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Mr. J. A. Mallet
Professor of Astronomy at Geneva

Acta Helvetica, Vol. VII. 1772, pp. 133–172

1 ˚ On a case of the Ars Conjectandi
of Mr. Bernoulli.

The celebrated Jacques Bernoulli gives in his work Ars Conjectandi, page. 161 the
solution of the following Problem. Two persons A & B play together with a single
die, & agree that each recast the die as many times as it has brought forth points on the
first cast, that the one here will win a sum 1, who will bring forth the most points in all
his throws, & that if both obtain the same number of points, they will divide equally
the proposed sum, but soon one of the players B, bored of the game, offers, instead
of throwing the dice, to take 12 points for his part, A consents, we ask who has the
greatest expectation to win?1

The method which seems most simple to resolve this question, is to seek, if the
number of points, whichA can attain in all his casts, is greater or lesser than 12, now we
find it equal to 12 1

4 : It seems therefore, that since the expectation to win depends on the
number of points that one expects, we must conclude that the expectation ofA is greater
than that of B, however if we seek this expectation exactly, we find it smaller than that
of B, in the ratio of 15295 to 15809. Quamquam profecto (says Mr. Bernoulli) difficile
dictu est, cur ille plura quam hic puncta, minorem autem depositi partem expectet, cum
tamen acquisitio depositi, vi pacti, pendeat a punctorum pluralitate.2

We can see by this kind of paradox, how it is easy to be deceived in the solution of
these questions, & how it is necessary to use precautions in the reasonings which we
make on this matter. Mr. Bernoulli being content to indicate this apparent singularity,
without giving the explication of it, I have believed that it would not be useless to enter
into greater detail on this subject, in order to clarify perfectly this little difficulty, we
will see that we can imagine an infinity of cases similar to that of Mr. Bernoulli, in the
solution in the solution of which it would be also easy to be induced to error.

The number of points which a player can expect to obtain in a certain game, is the
number which results from the sum of the products of each number of points which he

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. November 28, 2009

1Translator’s note: This is the same problem studied by Fuss.
2It is difficult to see why the former expects more points but less of the stake, when acquisition of the

stake depends on the number of points.
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can bring forth, multiplied by the probability that he will obtain this number of points.
Thus, for example, in a game where of four cases which can happen equally, one of
them obtains 1 point, the second obtains 2 points, & each of the two other, 3 points, the
number of points to expect is in this case

=
1

4
× 1 +

1

4
× 2 +

2

4
× 3 = 2

1

4
.

This being put, I will remark first, that if each point moreover contributed to increase
the gain of the player A, then his expectation would depend well on the number of
points which he attains, & if this number would be greater than that whichB has taken,
which incurs the opportunity of chance not at all, we could conclude with reason that
the expectation of A would be greater than that of B. But in the Problem, of which
there is concern, this is not at all the same case, because if the game gives to A more
than 12 points, he will have won, whatever be the number of points which he obtains
above 12, likewise he will have lost, if he obtains any number below it, the question
is only to know, if he will pass or if he will not pass the number 12, little import if he
surpass it by little or by much. It seems therefore that the ratio of the expectations of
the 2 players, can not be concluded from that if the fixed number of points, taken by
one of the players, is found greater or lesser, than the number which chance promises,
but that it depends on the nature of the game, & that we must examine necessarily in
detail all the possible cases.

We suppose generally any game between A & B, where the one will have obtained
the most points, will win the stake of the other, without having regard to the surplus of
the number of points, which he will have over his adversary, B takes the fixed number
of points t, without exposing himself to chance, & A by the nature of the game attains
a number s, we see if from the ratio of t to s, it is possible to conclude, which of the
two has the greater expectation to win.

There can happen three different cases.
1 ˚ If A obtains a number of points t equal to that of B, that which will give to him

the sum 1
2 .

2 ˚ If he obtains more than t points, that which will give to him the entire sum 1.
3 ˚ If he has less than t points, that which will make him lose, or will give to him

0.
Therefore the expectation of A is equal to the expectation of bringing forth t points

+ 1
2× the expectation of bringing forth precisely t points.

Let this game be such that the expectation

to obtain precisely 1 point is = α & to obtain more than 0 points is = a
2 = β 1 = b
3 = γ 2 = c
...

...
...

...
t = µ t− 1 = m

t+ 1 = ν t = n
...

...
u points = ζ u− 1 points = Z

2



Then the expectation of A will be equal to n+ 1
2µ.

Now by the nature of the sequences α, β, &c. . . . a, b,&c. it is evident that we
have a = α + β + γ . . . + ζ & b = β + γ . . . + ζ & in general the xth term of the
sequence a, b, c,&c. equal to the sum of the x, x + 1 &c. terms of the sequence α, β
&c. Therefore we will have α = a − b, β = b − c&c. & µ = m − n. In such a way
that the expectation of A will be m+a

2 and it will be smaller, greater, or equal to that of
B, according as m+ n will be smaller, greater, or equal to unity, without any regard to
the number s of points which A expects.

It is true that this number s depends on the sequences α, β &c. a, b, &c. because
we have s = α+ 2β + 3γ . . .+ uζ = a+ b+ c+&c. . .+ Z, but it is easy to see that
this sequence a, b, c,&c. depending on the nature of the game, can vary to infinity,
without the sum s changing in value, that which will give together as many different
values in the quantity m− n.

Whence it follows evidently, that from the ratio of t to s, we can conclude nothing
on the expectations of A & of B.

We will clarify this by some examples, where we will suppose t = s.
1◦ A casts two ordinary dice, we know that he can expect 7 points from this game

here. B takes also 7 points for his part, we have therefore s = t = 7.
& the Sequence a, b, &c. becomes

1 2 3 4 5 6 7 8
36
36+

36
36+

35
36+

33
36+

30
36+

26
36+

21
36+

15
36+

10
36+

6
36+

3
36+

1
36=7

the quantity m+n
2 which expresses the expectation of A is =

21
36+

15
36

2 = 1
2 equal to that

of B.
We suppose 2◦ that A draws from a sack where there are 6 Tickets, one marked 3

points, the other 5, the other 7, another 8, another 9, & another 12, our Sequence will
be

1 2 3 4 5 6 7 8
6
6+

6
6+

6
6+

6
6+

5
6+

4
6+

4
6+

3
6+

2
6+

1
6=7

& the expectation of A =
4
6+

3
6

2 = 7
12 greater than that of B.

Finally 3◦ if A draws from a sack where there are six tickets, one of 4, two of 6,
another of 7, one of 9 & one of 10, the Sequence will be

1 2 3 4 5 6 7 8
6
6+

6
6+

6
6+

5
6+

5
6+

5
6+

3
6+

2
6+

2
6+

1
6=7

the expectation of A = 5
12 smaller than that of B.

Here are therefore three cases where s = t, & where however the expectation of A
is found in one equal to that of B, in the 2nd greater, & in the 3rd smaller.

We can likewise imagine an infinity of games, where t being smaller than s the
expectation of B, is however greater than that of A. Here is an example of it drawn
from the Probabilities of human life.

An infant who comes to be born has according to the mortality Tables of Halley the
expectation around 27 years of life; A proposes to wager that this infant will not attain
his 12th year; there are few people who would not accept gladly this wager, as very
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advantageous, however we find by these same Tables, that of 1300 newborns there are
654 dead at the end of 12 years, so that the expectation of A is found to be = 654

1300 , that
is greater than that of his adversary.

The same Sequence can be such that its sum s is infinitely greater than t, & however
the expectation of A smaller than that of B.

We will find entirely also easily some cases where the expectation of B is smaller
than that of A, whenever t is greater than s. Let for example a die of 12 faces of which
four are marked 1, one 4, one 9, five others 11, & the twelfth 12. The number s of
points to expect for A is 7, it is necessary that B take at least t = 10, in order that he
has some advantage over A.

We can propose here a question to resolve, namely the excess of t over s being
determined, & suppose also as great as we will wish, is it possible that there are some
cases where the expectation ofA is nonetheless greater than that ofB? or else is there a
certain ratio of t to s beyond which it is impossible that the expectation of A surpasses
that of B?

I will remark first, that by supposing t infinitely greater than s, it is impossible
that the expectation of A surpass that of B, because it would be necessary for this that
the Sequence a, b,&c. having an infinite number of terms, has however a finite sum,
that which is impossible in this case here, where the denominator of these fractions is
everywhere the same, it would be necessary moreover that the sum of two terms the tth

& t+ 1
st taken to infinity were greater than unity, that which can not be, if s is finite,

because s is always greater than t times the tth term.
We seek therefore for a determined value of s the greatest value possible of t which

renders m+ n greater than unity. Let for example s = 5 & the Series

1 2 3 4 5 6 7
12
12+

7
12+

7
12+

7
12+

7
12+

7
12+

7
12+

6
12=5

the greatest value of t (m+ n remaining 71) will be = 7; this Series arranged in every
other manner, will give a value of t less than 7.

In general the denominator being n, the Series arranged the best way in order to
render t the greatest possible will be

n

n
+

1
2n+ 1

n
+

1
2n+ 1

n
+ &c. · · ·+

1
2n+ 1

n
+
φ

n
= s

(φn is the last term which is smaller than
1
2n+1

n & which can be zero in certain cases.)
Therefore the greatest value of t will be equal to the quotient of the division of

s− 1− φ
n by

1
2n+1

n that is to say

t =
s− 1 · n
1
2n+ 1

− φ
1
2n+ 1

= 2× s− 1− 4 · s− 1 + 2φ

n+ 2

a value which will be so much greater as the number n of all the possible cases will be
greater, & which becomes = 2× s− 1 when this number n will be infinity.

It is therefore impossible that the expectation of A, who awaits a certain number of
points s be greater than that of B, if this B has already more than 2× s− 1 points.
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Thus for example in a Lottery of which the ticket is worth 10 écus, we can wager
not at all that this ticket will return at least a certain sum, if we do not know the manner
in which the lots are distributed, & in all the ordinary Lotteries, there is always a very
great probability that a ticket will return nothing; but it is possible that a Lottery is
arranged in a fashion that we can wager without disadvantage, that a single ticket of 10
écus will return more than 19, this is that which would happen for example if all the
lots were equal & doubles of the wager, but there is no other combination which can
make wagering that a single ticket will return more than double its value.

2◦ CALCULATION of a particular LOTTERY.

A Particular was once in Paris a rather singular Lottery, of which here are the
Conditions

1◦ The number of tickets were one million or 1000000, each cost 10 sols, this
which returned 500000 Livres. Of this Sum it retained 75000 Livres or 15 percent,
there remained 425000 Livres to distribute in 20000 lots.

2◦ One put all the Tickets into a box, & all the lots into another, after which one
drew one Ticket and one lot, one replaced next this same Ticket into the box, so that the
same Ticket could have many lots, & even have all of them; namely if it were drawn
twenty thousand times in sequence.

3◦ If someone had 50 tickets, one returned to him his 50 stakes or 25 Livres if none
of his 50 Tickets came out with a lot, thus the Banker or the Master of the Lottery was
himself exposed to the condition of fortune, & could lose or win by his Lottery.

We suppose that there are only 20000 persons who have put into this Lottery, that
is to say that each has taken 50 tickets, that which will be probably happening in order
to be able to enjoy the benefit in article 3.

The case most favorable to the Banker, is that each person is able to grab a lot with
his half a hundred; he has thus 75000 Livre profit which he has first levied on the total.

The most disadvantageous case, is that the same person has all the lots, there will
remain yet 19999 persons to each of whom, it is necessary to give 25 Livres that which
makes 499975 Livres so that in this case the Banker would lose 424975 Livres.

We can see also that if the 20000 lots were distributed among 17000 persons, he
would be obliged then to compensate 3000 of them, that which would make 75000
Livres so that in this case he would have neither gain nor loss.

But if we wish to seek exactly, what is the expectation of the Banker, we suppose
in order to resolve this Problem generally, that here are n players, who each take an
equal number of tickets, for which each pays a sum b, which will be rendered to him,
if none of the tickets has some lot, & let a be the sum that the Banker levies first on the
total of the wagers.

We will seek first the probability that each player will have a lot,
II◦ The probability that any single player will have none of the lots at all, in which

case the Banker will render the sum b.
III◦ The probability that two players only will have none of the Lots at all, & in

this case the Banker renders the sum 2b, & thus in sequence to the end, namely when a
single player will have all the lots, & that the Banker will render the sum (n− 1)b.

In order to find the probability in the Ist case that each player will have a lot.
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We suppose 1◦ that n− 1 players have already had n− 1 lots; what is the prob-
ability that the lot which remains, will go to the one who has had nothing yet? It is
evident that it is = 1

n .
2◦ If n− 2 players have already had n− 2 lots, what is the probability that each of

the two others who have had nothing yet, will have a lot? We see that there are n− 2
cases in order that this not happen, & two cases in order to fall into the preceding case,
that is to say in order to have the probability 2

n . Therefore the probability sought is
n−2×0+2× 1

n

n = 1.2
n2 .

3◦ If n− 3 players have had n− 3 lots, in order to find the probability that each of
the three others will have one of them, there are n− 3 cases in order that this not hap-
pen, & 3 cases in order to fall into the preceding case, that which gives the probability
sought = 1.2.3

n3 .
It is easy to see after this that if n− p players have already had n− p lots, the

probability that each of the others will have one of them is = 1.2.3...p
np .

And if there is yet any ticket to draw, the probability that each player will have a
lot, is found = 1.2.3...n

nn (Ist case)
We follow this same method in order to seek the probability of the IInd case, that a

single player will have none of the lots at all.
1◦ If n− 1 players have had n− 1 lots; what is the probability that the lot which

remains will not go to the one who has had nothing yet? There are n− 1 favorable
cases & 1 to the contrary, that which gives this probability = n−1

n .
2◦ If n− 2 players have had n− 2 lots, what is the probability that one alone of

the two lots will go to one of the two players who have had nothing?
There are two cases to fall into the preceding cases, & n− 2 cases to have the

expectation 2
n that if n− 2 players have already n− 1 lots, the lot which remains will

go to one of the two players who have nothing, so that the probability sought is

=
2× n−1

n + n− 2× 2
n

n
= 1.2.

(
n− 1 + n− 2

n2

)
.

The following case is resolved in the same manner, & we will find the probability

= 1.2.3.

(
n− 1 + n− 2 + n− 3

n3

)
.

Whence we can conclude that if n− p players have had n− p lots, the probability
that one alone of the p remaining will have nothing is

= 1.2.3 . . . p

(
n− 1 + n− 2 + · · ·+ n− p

np

)
Therefore the probability before the drawing, that one alone will have none of the

lot at all is

= 1.2.3 . . . n

(
1 + 2 + 3 · · ·+ n− 1

nn

)
(IInd case)
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By following the same method, we will find that the probability that two players only
will have none of the lot at all will be

=
3.4.5 . . . n

nn

(
12 + 22 + 32 &c. + n− 2

2
+ 1.2 + 1.3 + 1.4&c. + 1.n− 2 + 2.3 + 2.4&c.

)
(IIIrd case)

The second member contained within the parentheses, is the sum of the products
two by two of the first n− 2 natural numbers, or that which is the same thing, the
square of the polynomial composed of the n− 2 natural numbers by making all the
coefficients = 1.

We will find likewise that the probability that only three players will have none
of the lot at all will be = 4.5...n

nn multiplied by all the products three by three, which
we can make with the first n− 3 natural numbers, I will call this second factor, the
cube without coefficients of the first n− 3 numbers, & I will designate thus the sought
probability

4.5 . . . n

nn
(1 + 2 + 3 · · ·+ n− 3)

3rd (IVth case)

Here is the recapitulation of these different cases:

Ist case the Probability = 1.2.3...n
nn (1 + 2 + 3 + &c. · · · + n)

0th

IInd case = 2.3.4...n
nn (1 + 2 + 3 + &c. · · · + n− 1)

1st

IIIrd case = 3.4.5...n
nn (1 + 2 + 3 + &c. · · · + n− 2)

2nd

... =
...

Pth case =p.p+1.p+2...n
nn (1 + 2 + 3 + &c. · · · + n− p+ 1)

p−1th

We see presently what will be the expectation of the Banker.
He has the sum a of which he renders nothing if all have some lots; of which he

renders b, if n− 1 players have lots; of which he renders 2b, if n− 2 players have lots
&c. So that his expectation will be

(a) 1.2.3...nnn (1 + 2 + 3 + &c. · · · + n)
0th

+(a− b) 2.3...nnn

(
1 + 2 + 3 + &c. · · · + n− 1

)1st

+(a− 2b) 3.4...nnn

(
1 + 2 + 3 + &c. · · · + n− 2

)2nd

&c.
+(a− n− 2.b)n−1.nnn (1 + 2)n−2

nd

+(a− n− 1.b) nnn (1)
n−1st

Let the Factor n
nn (1)

n−1st
which multiplies a − n− 1.b be equal to A, that which

multiplies a− n− 2.b be equal to B, the following to C, D &c. that which multiplies
a− 2b be equal to P , the following Q & finally the last = R, so that the expectation of
the Banker is

(a− n− 1.b)A+ (a− n− 2.b)B &c. · · ·+ (a− 2b)P + (a− b)Q+ (a)R
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The coefficient of a will be therefore = A + B + C+&c.· · · + Q + R which is
evidently equal to unity, since it expresses the sum of the Probabilities of different
cases, among which there is certainly one which will take place.

The coefficient of b will be

= n− 1.A+ n− 2.B + &c. · · ·+ 2P +Q.

The concern therefore presently is to determine these quantities A, B&c.
We seek therefore for this purpose what the quantity (1 + 2 + 3 + &c. · · · + p)

pth

is (I intend always by the pth power of the polynomial putting all the coefficients in it
there equal to unity.

We will resolve this Problem generally, by seeking to expand a quantity of this
nature (1 + 2 + 3 + &c. · · · + q)

pth.

1◦ For two quantities.

We find

(a+ b)0
th
=

b

b− a
− a

b− a

(a+ b)1
st
=

b2

b− a
− a2

b− a

(a+ b)2
nd
= aa+ ab+ bb =

b3

b− a
− a3

b− a

(a+ b)3
rd
= a3 + a2b+ ab2 + b3 =

b4

b− a
− a4

b− a

& generally

(a+ b)p
th
=

bp+1

b− a
=
ap+1

b− a

2◦ For three quantities

(a+ b+ c)2 = (a+ b)2 + (a+ b) + cc

+
b3 − a3

b− a
+
b2 − a2

b− a
+ c

b− a

b− a
cc

=
1

b− a

{
+ b3 + bbc+ bcc

− a3 − a3c− acc

}

=
1

b− a


+ b3

c3 + b3

c− b

− a
c3 − a3

a− c


=

1

b− a
· c

3 − b3

c− b
− a

b− a
· c

3 − a3

c− a

=
c4

(c− b)(c− a)
− b4

(c− b)(b− a)
+

a4

(c− a)(b− a)
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By following the same method, we find

(a+ b+ c)3 =
c5

(c− b)(c− a)
− b5

(c− b)(b− a)
+

a5

(c− a)(b− a)

& generally

(a+ b+ c)p =
cp+2

(c− b)(c− a)
− bp+2

(c− b)(b− a)
+

ap+2

(c− a)(b− a)

3◦ For four quantities

(a+ b+ c+ d)3 =(a+ b+ c)3 + (a+ b+ c)2d

+ (a+ b+ c)1dd+ (a+ b+ c)0d3

=
c5

(c− b)(c− a)
− b5

(c− b)(b− a)
+

a5

(c− a)(b− a)

+
c4d

(c− b)(c− a)
+

b4d

(c− b)(c− a)
− a4d

(c− a)(b− a)

+
c3dd

(c− b)(c− a)
− b3dd

(c− b)(b− a)
+

a3dd

(c− a)(b− a)

+
c2d3

(c− b)(c− a)
− bbd3

(c− b)(b− a)
+

aad3

(c− a)(b− a)

=
cc

(c− b)(c− a)
· d

4 − c4

d− c
− bb

(c− b)(b− a)
· d

4 − b4

d− b

+
aa

(c− a)(b− a)
· d

4 − a4

d− b

=
d6

(d− c)(d− b)(d− a)
− c6

(d− c)(c− b)(c− a)

+
b6

(d− b)(c− b)(b− a)
− a6

(d− a)(c− a)(b− a)

& generally

(a+ b+ c+ d)p =
dp+3

(d− c)(d− b)(d− a)
− cp+3

(d− c)(c− b)(c− a)

+
bp+3

(d− b)(c− b)(b− a)
− ap+3

(d− a)(c− a)(b− a)

It is not difficult to discover the law for 5, 6 quantities or further, that of the Nu-
merators is evident, & for the Denominators, we will see that in general for (a + b +
&c. · · · + q)p the Denominator of dp+f for example is equal to the Denominator of
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dp+f−1 (of the preceding case or q it was not) multiplied by (q − d), & that the De-
nominator of the quantity qp+f is always (q − a)(q − b)(q − c) &c.

We apply now that which we just found to the natural numbers, & we suppose
a = 1, b = 2, c = 3, &c.

We will have generally

(1 + 2 + 3 + &c. · · · + q)
p
=

qq+p−1

1.2 . . . q − 1
− (q − 1)q+p−1

(1.2 . . . q − 2).1
+

(q − 2)q+p−1

(1.2 . . . q − 3).1.2

− (q − 3)q+p−1

(1.2 . . . q − 4).1.2.3
+

(q − 4)q+p−1

(1.2. . . . q − 5).1.2.3.4
− &c. · · · ± (1)q+p−1

1.2.3 . . . q − 1
.

And giving next to p & q the convenient values we will have

A = (1)n−1
n

nn

B =

(
2n−1

1
− 1n−1

1

)
n.n− 1

nn

C =

(
3n−1

1.2
− 2n−1

1.1
+

1n−1

1.2

)
n.n− 1.n− 2

nn

D =

(
4n−1

1.2.3
− 3n−1

1.2.1
+

2n−1

1.1.2
− 1n−1

1.2.3

)
n.n− 1.n− 2.n− 3

nn

&c
...

Q =

(
n− 1

n−1

1.2 . . . n− 2
− n− 2

n−1

1.2 . . . n− 3.1
+

n− 3
n−1

1.2 . . . n− 4.1.2
− &c. · · ·

± 1n−1

1.2 . . . n− 2

)
n.n− 1 . . . 3.2

nn

R =

(
nn−1

1.2 . . . n− 1
− n− 1

n−1

1.2 . . . n− 2.1
+

n− 2
n−1

1.2 . . . n− 3.1.2
− &c. · · ·

∓ 1n−1

1.2 . . . n− 1

)
n.n− 1 . . . 2.1

nn

We can arrange these quantities in another manner more accommodating by putting in
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the same term the nn−1, in another the n− 1
n−1

&c. in the following fashion:

α =
1.2 . . . n

1.2 . . . n− 1
· n

n−1

nn

β =

(
2.3 . . . n

1.2 . . . n− 2
− 1.2 . . . n

1.2 . . . n− 2.1

)
n− 1

n−1

nn

=(1− 1)
2.3 . . . n

1.2 . . . n− 2
· n− 1

n−1

nn

γ =

(
3.4 . . . n

1.2 . . . n− 3
− 2 . . . n

1.2 . . . n− 3.1
+

1.2 . . . n

1.2 . . . n− 3.1.2

)
n− 2

n−1

nn

=(1− 2 + 1)
3.4 . . . n

1.2 . . . n− 3
· n− 2

n−1

nn

δ =

(
4.5 . . . n

1.2 . . . n− 4
− 3 . . . n

1.2 . . . n− 4.1
+

2 . . . n

1.2 . . . n− 4.1.2
− 1.2 . . . n

1.2 . . . n− 4.1.2.3

)
n− 3

n−1

nn

=(1− 3 + 3− 1)
4.5 . . . n

1.2 . . . n− 4
· n− 3

n−1

nn

&c.

ω =

(
n− n− 1.n

1
+
n− 2.n− 1.n

1.2
− &c. · · · ± 1.2 . . . n

1.2 . . . n− 1

)
1n−1

nn

We see easily that the sum of all these quantities α, β, &c. is the same as that of
the quantities A, B, &c. & we can see also the truth of that which we have said above
that this sum which formed the coefficient of a must be equal to unity, because here we
have α = 1, & all the others α, β, γ, &c. = 0.

In order to find the coefficient of bwhich is = n− 1.A+n− 1.B+&c.· · ·+2P+Q
It is necessary to seek the sum of all the following quantities.

1st A+B + C + &c. · · ·+O + P +Q

2nd A+B + C + &c. · · ·+O + P

3rd A+B + C + &c. · · ·+O

&c. &c.

n− 1 A+B

n A

We will find the 1st by taking the sum of the quantities α, β, &c. · · ·ω after having
subtracted from each the last term, which is alternatively positive & negative, because
these last terms are precisely the value of R.
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By canceling out in this last term the quantity α becomes = 0

β = +1 · 2.3 . . . n

1.2 . . . n− 2
· n− 1

n−1

nn
= β′

γ = −1 · 3.4 . . . n

1.2 . . . n− 3
· n− 2

n−1

nn
= γ′

δ = +1 · 4.5 . . . n

1.2 . . . n− 4
· n− 3

n−1

nn
= δ′

&c.

ω = ∓1 · n
1
· 1

n−1

nn
= ω′

In order to have the 3rd sum A+B+ &c. · · ·+ P , it will be necessary to subtract
from the 1st the value of Q which is equal to the sum of the penultimate terms of the
quantities α, β,&c.

That way the quantities α & β become = 0

& γ = +1 · 3.4 . . . n

1.2 . . . n− 3
· n− 2

n−1

nn
= γ′′

δ = −2 · 4.5 . . . n

1.2 . . . n− 4
· n− 3

n−1

nn
= δ′′

ε = +3 · 5.6 . . . n

1.2 . . . n− 5
· n− 4

n−1

nn
= ε′′

&

& ω = ±n− 2 · n
1
· 1

n−1

nn
= ω′′

In order to have the 3rd sum A+B+ &c. · · ·+O, it is necessary again to subtract
the antepenultimate terms & we will have

+1 · 4.5 . . . n

1.2 . . . n− 4
· n− 3

n−1

nn
= δ′′′

−3 · 5.6 . . . n

1.2 . . . n− 5
· n− 4

n−1

nn
= ε′′′

The coefficients 1− 3 + 6 &c. are
the triangular numbers, with the signs
alternately positive & negative.

+6 · 6.7 . . . n

1.2 . . . n− 6
· n− 5

n−1

nn
= ξ′′′

&c.

We will follow the same method in order to find the 4th Sums & the coefficients
will be the pyramidal numbers with the signs also alternately positives & negatives, &
thus for the others.
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Taking presently all these quantities, the total sum will be

=+ 1 ·

{
2.3 . . . n

1.2 . . . n− 2
· n− 1

n−1

nn

}
− 1

+ 1

{
3.4 . . . n

1.2 . . . n− 3
· n− 2

n−1

nn

}

+ 1

− 2

+ 1

{
4.5 . . . n

1.2 . . . n− 4
· n− 3

n−1

nn

} − 1

+ 2

− 3

+ 1

{
&c.

=
2.3 . . . n

1.2 . . . n− 2
· n− 1

n−1

nn
· equal to the coefficient of the quantity b.

Therefore finally, the expectation of the Banker is

= a− 2.3 . . . n

1.2 . . . n− 2
· n− 1

n−1

nn
· b

= a− n ·
(
n− 1

n

)n
b.

We suppose that there are nm tickets, or n players who each take a number m of
tickets, each ticket costs the sum b, each person will pay the sum mb, & the Banker
levies first for himself a percent on the total sum nmb which all the tickets have pro-
duced.

By substituting therefore a
100nmb instead of a & mb for b, the expectation of the

Banker will be

=
a

100
nmb− n ·

(
n− 1

n

)n
mb.

It will be null when a = 100
(
n−1
n

)n
, & this value of a becomes the greatest

possible namely = 100 when n is infinitely great.
Indeed if the Banker levied first 100 percent, that is to say takes all, as then a person

can have none of the lot, he is obliged to render all.
In the particular case where n = 20000, b = 10 sols, m = 50, & a = 15.
The expectation of the Banker is negative = −108900 Livres nearly, that which

makes a prodigious disadvantage, there is appearance that the one who made this Lot-
tery has not taken the pain to make all the preceding calculations.

In this case
(
n−1
n

)n
= 36778

100000 , thus it would have been necessary that the Banker
levied first 36.778 percent, finally to have neither advantage nor disadvantage.

We can see easily that the quantity
(
n−1
n

)n
will increase as n increases, that which

consequently will make the quantity a = 100
(
n−1
n

)n
increase necessary in order that

the advantage of the Banker be null. Thus the quantities a, m & b remaining the same,
the advantage of the Banker will diminish in measure as the number n of players will
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increase, that which we can confirm by some examples.

If n = 1
the advantage
of the Banker

= 1
100a.mb

& in order that it be
null, there must be

a = 0

n = 2 =
(

2
100a− 0.5

)
mb a = 25

n = 10 =
(

1
10a− 3.487

)
mb a = 34.87

n = 100 = (a− 36)mb a = 36.00
n = 1000 = (10a− 367)mb a = 36.70
n = 1000000 = (10000a− 367647)mb a = 36.76

Whence we see that the Banker will have some disadvantage when he will levy on the
total, less than that which is indicated by the values of a of the last column, there is
therefore that a single case, namely when n = 1 that the Banker can not have some
disadvantage, & his advantage will be proportional to the quantity amb.

If for a determined value of a we would wish to seek the number n of players
necessary in order that the Banker have no disadvantage, there is only to deduce the
value of n from the equation 100×

(
n−1
n

)n
= a, we have the equation

n. log
n− 1

n
= log

a

100

which we can resolve by approximation.
In the case above where a = 15, we find n smaller than 2, because by putting it

equal to 2 in it, the Banker has yet 5 Livres of disadvantage.
After having resolved this Problem by the preceding method, which is rather long

& seeing that the result becomes so simple from it, I have thought that there would be
perhaps a more easy way to come to it at the end. This would be to seek the advantage
of any player, to multiply it by n, & to change in it the signs in order to have that of the
Banker, because it is evidently equal to the sum of the advantages of each player taken
negatively.

I will make for that preceding the following Lemma which could serve for other
similar cases.

A die with n faces being cast p times, we ask what is the probability to bring forth
precisely m times one of the faces a.

The probability of having a one time in 1 trial is = 1
n = 1× n−10

n

2 trials =
1·n−1

n +n−1× 1
n

n = 2× n−11
n2

The probability of having a 1 time in 3 trials is =
1·n−12

n2 +n−1×n−1

n2

n = 3× n−12
n3

one time in p trials = p× n−1p−1

np

The probability of having a two times in 2 trials = 1
n2 = 1× n−10

n2

3 trials =
1·2·n−1

n2 +n−1×n−10

n2

n = 3× n−11
n3

4 trials =
1·3·n−12

n3 +n−1·3·n−11

n3

n = 6× n−12
n4

two times in p trials = p p−1
2 · n−1

p−2

np

It is not necessary to go further in order to see the law which they follow in the fol-
lowing cases, each probability being deduced from the preceding, we will find thence
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that the sought probability of bringing forth a, m times, in p trials is

=
p.p− 1.p− 2 · · · p−m+ 1

1.2.3 · · ·m
× n− 1

p−m

np
.

We will deduce thence quite easily, the expectation of each person who puts into the
Lottery, namely the probability that he will have a lot, the probability that he will have
two of them, three &c. because each face of the die can represent a player, & as each
cast of the die brings forth a face, likewise each drawing makes the No. of a player exit,
in order to have a lot, all things being therefore perfectly similar in these two cases, the
formula which we have found will express the expectation which a player has to obtain
m lots among the number p which we will deduce from it, & making p = n, we will
have the expectation to have m lots in the Lottery

=
n.n− 1.n− 2 · · ·n−m+ 1

1.2.3 · · ·m
· n− 1

n−m

nn

Let the 1st lot be α, the 2nd = β, the 3rd = γ &c. & the sum of all these lots = A,
we know not at all these quantities α, β, γ &c, there is need only to know their sum A,
because the expectation of the Banker depends not at all on the manner in which the
lots are distributed, but only on their number which equals the one of the players, the
expectation of each of these will not depend on it any longer.

Thus the value of a single lot will be expressed by the sum of all the lots divided by
n, namely = A

n .
The value of two lots will be expressed by the sum of all the lots taken two by two,

divided by the number of combinations of n things two by two, that is to say

=
(α+ β) + (α+ γ) + (α+ δ)&c. + (β + γ) + (β + δ)&c

n×n−1
2

=
n− 1.A
n×n−1

2

=
2A

n
.

The value of three lots will be

=
n−1.n−2

2 ×A
n.n−1.n−2

2.3

=
3A

n

& in general the value of a number q of lots will be expressed by qA
n .

Therefore the expectation of each player (by giving to a & b the same denomina-
tions as above) will be

= 1× n−1n
nn · b+n

1 · n−1
n−1

nn · An + n.n−1
1.2 · n−1

n−2

nn · 2A
n + &c. · · ·

+1 · n−1
0

nn × nA
n .

=
(
n−1
n

)n
b + A

nn

(
n− 1

n−1
+ n−1

1 · n− 1
n−2

+ n−1.n−2
1.2 · n− 1

n−3
+ &c.

+ n−1.n−2
1.2 · n− 1

2
+ n−1

1 × n− 1
1
+ 1
)

=
(
n−1
n

)n
b + A

nn (n− 1 + 1)n−1 =
(
n−1
n

)n
b+ A

nn
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Now the sum A of the lots is equal to the sum of the wagers namely nb less the sum a
that the Banker levies first, so that the expectation of each player becomes

=

(
n− 1

n

)n
b+ b− a

n

& the advantage of each player =
(
n−1
n

)n
b+ b− a

n which multiplied by m, will give
the disadvantage of the Banker

= n×
(
n− 1

n

)n
× b− a

as by the first method.
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