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In considering the births of the two sexes during six consecutive years, either in
France entire, or in the part more southern of the realm, I have remarked, it is already
four years ago:

1◦ That the ratio of the births of boys and girls is 16
15 , instead of 22

21 , as one believed
it before.

2◦ That this ratio is very nearly the same for the middle of France and for France
entire, so that it appeared independent of the variation of climate, at least in the extent
of our country.

3◦ That its value, among the infants born outside of marriage, is sensibly less than
for legitimate infants, and nearly equal to 21

20 .
These results have been inserted for the first time in the Annuaire of the bureau

of longitudes of the year 1825; and from this period, one has verified them on some
numbers more and more considerable. Here is the ratio of the births of boys and of
girls, for each of the six years running from 1817 to 1826 and for France entire, by
having regard to all the births, legitimate or outside of marriage:

for 1817 . . . . . . . . . . . . . . . 1.0720,
1818 . . . . . . . . . . . . . . . 1.0644,
1819 . . . . . . . . . . . . . . . 1.0642,
1820 . . . . . . . . . . . . . . . 1.0642,
1821 . . . . . . . . . . . . . . . 1.0685,
1822 . . . . . . . . . . . . . . . 1.0623,
1823 . . . . . . . . . . . . . . . 1.0621,
1824 . . . . . . . . . . . . . . . 1.0659,
1825 . . . . . . . . . . . . . . . 1.0703,
1826 . . . . . . . . . . . . . . . 1.0614.

Mean . . . . . . . . . 1.0656.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. January 18, 2010
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Its mean value results from around ten million births. It differs by very nearly two
hundredths, on both sides, from the extreme values which correspond to 1817 and
1826. The mean value of this same ratio for the thirty departments most south of the
realm, is 1.0655, which deviates only by one thousandth of that which holds for France
entire. But if one considers in isolation the annual births of each of the 86 departments,
one finds that the ratio of which there is concern varies in the same year, from one
department to another, and for one same department, from one year to another, in such
a way that there happens sometimes that the births of the girls have surpassed those of
the boys.

Relative to the natural infants, their number is raised to nearly seven hundred thou-
sand for France entire during the ten years that we consider; and in this number, the
ratio of the male births to the female births has been 1.0484. The fraction 0.0172 by
which this quantity deviates from the general ratio 1.0656, in not small enough, and
the numbers employed are too great, in order that one is able to attribute this difference
to chance; and howsoever singular that it appears, one is grounded to believe that there
exists, in regard to natural infants, any cause whatsoever which diminishes the prepon-
derance of the births of boys over those of girls. This influence is impressed even on
the annual births, so that one is able to be assured of it by calculating for each of the
ten years comprehended from 1817 to 1826, the ratio of the births of the two sexes, a
defect made of the natural infants. One finds then:

for 1817 . . . . . . . . . . . . . . . 1.0743,
1818 . . . . . . . . . . . . . . . 1.0644,
1819 . . . . . . . . . . . . . . . 1.0650,
1820 . . . . . . . . . . . . . . . 1.0656,
1821 . . . . . . . . . . . . . . . 1.0699,
1822 . . . . . . . . . . . . . . . 1.0628,
1823 . . . . . . . . . . . . . . . 1.0629,
1824 . . . . . . . . . . . . . . . 1.0680,
1825 . . . . . . . . . . . . . . . 1.0727,
1826 . . . . . . . . . . . . . . . 1.0659.

Mean . . . . . . . . . 1.0671.

and if one compares the preceding ratios to these new values, one sees that excepting
the one which corresponds to 1818 and which has not changed, all the others have a
slight increase.

The proportion of births of the two sexes is no longer the same at Paris and in
the departments, either among the legitimate infants, or among those which are born
outside marriage. During the thirteen years elapsed from 1815 to 1827, there is born at
Paris around 215,000 legitimate infants, and the ratio of the male births to the female
births has been 1.0408, or nearly 26

25 , instead of 16
15 which corresponds to France entire.

There is born in that city and in the same interval of time, very nearly 122,000 natural
infants, among which the ratio of the number of boys to the one of girls, has been
1.0345, or around 30

29 , instead of 21
20 which holds for that class of infants in the rest of

France. It is therefore presumable that there exists also in a great capitol as Paris, a
particular cause which diminishes the preponderance of male births, and which drives
at the same time on the legitimate infants and on the natural infants.
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Our mind is naturally carried to admit the results of experience with so much more
confidence as they are deduced from a greater number of observations; but if we wish
to increase the probability and to understand that of our future reproduction, we are
obliged to recur to the formulas which mathematical analysis furnishes for this object:
the perfection of these methods in general, and their application to the facts that I just
cited, are the object of the Memoir that I present today to the Academy. If I have
added something to the numerous works of geometers who have occupied themselves
on the calculation of chances, since Pascal has given the first examples of it, I owe it
to the analysis that I have employed, and of which I have pushed the principle in the
Théorie analytique des probabilités; a work so eminently remarkable by the variety
of questions which are treated, as by the generality of the methods that Laplace has
imagined in order to resolve them.

§ I.
The probability of the repetition of an event of which the chance is given.

(1) Let p be the probability of an event A, and q that of the contrary event B,
so that one has p + q = 1. We designate by P the probability that on a number n
of trials, during which p and q are invariable, A will arrive a number x times and
consequently B a number n− x. This probability is equal to pxqn−x for each of the
different combinations of which the n trials are susceptible taken x by x, or n− x by
n− x; one will have therefore the value of P by multiplying pxqn−x by the number of
these combinations; this which gives

P =
1.2.3 . . .n

12.3 . . .x.1.2.3 . . .n− x
pxqn−x.

But when x and n− x, in the same way their sum n, are very great numbers, the calcu-
lation of this formula becomes impractical, and one is obliged to recur to the methods
of approximation in order to obtain the value.

According to a known formula, one has then

1.2.3 . . .n = nne−n
√

2πn
(

1+ 1
12n +

1
288n2 + etc.

)
,

1.2.3 . . .x = xxe−x
√

2πx
(

1+ 1
12x +

1
288x2 + etc.

)
,

1.2.3 . . .n− x = (n− x)n−xe−n+x
√

2π(n− x)
(

1+ 1
12(n−x)

+ 1
288(n−x)2 + etc.

)
;

e designating the base of the Naperian logarithms, and π the ratio of the circumference
to the diameter, this which will hold in all this Memoir. The series contained between
the parentheses are so much more convergent as the numbers n, x, n−x, are greater; by
conserving only the first term of each series, one will conclude from it

P =
( pn

x

)x
(

qn
n− x

)n−x√ n
2πx(n− x)

, (1)

for the approximate value of P which will be useful to us thereafter.
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(2) We designate now by X the probability that A will not arrive more than x times
out of the number n trials, and we call C this composite event. It will take place in the
x+1 following ways:

1◦ If the n−x first trials bring forth B; because then there will remain no more than
x trials which would not be able to bring forth A more than x times. The probability of
this last case will be qm, by making n− x = m.

2◦ If the first m+1trials bring forth B m times and A once, without that A occupy
the last place, a necessary condition in order that this second case not return into the
first. It is evident that then the x−1 following trials may bring forth A only x−1 times
more, this event will not arrive more than x times in the n trials. The probability of m
events B and of an event A which would occupy a determined rank, is qm p, and this
rank may be able to be the first m, the probability of the second case favorable to C will
be mqm p.

3◦ If the first m+2 trials bring forth B m times and A twice, without that A occupy
the rank m+ 2, this which is necessary and sufficient in order that that this third case
neither returns to the first, nor to the second. The probability of B m times and A two
times in some determined ranks, is qm p2; by taking two by two the first m+ 1 ranks
in order to place A, one has 1

2 m(m+ 1) different combinations; the probability of the
third case favorable to C will be therefore 1

2 m(m+1)qm p2.
By continuing thus, one will arrive finally to an x+1st case, in which the m+ x, or

n proofs, will bring forth B m times and A x times, without that A occupy the nth rank,
so that this case not return into any of the x preceding; and its probability will be

m(m+1)(m+2) · · ·(m+ x−1)
1.2.3 . . .n

qm px.

These x+ 1 cases being distinct from one another, and presenting all the different
ways by which the event C is able to happen, its probability X will be the sum of
their respective probabilities. By putting back n− x in the place of m, one will have
consequently

X = qn−x
[

1+(n− x)p+
(n− x)(n− x+1)

1.2
p2 + · · ·

· · ·+(n− x)(n− x+1) · · ·(n−2)(n−1)
1.2.3 . . .x

px
]
.

(2)

This probability is expressed also, as one knows, by the sum of the x+1 first terms
of the development of (q+ p)n, that is to say that one has equally

X = qn +nqn−1 p+
n(n−1)

2
qn−2 p2 + · · ·

· · ·+ n(n−1)(n−2) · · ·(n− x+1)
1.2.3 . . .x

qn−x px.

The numerical calculation of both of these equivalent expressions, is able to be
regarded as impossible when x and n− x are very great numbers. It is then preferable
to employ formula (2), because it is transformed immediately into a definite integral
which is reduced next to a very convergent series.
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(3) By integrating x+1 times in succession by parts, and designating by c an arbi-
trary constant, there comes

n
∫ yxdy

(1+ y)n+1 = c− yx

(1+ y)n −
x

n−1
yx−1

(1+ y)n−1 −
x.x−1

n−1.n−2
yx−2

(1+ y)n−2

· · ·− x.x−1 . . .2.1
n−1.n−2 . . .n− x

1
(1+ y)n−x

As one has n> x, all the terms of this formula, c excepted, vanish for y=∞; if therefore
one designates by α any positive quantity whatsoever, or zero, one will have

n
∫

∞

α

yxdy
(1+ y)n+1 = c− αx

(1+α)n −
x

n−1
αx−1

(1+α)n−1 −
x.x−1

n−1.n−2
αx−2

(1+α)n−2

· · ·− x.x−1 . . .2.1
n−1.n−2 . . .n− x

1
(1+α)n−x

In the case α = 0, this equation is reduced to

n
∫

∞

α

yxdy
(1+ y)n+1 =

x.x−1 . . .1
n−1.n−2 . . .n− x

by dividing the preceding equation by that here, and making, for brevity,

yx

(1+ y)n+1 = Y,

one concludes from it∫
∞

α
Ydy∫

∞

0 Ydy
=

1
(1+α)n−x

[
1+(n− x)

α

(1+α)
+

(n− x)(n− x+1)
(1+α)2 +

· · ·+(n− x)(x− x+1) · · ·(n−1)
1.2.3 . . .x

αx

(1+α)x

]
now, if one takes α = p

q , and if one observes that p+q= 1, the second member of this
last equation coincides with formula (2): for this value of α , we will have therefore

X =

∫
∞

α
Ydy∫

∞

0 Ydy
. (3)

(4) In order to reduce into series, the integrals contained in this new expression of
X, I call h the value of y which renders Y a maximum: by equating dY to zero, one has

x(1+h)− (n+1)h = 0;

and if one calls H the corresponding value of Y, one will have

h =
x

n+1− x
, H =

xx(n+1− x)n+1−x

(n+1)n+1 .
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The function Y is infinite for no positive value of y, it is null for y = 0 and for y = ∞,
and has only a single maximum between these two limits; one will have therefore to
put

Y = He−t2
; (4)

t being a new variable that one will make increase from −∞ to +∞, and of which the
particular values t =−∞, t = 0, t = ∞, correspond respectively to y = 0, y = h, y = ∞.
One will have next

logY = logH− t2.

By making y = h+ y′, and developing according to the powers of y′, there will result
from it

t2 +
1
2

d2 logY
dy2 y′2 +

1
6

d3 logY
dy3 y′3 + etc. = 0,

where one will make y = h after the differentiations, this which will render null dY
dy .

The value of y′ that one will draw from this equation will be able to be represented by
a series of the form:

y′ = h′t +h′′t2 +h′′′t3 + etc.;

h′, h′′, h′′′. etc., being some coefficients independent of t, that one will determine the
ones by means of the others by substituting this value into the preceding equation, and
equating next to zero the sum of the coefficients of each power of t in its first member.
One will have in this manner

1+
1
2

d2 logY
dy2 h′2 = 0,

d2 logY
dy2 h′h′′+

1
6

d3 logY
dy3 h′3 = 0,

etc.;

and by having regard to the value of h, one deduces from it

h′ =

√
2(n+1)x
(n+1− x)3 ,

h′′ =
2(n+1+ x)
3(n+1− x)2 ,

etc.

If the numbers x, n−x, n, are very great, and of the same order of magnitude, it is easy
to see that the values of h′, h′′, h′′′, etc., will form a very rapidly decreasing sequence
of which the first term will be of the same order of smallness as the fraction 1√

n , the

second of the order 1
n , the third of order 1

n
√

n , and thus in sequence; this which will be
able to excuse from forming those values above from the first two that we just gave.
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By designating by i any whole and positive number, one will have∫
∞

−∞

e−t2
t2i+1dt = 0,∫

∞

−∞

e−t2
t2idt =

1.3.5 . . .2i−1
2i

∫
∞

−∞

e−t2
dt.

Therefore, because of
dy′

dt
= h′+2h′′t +3h′′′t2 + etc.,

and by observing that∫
∞

−∞

e−t2
dt =

√
π,

∫
∞

−∞

Ydy = H
∫

∞

−∞

e−t2 dy′

dt
dt,

we will have ∫
∞

−∞

Ydy = H
√

π

(
h′+

1.3
2

h′′′+
1.3.5

4
hv + etc.

)
. (5)

Under the hypothesis which renders the quantities h′, h′′′, hv,etc., very rapidly decreas-
ing, the series contained between the parentheses will be very convergent, at least in
the first terms, this which will suffice in order to calculate by means of this last for-
mula, the approximate value of

∫
∞

−∞
Ydy. It is to Laplace that the analysis is indebted of

this method in order to reduce the integrals into convergent series, when the quantities
submitted to integration are affected of very great exponents.

(5) The expression of the other integral
∫

∞

α
Ydy will be different according as the

limit α or p
q will surpass or will be less than the value h of y which corresponds to the

maximum of Y. If one makes y = α = p
q in equation (4), and if one puts for Y and H

their values, one will conclude from it

e−t2
=

(
p(n+1)

x

)x( q(n+1)
n+1− x

)n+1−x

;

whence one draws t± k, by making, for brevity,

k2 = x log
x

p(n+1)
+(n+1− x) log

n+1− x
q(n+1)

. (6)

According as the value of α of y will be > or <, it will be necessary, by hypothesis,
that that of t which corresponds to it is positive or negative. By regarding therefore k
as a positive quantity, one will take t = k, in the case of α > h, and t = −k when one
will have α < h. In the first case, one will have∫

∞

α

Ydy = H
∫

∞

k
e−t2 dy′

dt
dt,

and in the second ∫
∞

α

Ydy =
∫

∞

−∞

Ydy−H
∫ −k

−∞

e−t2 dy′

dt
dt,
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One has besides ∫ −k

−∞

e−t2
t2i+1dt =−

∫
∞

k
e−t2

t2i+1dt,∫ −k

−∞

e−t2
t2idt =

∫
∞

k
e−t2

t2idt;

i being a whole and positive number, or zero. If therefore one makes generally∫
∞

k
e−t2

t2idt = Ki,
∫

∞

k
e−t2

t2i+1dt = K′i,

there will result from it∫
∞

α

Ydy =H(h′K0 +3h′′′K1 +5hvK2 + etc.)

+H(2h′′K′0 +4hivK′1 +6hviK′2 + etc.),
(7)

for the case of α or p
q > h, and∫

∞

α

Ydy =
∫

∞

−∞

Ydy−H(h′K0 +3h′′′K1 +5hvK2 + etc.)

+H(2h′′K′0 +4hivK′1 +6hviK′2 + etc.),
(8)

for the case of p
q > h.

Each of the series contained in these formulas, will have, in general, the same
degree of convergence as series (5). The values of the integrals designated by K′i will
be able to be obtained only by approximation, when k will be different from zero.
Those which are represented by K′i will be obtained under finite form, and one will
have

K′2 =
1
2

e−k2 (
k2i + ik2i−1 + i.i−1.k2i−2 + · · ·

· · ·+i.i−1 . . .1.k2 + i.i−1 . . .2.1
)
.

When one will have exactly p
q = h, one will have at the same time k = 0, and

consequently

Ki = 1.3.5 . . .2i−1.
√

π

2
, K′i = 1.2.3 . . . i.

1
2

;

and according to the value of
∫

∞

−∞
Ydy, formulas (7) and (8) will coincide and will be

reduced to ∫
∞

α

Ydy =
H
√

π

2
(h′+

1.3
2

h′′′+
1.3.5

4
hv + etc.)

+H(h′′+1.2hiv +1.2.3hvi + etc.)
(9)

(6) We will suppose actually the numbers n, x, n−x, great enough in order that one
is able to neglect in these different formulas, the quantities h′′′, hiv, etc. By putting n in
place of n+1 into the values of h′ and h′′, one will have

h′′

h′
=

(n+ x)
√

2
3
√

nx(n− x)
;
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equation (3) and formulas (5), (7) and (8) will give next

X =
1√
π

∫
∞

k
e−t2

dt +
(n+ x)

√
2

3
√

πnx(n− x)
e−k2

,

X = 1− 1√
π

∫
∞

k
e−t2

dt +
(n+ x)

√
2

3
√

πnx(n− x)
e−k2

;

 (10)

the first or the second of these two values of X taking place according as one has p
q >

or < h, and k being a positive quantity, given by equation (6). These formulas will
make known with a sufficient exactitude the probability X which there is a question to
determine.

If n is an even number, let one make x = n
2 , and let one suppose p > q, one will

have
h =

n
n+2

,
p
q
> h;

this will be therefore the first equation (10) which it will be necessary to employ: this
formula and equation (6) will become

X =
1√
π

∫
∞

k
e−t2

dt +

√
2

πn
e−k2

,

k2 =
n
2

log
n

2p(n+1)
+

n+2
2

log
n+2

2q(n+1)
;

 (11)

and X will be the probability that out of a very great number n of trials, the most
probable event will not arrive however more often than the contrary event. By calling
P the probability that they both will arrive the same number of times, this which is
possible, since n is an even number, X−P will be the probability that the first event will
arrive less often than the second. In the case of p = q = 1

2 , it is evident that the double
of this last probability, added to P, will be certitude; one will have therefore 2X−P= 1,
or

P =
2√
π

∫
∞

k
e−t2

dt−1+
2
√

2√
πn

e−k2
;

and it is, in fact, this which one is able to verify easily.
By reducing into series, one has

n log
n

n+1
=− log

(
1+

1
n

)
=−1+

1
2n
− etc.,

(n+2) log
n+2
n+1

=−(n+2) log
(

1− 1
n+2

)
= 1+

1
2(n+2)

+ etc.,

and consequently

k2 =
1

4n
+

1
4(n+2)

+ etc.;

therefore by conserving only the terms of order 1√
n , we will have

k =
1√
2n

, e−k2
= 1;
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we will have, at the same time,∫
∞

k
e−t2

dt =
∫

∞

0
e−t2

dt−
∫ k

0
e−t2

dt =
1
2
√

π− 1√
2π

;

whence there will result

P =

√
2

πn
,

this which coincides effectively with formula (1), when one makes there p = 1
2 , q =

1
2 , x = n

2 .
If n is an odd number, let one make x = 1

2 (n−1), and let one suppose always p > q;
one will have further p

q > h: the first formula (10) and equation (6) will become

X =
1√
π

∫
∞

k
e−t2

dt +

√
2√

πn
e−k2

,

k2 =
n−1

2
log

n−1
2p(n+1)

+
n+3

2
log

n+3
2q(n+1)

;

 (12)

and X will be the probability that out of a very great number of trials, the most probable
event will be presented less often than the contrary event; because, n being odd, the case
of equality will be impossible. In the case of p = q = 1

2 , this probability X must be
equal to 1

2 ; and it is also this which we are going to verify.
We will have

(n−1) log
n−1
n+1

=−(n−1) log
(

1+
2

n−1

)
=−2+

2
n−1

− etc.,

(n+3) log
n+3
n+1

=−(n+3) log
(

1+
2

n+3

)
=−2+

2
n+3

+ etc.,

and consequently

k2 =
1

n−1
+

1
n+3

+ etc.

By neglecting the terms of order of 1
n , there will result from it

k =

√
2
n
, e−k2

= 1,
∫

∞

k
e−t2

dt =
1
2
√

π−
√

2
n

;

this which reduces to 1
2 , the preceding value of X.

(7) From equation p
q = h, one draws

x = (n+1)p, n+1− x = (n+1)q,

because p+ q = 1. We designate by z a positive quantity, such that this value of x
diminished from z is a whole number; we will be able to take

x = (n+1)p− z, n+1− x = (n+1)q+ z;
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and we will have p
q > h. By developing the second member of equation (6) according

to the powers of z, one finds

k2 =
z2

2(n+1)pq

(
1− (p−q)z

3pq(n+1)
+ etc.

)
;

and if one makes
z = r

√
2(n+1)pq,

one deduces from it

k = r
(

1− (p−q)z
3pq(n+1)

+ etc.
)
.

The series contained between the parentheses proceeds according to the powers of
r√

n+1
; it will be very convergent if r is not a very great number, and if any of the two

fractions p and q are not very small; one will have then to conserve only its first two
terms, or take simply k = r−δ , by making,

(p−q)r2

3
√

2(n+1)pq
= δ .

One will have, at the same time,

x = (n+1)p− r
√

2(n+1)pq;

but in the second term of the first formula (10), it will suffice to make k = r and x = np;
and this formula will become

X =
1√
π

∫
∞

r−δ

e−t2
dt +

(1+ p)
√

2
2
√

πnpq
e−r2

.

We designate by r′ another positive quantity, which is not a very great number
either. If one supposes that one has

x = (n+1)p− r′
√

2(n+1)pq,

the corresponding value of k, drawn from equation (6), will be k = r′+δ ′, by making,
for brevity,

(p−q)r′2

3
√

2(n+1)pq
= δ

′.

One will have, in this case, p
q < h; it will be necessary therefore to employ the second

formula (10), which will become

X = 1− 1√
π

∫
∞

r′+δ ′
e−t2

dt +
(1+ p)

√
2

2
√

πnpq
e−r′2 .

If one subtracts from this here, the preceding value of X, and if one calls U the
difference, there comes

U = 1− 1√
π

∫
∞

r−δ

e−t2
dt− 1√

π

∫
∞

r′+δ ′
e−t2

dt

+
(1+ p)

√
2

2
√

πnpq

(
e−r′2 − e−r2

)
,

11



for the probability that the event A will arrive a number of times which will not exceed
the second value of x, and will surpass the first at least by one unit.

(8) In order to simplify this result, let N be the greatest number contained in np,
and f a fraction such that one has np = N + f ; we designate by u a quantity such that
u
√

2(n+1)pq is a whole number, very small with respect to N; we make next

p+ f − r
√

2(n+1)pq =−u
√

2(n+1)pq−1,

p+ f + r′
√

2(n+1)pq = u
√

2(n+1)pq;

U will express the probability that the number of times of which the question will be
contained between the limits

N±u
√

2(n+1)pq,

equidistant from N, or that it will be equal to one of them. The values of r− δ and
r′+δ ′ will be of the form:

r−q = u+ ε +
1√

2(n+1)pq
,

r′+δ
′ = u− ε;

ε being a quantity of order 1√
n . Now, by designating by v a quantity of this order, of

which one neglects the square, one has∫
∞

u+v
e−t2

dt =
∫

∞

u
e−t2

dt− e−u2
v;

if therefore one applies this transformation to the two integrals which contain U, and if
one makes r′ = r in the terms contained outside of the sign

∫
, which are already divided

by
√

n, one will have

U = 1− 2√
π

∫
∞

u
e−t2

dt− e−u2

√
2πnpq

. (13)

If one had wished that the values of x not comprehend their inferior limit, it would
have been necessary to make r− δ = n+ ε , and the value of X would not contain its
last term. Likewise in order that the superior limit of these values of x, were excluded
from it, one would need to diminish r′+ δ ′ from 1√

2(n+1)pq
, this which would have

again made vanish the last term of U. It follows therefore that this last term must be the
probability that one has precisely

x = N +u
√

2(n+1)pq;

u being a positive or negative quantity, such that the second term of x is very small with
respect to the first. It is also this which results from formula (1).

In fact, by neglecting the quantities of order 1
n , one will have

x
n
= p+u

√
2pq

n
,

n− x
n

= q−u

√
2pq

n
;

12



whence one concludes

log
(np

x

)x
(

nq
nn− x

)n−x

=−x log

(
1+

u
p

√
2pq

n

)

−(n− x) log

(
1+

u
p

√
2pq

n

)
;

by developing these logarithms and reducing, one finds, to the degree of approximation
where we have stopped ourselves, −u2 for the value of the second member of this
equation; one will have consequently(np

x

)x
(

nq
nn− x

)n−x

= e−u2
;

and as one has at the same time

x(n− x)
n2 = pq,

formula (1) will become

P =
e−u2

√
2πnpq

;

this which it was the concern to verify.
(9) By calling x′ the number of times that A will arrive out of the number n of

trials, we will be able to say that U is the probability that the difference x′
n − p will be

contained between the two limits:

u±
√

2pq
n

,

which will be equally those of the difference n−x′
n −q, by changing their signs.

One will be able always to take u great enough in order that this probability U
differs as little as one will wish from certitude. It will not even be necessary to give
to u a great value, in order to render very small the difference 1−U: it will suffice, for
example, to take u equal to five or six, in order that the exponential e−u2

, the integral∫
∞

u e−t2
dt, and hence the value of 1−U, be nearly insensible. This remark is important;

because the preceding analysis requires, effectively, that u is not a considerable number,
since u differs very little from r, and that by calculating the value of k in no 7, we have
neglected the quantities of order r2

n ; this which supposes that r or u is not comparable
to
√

n.
The value of u having been conveniently chosen, and remaining constant, the limits

of x′
n − p will be tightened more and more in measure as the number n will increase;

the ratio x′
n of the number of times that the event A will arrive to the total number of

trials, will differ therefore less and less from the probability p of this event; and one
will be able always to take n great enough in order that it has the probability U that

13



the difference x′
n − p will be as small as one will wish; this which is, as one knows,

the theorem of Jacques Bernoulli on the repetition, in a number of trials, of an event of
which the chance is given a priori.

(10) We have supposed, in order to arrive to this theorem, that x and n− x are
very great numbers, as also that their sum; according to the values of x and n− x of
no 7, it will be necessary therefore that the products pn and qn are very great: but if
the probability p is very small, of such sort that pu is a fraction, or a number of little
consequence, it will be very probable that A will arrive only a very small number of
times out of a very great number n of trials; and in this case, formula (2) will make
known without difficulty, the probability X that this number of times will not exceed
x. In fact, let pn = ω; by neglecting the ratio x

n , the quantity composed between the
parentheses in formula (2), will become

1+ω +
ω2

2
+

ω3

2.3
+ · · ·+ ωx

1.2.3 . . .x
;

one will have, at the same time,

q = 1− ω

n
, q−x = 1, qn = e−ω ;

there will result from it therefore

X =

(
1+ω +

ω2

2
+

ω3

2.3
+ · · ·+ ωx

1.2.3 . . .x

)
e−ω ,

or, this which is the same thing,

X = 1− ωx+1e−ω

1.2.3 . . .x+1

(
1+

ω

x+2
+

w2

x+2.x+3
+ etc.

)
.

Now, one sees that if x is not a small number, this value of X will differ very little from
unity. If one has, for example, x = 10 and ω = 1, the difference 1−X will be nearly
one hundred millionth, that is to say that it is near certain that an event of which the
chance is 1

n , will not arrive more than 10 times, out of a very great number n of trials.
In the case x = 0, one has X= e−ω , for the probability that out of a very great

number n of trials, an event of which the change is ω

n will not arrive a single time.
(11) The integral

∫
∞

u e−t2
dt which contains formula (13), will be calculated, in gen-

eral, by the method of quadratures. One finds, at the end of the Analyse des réfractions
of Kramp, a table of its values which extends from u = 0 to u = 3, and according to
which, one has ∫

∞

u
e−t2

dt = 0.000019577,

for u = 3. By means of integration by parts, one finds

∫
∞

u
e−t2

dt =
e−u2

2u

(
1− 1

2u2 +
1.3

22u4 −
1.2.3
23u6 + etc.

)
; (14)

14



for u > 3, the series comprehended between the parentheses will be sufficiently con-
vergent, and this formula will serve to calculate the values of the integral. One has
also ∫

∞

u
e−t2

dt =
1
2
√

π−
∫ u

0
e−t2

dt;

and by developing the exponential e−t2
according to the powers of t2, one will have∫ u

0
e−t2

dt = u− u3

1.3
+

u5

1.2.5
− u7

1.2.3.7
+ etc.;

a series which will be very convergent for the values of u less than unity.
If one wishes to calculate the value of u for which one has U= 1

2 , one will make
use of this last series, and according to equation (13), one will have

u− u3

1.3
+

u5

1.2.5
− u7

1.2.3.7
+ etc. =

1
4
√

π +
e−u2

2
√

2npq
.

By designating by a the value of u which satisfies this equation, setting aside the second
term of its second member, we will have next

u = a+
1

2
√

2npq
,

to the quantities nearly of order 1
n . After some tests, one finds a = 0.4765 for the

approximate value of a; whence there results that it will be equally probable that the
difference x′

n − p will fall outside of or within some limits:

±

(
0.4765

√
2pq

n
+

1
2n

)
.

For any value of u whatsoever, the difference of the two quantities x′
n − p and n−x′

n −

q, will have for limits the double of ±u
√

2pq
n ; if therefore one has p = q = 1

2 , there

will be a probability equal to 1
2 , that the quantity 2x′−n

n , will be contained between the
limits

±
(

0.6739√
n

+
1
n

)
;

consequently it will be equally probable that the difference x′− (n− x′) between the
numbers of events A and B, of which the chances are equals, will surpass or will be
less than 0.6739

√
n+1, setting aside the sign. According to formula (1), one will have

P =

√
2

πn
=

0.7979√
n

,

for the probability that this difference will be precisely null.
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§II.
Probabilities of simple events and of future events after the events observed.

(12) Until here we have supposed known a priori, the chance p of the event A, and
we have concluded from it the probability of a future event, relative to the repetition
of A out of a very great number of trials; but in the applications of the calculation of
chances to natural phenomena, and particularly in the question indicated by the title
of this Memoir, the value of p must, on the contrary, be deduced as much as it is
possible, from events observed in great numbers, in order to serve next to calculate the
probability of future events. It is this problem which is now going to occupy us.

We suppose first that the unknown probability p of the event A, is susceptible only
of m different values which are able to be differently probable. We represent these m
values by

v1, v2, v3, . . .vn, . . .vm,

and respective probabilities by

R1, R2, R3, . . .Rn, . . .Rm.

Let also
V1, V2, V3, . . .Vn, . . .Vm,

be the corresponding probabilities of a composite event C, so that Vn designates the
probability of C in function of vn which will hold if it was certain that one had p =
vn. By hypothesis, the composite event C has been observed; and one demands the
probability Rn that its arrival corresponds to the probability vn of the simple event A.

In order to determine Rn, I suppose that one reduces all the fractions V1,V2, etc.,
to the same denominator, and that one replaces them by

N1

µ
,

N2

µ
,

N3

µ
, . . .

Nn

µ
, . . .

Nm

µ
,

µ , N1,N2, etc., being whole numbers. The question proposed is evidently the same as
if one had a number of urns m, containing each a number µ of balls; of which the first
contained the number N1 of white balls, the second contained a number N2 of them,
the third a number N3, and thus in sequence; that one had extracted one white ball from
these vases, and that one demanded the probability that this ball is exited from the nth

urn. The extraction of a white ball is the observed fact, or the event C, and the exit
from the nth urn is the case where this fact coincides with the hypothesis p = vn which
gives to C a probability Nn

µ
, or Vn.

This put, we mark the balls of the first urn, with the no 1; those of the second urn,
with the no 2; etc. Since the number of balls is the same and equal to µ for the different
numerals, it is evident that one is able to reunite them all in one same vase, with nothing
changing to the probability to bring forth a white ball carrying the no n, or arising from
the nth urn. Now, if one makes

N1 +N2 + · · ·+Nm = λ ,
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λ being the total number of white balls contained in this unique vase, and, conse-
quently, if one supposes that one has extracted from it one white ball, the ratio Nn

λ
will

be the probability that this ball is marked with the no n, or the value demanded of Rn.
Therefore by dividing the two terms of this fraction by µ , one will have

Rn =
Vn

∑Vn
;

the sum ∑ extending to all the values of the index n, from n = 1 to n = m.
Let C′ be another composite event and dependent on A; we call V′n the probability

of C′ as function of vn, which would take place if one had certainly p = vn; as this value
of p has itself only a probability Rn, the coincidence of the event C′ and of p = vn, is
an event composed of two others, which will have for probability the product V′nRn,
of those of these two events. This being, if one designates by T the probability of C′,
relative to the m different values of p, one will have

T = ∑V′nRn,

the sum ∑ being the same signification as above; and by substituting for Rn its preced-
ing value, there will result from it

T =
∑V′nVn

∑Vn
,

(13) We suppose actually that the probability p of A is susceptible of all the possible
values from zero to unity; their number m will be infinite, and the probability of each
of them will be infinitely small. In representing by v any value of p, and by V,V′,R,
this which becomes Vn,V′n,Rn, when one puts v there in the place of vn; multiplying
high and low by dv, the preceding formulas; observing finally that the sums ∑ will be
changed into definite integrals, taken from v = 0 to v = 1; we will have

R =
Vdv∫ 1
0 Vdv

, T =

∫ 1
0 V′Vdv∫ 1

0 Vdv
.

If one designates by Z the probability that the value of p will be contained between
some given limits a and b, Z will have for value a finite quantity, namely:

Z =

∫ b
a V′Vdv∫ 1

0 Vdv
.

Let, at the same time Q, be the probability that the event C′ will correspond to the one
of the values of p comprehended between these limits; one will have also

Q =

∫ b
1 V′Vdv∫ 1

0 Vdv
.

According to these expressions of T,Z,Q, one will have

T < Q+M(1−Z) and > Q+M′(1−Z),
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by naming M and M′ the greatest and the smallest value of V′ which corresponds to
the values of p comprehended from p = 0 to p = a and from p = b to p = 1, or which
falls outside of the given limits a and b. Now, M and M′ being some positive quantities
which are not able to surpass unity, if the difference 1−Z is small enough provided that
one neglects it, the total probability T of the event C′, will coincide with Q, this which
will simplify the calculation of it. This case will take place in the diverse applications
which we are going to make of the preceding formulas.

(14) If the observed event C consists in this that, out of a number m of trials, A is
arrived a number s of times, one will have, according to the first equation of no 1,

V =
1.2.3 . . .m

1.2.3 . . .s.1.2.3 . . .m− s
vs(1− v)m−s,

and consequently,

R =
vs(1− v)m−sds∫ 1
0 vs(1− v)m−sds

, Z =

∫ b
a vs(1− v)m−sds∫ 1
0 vs(1− v)m−sds

.

We call g the value of v which renders a maximum, the coefficient of dv under the sign∫
, and G the corresponding value of this coefficient; we will have

g =
s
m
, G =

( s
m

)s
(

m− s
m

)m−s

.

We make next
vs(1− v)m−1 = Ge−t2

;

t being a new variable, of which the values t = −∞, t = 0, t = ∞, will correspond to
v = 0, v = g, v = 1. By taking the logarithms of the two members of this equation, one
will deduce from it next for v, a value in series of the form:

v = g+g′t +g′′t2 +g′′′t3 + etc.,

g′, g′′, g′′′, etc., being some coefficients independent of t, of which the values will be
determined by the substitution of this series into the logarithmic equation, and by the
comparison of the similar terms in the two members. We will suppose that s and
m− s, are very large numbers, comparable to their sum m; and then these coefficients
g′, g′′, g′′′, etc., will form a very rapidly decreasing series, of which the terms will be
of order to the fractions 1√

m ,
1
m ,

1
m
√

m , etc. The first two will have for values:

g′ =

√
2(m− s)s

m3 , g′′ =
2(m−2s)

3m2 ;

this which gives for their ratio:

g′′

g′
=

2(m−2s)

3
√

2ms(m− s)
.

18



By means of this transformation and by neglecting the quantities of order of 1
m , one

will have ∫ 1

0
vs(1− v)m−sdv = G

∫
∞

−∞

e−t2 dv
dt

dt = Gg′
√

π.

We designate by z a positive quantity which is not very great, and we take

a = g−g′z, b = g+g′z,

for the limits of the integral which forms the numerator of Z; we make next

v = g+g′θ , dv′ = g′dθ ;

the corresponding values of θ will be ±z; and as one will have

t = θ − g′′

g′
θ

2, e−t2
= e−θ 2

(
1+

2g′′θ 3

g′

)
,

by neglecting always the quantities of order 1
m , there will result from it

∫ b

a
vs(1− v)m−sdv = Gg′

∫ z

−z
e−θ 2

(
1+

2g′′θ 3

g′

)
dθ

= 2Gg′
∫ z

0
e−θ 2

dθ .

The value of Z will be therefore simply

Z =
1√
π

∫ z

0
e−θ 2

dθ ; (a)

and it will express the probability that the value of p is contained between the limits:

s
m
±g′z. (b)

At the same time the probability R of an intermediate value:

p =
s
m
+g′θ , (c)

will have for expression

R =
1√
π

e−θ 2
(

1+
2g′′θ 3

g′

)
dθ . (d)

We always take the quantity z great enough in order that Z differ very little from
unity, and if one is able, consequently, to regard Q as expressing, with a sufficient
approximation, the probability of the event C′. By making z = 3, for example, one will
have

Z = 1−0.00002209;
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and one will be able to neglect the difference 1−Z. From this manner the probability
of C′ will be

Q =
1√
π

∫ z

−z
Πe−θ 2

(
1+

2g′′θ 3

g′

)
dθ ; (e)

Π designating the probability of the same event which would have place if the pre-
ceding value of p were certain, or that which the function V′ of the preceding number
becomes when one replaces the variable v by this value of p.

(15) We take for C′ the event to which the formulas are brought back, that is to
say, the case where, out of a number n of trials, the event A will arrive a number of
times which will not surpass x, the two parts x and n−x of n being supposed very great
numbers. We will give below some examples in which the two ratios x

n+1 and s
m will

not be very little different from one another; now we are going to suppose that their
difference is very small and of order 1√

m ; and we will represent it by γg′, so that one
has x

n+1
=

s
m
− γg′, (f )

γ designating a fraction or a number of little consequence.
According to equation (c), we will have

x = p(n+1)− (γ +θ)(n+1)g′,
n+1− x = q(n+1)+(γ +θ)(n+1)g′;

whence one concludes

p
q
=

x
n+1− x

+
(γ +θ)(n+1)2g′

(n+1− x)2 ,

by neglecting the square of g′. If therefore we suppose the quantity γ positive and = z
or > z, the ratio p

q will surpass the quantity h of no 4 for all the values of θ contained
between the limits±z of the integral which contains formula (e); consequently this will
be the first equation (10) of which it will be necessary to make use in order to form the
value of X as function of θ , that we will have to substitute in the place of Π in the
expression of Q.

If we make
(γ +θ)(n+1)g′ = r

√
2pq(n+1),

we will draw from equation (6), as in no 7,

k = r− (p−q)r2

3
√

2pq(n+1)
,

by neglecting the quantities of order of 1
n , and supposing that each of the two quantities

p and q none is a very small fraction. By virtue of equation (c) and of the value of g′

of which one neglects the square, one will have also

1
√

pq
=

m√
s(m− s)

− θ(m−2s)
√

m
s(m− s)

√
2

.
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Let further, for brevity, √
n+1

m
= α;

there will result from it

r = (γ +θ)α− (m−2s)(γ +θ)θα√
2ms(m− s)

;

and if α is not a very great quantity, the second terms of k and r will be of order 1√
m ,

that is to say, of order of the quantities that we have conserved to present. One would
be able to continue to have regard; but in order to simplify the following calculations,
we will neglect actually these quantities, and we will take simply

k = r = (γ +θ)α.

By putting under the sign
∫

in the first formula (10), (γ +θ)αt and (γ +θ)αdt in
the place of t and dt, and making x = ns

m in its second term which is of order 1√
n , this

formula willbecome

X =
α√
π

∫
∞

1
e−(γ+θ)2α2t2

(γ +θ)dt +
(m+ s)

√
2

3
√

πns(m− s)
e−(γ+θ)2α2

;

and if one substitutes this value of X in the place of Π in equation (e), and if one
suppresses the term multiplied by g′′

g′ , a quantity of order 1√
m , one will have, by inter-

changing the order of integrations,

Q =
α

π

∫
∞

α

(∫ z

−z
e−(γ+θ)2α2t2

e−θ 2
(γ +θ)dθ

)
dt

+
(m+ s)

√
2

3
√

πns(m− s)

∫ z

−z
e−(γ+θ)2α2

e−θ 2
dθ .

By hypothesis, the factor e−θ 2
is nearly null at the limits ±z, this which permits to

extend now, without sensible error, the integrals relative to θ from −∞ to +∞. One
will have then ∫

∞

−∞

e−(γ+θ)2α2t2−θ 2
(γ +θ)dθ =

γ
√

π

(1+α2t2)
3
2

e−
γ2α2t2

1+α2t2 ,

∫
∞

−∞

e−(γ+θ)2α2t2−θ 2
dθ =

√
π√

1+α2
e

α2t2

1+α2 ,

and consequently

Q =
1√
π

∫
∞

1
e−

γ2α2t2

1+α2t2
γαdt

(1+α2t2)
3
2
+Γ,

by making, for brevity,

γα√
1+α2

= β ,
(m+ s)

√
2

3
√

ns(m− s)(1+α2)
e−β 2

= Γ.

21



Let finally
γαt√

1+α2t2
= v,

γαdt

(1+α2t2)
3
2
= dv;

at the limit t = 1, one will have v = β ; at the other limit t = ∞, one will have v = γ ,
and one will be able to take v = ∞, because of γ = z or > z; there will result from it
therefore

Q =
1√
π

∫
∞

β

e−v2
dv+Γ,

for the probability that out of a number n of trials, the event A will arrive a number of
times which will not exceed the value of x drawn from equation (f ), which value is able
to be written thus:

x =
(n+1)s

m
− β

m

√
2(n+1)(1+α)2(m− s)s.

We designate by γ ′ a second positive quantity, equal or superior to z, and by β ′ and
Γ′, that which β and Γ become, when one puts γ ′ in the place of γ . By substituting −γ ′

in γ in equation (f ), and making use of the second formula (10), one will find, by an
analysis similar to the preceding

Q = 1− 1√
π

∫
∞

β ′
e−v2

dv+Γ
′,

for the probability that the number of times of which there is question will not exceed
the value of x expressed by the formula:

x =
(n+1)s

m
− β ′

m

√
2(n+1)(1+α)2(m− s)s.

Therefore, by calling U the excess of this second value of Q over the first, we will have

U = 1− 1√
π

∫
∞

β

e−v2
dv− 1√

π

∫
∞

β ′
e−v2

dv−Γ+Γ
′;

and U will express the probability that out of a number n of trials, this number of times
will not exceed the second value of x and will surpass the first at least by unity.

(16) In order to compare this result to the one of no 8, we designate by N the greatest
whole number contained in ns

m , by f the difference ns
m−N, and by u a positive quantity,

such that u
m

√
2(n+1)(1+α2)(m− s)s is a whole number, very small with respect to

N. Let next
s
m
+ f − β

m

√
2(n+1)(1+α2)(m− s)s

=− u
m

√
2(n+1)(1+α2)(m− s)s,

s
m
+ f − β ′

m

√
2(n+1)(1+α2)(m− s)s

=
u
m

√
2(n+1)(1+α2)(m− s)s;
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U will express the probability that the number of events A out of a number of trials n,
will be contained between the limits:

N± u
m

√
2(n+1)(1+α2)(m− s)s, (g)

or equal to one of them. Moreover, one will have very nearly

β
′ = β = u,

and exactly
β
′+β = 2u+

m√
2(n+1)(1+α2)(m− s)s

;

by means of which the preceding value of U will become

U = 1− 2√
π

∫
∞

u
e−t2

dt +
me−u2√

2(n+1)(1+α2)(m− s)s
,

by neglecting the quantities of order 1
n , this which makes the difference Γ−Γ′ vanish,

and employing the letter t instead of v under the sign
∫

. As one has supposed γ = z or
> z, it will be necessary that u not be less than αz√

1+α2
; whatever be α or

√ n
m , one will

satisfy this condition and one will render the probability U very little different from
unity, by taking u = z or > z.

If the number n is very small with respect to m, and only of a magnitude comparable
to
√

m, the quantity α will be of order 1√
m , and one must replace the factor 1+α2 by

unity in the preceding formulas; this which reduces the limits (g) to

N± u
m

√
2(n+1)(m− s)s,

and their probability to

U = 1− 2√
π

∫
∞

u
e−t2

dt +
me−u2√

2(n+1)(m− s)s
.

Now, this result coincides with the one of no 8, when one makes, in the formulas of
this numeral,

p =
s
m
, q =

m− s
m

.

When the number n of the future events is very small with regard to the number
m of observed events, the limits of the number of times that A will arrive and their
probability will be able to be calculated by taking for the probability p of A, the ratio
s
m of the number of times that this event is arrived to the total number of observations,
as if this value of p were certain and given a priori. But it is not thus when the two
n and m are of the same order of magnitude: although the value of p concluded from
the experience, is contained, with a probability which differs very little from certitude,
between the limits which are separated very little also from s

m , however, all things equal
besides, the number of times that A will arrive will be contained between some limits
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less narrow than those which would take place if it were certain that one had p = s
m .

One will be able then to suppress the last term of the value of U, which will be of order
1√
m , and take simply

U = 1− 1√
π

∫
∞

u
e−t2

dt. (h)

It is also to this that formula (13) is reduced when one neglects its last term; but the
limits to which it corresponds are more narrowed in the ratio of

√
1+α2 to unity, or

of
√

m+n to
√

m, that the limits (g) relative to the case of which we occupy ourselves
now.

(17) In the applications that one will make, of the preceding results, one must not
lose from view the assumption on which they are founded, that the simple event A
is always the same, by understanding thence that its unknown probability p remains
invariable during all the trials past and future. We suppose, for example, that one has an
urn which contains an unknown number and considered as infinite, of white balls and
of black balls, and that the event A is the arrival of a white ball. Its probability p will
be the ratio of the number of white balls to the total number; it will be unknown, when
the proportion of the two kinds of balls will be not in the least given; and moreover, p
will be susceptible of all possible values, from zero to unity, because of the number of
balls supposed infinite. By the same reason, this probability will not be changed during
the finite number of trials, even though at each drawing, one will not return into the urn
the ball which will be exited from it. That being, if one has drawn from this urn s white
balls and m− s black balls, and if these numbers s and m− s are both very great, it will
have the probability Z given by equation (a), if the value of p is contained between the
limits (b), and the probability U given by equation (h), if out of a number n also very
great, of new trials, the one of the white balls that one will draw from the same urn will
be contained between the limits (g).

Instead of a single urn, we suppose that one has a number m of them, and that one
draws a ball from each of them. If the proportion of white and black balls is the same in
all these vases, the probability p to bring forth a white ball will be invariable during the
m drawings; but, in general, it will vary with this proportion in any manner whatsoever;
now, one will be able nevertheless to calculate the chance of the composite events, as
if the value of p, known or unknown, were constant and equal to the mean of its values
for all the urns. In fact, let p1, p2, p3, . . . pm, be these values; the order of the drawings
not being able to have any influence on the result, one is able to suppose that the urns
in which they take place, are taken successively at random. The probability, at the first
drawing, to bring forth a white ball, or of the event A, will be then 1

m ∑ pi, the sum ∑

extending to all the values of the index i from i = 1 to i = m. At the second drawing,
the probability of A will be

∑ pi− pi′

m−1
,

if the urn in which the first is made, corresponds to pi′ ; but this urn having been taken
at random, it will be necessary in this expression, to give to i′ all the values from i′ = 1
to i′ = m, to take the sum of the results, and to divide by m, in order to have the second
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probability of A, which will be then

m∑ pi−∑ pi′

m(m−1)
,

a quantity yet equal to 1
m ∑ pi′ . A the third drawing, the probability of A will be

∑ pi− pi′ − pi′′

m−2
,

if the first and the second have taken place in the urns which correspond respectively to
pi′ and pi′′ ; because if these two urns have been taken at random, it will be necessary
first, without making i′ vary, to give to i′′ all the values from unity to m, excepting i′,
and to divide the sum of the results by the number of these values or by m− 1, this
which gives

(m−1)∑ pi− (m−1)∑ pi′ −∑ pi′′ + pi′

(m−1)(m−2)
,

a quantity which is reduced to
∑ pi− pi′

m−1
,

because ∑ pi′′ = ∑ pi. It will be necessary next to give to i′ all the values from i′ = 1
to i′ = m, and to divide by m the sum of the results; whence there will result 1

m ∑ pi for
the probability of A at the third drawing, as in the first two. By continuing thus, one
will see that the value of p will be the same and equal to 1

m ∑ pi in all the drawings.
But one is able also to be assured, by observing that this value is able to be only a
linear function of p1, p2, etc., symmetric with regard to these m quantities; one is able
therefore to represent by p = µ ∑ pi, µ being a coefficient independent of p1, p2, etc.,
in the case where these m quantities are equal among them, one will have therefore
p = mµ pi′ , and as then one must have p = pi, it is necessary that the product mµ be
unity; whence there results p = 1

m ∑ pi, whatever be p1, p2, etc.
Thus, when the proportion of the white and black balls will be given for each urn

in particular, one will calculate, by the formulas of nos 6 and 8, the probability that the
number of arrivals of a white ball will not exceed a given number, or will be contained
between some given limits, by putting, in these formulas, in the place of p, the mean of
these values relative to all the urns. Reciprocally, if this proportion is unknown, and if
the probability p is susceptible to all the possible values for each of the urns, the limits
(b) of no 14 and their probability will correspond to the mean of the unknown values of
p for all the urns, and the formulas of no 16 will make known the limits of the arrivals
of A and their probability, when the drawings will take place in the same system of
urns, or in another system for which the mean of the values of p is supposed the same
as for the first.

It is in this case of the different urns that it is necessary to assimilate the questions
relative to the births of boys and of girls. The event A will be the birth of a boy of
which the probability p is susceptible to all the possible values from zero to unity.
When one considers the births of the two sexes during a certain time and in a country
of a certain extent, the unknown value of p is able to vary with the epochs and the
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localities, and without doubt it is not the same for all fathers and mothers. The mean
of all these different values is the quantity p of which one determines the limits; and it
is by supposing that this mean will not vary, that one calculates the probability of the
male births during an interval of time. These observations were not unuseful in order
to determine with precision the object of the following calculations.

(18) Let m be the number of infants born in France from 1817 to 1826 inclusively,
and s the number of male births during these ten years. We will have

m = 9656135, s = 4981566;

by taking z = 3, the limits (b) of the probability p of a male birth, such as it comes to
be defined, will be

0.5159±0.0007,

and according to equation (a), their probability z will be 0.999978, or nearly equal to
unity, so that one is able to regard as very nearly certain, that in France and in the actual
epoch, the probability of the birth of a boy is contained between 0.5152 and 0.5166.

Let next n be the mean number of annual births, for which one is able to take the
10th of the births from 1817 to 1826; one will have

n =
m
10

, N = 498156;

and if one makes u = 3, the limits (g) will be

498156(1±0.004386).

They will correspond to the male births in France during one year; and their probability
U given by formula (h), will be the same as Z, or nearly certitude. The corresponding
limits of the female births will have for expression:

467456(1∓0.004679);

and those which result from it for the ratio of the annual births of the two sexes, will be

1.0656(1±0.0091),

that is to say, 1.0753 and 1.0559. These here comprehend, in fact, the values of this
ratio which have taken place during the ten years that we consider and which are cited
at the beginning of this Memoir; but that is not forbidden, as one sees further, that it
is very probable only in this interval of time, the chance of a male birth has a little
variation from one year to another.

(19) According to equation (c) and the preceding values of m and of s, one will
have

p = 0.5159+θ(0.00023),
q = 0.4841−θ(0.00023),

and the limits of the variable θ being ±3, equation (e) will become at the same time

Q =
1√
π

∫ 3

−3
Πe−θ 2

[1−θ
3(0.00002)]dθ .
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If one takes for event C′ of which Q is the probability, the case where out of 12,000
births, for example, those of the boys will not exceed the births of the girls, it will
be necessary to put in the place of Π in this equation, the value of X determined by
equations (11) of no 6, in which one makes n = 12000 and one will substitute the
preceding values of p and q.

In developing the second member of the second equation (11) according to the
powers of θ , one finds then

k2 = 6.1028+θ(0.1761)+θ
2(0.00127)+ etc.;

whence one draws
1
2k

= 0.2024−θ(0.0029)+ etc.;

formula (14) gives next∫
∞

k
e−t2

dt = e−k2
[0.1883−θ(0.0023)+ etc.];

and the first equation (11) becomes

X =
1√
π

e−k2
[0.2012−θ(0.0023)+ etc.].

After having put this value of X in the place of Π in the expression of Q, one will be
able to extend the integral from θ = −∞ to θ = +∞, because of the smallness of the
factor e−k2−θ 2

to the limits θ =±3 that we have supposed. This being, if one makes

θ =
θ ′√

1.00127
− 0.1761

2(1.00127)
,

the limits relative to θ ′ will be yet ±∞, and one will have, very nearly

k2 +θ
2 = θ

′2 +6.0951;

whence one will conclude

Q =
(0.2014)e−6.0951

π
√

1.00127

∫
∞

−∞

e−θ ′2dθ
′ = 0.000256.

The number 12000 which we have taken for n, is nearly the one of the annual births
in a department of a population mean; if therefore the unknown probability of a male
birth was the same for each department as for France entire, it would be very little prob-
able that in one year and in the extent of a department, the number of births of boys
would not exceed the one of the births of the girls. There would be, on the contrary,
near odds of 4000 against one that the first number would surpass the second; and as
the contrary event is arrived many times during the ten years that we have considered,
it would be necessary to conclude that the chance of a male birth depends on the local-
ities, so that it varies, for one same year, from one department to another, and for one
same department from one year to another.
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(20) As it is at Paris and among the natural infants that the number of female births
approach most each year to be equal to the one of the births of the boys, one is able to
desire known the probability that the second number will not exceed the first. Now, the
numbers mand s relative to these births, during the thirteen years elapsed from 1815 to
1827, are

m = 122404, s = 62239;

whence there results, according to equation (c),

p = 0.50847+θ(0.002021),
q = 0.49153−θ(0.002021),

and, by virtue of equation (e)

Q =
1√
π

∫ 3

−3
Πe−θ 2

[1−θ
3(0.00002)]dθ .

by taking always ±3 for the limits of the variable θ . I will take, besides

n = 10000,

for the mean number of births outside of marriage which take place each year in Paris;
by means of equations (11) and from these values of p, q, n, I will form the expression
of X that I will substitute next into the preceding formula in the place of Π: the value
of Q will be the probability demanded.

If we make
0.00847+θ(0.002021) =

1
2

α,

we will have
p =

1
2
+

1
2

α, q =
1
2
− 1

2
α;

and because one neglects the quantities of order 1
n , the second equation (11) will be-

come
k2 =−n+1

2
log(1−α

2)+
1
2

log
1+α

1−α
.

If one neglects also the cube of α and the product nα4, one will have

k2 =
n+1

2
α

2 +α = β
2 +

2β√
2(n+1)

,

by making, for brevity,
n+1

2
α

2 = β
2,

so that one has
β = 1.1979+θ(0.2858).
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The development of 1
k according to the powers of θ , will not be a series convergent

enough so that one is able to employ, as in the preceding no, formula (14) for the
determination of the integral

∫
∞

k e−t2
dt; but one will have

k = β +
1√
2n

;

consequently ∫
∞

k
e−t2

dt =
∫

∞

β

e−t2
dt− 1√

2n
e−β 2

;

and if one puts β t and βdt in the place of t and dt under the
∫

sign, the first equation
(11) will become

X =
β√
π

∫
∞

1
e−β 2t2

dt +
1√
2πn

e−β 2
.

It is therefore this value of X that I substitute into that of Q in the place of Π. I
extend next the integrals relative to θ from−∞ to +∞, this which is permitted, because
of the magnitude of the exponents β 2t2 + θ 2 and β 2 + θ 2 to the two limits θ ± 3; I
suppress the term depending on θ 3 that its coefficient renders negligible; in this manner,
there comes

Q =
1
π

∫
∞

1

(∫
∞

−∞

e−β 2t2−θ 2
βdθ

)
dt +

1
π
√

2π

∫
∞

−∞

e−β 2−θ 2
dθ .

By the known formulas, one finds∫
∞

−∞

e−β 2t2−θ 2
βdθ =

a
√

π

(1+b2t2)
3
2

e−
α2t2

1+b2t2

∫
∞

−∞

e−β 2−θ 2
dθ =

√
π

(1+b2)
1
2
,

by putting
a = 1.1979, b = 0.2858.

Let be next
at√

1+b2t2
= v,

a√
1+b2

= c;

whence there will result∫
∞

1

adt

(1+b2t2)
3
2

e−
α2t2

1+b2t2 =
∫ a

b

c
e−v2

dv.

Because of the magnitude of a
b which surpasses four, one will be able to replace this

limit by ∞, and then one will have

Q =
1√
π

∫
∞

c
e−v2

dv+
1√

2πn(1+b2)
.
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By converting this formula into number, by means of the table of Kramp, one has
finally

Q = 0.0638,

for the probability that there would be concern to determine. That of the contrary event
will be 0.9362, so that there is not completely odds of fifteen against one that in Paris
the annual births of the boys will exceed those of the girls among the natural infants.
There results from it that there is a little more than two against three odds that in an
interval of thirteen years, the number of female births will exceed at least one time the
one of the male births; because the probability of this event is 1−(0.9362)13, a quantity
equal to 0.424. From 1815 to 1827, it arrives once, in 1815, that the first number has
exceeded the second, and the difference has been of ten units.

(21) The limits (b) applied successively to two distinct events, or to the same event
at two different epochs, do not make known if the chance of one surpasses that of the
other by a given fraction, and what is the probability of this difference. However, it
is interesting to compare the probabilities of two events, that one has deduced from
observation; it is the solution of this problem which we are going to occupy ourselves
now, and of which we will make next application to the cases which present the births
of girls and of boys according to their diverse proportions.

We suppose therefore that the event A is arrived s times out of a number m trials,
and another event A′, x′ times out of m′; we suppose also that the four numbers s, m−
s, s′, m′−s′, are very great; and we designate by p and p′ the respective probabilities of
A and A′. By virtue of equations (c) and (d), one of the values of p contained between
the limits (b) will be represented by

p =
s
m
+θ

√
2s(m− s)

m3 ,

and its infinitely small probability by

R=Θe−θ 2 dθ√
π
,

by making, for brevity,

1+2λθ
3 = Θ,

(m−2s)
√

2
3
√

ms(m− s)
= λ .

The extreme values±z of θ must be of little consequence in order that the second term
of p be very small with respect to the first; nevertheless we will suppose z great enough
in order that the probability Z, given by equation (a), is very close to unity, and that
one is able, without sensible error, to regard the unknown probability p as contained,
with certitude, between the limits (b).

If p′ must surpass p by a quantity given and represented by ω , or by a quantity
greater than ω , the unknown value of p′ will be able to be expressed by the formula:

p′ = p+ω +u(1− p−ω),
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u being a variable contained between zero and unity. Besides, the event A being ar-
rived s′ times out of a number m′ trials, the infinitely small probability of any value
whatsoever of p′, is, according to no 14,

(1− p′)m′−s′ p′s
′
d p′∫ 1

0 (1− p′)m′−s′ p′s′d p′
.

But the preceding value of p′ having place only if the probability of A has a value
p which has itself only one probability R, it is necessary to make the product of the
probabilities of p and p′ in order to have that of this composite event. If one integrates
next this product within the limits of the values of p and p′, or of the variables θ and u
on which p and p′ depend, one will have the probability that the value of p′ surpasses
that of p, by a fraction equal or superior to ω . By designating it by T, and substituting
in the numerator for R and p′ their expressions, we will have therefore

T =

∫ z
−z

(∫ 1
0 [p+ω +u(1− p−ω)]s

′
(1−u)m′−s′du

)
(1− p−ω)m′−s′+1e−θ 2

Θdθ

√
π
∫ 1

0 (1− p′)m′−s′ p′s′d p′

This put, we designate by h the value of u which renders the coefficient of du a
maximum, and by H the corresponding value of this coefficient. We will have

(1− p−ω)s′

p+ω +h(1− p−ω)
− m′− s′

1−h
= 0;

whence one concludes

h =
s′−m′(p+ω)

m′(1− p−ω)
,

H =

(
s′

m′

)s′(m′− s′

m′

)m′−s′

(1− p−ω)s′−m′ .

Let there be now

[p+ω +u(1− p−ω)]s
′
(1−u)m′−s′ = He−t2

. (i)

One will be able to suppose the variable t continually increasing with u, so that t =−∞

corresponds to u = 0, in the case of p+ω = 1, and t = ∞ to u = 1. Whatever be this
quantity p+ω , if one designates by k a positive quantity, and by±k the value of which
corresponds to u = 0, one will have

(p+ω)s′ = He−t2
. (k)

Moreover t = 0 corresponding to u = h, one must take t =−k or t =+k for the value
of t relative to u = 0, according as the quantity h will be positive or negative, that is to
say, according to the expressions of h and of p, according as

s′

m′
− s

m
−ω > or < θ

√
2s(m− s)

m3 ;
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and one will have at the same time∫ 1

0
[p+ω +u(1− p−ω)]s

′
(1−u)m′−s′du = H

∫
∞

∓k
e−t2 du

dt
dt

The value of u deduced from equation (i), will be expressed by a series of the form

u = h+h′t +h′′t2 +h′′′t3 + etc.,

of which the coefficients h′, h′′, h′′′, etc., independent of t, will be determined as in no

4, and will be very small of order of 1√
m′
, 1

m′ ,
1

m′
√

m′
, etc. One finds, for the value of the

first two,

h′ =
1

1− p−ω

√
2s′(m′− s′)

m′3
, h′ = λ

′h′,

by making, for brevity,
(m′−2s′)

√
2

3
√

m′s′(m′− s′)
= λ

′.

If therefore one neglects the terms multiplied by the quantities h′′′, hiv, etc., there will
result from it∫ 1

0
[p+ω +u(1− p−ω)]s

′
(1−u)m′−s′du = Hh′

(∫
∞

∓k
e−t2

dt +λ
′e−k2

)
.

One will have, in the same manner,∫ 1

0
(1− p′)m′−s′ p′s

′
d p′ = (1− p−ω)m′−s′−1Hh′

∫
∞

−∞

e−t2
dt;

and the expression of T will become

T =
1
π

∫ z

−z

(∫
∞

∓k
e−t2

dt +λ
′e−k2

)
e−θ 2

Θdθ , (l)

where one must take the superior sign or inferior sign before the limit k of the integral
relative to t, according as the quantity h will be positive or negative. As for the value
of k, it will be the positive root of the formula:

k2 = s′ log
s′

m′(p+ω)
+(m′− s′) log

m′− s′

m′(q−ω)
, (m)

which is deduced from equation (k), by taking logarithms of these two members, and
observing that p+q = 1.

(22) In the case where one will have

ω =
s′

m′
− s

m
,
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the value of h will be of the same sign as −θ ; consequently equation (l) will become

T =
1
π

∫ z

0

(∫
∞

k
e−t2

dt
)

e−θ 2
Θdθ +

1
π

∫ 0

−z

(∫
∞

−k
e−t2

dt
)

e−θ 2
Θdθ ,

+
λ ′

π

∫ z

−z
e−(θ

2+k2)
Θdθ ;

and as one has ∫
∞

−k
e−t2

dt =
√

π−
∫

∞

k
e−t2

dt,

this value of T will be the same thing as

T =
1√
π

∫ 0

−z
e−θ 2

Θdθ +
λ ′

π

∫ z

−z
e−(θ

2+k2)
Θdθ

+
1
π

∫ z

0

(∫
∞

k
e−t2

dt
)

e−θ 2
Θdθ − 1

π

∫ 0

−z

(∫
∞

−k
e−t2

dt
)

e−θ 2
Θdθ .

In making for a moment √
2m(m− s)

m3 = f ,

we will have

p+ω =
s′

m′
+θ f , q−ω =

m′− s′

m′
−θ f ,

and consequently

log
m′(p+ω)

s′
=

m′ f
s′

θ − m′2 f 2

2s′2
θ

2 +
m′3 f 3

3s′3
θ

3− etc.,

log
m′(q−ω)

m′− s′
=

m′ f
m′− s′

θ − m′2 f 2

2(m′− s′)2 θ
2 +

m′3 f 3

3(m′− s′)3 θ
3− etc.,

whence one concludes, by virtue of equation (m),

k2 =
m′3 f 2

2s′(m′− s′)
θ − (m′−2s′)m′4 f 3

3s′2(m′− s′)2 θ
3 + etc.

The coefficients of this series, departing from the second, are of order 1√
m′
, 1

m′ , etc.; by

continuing therefore to neglect the quantities of order 1
m , making, for brevity,

m′3s(m− s)
m3s′(m′− s′)

= µ
2,

and considering µ as a positive quantity, there will result from it

k = µθ(1−µλ
′
θ), or k =−µθ(1−µλ

′
θ),

according as the variable θ will be positive or negative, so that the value of k is always
positive. It will be necessary therefore to employ the first value of k in the third term
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of T, and the second in the fourth term; to the degree of approximation where we have
stopped ourselves, one has besides∫

∞

±µθ(1−µλ ′θ)
e−t2

dt =
∫

∞

±µθ

e−t2
dt±µ

2
λ
′
θ

2e−µ2θ 3
;

that being, we will have

T =
1√
π

∫ 0

−z
e−θ 2

Θdθ +
λ ′

π

∫ z

−z
e−θ 2(1+µ2)(1+µ

2
θ

2)Θdθ

+
1
π

∫ z

0

(∫
∞

µθ

e−t2
dt
)

e−θ 2
Θdθ − 1

π

∫ 0

−z

(∫
∞

−µθ

e−t2
dt
)

e−θ 2
Θdθ ;

and, according as one will have put for Θ its value, this expression of T will be able to
be written thus

T =
1√
π

∫ z

0
e−θ 2

dθ − 2λ√
π

∫ z

0
e−θ 2

θ
3dθ +

2λ ′

π

∫ z

0
e−θ 2(1+µ2)(1+µ

2
θ

2)dθ

+
4λ

π

∫ z

0

(∫
∞

µθ

e−t2
dt
)

e−θ 2
θ

3dθ .

I put, in the last term, µθ and µθdt under the sign
∫

instead of t and dt, this which
gives ∫ z

0

(∫
∞

µθ

e−t2
dt
)

e−θ 2
θ

3dθ = µ

∫
∞

1

(∫ z

0
e−θ 2(1+µ2)

θ
4dθ

)
dt,

by interchanging the order of integrations. Because of the magnitude that z must have,
one is able, without sensible error, to extend to infinity the integrals relative to θ , this
which permits to obtain the values of them, and whence there results

T =
1
2
− λ√

π
+

λ ′√
π(1+µ2)

+
µ2λ ′

2
√

π(1+µ2)
3
2
+

3µλ

2
√

π

∫
∞

1

dt

(1+µ2t2)
3
2
,

or else, by effecting the integration indicated,

T =
1
2
+

λ ′−µλ√
π(1+µ2)

+
µ2λ ′−µλ

2
√

π(1+µ2)
3
2

(n)

This value of T expresses the probability that the difference p′− p surpasses the
difference s′

m′ −
s
m , or that one has

p′− p >
s′

m′
− s

m
.

The contrary event is

p′− p >
s′

m′
− s

m
, or p− p′ >

s
m
− s′

m′
.
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Its probability will be reduced therefore to the same expression of T, by exchanging m′

and m, s′ and s, that is to say, by exchanging λ ′ and λ , and putting 1
µ

in the place of µ .
Thus, in designating it by T′, one will have

T′ =
1
2
+

µλ −λ ′√
π(1+µ2)

+
µλ −µ2λ ′

2
√

π(1+µ2)
3
2
,

and consequently T+T′ = 1; this which is able to serve of verification to our calcula-
tions.

(23) If one observes that λ and λ ′ are respectively of order 1√
m and 1√

m′
, one sees

that the value of T given by equation (n), will differ little from 1
2 , and that the difference

T− 1
2 will diminish more and more in measure as the numbers m and m′ will increase,

so that one will have T= 1
2 , if m and m′ were infinite. It is this that it was easy to

anticipate; but the calculation alone would be able to make known the value of T− 1
2 .

When one will have nearly s = 1
2 m and s′ = 1

2 m′, one will be able to neglect com-
pletely λ and λ ′, this which will render null the difference T− 1

2 . This case holds when
one takes for s and s′ some numbers of male births and for m and m′ the corresponding
numbers of births of the two sexes. If there is a question of the infants born at Paris
from 1815 to 1827, one will have

m = 122404, s = 62239,

for the births outside of marriage, and

m′ = 215639, s′ = 109973,

for the legitimate infants; whence there results

s′

m′
− s

m
= 0.0015.

Relative to France entire, one has, from 1817 to 1826,

m = 673067, s = 344482,

for the natural infants, and

m′ = 8983068, s′ = 4637084,

for the legitimate births; this which gives

s′

m′
− s

m
= 0.0044.

There is therefore odds of one against one that the probability of a male birth is greater
among the natural infants than among the legitimate infants, of at least 0.0015 in the
city of Paris, and of at least 0.0044 in France entire.
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(24) When one will have s′
m′ =

s
m , formula (n) will express the probability that p′

surpasses p. Under this hypothesis, one has

λ
′ = λ

√
m
m′

, µ =

√
m
m′

, µλ
′ = λ ;

and formula (n) becomes

T =
1
2
+

(m−m′)λ√
m′(m+m′)

.

The probability that the difference p′− p is positive, will be therefore > or < 1
2 ,

according as the product (m−m′)λ , or that (m−m′)(2s−m) is positive or negative.
In order to render reason from this result, it is necessary to observe that in the case of
which there is question, the values of p′ and p differ very little from one another, of one
same quantity s′

m′ or s
m . But according to the expression of R of no 21, the probability

that p is above s
m , has for value:

1√
π

∫ z

0
e−θ 2

Θdθ =
1
2
+

1
2

λ ,

by substituting infinity in the limit z; the probability that p′ is above s′
m′ will be the same

1
2 +

1
2 λ ′, or 1

2 +
1
2 λ
√ m

m′ ; if therefore one supposes, in order to fix ideas, that the quan-
tity λ is positive, these probabilities will be both a little superior to 1

2 ; and moreover the
excess over 1

2 will be greater or lesser relatively to the second as in proportion to the
first, according as one will have m > or < m′; whence one is able to conclude that the
probability T that p′ surpasses p, must be greater or lesser as that of the contrary event,
according as the difference m−m′ will be positive or negative; this which accords with
the preceding value of T.

(25) We consider actually the case where the quantity s′
m′ −

s
m −ω , instead of being

null as previously, it a very small fraction of the order 1√
m , and we make

s′

m′
− s

m
−ω = α

√
2s(m− s)

m3 ,

α being a quantity of little consequence, positive or negative. The values of k will be
deduced from those of no 22, by putting there θ −α in the place of θ . Thus we will
have

k = µ(θ −α)[1−µλ
′(θ −α)],

in the case of θ > α , and

k = µ(α−θ)[1−µλ
′(α−θ)],

in the case of α > θ , since k must always be a positive quantity; and as the value of h
will be of the same sign as α−θ , equation (l) will become

T =
λ ′

π

∫ z

−z
e−[θ

2+µ2(α−θ)2]
Θdθ

+
1
π

∫ z

α

(∫
∞

k′
e−t2

dt
)

e−θ 2
Θdθ +

1
π

∫
α

−z

(∫
∞

−k1

e−t2
dt
)

e−θ 2
Θdθ
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k′ designating the first value of k, and k1 the second. One has besides∫
∞

−k1

e−t2
dt =

√
π−

∫
∞

k1

e−t2
dt,∫

∞

k′
e−t2

dt = µ(θ −α)
∫

∞

1
e−t2µ2(α−θ)2

dt +λ
′
µ

2(θ −α)2e−µ2(α−θ)2
,∫

∞

k1

e−t2
dt = µ(α−θ)

∫
∞

1
e−t2µ2(α−θ)2

dt−λ
′
µ

2(α−θ)2e−µ2(α−θ)2
,

whence one concludes

T =
λ ′

π

∫ z

−z
e−[θ

2+µ2(α−θ)2][1+µ
2(α−θ)2]dθ +

1√
π

∫
α

−z
e−θ 2

Θdθ

+
µ

π

∫
∞

1

(∫ z

−z
e−[θ

2+µ2(α−θ)2](θ −α)Θdθ

)
dt.

One will be able now to replace z by infinity without altering sensibly the value of T.
The integrations relative to θ and which have±z for limits, will be executed then under
finite form; but in order to simplify the result, we will neglect the quantities of order

1√
m or of 1√

m′
that we will have conserved to the present. In this manner, the term of

T which has λ ′ for factor must be suppressed, Θ will be reduced to unity, and one will
have simply

T =
1
2
+

1√
π

∫
α

0
e−θ 2

dθ +
µ

π

∫
∞

1
φdt,

by making, for brevity,

φ =
∫

∞

−∞

e−[θ
2+t2µ2(α−θ)2](θ −α)dθ

Let be actually

θ =
θ ′√

1+µ2t2
+

µ2t2α

1+µ2t2 ;

the limits relative to θ ′ will be again ±∞, and we will have

φ =− α
√

π

(1+µ2t2)
3
2

e
− µ2α2t2

1+µ2t2 .

We make next

µα√
1+µ2

= β ,
µαt√

1+µ2t2
= u,

µαdt

(1+µ2t2)
3
2
= du;

for t = 1 and t = ∞, one will have u = β and u = α; there will result from it therefore

T =
1
2
+

1√
π

∫
α

0
e−θ 2

dθ − 1√
π

∫
α

β

e−u2
du,

37



or, this which is the same thing

T =
1
2
+

1√
π

∫
β

0
e−t2

dt. (o)

(26) By making

2s(m− s)
m3 = f 2,

2s′(m′− s′)
m′3

= f 2,

we will have

µ =
f ′

f
, β =

α f√
f 2 + f ′2

,

and T will be the probability that one has

p′− p > α f +
s′

m′
− s

m
.

We put in place of α , another quantity α ′; we exchange among them the letters s′ and
s, m′ and m; we make

β
′ =

α ′ f ′√
f 2 + f ′2

;

and we designate by T′ that which T becomes by these changes: there will result from
it

T′ =
1
2
+

1√
π

∫
β ′

0
e−t2

dt,

for the probability that one has

p− p′ > α
′ f ′+

s
m
− s′

m′
.

If one supposes α ′ f ′ = −α f , this event will be the contrary of the preceding, and the
sum of their probabilities must be unity. It is this which holds effectively; because one
has then

β
′ =−β ,

∫
β ′

0
e−t2

dt =−
∫

β

0
e−t2

dt,

and consequently T+T′ = 1.
I substitute the value of α into that of β ; there comes

β =
s′
m′ −

s
m −ω√

f 2 + f ′2
. (p)

In the case of ω = 0, T will be the probability that p′ surpasses p; now, it is easy to be
assured that formula (o) coincides then with that which Laplace has given for the same
object.1 One sees also that this formula depends only on the single quantity β , and that

1Théorie analytique des probabilités, page 383.
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by a very simple modification in the expression of β , this formula (o) extends to the
case where p′ must surpass p by a fraction equal or superior to ω . In all the cases, the
expression of T and the analysis which has led us there suppose that s′

m′ −
s
m −ω is a

very small fraction; but if that had not held, there would be a very great and useless to
calculate probability, that the difference p′− p, which differs little from s′

m′ −
s
m , would

be greater than ω , setting aside the sign.
(27) We apply now formulas (o) and (p) to the numbers m and m′ of births of the

two sexes, and to the corresponding numbers s and s′ of male births.
In the first example of no 23, and if one takes ω = 0, one finds

β = 0.5987,
∫

∞

β

e−t2
dt = 0.3519;

whence T= 0.8015results, or a little more than 4
5 for the probability that at Paris the

chance of a male birth is greater among the legitimate infants than among the natural
infants.

In the second example of the same number, and by taking again ω = 0, one has

β = 4.9186;

this which gives for T a value which does not differ sensibly from unity, so that one is
able to regard as certain that in France entire, the probability of a male birth is greater
among the legitimate infants than among the infants born outside of marriage. In the
same example, if one takes ω = 0.003, one will have

β = 1.5604,
∫

∞

β

e−t2
dt = 0.02423,

and T= 0.9863 will result from it; so that it is again very probable that the first chance
surpasses the second of a fraction equal or superior to 0.003.

One has found, at the beginning of this century, that there is born in a part of France
and in an interval of three years, 110312 boys and 105287 girls. The ratio of the first
number to the second is nearly 22

21 instead of 16
15 which holds now for France entire; one

is able therefore to desire known the probability that the chance of a birth of a boy is
greater in the second case than in the first; now, if one makes

m = 215599, s = 110312,
m′ = 9656135, s′ = 4981566,

and if one takes ω = 0, there comes

β = 2.7557;

this which gives for 1−T a quantity of the order of those that we have neglected, so
that it is beyond doubt that the chance of a male birth was less in the part of France and
in the epoch of which there is a concern, than it is in all this realm and at the actual
epoch. If one takes ω = 0.003, one finds

β = 0.8068,
∫

∞

β

e−t2
dt = 0.2251;
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and there will result T= 0.8730 from it, for the probability that the second chance
surpasses the first by a fraction equal or superior to 0.003.

For the last example, let there be

m = 993191, s = 511898,
m′ = 944125, s′ = 488457,

m and m′ will be the numbers of births of the two sexes which have taken place in
France in the years 1817 and 1826, and s and s′ the corresponding numbers of the male
births; and if we take ω = 0, we will have

β = 0.8258,
∫

∞

β

e−t2
dt = 0.2152;

whence T= 0.8786 will result, for the probability that the chance of a male birth has
been greater in the second year than in the first. In taking ω = 0.001, one finds

β = 0.4017,
∫

∞

β

e−t2
dt = 0.5050;

this which gives T= 0.7151, for the probability that the first chance has surpassed the
second by a fraction greater than a thousandth. As the difference of the ratios s′

m′ and
s
m is 0.00196, there results from no 23 that it is possible that the difference of these
two chances has been rather below than above two thousandths. Besides, from 1817
to 1826, these two extreme years have those for which the proportion of the births
of the two sexes, is most separated, on both sides, from its mean value. We are able
therefore to conclude that at the actual epoch and for France entire, the probability of
a male birth sustains only very small variations from one year to another, and take for
its value, the mean of the ten years that we have considered, that is to say, 0.5159. In
the ignorance where we are of the cause which renders the births of boys dominating,
it will be experience alone which will be able to decide if this probability will vary
more through the following, or if it will remain nearly constant. Observation has not
yet taught us if it changes in one same year with the seasons; we do not know either if
it is the same in different nations; we know only that it depends on the state of society,
since the number of births outside of marriage influences sensibly on the proportion of
the male and female births.

(28) The determination of the ratio which exists between the annual births of the
two sexes in a great population is able also to be considered as a problem relative to this
part of the calculation of the chances which treats of the mean result of the observa-
tions and of its degree of probability. For that, it would be necessary to suppose 1◦ that
there exists one value of this ratio, such that of the equal deviations on both sides, are
equally probable; 2◦ that this unknown value remains constant during all the series of
observations. One would take then for this value, the mean result of a long sequence of
years; and the calculation would make known, according to the set of observations, the
probability that the excess of this result over the exact value, is comprehended between
some given limits. The calculation would furnish also some conditions to which the
observations must satisfy in order to be compatible with the double hypothesis which
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one just enunciated. But in order that the formulas of the calculation of the probability
of which there is concern are independent of the law of probability of the deviations
which is not given to us, it is necessary that the observations had been made in con-
siderable number; this which does not permit to apply these formulas to the research
of the ratio of the annual births of the two sexes, of which we know well only the ten
values observed in France from 1817 to 1826. Relative to the probability of the mean
results in general, we return to a Memoir inserted in the Additions à la connaissance
des temps pour l’année 1832.
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