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FIRST PART
GENERAL CONSIDERATIONS ON THE ELEMENTS OF MAGNITUDES

The notation of exponents, imagined by Descartes, has led Wallis and Newton to the
consideration of fractional exponents, positive and negative, and to the interpolation of
series. Leibnitz has rendered these exponents variables, that which has given birth to
the exponential calculus and has completed the system of elements of finite functions.
These functions are formed of exponential, algebraic and logarithmic quantities; quan-
tities essentially distinct from one another. Integrations are not often reducible to finite
functions. Leibnitz having adapted to his differential characteristic of the exponents,
in order to express the repeated differentiations, he has been led by the analogy of the
powers and of the differences, an analogy that Lagrange has followed by way of induc-
tion, in all his developments. The theory of generating functions extends this analogy
to some unspecified characteristics and indicates it evidently. All theory of series and
the integration of the equations in the differences result with an extreme facility from
this theory. No 1.

Chapter I. — CONCERNING GENERATING FUNCTIONS IN ONE VARIABLE

u being any function of a variable t and yx being the coefficient of tx in the devel-
opment of this function, u is the generating function of yx. If we multiply u by
any function s of 1

t , we will have a new generating function which will be that
of a function of yx, yx+1, etc. By designating by∇yx this last function, usi will
be the generating function of ∇iyx, so that the exponent of s, in the generating
function, becomes the one of the characteristic ∇ in the engendered function.
No 2.

On the interpolation of the sequences in one variable, and on the integration of the
linear differential equations.

Interpolation is reduced to determining the coefficient yx+1 of tx in the development
of u

ti . We are able to give to 1
t an infinity of different forms: by elevating it
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to the power i under these forms and passing again next from the generating
functions to the coefficients, we have, under an infinity of corresponding forms,
the expression of yx+i. Application of this method to the series of which the
successive differences of the terms decrease. No 3.

Formulas in order to interpolate between an odd or even number of equidistant quan-
tities. No 4.

General formula of interpolation of series of which the last ratio of the terms is that of
a series of which the general term is given by a linear equation in the differences,
with constant coefficients. No 5.

The formula is arrested when the relation of the terms is that of a similar series, and
then it gives the integral of the linear equations in finite differences, of which
the coefficients are constants. General integration of these equations, in the case
even where they have a last term a function of the index. No 6.

Formula of interpolation of the same series, ordered with respect to the successive
differences of the principal variable. No 7.

Passage of this formula, from the finite to the infinitely small. Interpolation of the
series of which the last ratio of the terms is that of an equation in the infinitely
small linear differences, with constant coefficients. Integration of this kind of
equations, when also they have a last term. No 8.

On the transformation of series. No 9.

Theorems on the development of functions and of their differences into series.

We deduce from the calculus of generating formulas the formulas
′∆nyx = [(1 + ∆yx)i − 1]n, ′Σnyx = [(1 + ∆yx)i − 1]−n,

∆ and Σ corresponding to the case where x varies by unity and ′∆ and ′Σ corre-
sponding to the case where x varies with i. We deduce from these formulas the
following:

′∆nyx =
(
cα

dyx
dx − 1

)n
, ′Σnyx =

(
cα

dyx
dx − 1

)−n
,

in which c designates the number of which the hyperbolic logarithm is unity, and
′∆ and ′Σ correspond to the variation α of x. We transform the expression of
′∆nyx into this here (

c
α
2

dyx+nα
2

dx − c−α2
dyx+nα

2
dx

)n
.

We arrive to these formulas
dnyx
dxn

= [log(1 + ∆yx)]n,∫ n

yxdx
n = [log(1 + ∆yx)]−n.
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Analogy between the positive powers and the differences and between the negative
powers and the integrals, based on this that the exponents of the powers, in the
generating functions, are transported to the characteristics corresponding to the
variable yx. Generalization of the preceding results. No 10.

Theorem analogous to the previous on the products of the many functions of one same
variable and especially with respect to the product pxyx. No 11.

Chapter II. — CONCERNING GENERATING FUNCTIONS IN TWO VARIABLES

u being a function of two variables t and t′, and yx,x′ being the coefficient of txt′x
′

in
the development of this function, u is generating function of yx,x′ . If we multiply
u by a function s of 1

t and 1
t′ , the coefficient of txt′x

′
in the development of this

product will be a function of yx,x′ , yx+1,x′ , yx,x′+1, etc.; by designating it by
∇yx,x′ , usi will be the generating function of ∇iyx,x′ . No 12.

On the interpolation of the series in two variables and on the integration of linear
equations in partial differences.

General formula of the interpolation of series of which the last ratio of the terms is
that of a series of which the general term is given by a linear equation in partial
differences, with constant coefficients. No 13.

The formula is arrested when the relation of the terms is that of a similar series, and
then it gives the integral of the linear equations in the partial finite differences, of
which the coefficients are constants. This integral supposes that we know or that
we can deduce from the conditions of the problem n arbitrary values of yx,x′ , by
giving, for example, to x the n values 0, 1, 2, . . . , n− 1, x′ being moreover un-
specified. A very simple expression of yx,x′ , when these arbitrary functions in x′

are given by some linear equations in the differences, with constant coefficients.
No 14.

General expression of yx,x′ under the form of definite integral; important remark on
the number of arbitrary functions which the integral of the equations in partial
differences contains. No 15.

Examination of some cases which escape from the general formula of integration
given in that which precedes; in this case, the characteristics of the finite differ-
ences which the integrals contain have for exponents the variable indices of the
equations in the partial differences. No 16.

Integration of the equation

0 = ∆nyx,x′ +
a

α
∆n−1′∆yx,x′ +

b

α2
∆n−2yx,x′ + · · · ,

∆ corresponding to the variability of x of which the unit is the difference, and
′∆ corresponding to the variability of x′ of which α is the difference. We de-
duce from it the integral of the equation in the infinitely small and finite partial
differences, that we obtain by changing, in the preceding, α into dx′, and the
characteristic ′∆ into d. No 17.
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Theorems on the development into series of the functions of many variables.

These theorems are analogous to those who have been given previously with respect to
the functions in one variable alone, and we recover the observed analogy between
the positive powers and the differences, and between the negative powers and the
integrals. No 18.

Considerations on the passages from the finite to the infinitely small.

The consideration of these passages is very proper to clarify the most delicate points
of the infinitesimal Calculus. It shows evidently that the quantities neglected in
this Calculus remove nothing from its rigor. By applying it to the problem of the
vibrating cords, it proves the possibility to introduce some arbitrary discontinu-
ous functions into the integrals of the equations in the finite and infinitely small
partial differences, and it gives the conditions of this discontinuity. No 19.

General considerations on the generating functions.

To find the generating function of a given quantity by a linear equation in the finite
differences, of which the coefficients are some rational and entire functions of
the index. No 20.

Expressions of the integrals of these equations as definite integrals. The functions
under the integral sign

∫
are of the same nature as the generating functions of the

quantities given by these equations. Thus all the theorems deduced previously
from the analogy of the powers and the differences are applied to these integrals.
Their principle advantage is to furnish an approximation as handy as convergent
of these quantities, when their index is a very great number. This method of
approximation acquires a great extension by the passages from the positive to
the negative and from the real to the imaginary, passages of which I have given
the first traces in the Mémoires de l’Académie des Sciences of 1782. It seems, by
the posthumous Works of Euler, that, toward the same time, this great geometer
occupied himself with the same object. No 21.
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SECOND PART
THEORY OF THE APPROXIMATION OF FORMULAS WHICH ARE FUNCTIONS OF

VERY LARGE NUMBERS

Chapter I. — ON THE INTEGRATION BY APPROXIMATION OF THE DIFFERENTIALS
WHICH CONTAIN SOME FACTORS RAISED TO GREAT POWERS

Expression, in convergent series, of their integral taken between two given limits: the
series ceases to be convergent near to the maximum of the function under the
integral sign. No 22.

Expression, in convergent series, of the integral in this last case. No 23.

That which this series becomes when the integral is taken between two limits which
render null the function under the integral sign. Its value depends then on inte-
grals of the form

∫
trdt e−t

n

and taken from t null to t infinity. We establish this
theorem

n2
∫
tr−2dt c−t

n

∫
tn−rdt c−t

n

=
π

sin
(
r−1
n

)
π
,

π being the semi-circumference of which the radius is unity. We deduce from it
this remarkable result ∫

dt c−t
2

=
1

2

√
π.

No 24.

This last result gives, by the passage from the real to the imaginary,∫
dx cos rx c−a

2x2

=

√
π

2a
c−

r2

4a2 ,

the integral being taken from x null to x infinity; a direct method which leads
to this equation and from which we deduce the value of the integral when the
quantity under the sign

∫
is multiplied by x2n: value of the integral∫

x2n±1dx sin rx c−a
2x2

.

No 25.

We arrive to the formulas∫
dx cos rx

1 + x2
=

∫
xdx sin rx

1 + x2
= π c−r,

the integrals being taken from x = −∞ to x = +∞; and we deduce from it

the integrals M
N dx

cos
sin

rx, taken within the same limits, N being a rational and

entire function of x, of a degree superior to M , and not having a real factor of
first degree. No 26.
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Expression of the integral
∫
dt c−t

2

taken between the given limits, either as series,
or as continued fraction. No 27.

Approximation of the double, triple, etc. integrals of the differentials multiplied by
some factors raised to high powers. Formulas in convergent series in order to
integrate, within some given limits, the double integral

∫∫
ydxdx′, y being a

function of x and of x′. Examination of the case where the integral is taken very
near the maximum of y. Expression of the integral as convergent series. No 28.

Chapter II. — ON THE INTEGRATION BY APPROXIMATION OF LINEAR EQUATIONS
IN FINITE AND INFINITELY SMALL DIFFERENCES

Integration of the equation in the finite differences

S = Ayx + B∆yx + C∆2yx + · · · ,

A, B, C being some rational and entire functions of s. If the variable ys is expressed
by the definite integral

∫
xsφdx or by this here

∫
c−sxφdx, φ being function

of x, we have, by the formulas of the preceding Chapter, the value of ys in very
convergent series, when the index s is a large number. In order to determine
φ, we substitute for ys, its expression as definite integral in the equation with
the difference in yx, which is partitioned into two others, of which the one is
a differential equation in φ, which serves to determine this unknown; the other
equation gives the limits of the definite integral. No 29.

Integration of any number of linear equations in one index alone and having a last
term, the coefficients of these equations being some rational and entire functions
of this index. This method is able to be extended to the linear equations in
differences either infinitely small, or into finite parts and into infinitely small
parts. No 30.

The principal difficulty of this analysis consists in integrating the differential equa-
tion in φ, which is integrable generally only in the case where the index s is only
to the first power in the equation in the differences in ys, which then is of the
form 0 = V + sT, V and T being some linear functions of ys and of its differ-
ences, either finite, or infinitely small. Integral of this last equation, by a very
convergent series, when s is a large number. Important remark on the extent of
this series, which is independent of the limits of the definite integral by which
ys is expressed, and which subsists in the same case where the equation in the
limits has only imaginary roots. When, in the equation in ys, s surpasses the
first degree, we can sometimes decompose it into many equations which contain
only the first power of s. We can further, in many cases, integrate, by a very
convergent approximation, the differential equation in φ. No 31.

Integration of the equation
0 = V + sT + s′R,

V, T, R being unspecified linear functions of ys,s′ and of its ordinary and partial
differences, finite and infinitely small. No 32.
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Chapter III.— APPLICATION OF THE PRECEDING METHODS TO THE APPROXIMA-
TION OF DIVERSE FUNCTIONS OF VERY GREAT NUMBERS

On the approximation of the products composed of a great number of factors and of
the terms of polynomials raised to great powers.

The integral of the equation 0 = (s + 1)yx − ys−1, approximated by the methods
of the preceding Chapter and compared to its finite integral, given, by a very
convergent series, the product (µ + 1)(µ + 2) . . . s. By making s negative and
passing from the positive to the negative and from the real to the imaginary, we
arrive to this remarkable equation

2π(−1)
1
2−µ∫

xµ−1dxe−x
=

∫
dx c−x

xµ
,

the first integral being taken from x null to x infinity, and the last integral being
taken between the imaginary limits of x which render null the function c−x

xµ ; that

which gives an easy means to have the integral
∫ dx

cos
sin

x

xµ , taken from x null to
x infinity. This equation gives further the value of the integrals∫

d$ cos$

1 +$2
,

∫
d$ sin$

1 +$2

taken from $ null to $ infinity. One finds π
2c for these integrals; their accord

with the results of the no 26 proves the justice of these passages from the positive
to the negative and from the real to the imaginary: these diverse results have been
given in the Mémoires de l’Académie des Sciences for the year 1782. No 33.

The approximate integral of the equation 0 = (a′+ b′)ys+1− (a+ bs)yx, whence we
deduce, by a simple and very convergent series, the middle term or independent
of a of the binomial

(
a+ 1

a

)2s
. No 34.

General method in order to have, by a convergent series, the middle term or indepen-
dent of a, in the development of the polynomial

a−n + a−n+1 + a−n+2 + · · ·+ an−1 + an

raised to a very high power. No 35.

Expressions, in convergent series, of the coefficient of a±l, in the development of this
power, and of the sum of its coefficients, from the one of a−l to the one of al.
No 36.

Integration by approximation of the equation in the differences ps = sys+(s−i)ys+i.
One deduces from it the expression of the sum of the terms of the very high
power of a binomial, by arresting its development at any term quite distant from
the first. No 37.
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On the approximation of the very elevated differences infinitely small and finite of
functions

Approximation of the very elevated infinitely small differences of the powers of a
polynomial. Very approximate expression of the very elevated differential of an
angle, taken with respect to its sine. No 38.

Expressions by definite integrals of the finite and infinitely small differences of ys,
when we are arrived to give to it either of the forms

∫
xsφdx,

∫
c−sxφdx. No 39.

Approximation by very convergent series of ∆n 1
s , n being a large number. We de-

duce, by means of the passages from the positive to the negative and from the
real to the imaginary, the approximation of ∆ns. The convergence of the series
requires that i surpass n and that the difference i−n is not too small with respect
to s+ n

2 . Expression in series of ∆nsi, in the last case. No 40.

Expression of the difference ∆nsi when i is smaller than n. No 41.

Expression of the sum of the terms of ∆nsi, by arresting its development at the term
in which the quantity raised to the power i commences to become negative. Ap-
proximation, by very convergent series, of the function

(n+ r
√
n)n±l − n(n+ r

√
n− 2)n±l +

n(n− 1)

1.2
(n+ r

√
n− 4)n±l − · · ·

in which we reject the terms where the quantity raised to the power n ± l is
negative, l being a very considerable whole number with respect to n. No 42.

Extension of the preceding methods to the very elevated finite differences of the form
∆n(s+ p)i(s+ p′)i

′
(s+ p′′)i

′′ · · · No 43.

General remarks on the convergence of the series. No 44.
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