt +
nt

1
⋅ rnt−1 ⋅ s1 +

nt(nt− 1)

1 ⋅ 2
rnt−2s2

+
nt(nt− 1)(nt− 2)

1 ⋅ 2 ⋅ 3
rnt−3s3 + ⋅ ⋅ ⋅+ nt

1
⋅ r ⋅ snt−1 + snt;

in this expansion, the exponent of one part of the binomial — r — is gradually diminished,
the exponent of the other part — s — is gradually increased, the coefficient of the second
and the next to last term is nt

1 , of the third and (nt− 1)st term is nt(nt−1)
1⋅2 , of the fourth and

(nt − 2)nd term is nt(nt−1)(nt−2)
1⋅2⋅3 , and so on. And since, by Lemma 2 above, the number

of all the terms not including M is nt (= nr + ns), and since by hypothesis the ratio of
the number of terms preceding M to the number of terms following M is the ratio s to r,

6Bernoulli is assuming the reader is aware that the number of terms greater than nr up to and including
nr + n = the number of terms less than nr down to and including nr − n = n.

7i.e., (r + s)nr+ns =rnr+ns +
(nr+ns

1

)
r(nr+ns−1)s1 + ⋅ ⋅ ⋅+M + ⋅ ⋅ ⋅+ V + ⋅ ⋅ ⋅+W + ⋅ ⋅ ⋅

+snr+ns ⇒ M
V

< V
W

.
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the number of terms which precede M is ns and the number of terms which follow M is
nr. Whence, according to the law of binomial expansion, the term M will be:

nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (nr + 1)rnrsns

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ ns
,

or, equivalently
nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (ns+ 1)rnrsns

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ nr
.

Similarly, the terms nearest to M are:

on the left: on the right:

L1 =
nt(nt− 1) ⋅ . . . ⋅ (nr + 2)rnr+1sns−1

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (ns− 1)
R1 =

nt(nt− 1) ⋅ . . . ⋅ (ns+ 2)rnr−1sns+1

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (nr − 1)

L2 =
nt(nt− 1) ⋅ . . . ⋅ (nr + 3)rnr+2sns−2

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (ns− 2)
R1 =

nt(nt− 1) ⋅ . . . ⋅ (ns+ 3)rnr−2sns+2

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (nr − 2)

After suitably reducing the coefficients and the pure terms by common divisors, it will be
clear that M is to L1 as (nr + 1)s is to (ns)r; L1 is to L2 as (nr + 2)s is to (ns − 1)r;
etc.; and M is to R1 as (ns + 1)r is to (nr)s; R1 is to R2 as (ns + 2)r is to (nr − 1)s;
etc. But it is also clear that (nr + 1)s > (ns)r; (nr + 2)s > (ns − 1)r; etc.; and that
(ns + 1)r > (nr)s; (ns + 2)r > (nr − 1)s; etc. Therefore, M > L1 > L2 > ⋅ ⋅ ⋅ ; and
M > R1 > R2 > ⋅ ⋅ ⋅ . QED.

Proof 2: It is clear that the ratio nr+1
ns is less than the ratio nr+2

ns−1 : therefore, if both
ratios are multiplied by s

r , we have that

(nr + 1) ⋅ s
ns ⋅ r

<
(nr + 2) ⋅ s
(ns− 1) ⋅ r

.

Similarly, it is obvious that ns+1
nr < ns+2

nr−1 : and so, if both quantities are multiplied by r
s ,

we have that
(ns+ 1) ⋅ r
nr ⋅ s

<
(ns+ 2) ⋅ r
(nr − 1) ⋅ s

.

But
M

L1
=

(nr + 1) ⋅ s
ns ⋅ r

and
L1

L2
=

(nr + 2) ⋅ s
(ns− 1) ⋅ r

;

likewise,
M

R1
=

(ns+ 1) ⋅ r
nr ⋅ s

and
R1

R2
=

(ns+ 2) ⋅ r
(nr − 1) ⋅ s

.

And it can be concluded in the same way about all the other ratios in which we are inter-
ested. Therefore, the ratio between the largest termM and another term V a given distance
from M is smaller than the ratio between V and another term W the same distance away
from V . QED.

Lemma 4: In the expansion of a binomial whose exponent is nt, the number n can be
chosen such that the ratio of M to L and the ratio of M to Λ — L and Λ being the nth term
away from M on the left and right respectively — will be greater than any given ratio.

Proof: Since in the preceding lemma M was found to be

nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (nr + 1)rnrsns

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ ns
,

or, equivalently
nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (ns+ 1)rnrsns

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ nr
,
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according to the law of expansion the terms L and Λ are as follows:

L =
nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (nr + n+ 1)rnr+nsns−n

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (ns− n)

and

Λ =
nt(nt− 1)(nt− 2) ⋅ . . . ⋅ (ns+ n+ 1)rnr−nsns+n

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ . . . ⋅ (nr − n)
.

After making a suitable reduction by common divisors, we obtain the result that

M

L
=

(nr + n)(nr + n− 1)(nr + n− 2) ⋅ . . . ⋅ (nr + 1)sn

(ns− n+ 1)(ns− n+ 2)(ns− n+ 3) ⋅ . . . ⋅ (ns)rn

and
M

Λ
=

(ns+ n)(ns+ n− 1)(ns+ n− 2) ⋅ . . . ⋅ (ns+ 1)rn

(nr − n+ 1)(nr − n+ 2)(nr − n+ 3) ⋅ . . . ⋅ (nr)sn
.

Rewriting these two expressions after equally distributing an s (or an r) in the first n
factors of the numerator and an r (or an s) in the first n factors of the denominator, and
hence omitting the rn and sn terms, we obtain:

M

L
=

n factors︷ ︸︸ ︷
s(nr + n) ⋅ s(nr + n− 1) ⋅ s(nr + n− 2) ⋅ . . . ⋅ s(nr + 1)

r(ns− n+ 1) ⋅ r(ns− n+ 2) ⋅ r(ns− n+ 3) ⋅ . . . ⋅ r(ns)︸ ︷︷ ︸
n factors

=
(nrs+ ns)(nrs+ ns− s)(nrs+ ns− 2s) ⋅ . . . ⋅ (nrs+ s)

(nrs− nr + r)(nrs− nr + 2r)(nrs− nr + 3r) ⋅ . . . ⋅ (nrs)
and

M

Λ
=

n factors︷ ︸︸ ︷
r(ns+ n) ⋅ r(ns+ n− 1) ⋅ r(ns+ n− 2) ⋅ . . . ⋅ r(ns+ 1)

s(nr − n+ 1) ⋅ s(nr − n+ 2) ⋅ s(nr − n+ 3) ⋅ . . . ⋅ s(nr)︸ ︷︷ ︸
n factors

=
(nrs+ nr)(nrs+ nr − r)(nrs+ nr − 2r) ⋅ . . . ⋅ (nrs+ r)

(nrs− ns+ s)(nrs− ns+ 2s)(nrs− ns+ 3s) ⋅ . . . ⋅ (nrs)
.

But these ratios will be infinitely large when the number n is taken to be infinite; for
then the numbers 1, 2, 3, . . . , etc. up to (but not including) n become negligible, and the
numbers nr ± n∓ 1, 2, 3, etc., and ns∓ n± 1, 2, 3, etc., have the same value as nr ± n
and ns∓ n respectively, so that by dividing through by n one has that

M

L
=

(rs+ s)(rs+ s)(rs+ s) ⋅ . . . ⋅ (rs)
(rs− r)(rs− r)(rs− r) ⋅ . . . ⋅ (rs)

and
M

Λ
=

(rs+ r)(rs+ r)(rs+ r) ⋅ . . . ⋅ (rs)
(rs− s)(rs− s)(rs− s) ⋅ . . . ⋅ (rs)

.

It is clear that both these quantities above are made up of the terms rs+s
rs−r or rs+r

rs−s as their
factors. But the number of these terms is n — i.e., infinite — since the difference between
the first term nr+n (or ns+n) and the last term nr+1 (or ns+1) is n−1.8 Therefore, these
ratios represent rs+srs−r and rs+r

rs−s raised to an infinite power, and so are themselves infinite.

8Actually the number of these terms is n − 1, for the nth term in the numerator = the nth term in the
denominator = rs.
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If you are dubious about this conclusion, consider the infinite geometric series with the
constant ratio being rs−r

rs+s (or rs−s
rs+r ): the ratio of the first term to the third term of this

sequence is
(
rs+s
rs−r

)2
[or
(
rs+r
rs−s

)2
]; the ratio of the first term to the fourth term is

(
rs+s
rs−r

)3
[or
(
rs+r
rs−s

)3
]; the ratio of the first term to the fifth term is

(
rs+s
rs−r

)4
[or
(
rs+r
rs−s

)4
]; . . .; the

ratio of the first term to the last term is
(
rs+s
rs−r

)∞
[or
(
rs+r
rs−s

)∞
]. Moreover, it is known

that the ratio of the first term to the last term is infinitely large, since the last term = 0. (See

the corollary of our sixth treatise on Infinite Series.) Therefore, it is also known
(
rs+s
rs−r

)∞
and

(
rs+r
rs−s

)∞
are infinite. And so, it has been shown that in the expansion of a binomial

raised to an infinitely high power, the greatest term M can have a ratio to L and Λ greater
than any assignable ratio.

Lemma 5: In the expansion of a binomial whose exponent is nt, the number n can
be chosen large enough so that the ratio of the sum of all the terms from M up to and
including L (or Λ) to the sum of all the other terms beyond L (or Λ) is greater than any
given ratio.

Proof: Let us use the same symbols as we used in Proof 1 of Lemma 3 above to denote
the terms on either side of M ; hence, in this terminology L becomes Ln and Λ becomes
Rn.9 Therefore, since by Part 2 of Lemma 3

M

L1
<

Ln
Ln+1

and
L1

L2
<
Ln+1

Ln+2
and

L2

L3
<
Ln+2

Ln+3
and . . . ,

we also have that
M

Ln
<

L1

Ln+1
<

L2

Ln+2
<

L3

Ln+3
. . . .

Thus, when n is taken to be infinite, the ratio M
Ln

will be infinitely large and, by Lemma 4,
the other ratios L1

Ln+1
, L2

Ln+2
, L3

Ln+3
, . . . will be all the more infinite, and as a result

L1 + L2 + L3 + . . .+ Ln
Ln+1 + Ln+2 + Ln+3 + . . .+ L2n

will be infinite: i.e., all the terms summed from L1 to Ln inclusive will be infinitely greater
than the terms summed from Ln+1 to L2n inclusive. And since, by Lemma 1, the number
of all the terms beyond Ln10 is only (s − 1) times — that is, a finite number of times
— the number of terms between M and Ln,11 and since by Part 1 of Lemma 3 the terms
become smaller the farther they are from Ln, all the terms added together from M (but not
including M ) down to and including Ln will still be infinitely greater than all the terms
added together beyond Ln. Moreover, it is shown in the same way for the other direction
that all the terms between R1 and Rn inclusive are infinitely larger than all the terms
beyond Rn. (Note that the number of terms beyond Rn is, by Lemma 1, only (r−1) times

9For this terminology — which has substantially clarified the presentation of the following mathematical
proofs — I am indebted to Herr R. Haussner, whose 1899 German translation of the Ars Conjectandi has been
of considerable use to me. (In Bernoulli’s original notation: L1 = F ; L2 = G; L3 = H; etc.; Ln+1 =
P ; Ln+2 = Q; Ln+3 = R; etc. The advantages of Haussner’s notation are, I think, quite clear.)

10Here, Lk is “beyond” Lj if and only if k < j; likewise, Rk is “beyond” Rj if and only if k > j.
11Actually, Lemma 1 says that the number of terms beyond Ln is (s−1) times the number of terms between

M down to and including Ln.
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the number of terms between M and Rn.12) Hence, all the terms added together between
Ln and Rn inclusive except M will likewise infinitely exceed all the terms added together
beyond these limits Ln and Rn. Therefore, all the terms summed together between Ln
and Rn inclusive — i.e., the former sum plus M — will all the more exceed all the terms
summed together beyond Ln and Rn. QED.

Remark: Those who have not been accustomed to deal with speculations about infinity
may say the following in objection to Lemmas 4 and 5: although in the case of n being
an infinite number, the factors of the quantities representing M

Ln
and M

Rn
— i.e., nr ± n∓

1, 2, 3, . . . and ns∓ n± 1, 2, 3, . . . — have the same value as nr± n and ns∓ n (since
the numbers 1, 2, 3, . . . become negligible), it can nevertheless happen that when all these
terms are taken or multiplied together, they will yield an infinite number (since the number
of factors is infinite); and so, the infinitely high power of the quotient rs+srs−r or rs+r

rs−s will
infinitely diminish — that is, it will become finite. I cannot better satisfy this doubt than if
I now show a way of ascertaining that for any truly finite number n or for any finite power
of the binomial, the sum of the terms between Ln and Rn inclusive has a ratio to the sum
of the terms beyond Ln and Rn greater than any given ratio, say c. Having proven this
fact, I will have shown that the objection must of its own accord be destroyed.

Consider the terms to the left of M : To this end, I take any given ratio greater than 1
but less than rs+s

rs−r , say rs+s
rs = r+1

r , and I multiply it by itself as often — m times — as
necessary for it to be greater than or equal to c(s− 1): i.e., so that

(r + 1)m

rm
≥ c(s− 1).

Moreover, it is shortly found by logarithms what the value of m should be; for after the
logarithms of the quantities have been taken, we have that

m log(r + 1)−m log(r) ≥ log[c(s− 1)],

and after performing a division we immediately find that

m ≥ log[c(s− 1)]

log(r + 1)− log(r)
.

Having found this, I proceed as follows: In that series of fractions or factors
nrs+ ns

nrs− nr + r
,

nrs+ ns− s
nrs− nr + 2r

,
nrs+ ns− 2s

nrs− nr + 3r
, . . . ,

nrs+ s

nrs

— the product of which, by Lemma 4, results in the quotient M
Ln

— one may observe that
each of the fractions is less than rs+s

rs−r , although they come continually nearer to it the
larger the value of n; and so, one of these terms must at sometime be equal to rs+s

rs = r+1
r .

Therefore, one should see that the value n must have is such that the fraction which
occupies the mth position of the above series equals r+1

r . But, as is clear from the formu-
lation of the series, the fraction in the mth position is nrs+ns−ms+s

mrs−nr+mr , which, when equated
to r+1

r , gives n = m+ ms−s
r+1 , and thence nt = mt+ mst−st

r+1 . I claim that this will be the
exponent to which the binomial (r + s) should be raised for the largest term M to exceed
the bound Ln by more than c(s− 1) times. For since — by this assumption of the number
n — the fraction in the mth position is r+1

r , and since by hypothesis

(r + 1)m

rm
≥ c(s− 1),

12Similarly, the number of terms beyond Rn is actually (r− 1) times the number of terms between M down
to and including Rn.
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we have that this fraction r+1
r multiplied by all the preceding ones exceeds c(s − 1) by

much more, for each of the preceding fractions is greater than r+1
r ; also, since each of

the terms beyond the mth term is at least greater than 1, the product of all the terms in
this series will exceed c(s − 1) by still more. But the product of all these fractions is M

Ln
;

therefore, it is agreed by all that M exceeds the bound Ln by more than c(s− 1) times.
Now, moreover,

M

Ln
<

L1

Ln+1
<

L2

Ln+2
<

L3

Ln+3
. . . .,

as has been shown. Hence, L1 will exceed Ln+1 by much more than c(s − 1) times, and
L2 will exceed Ln+2 by even more, etc. And so, finally, all the terms beyond M down to
and including Ln exceed by more than c(s− 1) times the same number of terms extending
beyond Ln — i.e., the terms beyond Ln down to and including L2n; thus, the former sum
of terms exceeds (s − 1) times the latter sum of terms by more than c times. Therefore,
much more clearly do the terms beyond M down to and including Ln exceed all the terms
beyond Ln by more than c times, since the entire latter group of terms outnumber the entire
former group of terms by only (s− 1) times.

Consider the terms to the right of M : I proceed in similar fashion: I take the ratio
s+1
s < rs+r

rs−s and I make
(s+ 1)m

sm
≥ c(r − 1);

I then find that

m ≥ log[c(r − s)]
log(s+ 1)− log(s)

.

Next, in the series of fractions
nrs+ nr

nrs− ns+ s
,

nrs+ nr − r
nrs− ns+ 2s

,
nrs+ nr − 2r

nrs− ns+ 3s
, . . . ,

nrs+ r

nrs

(all of which make up the quotient M
Rn

), I assume that the fraction in the mth position —
i.e., nrs+nr−mr+rnrs−ns+ms — equals s+1

s , and thence I deduce that

n = m+
mr − r
s+ 1

,

and that therefore
nt = mt+

mrt− rt
s+ 1

.

Having done this, I show similarly as before that when the binomial (r+s) has been raised
to this power nt, the largest term M will exceed the bound Rn by more than c(r − 1)
times; and as a consequence also, that all the terms beyond M up to and including Rn
will exceed all those terms beyond Rn by more than c times. (Note that the latter group
of terms outnumber the former group by only (r − 1) times.) And so at last we finally
conclude that when the binomial (r + s) is raised to that power whose numerical value is
equal to the larger of the two quantitiesmt+ mst−st

r+1 andmt+ mrt−rt
s+1 , all the terms added

together between Ln andRn inclusive will exceed by more than c times all the terms added
together beyond Ln and beyond Rn. Therefore, a finite power has been found which has
the desired property. QEF.

Main Theorem: Finally, the theorem follows upon which all that has been said is based,
but whose proof now is given solely by the application of the lemmas stated above. In
order that I may avoid being tedious, I will call those cases in which a certain event can
happen successful or fertile cases; and those cases sterile in which the same event cannot
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happen. Also, I will call those trials successful or fertile in which any of the fertile cases
is perceived; and those trials unsuccessful or sterile in which any of the sterile cases is
observed. Therefore, let the number of fertile cases to the number of sterile cases be
exactly or approximately in the ratio r to s, and hence the ratio of fertile cases to all the
cases will be r

r+s or r
t , which is within the limits r+1

t and r−1
t . It must be shown that so

many trials can be run such that it will be more probable than any given times (e.g., c times)
that the number of fertile observations will fall within these limits rather than outside these
limits — i.e., it will be c times more likely than not that the number of fertile observations
to the number of all the observations will be in a ratio neither greater than r+1

t nor less
than r−1

t .
Proof: Let nt be the number of observations taken, and let it be asked what is the

expectation or what is the probability that all are successful with none being sterile; with
one being sterile; with two being sterile; with three being sterile; with four being sterile;
etc. Since, moreover, in any observation there are at hand, by hypothesis, t cases of which
r are successful and s are sterile, and since each case of one observation can be combined
with each case of a second observation, and can again be combined with each case of a
third observation, and with each case of a fourth observation, etc., it is clearly evident that
the rule tied in at the end of the notes to Prop. XIII of the first Part and the second corollary
of this rule are applicable to this task. The second corollary contains the general formula,
and with its help it is known that the expectation of no observations being sterile is rnt

tnt ; of
one observation being sterile

nt
1 ⋅ r

nt−1 ⋅ s1

tnt
;

of two observations being sterile,
nt(nt−1)

1⋅2 ⋅ rnt−2 ⋅ s2

tnt
;

of three observations being sterile,
nt(nt−1)(nt−2)

1⋅2⋅3 ⋅ rnt−3 ⋅ s3

tnt
;

and so on. Thus, after the common denominator tnt has been omitted, it is clear that the
degrees of the probabilities or the numbers of cases in which it can happen that all the trials
are successful, or that all except one, or two, or three, or four, etc., are successful may be
expressed in order by

rnt,
nt

1
⋅ rnt−1 ⋅ s1, nt(nt− 1)

1 ⋅ 2
⋅ rnt−2 ⋅ s2, nt(nt− 1)(nt− 2)

1 ⋅ 2 ⋅ 3
⋅ rnt−3 ⋅ s3, etc.

But these are the very terms of the expansion of the binomial (r + s) raised to the (nt)th

power, an expansion examined above in our lemmas; whence all the rest is quite evident:
For according to the nature of the expansion, it is clear that the number of cases which

result in ns sterile trials and nr successful ones is the largest termM of the expansion, in as
much as ns terms precede M and nr terms follow M according to Lemma 3. Likewise, it
is clear that the numbers of those cases in which either nr+n or nr−n trials are successful
— the rest of the trials being sterile — are expressed by the terms of the expansion Ln and
Rn respectively, where Ln and Rn are defined as in the proof of Lemma 5 above. Also as
a consequence, it is clear that the sum of the cases in which not more than nr + n trials
nor less than nr − n trials are successful may be expressed by the sum of the terms in the
expansion between Ln and Rn inclusive; the sum of the other cases in which either more
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than nr + n or less than nr − n successful trials are realized is expressed by the sum of
the terms outside these bounds Ln and Rn.

LetR = the ratio of the number of fertile observations to the number of all observations.
By Lemmas 4 and 5, a power of the binomial can be chosen to be so large that the sum of
the terms between Ln and Rn inclusive exceeds the sum of the terms outside these bounds
by more than c times; therefore, it follows that so many observations can be made such that
the sum of the cases in which R lies between nr+n

nt and nr−n
nt (or, equivalently, between

r+1
t and r−1

t ) exceeds the sum of the other cases by more than c times; that is, it is more
than c times more likely that R will fall between the limits r+1

t and r−1
t than that R will

fall outside these limits. QED.
Moreover, in the specific application of these things to numbers, it is clear enough that

the larger the numbers r, s, and t are taken to be (always remaining in the same ratio to
each other), the tighter the limits r+1

t and r−1
t can be drawn around the ratio r

t . On this
account, for example, if the ratio r

s (which must be determined by trials) is 3/2, I do not
take r = 3 and s = 2, bur rather r = 30 and s = 20, or r = 300 and s = 200, etc. It
would be sufficient to take r = 30 and s = 20 (and hence t = r+ s = 50) for the limits to
be r+1

t = 31
50 and r−1

t = 29
50 ; further, let c = 1000. It would thus follow from the remarks

above that for the terms on the left:

m >
log[c(r − 1)]

log(s+ 1)− log(s)
=

4.2787536

.0142405
< 301,

and
nt = mt+

mst− st
r + 1

< 24, 728;

and for the terms on the right:

m >
log[c(s− 1)]

log(r + 1)− log(r)
=

4.4623980

.0211893
< 211,

and
nt = mt+

mrt− rt
s+ 1

< 25, 550.

Whence, by what has already been proven, it is concluded that in 25,550 trials it is more
than one thousand times more likely that rt will fall between 31

50 and 29
50 than that rt will fall

outside these limits. (Note that rt is the ratio of the number of fertile observations to the
number of all observations.) And in the same way, if c is taken to be 10,000, one will find
that 31,258 trials are necessary for it to be 10,000 times more likely that rt will fall between
31
50 and 29

50 than that rt will fall outside these limits; and if c is taken to be 100,000, one will
find that 36,966 trials are necessary for it to be 100,000 times more likely that rt will fall
between 31

50 and 29
50 than that rt will fall outside these limits; etc.; and so on ad infinitum,

always adding a multiple of 5,708 trials to 25,550. Whence, finally, this one thing seems
to follow: that if observations of all events were to be continued throughout all eternity,
(and hence the ultimate probability would tend toward perfect certainty), everything in the
world would be perceived to happen in fixed ratios and according to a constant law of
alternation, so that even in the most accidental and fortuitous occurrences we would be
bound to recognize, as it were, a certain necessity and, so to speak, a certain fate.

I do not know whether Plato wished to aim at this in his doctrine of the universal return
of things, according to which he predicted that all things will return to their original state
after countless ages have past.
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CORRESPONDENCE BETWEEN LEIBNITZ AND BERNOULLI

The following excerpts are translated from Leibnitz (1855).

P. 71. Short Paragraph: “P.S. . . . omnes.” (Leibnitz in a post script of a letter to James
Bernoulli, April, 1703.)

“P.S.: I hear that the subject of estimating probabilities — which I consider important
— has been not a little developed by you. I would like someone to treat mathematically
the various kinds of games (in which there are beautiful examples of this subject.) This
task would be both pleasant and useful, and it would not be unworthy of you or any very
serious mathematician. I have seen some of your stated theses and only a few discussions
of them. However, I would like to have them all.

P. 77–8. Long paragraph: “Scire libenter. . . fieri percuperem.” (An excerpt from a letter
to Leibnitz from James Bernoulli, 3 October, 1703.)

“I would gladly like to know, most honorable sir, from whom you know that I have been
working on the subject of estimating probabilities. It is true that for many years past I have
taken much pleasure in explorations of this sort, since I scarcely think that anyone else
has thought more than I about these matters. I even had a mind to write a tract about this
subject; but I have often put it off for years at a time, because my natural laziness — which
the weakness of my health, as an accomplice, has increased so much more — caused me
to approach the writing very feebly. I often wish I had a secretary who could fully divine
my thoughts when they were gently hinted to him, and could put them down in writing.
Nevertheless, I have already completed the larger part of a book, but with an important
part still missing, in which I show how to apply the principles of the art of estimation
to civil, moral, and economic affairs. I will finish the book after I have solved a singular
problem, which has a not small commendation of difficulty and a very large commendation
of usefulness, and which has remained before my brother for twelve years, although he,
when asked about the same problem some time ago by Marquis de l’Hospital, concealed
the truth because of his eagerness to devalue my research. I will briefly tell you what the
problem is: it is a known fact that the probability of any event depends on the number of
possible outcomes with which the event can or cannot happen; and so, it occurred to me to
ask why, for example, do we know with how much greater probability a seven rather than
an eight will fall when we roll a pair of dice, and why indeed do we not know how much
more probable it is for a young man of twenty years to survive an old man of sixty years
than for an old man of sixty years to survive a young man of twenty years; this is the point:
we know the number of possible ways in which a seven and in which an eight can fall when
rolling dice, but we do not know the number of possible ways which prevail in summoning
a young man to die before an old man, and which prevail in summoning an old man to
die before a young man. I began to inquire whether what is hidden from us by chance a
priori can at least be known by us a posteriori from an occurrence observed many times in
similar cases — i.e., from an experiment performed on many pairs of young and old men.
For had I observed it to have happened that a young man outlived his respective old man in
one thousand cases, for example, and to have happened otherwise only five hundred times,
I could safely enough conclude that it is twice as probable that a young man outlives an old
man as it is that the latter outlives the former. Moreover, although — and this is amazing
— even the stupidest man knows, by some instinct of nature per se and by no previous
instruction, that the more observations there are, the less danger there is in straying from
the mark, it requires not at all ordinary research to demonstrate this fact accurately and
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geometrically. But this is not all that I want: in addition, it must be inquired whether the
probability of an accurate ratio increases steadily as the number of observations grows, so
that finally the probability that I have found the true ratio rather than a false ratio exceeds
any given probability; or whether each problem, so to speak, has an asymptote — that
is, whether I shall finally reach some level of probability beyond which I cannot be more
certain that I have detected the true ratio. For if the latter is true, we will be done with our
attempt at finding out the number of possible outcomes through experiments; if the former
is true, we will investigate the ratio between the numbers of possible outcomes a posteriori
with as much certainty as if it were known to us a priori. And I have found the former
condition is indeed the case; whence I can now determine how many trials must be set up
so that it will be a hundred, a thousand, ten thousand, etc., times more probable (and finally,
so that it will be morally certain) that the ratio between the numbers of possible outcomes
which I obtain in this way is legitimate and genuine. The following suffices for practice in
civil life: to formulate our conjectures in any situation that may occur no less scientifically
than in game of chance; I think that all the wisdom of a politician lies in this alone. I do
not know, most honorable sir, whether anything of substance appears to you to be in these
speculations; in any case, you will make me grateful if you could supply me with any legal
situations which you think could be usefully applied to these matters. Recently, I found that
a certain tract which had been unknown to me was cited in the printed Monthly Excerpts
of Hanover: Pensionarius de Wit’s von Subtiler Ausrechnung des valoris der Leib-Renten.
Perhaps he has something doing here; whatever it is, I would very much wish to obtain his
source from somewhere.”

P. 83-4. Long paragraph: “Utilissima est. . . apparet.” (An excerpt from a letter to James
Bernoulli from Leibnitz, 3 December, 1703.)

“The estimation of probabilities is extremely useful, although in several political and
legal situations there is not much need for fine calculation as there is for the accurate
recapitulation of all the circumstances. I remember learning for the first time not from
your brother but from somewhere else that these matters had been dealt with by you. When
we estimate empirically, by means of experiments, the probabilities of successes, you ask
whether a perfect estimation can be finally obtained in this manner. You write that you
have found this to be so. There appears to me to be a difficulty in this conclusion: that
happenings which depend upon an infinite number of cases cannot be determined by a finite
number of experiments; indeed, nature has her own habits, born from the return of causes,
but only ‘in general.’ And so, who will say whether a subsequent experiment will not stray
somewhat from the rule of all the preceding experiments, because of the very mutabilities
of things? New diseases continually inundate the human race, but if you had performed as
many experiments as you please on the nature of deaths, you have not on that account set
up the boundaries of the world so that it cannot change in the future. When we investigate
the path of a comet from any number of observations, we suppose that it is either a conic
curve or another kind of simple curve. Given any number of points, an infinite number
of curves can be found passing through them. Thus, I show the following: I postulate
(and this can be demonstrated) that given any number of points, some regular curve can be
found passing through these points. Let it be given that this curve has been found, and call
it “A. Now, let another point be taken lying between the points given but outside of this
curve; let a curve pass through this new point and the points given originally, according
to the above postulate: this curve must be different from the first curve, but nevertheless
it passes through the same given points through which the first curve passes. And since
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a point can be varied an infinite number of times, there will also be an infinite number
of these and other possible curves. Moreover, observed outcomes can be compared with
these points, where the fixed underlying outcomes or their estimates inferred from observed
outcomes, can be compared with the model curve. It may be added that, although a perfect
estimation cannot be had empirically, an empirical estimate would nonetheless be useful
and sufficient in practice. The person who composed the monthly Germanic excerpts of
Hanover has been at my house. Pensionarius de Wit’s article is flimsy when he uses that
estimation known from the equal possibility of similar outcomes and hence shows that the
problem of resurrections can be clearly solved by considering the fate of the Batavians.13

And therefore, he has written in Belgic, so that he might appear to be on the same footing
with the commoner.

P. 87-9. Long Paragraph: “Quod Doctrina. . . ventilata fuit.” (Selection from a letter to
Leibnitz from James Bernoulli, 20 April, 1704.)

“Various questions about Certainty, Resurrections, Endowed Agreements, Conjectures,
and other matters show me that the subject of estimating probabilities in legal affairs re-
quires not only the recapitulation of circumstances but also the same computation and cal-
culation which we are accustomed to use in reckoning the outcomes of games of chance; I
will show how to do this clearly for each situation. Moreover, the difficulty you found with
my empirical method in determining the ratio between the numbers of possible outcomes
requires more examples, not those in which it is impossible by any means to agree upon
the numbers themselves, but rather those in which the numbers can be learned a priori. In
addition, I said that I could, in these examples, provide for you a demonstration (which my
brother saw twelve years ago and approved of). In order that you may really understand
more clearly what I think, I give you an example: I place in an urn several hidden pebbles,
black and white ones, and the number of white ones is twice the number of black ones; but
you do not know this ratio, and you wish to determine it by experiment. And so, you draw
one pebble out after another (replacing the pebble which you drew out in each single choice
before you draw the next one, so that the number of pebbles in the urn is not diminished,)
and you note whether you have picked a white or a black one. Now, I claim (assuming
that you have two estimates of the two-to-one ratio which are, though quite close to one
another, different, one being larger, the other being smaller — say 201 : 100 and 199 : 100)
that I can determine scientifically the necessary number of observations so that with ten, a
hundred, a thousand, etc. times more probability, the ratio of the number of drawings in
which you choose a white pebble to the number of drawings in which you choose a black
pebble will fall within, rather than outside of, these limits of the two-to-one ratio: 201 : 100
and 199 : 100; and so I claim that you can be morally certain the ratio obtained by exper-
iment will come as close as you please to the true two-to-one ratio. But if now in place
of the urn you substitute the human body of an old man or a young man, the human body
which contains the tinder of sicknesses within itself as the urn contains pebbles, you can
determine in the same way through observations how much nearer to death the one is than
the other. It does no good to say that the number of sicknesses to which each is exposed
is infinite; for let us grant this; it is nevertheless known that there are levels in infinity, and
that the ratio of one infinity to another infinity is still a finite number, and can be expressed
either precisely or sufficiently precisely for practical use. If sicknesses are multiplied by

13My interpretation of this is the following:
Problem: What is the possibility of resurrection?
Solution: Look at the proportion of Batavians who have been resurrected. (De Wit himself was a Batavian.)
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the passage of time, then new observations, in any case, must be set up: and it is certain
that he who thinks that the investigations of our ancient forefathers concerning the end of
life be settled by the daily customary observations made in London, Paris, or elsewhere
will grossly err from the truth. The example of investigating the trajectory of a comet from
several of its observed positions is, in this situation, almost apropos; I would never use it
to demonstrate a proposition: although, in a limited way, I can find an application, since
it cannot be denied that if five points have been observed, all of which are perceived to lie
along a parabola, the notion of a parabola will be stronger than if only four points had been
observed: for although there are an infinite number of curves which may pass through five
points, there is nevertheless beyond this infinite number another infinite number — rather,
an infinitely times more infinite number — of curves which may pass through only the first
four points and not through the fifth point, all of which are excluded by this fifth observa-
tion. And yet, I admit that every conjecture which is deduced by observations of this sort
would be quite flimsy and uncertain if it were not conceded that the curve sought is one of
the class of simple curves; this indeed seems quite correct to me, since we see everywhere
that nature follows the simplest paths. I perceive from your description that the Belgian
tract of Jean de Wit contains such things which serve my point very well. And so I ask
as strongly as possible that you, most honorable sir, send to me your copy of the book on
any convenient occasion, since I have sought for it in vain in Amsterdam. I shall return it
faithfully on the next market day in Frankfurt together with the fourth and fifth part of my
publications concerning infinite series, the latter of which has been recently published and
circulated.”



TRANSLATIONS FROM JAMES BERNOULLI 27

ACKNOWLEDGMENT
I want to express my deep gratitude to Dr. Alan Gillingham of Phillips Academy, Andover,
for his constant encouragement while I was doing this translation and for the counsel and
assistance he gave me in construing some of the more difficult passages.

Bing Sung
February, 1966



28 BING SUNG

REFERENCES
BERNOULLI, JAMES (1713) Ars Conjectandi

DAVID, F.N. (1962) Games, Gods and Gambling. Hafner: New York.

HAUSSNER, R. (1899) Wahrscheinlichkeitsrechnung (A German translation of Parts
Three and Four of Ars Conjectandi together with a letter to a friend about the game of
ball.) Engelmann: Leipsig.

LEIBNITZ (1855) Leibnizens Mathematische Schriften herausgegeben von C.I. Ger-
hardt. Erste Abteilung.

PEARSON, KARL (1925) James Bernoulli’s Theorem. Biometrika, 17, 201–10.

TODHUNTER, F. (1865) A History of the Mathematical Theory of Probability.


