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Foreword 

 

    1. The Art of Conjecturing and Its Contents 
    Jakob Bernoulli (1654 – 1705) was a most eminent mathematician, 

mechanician and physicist. His Ars Conjectandi (1713) (AC) was published 

posthumously with a Foreword by his nephew, Niklaus Bernoulli (English 

translation: David (1962, pp. 133 – 135); French translation, J. Bernoulli 

(1987, pp. 11 – 12)). It is not amiss to add that N.Bernoulli (1709) published 



his dissertation on the application of the art of conjecturing to jurisprudence 

where he not only picked up some hints included in the manuscript of his late 

uncle, but borrowed whole passages both from it and even from the 

Meditationes, never meant for publication (Kohli 1975, p. 541). 

    The just mentioned Meditationes is Bernoulli’s diary. It covers, 

approximately, the years 1684 – 1690 and is important first and foremost 

because it contains a fragmentary proof of the law of large numbers (LLN) to 

which Bernoulli indirectly referred at the end of Chapter 4 of Part 4 of the AC. 

Other points of interest in the Meditationes are that he (1975, p. 47) noted that 

the probability
 
(in this case, statistical probability) of a visitation of a plague 

in a given year was equal to the ratio of the number of these visitations during 

a long period of time to the number of years in that period. Then, Bernoulli (p. 

46, marginal note) wrote out the imprint of a review published in 1666 of 

Graunt’s book (1662) which he possibly had not seen; he had not referred to 

it either in the Meditationes itself or in the AC. And, lastly, at about the same 

time Bernoulli (p. 43) considered the probability that an older man can outlive 

a young one (cf. Item 4 in Chapter 2, Part 4 of the AC). All this, even apart 

from the proof of the LLN, goes to show that already then he thought about 

applying statistical probability.  

    Part 1 of the AC is a reprint of Huygens’ tract (1757) complete with vast 

and valuable commentaries. Nevertheless, this form testifies that Bernoulli 

was unable to complete his contribution. Also in Part 1 Bernoulli (pp. 22 – 28 

of the German translation), while considering a game of dice, compiled a table 

which enabled him to calculate the coefficients of xm 
 in the development of (x 

+ x2
 + … + x6

) 
n 

for small values of n. Part 2 dealt with combinatorial analysis 

and it was there that the author introduced the Bernoulli numbers. Part 3 was 

devoted to application of the “previous” to drawing of lots and games of dice. 

Parts 1 and 3 contain interesting problems (the study of random sums for the 

uniform and the binomial distributions, a similar investigation of the sum of a 

random number of terms for a particular discrete distribution, a derivation of 

the distribution of the first order statistic for the discrete uniform distribution 

and the calculation of probabilities appearing in sampling without 

replacement). The author’s analytical methods included combinatorial 

analysis and calculation of expectations of winning in each set of finite and 

infinite games and their subsequent summing. 

    Finally, Part 4 contained the LLN. There also we find a not quite formal 

“classical” definition of probability (a notion which he had not applied when 

formulating that law), a reasoning, in Chapter 2, on the aims of the art of 

conjecturing (determination, as precisely as possible, of probabilities for 

choosing the best solutions of problems, apparently in civil life) and elements 

of stochastic logic. Strangely enough, the title of Part 4 mentioned the 

completely lacking applications of the “previous doctrine” whereas his main 

theorem (the LLN) was not cited at all. This again testifies that Bernoulli had 

not completed his work. He did state, however (Chapter 4) that his LLN 

provided moral certainty which was sufficient for civil life and at the end of 

Chapter 2 he even maintained that judges must have firm instructions about 

what exactly constituted it.  

    Moral certainty had first appeared about 1400 (Franklin 2001, p. 69), but it 

was Descartes (1644, p. 323) who put it into circulation (above all apparently 

bearing in mind jurisprudence!). Huygens (Sheynin 1977, pp. 251 – 252) 

believed that proofs in physics were only probable and should be checked by 



appropriate corollaries and that common sense ought to determine the required 

degree of certainty of judgements in civil life. This latter statement seems 

much more reasonable than Bernoulli’s rigid demand.  

    Bernoulli apparently considered the art of conjecturing as a mathematical 

discipline based on probability as a measure of certainty and on expectation 

and including (the not yet formally introduced) addition and multiplication 

theorems and crowned by the LLN.  

    2. The Art of Conjecturing, Part 4  
    2.1 Randomness and Necessity. Apparently not wishing to encroach upon 

theology, Bernoulli (beginning of Chapter 1) refused to discuss the notion of 

randomness. Then, again in the same chapter, he offered a subjective 

explanation of the “contingent” but actually corrected himself at the beginning 

of Chapter 4 where he explained randomness by the action of numerous 

complicated causes. Finally, the last lines of his book contain a statement to 

the effect that some kind of necessity was present even in random things (but 

left too little room for it). He referred to Plato who had taught that after a 

countless number of centuries everything returned to its initial state. Bernoulli 

likely thought about the archaic notion of the Great Year whose end will cause 

the end of the world with the planets and stars returning to their positions at 

the moment of creation. Without justification, he widened the boundaries of 

applicability of his law and his example was, furthermore, too complicated. It 

is noteworthy that Kepler (1596) believed that the end of the world was 

unlikely. In the first edition of this book his reasoning was difficult to 

understand but later he substantiated his conclusion by stating, in essence, like 

Oresme (1966, p. 247) did before him, that two [randomly chosen] numbers 

were “probably” incommensurable. 

    Bernoulli borrowed his example of finding a buried treasure from Aristotle 

(end of Chapter 1) but, unlike him, had not connected it with randomness. The 

later understanding of randomness began with Maxwell and especially 

Poincaré, who linked it with (among other interpretations) with the case in 

which slight causes (digging the earth somewhere near) would have led to 

considerable effects (the treasure remaining buried). Poincaré also sensibly 

reasoned on the interrelations between randomness and necessity. On the 

history of the notion of randomness see Sheynin (1991); new ideas took root 

late in the 20
th

 century. 

    2.2. Stochastic Assumptions and Arguments. Bernoulli examined these in 

Chapters 2 and 3, but did not return to them anymore; he possibly thought of 

applying them in the unwritten pages of his book. The mathematical aspect of 

his considerations consisted in the use of the addition and the multiplication 

theorems for combining various arguments. 

    Unusual was the non-additivity of the deduced [probabilities] of the events 

under discussion. Here is one of his examples (Chapter 3, Item 7): 

“something” possesses 2/3 of certainty but its opposite has 3/4 of certainty; 

both possibilities are probable and their probabilities are as 8 : 9. Koopman 

(1940) resumed, in our time, the study of non-additive probabilities whose 

sources can be found in the medieval doctrine of probabilism that considered 

the opinion of each theologian as probable. Franklin (2001, p. 74) traced the 

origin of probabilism to the year 1577, or, in any case (p. 83), to 1611. 

Nevertheless, similar pronouncements on probabilities of opinion go back to 

John of Salisbury (the 12
th

 century) and even to Cicero (Garber & Zabell 

1979, p. 46). 



    I note a “general rule or axiom” concerning the application of arguments 

(pp. 234 and 236): out of two possibilities, the safer, the more reliable, etc 

should be chosen. 

    On the subject of this subsection see Shafer (1978) and Halperin (1988). 

    2.3. Arnauld and Leibniz. Antoine Arnauld (1612 – 1694) was an 

extremely well known religious figure and philosopher, the main author of the 

influential treatise Arnauld & Nicole (1662). In Chapter 4 Bernoulli praised 

Arnauld and approved his reasoning on using posterior knowledge and at the 

end of Chapter 3 Bernoulli borrowed Arnauld’s example (1662, pp. 328 – 

329) of the criminal notary. Other points of interest are Arnauld’s confidence 

in moral certainty and his discussion of the application of arguments. It might 

be reasonably assumed that Arnauld was Bernoulli’s “non-mathematical” 

predecessor. 

    In 1703, Bernoulli informed Leibniz about the progress in his work (Kohli 

1975, p. 509). He had been compiling it for many years with repeated 

interruptions caused by his “innate laziness” and worsening of health; the 

book still lacked its “most important part”, the application of the art of 

conjecturing to civil life; nevertheless, he, Bernoulli, had already shown his 

brother [Johann] the solution of a “difficult problem, special in its own way” 

that justified the applications of the art of conjecturing. 

     Most important both in that letter and in the following correspondence of 

1703 – 1705 (Ibidem, pp. 510 – 512) was the subject of statistical 

probabilities. Leibniz never agreed that observations could secure moral 

certainty, but his arguments were hardly convincing. Thus, he in essence 

repeated the statement of Arnauld & Nicole (1662, pp. 304 and 317) that the 

finite (the mind; therefore, observations) could not always grasp the infinite 

(for example, God, but also, as Leibniz stated, any phenomenon depending on 

innumerable circumstances).  

    Leibniz’ views were possibly caused by his understanding of randomness as 

something “whose complete proof exceeds any human mind” (manuscript, 

1686, p. 288). His heuristic statement does not contradict a modern approach 

to randomness founded on complexity and he was also right in the sense that 

statistical determinations cannot definitively corroborate a hypothesis. 

    In his letter of 3 Dec. 1703 Leibniz (Gini 1946, p. 405) also maintained that 

the allowance for all the circumstances was more important than subtle 

calculations, and Bortkiewicz (1923, p. 12) put on record Keynes’ (1921) 

favorable attitude towards this point of view and indicated the appropriate 

opinion of Mill (1843, p. 353), who had sharply contrasted the consideration 

of circumstances with “elaborate application” of probability and declared that 

the “neglect of this obvious reflection” made probability “the real opprobrium 

of mathematics”. Bortkiewicz agreed that mathematicians had been 

sometimes guilty of such neglect, which, however, had nothing to do with the 

calculus of probability. In his Chapter 4, Bernoulli touched on medical 

statistics and, for my part, I note that its progress is accompanied by the 

discovery of new circumstances so that stochastic calculations ought to be 

made repeatedly. Thus, in the mid-19
th

 century, amputation of a limb made 

under the newly introduced anaesthesia sometimes led to death from 

bronchitis (Sheynin 1982, p. 262) and the benefits of that procedure had to be 

critically considered. Circumstances and calculations should not be 

contrasted. 



   Bernoulli paid due attention to Leibniz’ criticism; more than a half of 

Chapter 4 of the AC in essence coincided with the respective passages from 

his letters to Leibniz (whom he did not mention by name). 

    In 1714, in a letter to one of his correspondents, Leibniz (Kohli 1975, p. 

512) softened his doubts about the application of statistical probabilities and 

for some reason added that the late Jakob Bernoulli had “cultivated” the 

[theory of probability] in accordance with his, Leibniz’ “exhortations”. 

    On the correspondence between the two scholars see also Sylla (1998). 

    2.4. The Law of Large Numbers  
    2.4.1. The Prehistory. The LLN has its prehistory. It was thought, long 

before Bernoulli, that the number of successes in n “Bernoulli” trials with 

probability p was approximately equal to 

 

    µ = np.                                                                                                        (1) 

 

Cardano (Ore 1963, pp. 152 – 154 and 196), for example, applied this 

formula in calculations connected with games of dice. When compiling his 

mortality table, Halley (1694) assumed that “irregularities” in his data would 

have disappeared had he much more observations at his disposal. His idea can 

be interpreted as a statement on the increase in precision of formula (3) with 

n; it is likely, however, that these irregularities were occasioned by systematic 

corruptions. A second approach to the LLN took shape in astronomy not later 

than during Kepler’s lifetime when the arithmetic mean became the universal 

estimator of the constant sought. 

    Similar but less justified statements concerning sums of magnitudes 

corrupted by random errors had also appeared. Thus, Kepler (Sheynin 1973, 

p. 120) remarked that the total weight of a large number of metal money of the 

same coinage did not depend on the inaccuracy in the weight of the separate 

coins. Then, De Witt (Sheynin 1977, p. 214) stated that the then existing 

custom of buying annuities upon many (n) young and apparently healthy lives 

secured profit “without hazard or risk”. The expectation of a gain Exi  from 

each such transaction was obviously positive; if constant, the buyer could 

expect a total gain of nEx. There also apparently existed a practice of an 

indirect participation of (petty?) punters in many games at once. At any rate 

(Sheynin 1977, p. 236), both De Moivre and Montmort mentioned in passing 

that some persons bet on the outcomes of games. The LLN has then been 

known, but not to such punters, and that practice could have existed from 

much earlier times. 

    2.4.2. Jakob Bernoulli. Before going on to prove his LLN, Bernoulli 

(Chapter 4) explained that the theoretical “number of cases” was often 

unknown, but what was impossible to obtain beforehand, might at least be 

determined afterwards, i.e., by numerous observations. In essence, Bernoulli 

proved a proposition that, beginning with Poisson, is being called the LLN. 

Let r and s be natural numbers, t = r + s, n, a large natural number, � = nt, the 

number of [independent] trials (De Moivre (1712) was the first to mention 

independence) in each of which the studied event occurs with [probability] r/t, 
µ – the number of the occurrences of the event (of the successes). Then 

Bernoulli proved without applying mathematical analysis that 

 

    P(|
t

r
−

ν

µ
| ≤

t

1
) ≥  1 – 

c+1

1
                                                                      (2) 



 

and estimated the value of � necessary for achieving a given c > 0. In a 

weaker form Bernoulli’s finding meant that 

  

    lim P (|
t

r
−

ν

µ
| < �) = 1, � � �                                                                   (3) 

 

where, as in formula (1), r/t was the theoretical, and µ/�, the statistical 

probability. 

    Markov (1924, pp. 44 – 52) improved Bernoulli’s estimate mainly by 

specifying his intermediate inequalities, and Pearson (1925), by applying the 

Stirling formula, achieved a practically complete coincidence of the Bernoulli 

result with the estimate that makes use of the normal distribution as the 

limiting case of the binomial law; Markov did not use that formula apparently 

because Bernoulli had not known it. In addition, Pearson (p. 202) considered 

Bernoulli’s estimate of the necessary number of trials in formula (2) “crude” 

and leading to the ruin of those who would apply it. He also inadmissibly 

compared the Bernoulli law with the wrong Ptolemaic system of the world. 

The very fact described by formulas (2) and (3) was, however, extremely 

important for the development of probability and statistics, and, anyway, 

should we deny the importance of existence theorems? For modern 

descriptions of Bernoulli’s LLN see Prokhorov (Bernoulli 1986) and Hald 

(1990, Chapter 16; 2003). 

   And so, the LLN established a correspondence between the two 

probabilities. Bernoulli (Chapter 4) had indeed attempted to ascertain whether 

or not the statistical probability had its “asymptote”– whether there existed 

such a degree of certainty, which observations, no matter how numerous, 

would never be able to reach. Or, in my own words, whether there existed 

such positive numbers � and � < 1, that 

 

    lim P (|
t

r
−

ν

µ
| < �) � 1 – �, � � �. 

 

    He answered his question in the negative: no, such numbers did not exist 

and he thus established, within the boundaries of stochastic knowledge, a 

relation between deductive and inductive methods and combined statistics 

with the art of conjecturing. 

    Throughout Part 4, Bernoulli considered the derivation of the statistical 

probability of an event given its theoretical probability and this most clearly 

emerges in the formulation of his Main Proposition in Chapter 5. However, 

both in the last lines of that chapter and in Chapter 4 he mentioned the inverse 

problem actually alleging that he had solved it as well. I return to this point in 

§2.4.3. 

    2.4.3. Remarks on Later Events. De Moivre (1765, p. 251) followed 

Bernoulli. Without any trace of hesitation, he claimed to have solved both the 

direct and the “converse” problems; he had expressed less clearly the same 

idea in 1738, in the previous edition of his book. De Moivre’s mistake largely 

exonerates Bernoulli, so that Keynes (1921, p. 402) wrongfully stressed that 

the latter “proves the direct theorem only”. It was Bayes who perceived that 

the two problems were different. He was the first to precisely determine the 

theoretical probability given the appropriate statistical data and for this reason 



I (Sheynin 2003) suggested that Bayes had completed the construction of the 

first version of probability theory. This, however, does not diminish the great 

merit of Bernoulli in spite of the much more precise results of De Moivre (for 

one of the problems) and Bayes. 

    I do not discuss Niklaus Bernoulli’s version of the LLN, which he 

described in one of his letters of 1713 to Montmort (1713, pp. 280 – 285); 

see Youshkevich (1986) and Hald (1990, §17.3; 2003). I myself (Sheynin 

1970, p. 232; absent in the original publication of 1968) noted that N.B. was 

the first to have introduced, although indirectly, the normal distribution. 

   2.4.4. Alleged Difficulties in Application. Strangely enough, statisticians for 

a long time had not recognized the fundamental importance of the LLN. 

Haushofer (1872, pp. 107 – 108) declared that statistics, since it was based on 

induction, had no “intrinsic connections” with mathematics based on 

deduction [consequently, neither with probability]. A most noted German 

statistician, Knapp (1872, pp. 116 – 117), expressed a strange idea: the LLN 

was hardly useful since statisticians always made only one observation, as 

when counting the inhabitants of a city. And even later on, Maciejewski 

(1911, p. 96) introduced a “statistical law of large numbers” in place of the 

Bernoulli proposition that had allegedly impeded the development of 

statistics. His own law qualitatively asserted that statistical indicators 

exhibited ever lesser fluctuations as the number of observations increased.  

    All such statements definitely concerned the Poisson law as well (European 

statisticians then hardly knew about the Chebyshev form of the law) and 

Maciejewski’s opinion likely represented the prevailing attitude of 

statisticians. Here, indeed, is what Bortkiewicz (1917, pp. 56 – 57) thought: 

the expression law of large numbers ought to be used only for denoting a 

“quite general” fact, unconnected with any definite stochastic pattern, of a 

higher or lower degree of stability of statistical indicators under constant or 

slightly changing conditions and given a large number of trials. Even 

Romanovsky (1961, p. 127) kept to a similar view and stressed the natural-

science essence of the law and called it physical. 

    3. The Translations. Since 1713 the AC has appeared in a German 

translation whereas its Part 4 was translated into Russian and French (and, in 

an unsatisfactory way, into English); see the references. The German 

translation, especially insofar as mathematical reasoning is concerned, is 

rather far from the original; the Russian text also somewhat deviates from 

Bernoulli; finally, the French translation is perhaps almost faultless in this 

sense, but the translator made several mathematical mistakes. I do not read 

Latin and had to begin from the Russian text, but I invariably checked my 

work against the two other translations and the several English passages from 

the AC as provided by Shafer (1978) as well as against the original with the 

help of a Latin dictionary. I am really thankful to Claus Wittich (Geneve) who 

kindly went over my own text and translation and made valuable suggestions 

and corrections. I am confident that the final result is good enough but any 

remaining shortcomings and/or mistakes are my own. 

    A few words about Markov are in order. He initiated, and then edited the 

1913 Russian  translation mentioned above. The same year he put out the 

third, the jubilee edition, as he called it, of his treatise (see References) and 

supplied it with Bernoulli’s portrait. Again in 1913, he initiated a special 

sitting of the Imperial [Petersburg] Academy of Sciences devoted to 

Bernoulli’s work in probability and, along with two other mathematicians, 



delivered a report there, first published in 1914, reprinted in Bernoulli (1986) 

and available in an English translation (Ondar 1977/1981, pp. 158 –163). 

Later, in the posthumous edition of his treatise (1924), Markov improved 

Bernoulli’s estimates (§2.4), and, perhaps as an indirect result of his study of 

the AC, inserted there many interesting historical comments. 

 

    The text of Part 4 of the Art of Conjecturing follows below. 

 

    Jakob Bernoulli. The Art of Conjecturing, Part 4 showing The Use and 
    Application of the Previous Doctrine to Civil, Moral and Economic Affairs 

 

    Chapter 1. Some Preliminary Remarks about Certainty, Probability, 

Necessity and Fortuity of Things 

 
    Certainty of some thing is considered either objectively and in itself and 

means none other than its real existence at present or in the future; or 

subjectively, depending on us, and consists in the measure of our knowledge 

of this existence. Everything that exists or originates under the sun, – the past, 

the present, or the future, – always has in itself and objectively the highest 

extent of certainty. This is clear with regard to events of the present or the 

past; because, just by their existence or past existence, they cannot be non-

existing or not having existed previously. Neither can you have doubts about 

[the events of] the future, which, likewise, on the strength of Divine foresight 

or predetermination, if not in accord with some inevitable necessity, cannot 

fail to occur in the future. Because, if that, which is destined to happen, is not 

certain to occur, it becomes impossible to understand how can the praise of 

the omniscience and omnipotence of the greatest Creator remain steadfast. But 

how can this certainty of the future be coordinated with fortuity or freedom 

[independence] of secondary causes? Let others argue about it; we, however, 

will not touch something alien to our aims. 

Certainty of things, considered with respect to us, is not the same for all 

things, but varies diversely and occurs now greater, now lesser. Something, 

about which we know, either by revelation, intellect, perception, by 

experience, autopsia [direct observation; by one’s own eyes] or otherwise, that 

we cannot in any way doubt its existence or realization in the future, has the 

complete and absolute certainty. To anything else our mind assigns a less 

perfect measure [of certainty], either higher or lower depending on whether 

there are more or less probabilities convincing us of its existence at present, in 

the past or the future. 

As to probability, this is the degree of certainty, and it differs from the 

latter as a part from the whole. Namely, if the integral and absolute certainty, 

which we designate by letter � or by unity 1, will be thought to consist, for 

example, of five probabilities, as though of five parts, three of which favor the 

existence or realization of some event, with the other ones, however, being 

against it, we will say that this event has 3/5 �, or 3/5, of certainty.  

Therefore, the event having a greater part of certainty from among the other 

ones is called more probable, although actually, according to the usual word 

usage, we only call probable that, whose probability markedly exceeds a half 

of certainty. I say markedly because a thing, whose probability is roughly 

equal to a half of certainty, is called doubtful or indefinite. Thus, a thing 



having 1/5 of certainty is more probable than that which has 1/10, although 

actually neither one is probable. 

    Possible is that which has at least a low degree of certainty whereas the 

impossible has either no, or an infinitely small certainty. Thus, something is 

possible if it has 1/20 or 1/30 of certainty. 

    Morally certain is that whose probability is almost equal to complete 

certainty so that the difference is insensible. On the contrary, morally 
impossible is that which has only as much probability as the morally certain 

lacks for becoming totally certain. Thus, if morally certain is that which has 

999/1000 of certainty, then something only having 1/1000 of certainty will be 

morally impossible. 

    Necessary is that, which cannot fail to exist at present, in the future or past, 

owing exactly to necessity, either physical (thus, fire will necessarily 

consume; a triangle will have three angles summing up to two right angles; a 

full moon, if in a node, will necessarily be accompanied by a [lunar] eclipse), 

– or hypothetical, according to which all that exists, or had existed, or is 

supposed to exist, cannot fail to exist (in this sense it is necessary that Petrus, 

about whom I know and accept that he is writing, is indeed writing), – or, 

finally, according to the necessity of a condition or agreement (thus, a gambler 

scoring a six with a die is necessarily reckoned the winner if the gamblers 

have agreed that winning is connected with throwing a six). 

    Contingent (both free, if it depends on the free will of a reasonable creature, 

and fortuitous and casual, if it depends on fortune or chance) is that which can 

either exist or not exist at present, in the past or future, – clearly because of 

remote rather than immediate forces. Indeed, neither does contingency always 

exclude necessity up to secondary causes. I shall explain this by illustrations. 

It is absolutely doubtless that, given a certain position of a die, [its] velocity 

and distance from the board at the moment when it leaves the thrower’s hand, 

it cannot fall otherwise than it actually does. Just the same, under a certain 

present composition of the air, and given the masses, positions, motions, 

directions, and velocities of the winds, vapors and clouds, as well as the 

mechanical laws governing the interactions of all that, the weather tomorrow 

cannot be different from that which it will actually be. So these phenomena 

take place owing to their immediate causes with no lesser necessity than the 

phenomena of the eclipses follow from the movement of the heavenly bodies. 

And still, usually only the eclipses are ranked among necessary phenomena 

whereas the fall of a die and the future weather are thought to be contingent. 

The sole reason for this is that what is supposed to be known for determining 

future actions, and what indeed is such in nature, is not enough known. And, 

even had it been sufficiently known, geometrical and physical knowledge is 

inadequately developed for subjecting such phenomena to calculation in the 

same way as eclipses can be calculated beforehand and predicted by means of 

known astronomical principles. And, for the same reason, before astronomy 

achieved such perfection, the eclipses themselves had to be reckoned as future 

chance events to not a lesser extent than the two other [mentioned] 

phenomena. 

    It follows that what seems to be contingent to one person at a certain 

moment, will be thought necessary to someone else (or even to the same 

person) at another time after the [appropriate] causes become known. And so, 

contingency mainly depends on our knowledge since we do not see any 

contradiction with the non-existence of the event at present or in the future, 



although here and now, owing to an immediate but unknown to us cause, it is 

either necessarily realized, or ought to occur. 

    Not everything bringing us well-being or harm is called happiness or 

misfortune {Fortuna prospera, un Bonheur, ein Glück & Fortuna adversa, un 
Malheur, ein Unglück}, but only that which with a higher, or at least with the 

same probability could have not brought it. Therefore, happiness or 

misfortune are the greater, the lower was the probability of the well-being or 

harm that has actually occurred. Thus, exceptionally happy is the man who 

finds a buried treasure while digging the ground because this does not happen 

even once in a thousand cases. If twenty deserters, one of whom will be put to 

death by hanging as an example for the others, cast lots as to who remains 

living, those nineteen who drew the more favorable lot are not really called 

happy; but the twentieth who cast the horrible lot is most miserable. [In the 

same way,] your friend who came out unharmed from a battle in which [only] 

a small part of the combatants were killed should not be called happy, unless 

you will perhaps think it necessary to do so because of the special fortune of 

preserving life. 

 

Chapter 2. On Arguments and Conjecture. On the Art of Conjecturing. 

On the Grounds for Conjecturing. Some General Pertinent Axioms 
 

    Regarding that which is certainly known and beyond doubt, we say that we 

know or understand [it]; concerning all the rest, – we only conjecture or 

opine. 

    To make conjectures about something is the same as to measure its 

probability. Therefore, the art of conjecturing or stochastics {ars conjectandi 
sive stochastice}

2.1
 is defined as the art of measuring the probability of things 

as exactly as possible, to be able always to choose what will be found the best, 

the more satisfactory, serene and reasonable for our judgements and actions. 

This alone supports all the wisdom of the philosopher and the prudence of the 

politician. 

    Probabilities are estimated both by the number and the weight of the 
arguments which somehow prove or indicate that a certain thing is, was, or 

will be. As to the weight, I understand it to be the force of the proof.  

    Arguments themselves are either intrinsic, in every-day speech artificial, 

elicited in accordance with considerations of the cause, the effect, of the 

person, connection, indication or of other circumstances which seem to have 

some relation to the thing under proof; or external and not artificial, derived 

from people’s authority and testimony. An example: Titius is found killed in 

the street. Maevius is charged with murder. The accusing arguments are: 1) 

He is known to have hated Titius (an argument from a cause, since this very 

hate could have incited to murder. 2) When questioned, he turned pale and 

answered timidly (this is an argument from the effect since it is possible that 

the pallor and fright were caused by his being conscious of the evil deed 

perpetrated). 3) Blood-stained cold steel is found in Maevius’ house (this is an 

indication). 4) The same day that Titius was killed, Maevius had been walking 

the same road (this is circumstance of place and time). 5) Finally, Cajus 

maintains that the day before Titius was killed, he had quarrelled with 

Maevius (this is a testimony). 

    However, before getting down to our problem, – to indicating how should 

we apply these arguments for conjecturing so as to measure probabilities, – it 



is helpful to put forth some general rules or axioms which are dictated to any 

sensible man by usual common sense and which the more reasonable men 

always observe in everyday life. 

    1) In such things in which it is possible to achieve complete certainty, there 
is no place for conjectures. Futile would have been an astronomer, who, 

knowing that two or three [lunar] eclipses occur yearly, desires to forecast, on 

such grounds, whether or not there will be an eclipse during a full moon. 

Indeed, he could have found out the truth by reliable calculation. Just the 

same, if a thief says at his questioning that he sold the stolen thing to 

Sempronius, the judge who wants to conjecture about the probability of that 

statement by looking at the expression of the thief’s face and listening to the 

tone of his voice, or by contemplating the quality of the stolen thing, or by 

some other circumstances, will act stupidly, because Sempronius, from whom 

everything can certainly and easily be elicited, is available. 

    2) It is not sufficient to weigh one or another argument; it is necessary to 
investigate all such which can be brought to our knowledge and will seem to 
be suitable in some respect for proving the thing. Suppose that three ships 

leave the harbor. After some time it is reported that one of them had suffered 

shipwreck and is lost. Conjectures are made: which of them? If only paying 

attention to the number of the ships, I shall conclude that each one of them 

could have met with the misfortune in an equal manner. But since I remember 

that one of them was comparatively old and decrepit, badly rigged with masts 

and sails, and steered by a young and inexperienced helmsman, I believe that, 

in all probability, it was this ship that got lost rather than one of the others. 

    3) We ought to consider not only the arguments which prove a thing, but 
also all those which can lead to a contrary conclusion, so that, after duly 
discussing the former and the latter, it will become clear which of them have 
more weight. It is asked, with respect to a friend very long absent from his 

fatherland, may we declare him dead? The following arguments favor an 

answer in the affirmative: During the entire twenty years, in spite of all 

efforts, we have been unable to find out anything about him; the lives of 

travellers are exposed to very many dangers from which those remaining at 

home are exempted; therefore, perhaps his life came to an end in the waves; 

perhaps he was killed en route or in battle; perhaps he died of an illness or 

from some [other] cause in a place where no one knew him. Then, has he been 

living, he would have reached an age which only a few attain even in their 

homeland; and he would have written even from the furthest shores of India 

because he knew that an inheritance was expected for him at home. And so on 

in the same vein. 

    Nevertheless, we should not rest content with these arguments but rather 

oppose them by the following supporting the contrary. He is known to have 

been thoughtless; wrote letters reluctantly; did not value friends. Perhaps 

Barbarians held him captive so that he was unable to write, or perhaps he did 

write sometimes from India, but the letters got lost either because of the 

carelessness of those carrying them, or during shipwrecks. And, to cap it all, 

many people are known to have returned unharmed after having been absent 

even longer
2.2

. 

    4) For judging about universalities remote and universal arguments are 
sufficient; however, for forming conjectures about particular things, we ought 
also to join to them more close and special arguments if only these are 
available. Thus, if it is asked, in general, how much more probable is it for a 



twenty-year-old youth to outlive an aged man of 60 rather than the other way 

round, we have nothing to take into consideration other than the distinction 

between the generations and ages. But if the question concerns two definite 

persons, the youth Petrus and the old man Paulus, we also ought to pay 

attention to their complexion, and to the care that each of them takes over his 

health. Because if Petrus is in poor health, indulges in passion, and lives 

intemperately, Paulus, although much older, may still hope, with every reason, 

to live longer. 

    5) Under uncertain and dubious circumstances we ought to suspend our 
actions until more light is thrown. If, however, the necessity of action brooks 
no delay, we must always choose from among two possibilities that one which 
seems more suitable, safe, reasonable, or at least more probable2.3, even if 
none of them is actually such. Thus, if a fire has broken out and you can only 

save yourself by jumping from the top of the roof or from some lower floor, it 

is better to choose the latter as being less dangerous, although neither 

alternative is quite safe or free from the danger of injury. 

    6) That which is in some cases helpful and never harmful ought to be 
preferred to that which is never either helpful or harmful. In our vernacular it 

is said Hilfft es nicht, so schadt es nicht [Even if it does not help, it does not 

harm]. This proposition follows from the previous [considerations], because 

that which can be helpful is more satisfactory, reliable and desirable than that 

which under the same conditions cannot [be helpful]. 

    7) Human actions should not be assigned a value according to  their 
outcomes because sometimes the most reckless actions are accompanied by 

the best success, whereas, on the contrary, the most reasonable [may] lead to 

the worst results. In agreement with this, the Poet says: “May success be 

wanting, I wish, for him who would judge facts by their outcomes” [Ovidius, 

Epistulae Heroidum II, “Phyllis Demophoonti”, line 85]. Thus, someone who 

intends to throw at once three sixes with three dice, should be considered 

reckless even if winning by chance. On the contrary, we [ought to] note the 

false judgement of the crowd which considers a man the more prominent, the 

more fortunate he is, and for which even a successful and fruitful crime is 

mostly a virtue. Once more Owen (Epigr[ammatum] lib[er] sing[ularis, 1607], 

§216)
2.4

 gracefully says: 

 

    Although just now Ancus was believed to be a fool, it is argued that he is 
    wise because the poorly conceived turned out successful [for him]. If 
    something reasonably thought-out fails, even Cato will be judged a fool by 
    the crowd. 
 
    8) In our judgements, we ought to beware of attributing to things more than 
is due to them, ought not to consider something which is only more probable 
than the other as absolutely certain, nor to impose the same opinion on 
others. [This is] because the trust attributed to things ought to be in a proper 

proportion to the degree of certainty possessed by each thing, and be less in 

the same ratio as its probability itself is. In vernacular, this is expressed as 

Man muss ein jedes in seinem Werth und Unwerth beruhen lassen [Let each 

thing be determined by its value or worthlessness].  

    9) However, since complete certitude can only seldom be attained, necessity 
and custom desire that that, which is only morally certain, be considered as 
absolutely certain. Therefore, it would be helpful if the authorities determine 



certain boundaries for moral certainty, – if, for example, it would be defined 

whether 99/100 of certainty be sufficient for resolving something, or whether 

999/1000 be needed, so that a judge, unable to show preference to either side, 

will always have firm indications to conform with when pronouncing a 

sentence. 

    Anyone having knowledge of life can compile many more similar axioms 

but, lacking an appropriate occasion, we can hardly remember all of them. 

 

Chapter 3. On Arguments of Different Kinds and on How Their Weights 

Are Estimated for Calculating the Probabilities of Things 

 
    He who considers various arguments by which our opinions and conjectures 

are formed will note a threefold distinction between them since some of them 
necessarily exist and contingently provide evidence; others exist contingently 
and necessarily provide evidence; finally, the third ones both exist and 
provide evidence contingently.  
    I explain these differences by examples. For a long time, my brother does 

not write me anything. I doubt whether to blame his laziness or his business 

pursuits, and fear that he may even have died. Here, there are threefold 

arguments for explaining the ceasing of the correspondence: laziness, death, 
pursuits. The first of these exists for sure (according to hypothetical necessity, 

since I know and accept that my brother is lazy), but proves true [provides 

evidence] only contingently because laziness possibly would not have 

hindered him from writing. The second one contingently exists (because my 

brother could still be alive), but proves true without question because a dead 

man cannot write. The third one both exists and provides evidence 

contingently because my brother can have business pursuits or not, and if he 

has them, they need not be such that prevent him from writing. 

    Another example. I suppose that, according to the conditions of a game, a 

gambler wins if he throws seven points with two dice, and I wish to guess his 

hope of winning. Here, the argument for winning is the throwing of seven 

points. It necessarily indicates the winning (owing, indeed, to the agreement 

between the gamblers), but it only exists contingently, because, in addition to 

the seven points, another number of them can occur. 

    Excepting this difference between the arguments, another distinction can 

also be noted since some of them are pure, the other ones, mixed. I call an 

argument pure if in some cases it proves a thing in such a manner that on 

other occasions it does not prove anything positively. A mixed argument, 

however, is such that in certain cases it thus proves a thing that on other 

occasions it proves the contrary in the same manner. 

    An example. Someone in a quarrelling crowd was stabbed with a sword; 

and, as trustworthy people who saw the incident from a distance testify, the 

perpetrator was dressed in a black cloak. If Gracchus was among those 

quarrelling together with three others, all of them in black tunics, this tunic 

will be an argument in favor of Gracchus having committed the murder. 

However, this argument will be mixed since in one case it proves his guilt, 

and, in three other cases, it demonstrates his innocence. Indeed, the murder 

was perpetrated either by him, or by one of the other three, with the latter 

instance being impossible without exonerating Gracchus. If, however, during 

the subsequent questioning Gracchus turned pale, the paleness of his face will 

be a pure argument because it demonstrates his guilt if occasioned by 



disturbed conscience. On the contrary, it would not prove his innocence had it 

been called forth by something else, since it is possible that he turned pale 

owing to another cause but still was himself the perpetrator of the murder [the 

murderer]. 

    The above makes it clear that the force of proof peculiar to some argument 

depends on the multitude of cases in which it can exist or not exist, provide 

evidence or not, or even provide evidence to the opposite of the thing. 

Therefore, the degree of certainty, or the probability engendered by this 

argument, can be deduced by considering these cases in accordance with the 

doctrine given in Part 1 [of this book] in exactly the same way as the fate of 

gamblers in games of chance is usually investigated. To show it, let us assume 

that b is the number of cases in which some argument can accidentally exist, 

and c, in which it can fail to exist, with the number of both cases being a = b 
+ c. Assume also that the number of cases in which the argument can 

contingently prove [the case] is �; and in which it does not prove it, or proves 

the opposite, 	, with the number of both cases being � = � + 	. I suppose that 

all cases are equally possible and can take place with the same facility. 

Otherwise they ought to be moderated by assuming, instead of each easier 

occurring case, as many others as that case is easier to happen. For example, 

instead of a thrice easier case I will count three such cases that can occur as 

easily as the others. 

    1. And so, first, let an argument exist contingently and provide evidence 
necessarily. There will be b cases from among those just considered in which 

the argument can exist and therefore indicate a thing (or indicate 1), and c 

cases in which it can fail to exist and therefore to indicate. On the strength of 

Corollary 1 appended to Proposition 3 of Part 1 [of this book] the value [of the 

argument] will be 
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so that such an argument proves (b/a) of a thing or [the same part] of its 

certainty. 

    2. Suppose now that an argument necessarily exists but indicates 
contingently. In accordance with the assumption, there will be � cases in 

which it can indicate the thing, and 	 cases in which it does not indicate, or 

indicates the contrary. Here, the argument’s force to prove the thing will 

therefore be  
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Such an argument thus proves (�/�) of the thing’s certainty; if, in addition, the 

argument is mixed, it proves (as is derived in the same way) 
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of the contrary’s certainty. 

    3. If some argument both exists and indicates contingently, I shall assume at 

first that it exists. Then, as just explained, it is estimated to prove (�/�) of the 



thing, and, in addition, if the argument is a mixed one, to prove (	/�) of the 

opposite. Since there are b cases in which it can exist; and fail to exist, and 

therefore to prove nothing, in c cases, it follows that this argument has value 
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If the argument is a mixed one, it has value  
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of the opposite. 

 

    4. Then, if several arguments are collected for proving one and the same 

thing, and if we designate 

 

    The number of cases for argument No.                           1   2   3   4   5   etc 

    The number of all of them                                               a   d   g   p   s   etc 

    The number of those proving                                           b   e   h   q   t   etc 

    And of those not proving or proving the opposite           c   f    i    r   u   etc 

 

Then the force provided by the totality of all the arguments is estimated in the 

following way. First, suppose that all the arguments are pure. The weight of 

the first of them, taken separately, will be, as we saw, (b/a) = (a – c)/a; we 

should write (�/�) if the argument proves the thing only contingently, or 

(b�/a�), if, in addition, it does not exist unquestionably. Now suppose that 

another argument is added to the first one, and that in e, or (d – f) cases, it 

proves a thing, or proves 1, and in f cases proves nothing, with only the weight 

of the first argument, as found above, [(a – c)/a], persisting. The weight of 

both arguments taken together will be 
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    Let us now add the third argument. There will be h or (g – i) cases proving 

the thing, and i cases in which the third argument vanishes with only the force 

of the first two ones persisting. This force of proof is [(ad – cf)/ad] from 

which it follows that the force of all three of them will be estimated as 
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    And, when a larger number of arguments is available, we ought to go 

further in the same way. It is therefore clear that all the arguments taken 

together provide a probability differing from complete certainty or unity by a 

part of unity equal to the quotient of the product of the number of non-proving 

cases divided by the product of the number of all the cases for all the 

arguments. 



    5. Second, let all the arguments be mixed. Since the number of the proving 

cases for the first argument is b, for the second one, e, for the third argument, 

h, etc, and the number of cases proving the opposite is c, f, i, etc, it follows 

that, on the strength of only the first argument, the probability of the thing is 

to the probability of the opposite as b to c; according to the second one, as e to 

f; owing only to the force of the third argument, as h to i, etc. It is thus 

sufficiently clear that the total force of proof resulting from the totality of all 

the arguments is composed of the forces of all the separate arguments; or, that 

the probability of a thing is to the probability of the contrary as beh … to cfi 
… so that the absolute probability of the thing will be 
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    6. Suppose that some arguments will again be pure (for example, the three 

first ones), and some mixed (for example, the two others). I consider at first 

only the pure arguments, which, according to Item 4, prove 
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of the thing’s certitude. This fraction differs from 1 by cfi/adg, – as though, 

consequently, there be (adg – cfi) cases in which these three arguments taken 

together prove the thing, or 1, and cfi cases in which they prove nothing and 

leave the proof to be solely accomplished by the mixed arguments. However, 

these latter two, on the strength of the proposition in Item 5, prove  
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    Therefore, the probability of the thing, following from all the arguments, is 
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which differs from complete certainty or 1 by the product of the fraction 

cf/adg (which, in accordance with Item 4, is the deficit of the probability 

[from unity] of the thing resulting from the pure arguments alone) by the 

fraction ru/(qt + ru) that expresses the absolute probability of the opposite 

originating, as shown in Item 5, from the mixed arguments
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. 

    7. If, in addition to the arguments leading to the proof of a thing, there exist 

other pure arguments favoring the opposite, the arguments of both kinds, in 

accordance with the previous rules, ought to be weighed separately so as to 

derive the ratio in which the probability of the thing is to that of the opposite. 

And we ought to note here that, if the arguments pro and con are sufficiently 

strong, the absolute probabilities of each can appreciably exceed half of 

certainty; that is, either of the two opposite answers is probable, although one 

of them comparatively less probable than the other. 



    Thus, it might happen that something has 2/3 of certainty whereas its 

opposite has 3/4 so that each of these contraries will be probable although the 

first of them being less probable than the opposite; namely, their ratio will be 

as 2/3 to 3/4 or as 8 to 9. 

    I cannot conceal here that I foresee many obstacles in special applications 

of these rules that can often lead to shameful mistakes if caution is not 

observed when distinguishing between the arguments. Indeed, sometimes such 

arguments can seem to differ which actually compose one and the same 

argument, and to the contrary: differing arguments can be accepted as a single 

argument. Sometimes an argument includes such premises which absolutely 

refute the opposite, etc. As an explanation, I only adduce one or two 

illustrations. In the example above concerning Gracchus, I assume that the 

trustworthy people who saw those quarrelling also noted that the perpetrator 

was red-haired and that Gracchus together with two of the others were 

distinguished by hair of that color, but that no one of the latter was dressed in 

a black toga. In that case, if someone would have desired to compare the 

probabilities of Gracchus’ guilt and innocence by the indications that 

Gracchus and three others were dressed in black, and also, that, again in 

addition to him, two others were notable for their red hair, and found that, 

according to Item 5, they are in a composite ratio of 1:3 and 1:2, or in the ratio 

of 1 to 6; and if he were to conclude that Gracchus is by far more likely to be 

innocent than to be the perpetrator of the murder, he would certainly have 

collated the matter in a most inept fashion. Actually, there are no two 

arguments here but only one and the same, resulting from two simultaneous 

circumstances, the color of the dress and of the hair. Since both these 

circumstances are only conjoined in the case of Gracchus, they certainly 

demonstrate that no one else excepting him could have been the perpetrator.  

    Another example. It becomes doubtful whether a written document is 

fraudulently antedated. An argument to the opposite could be that the 

document was signed by the hand of a notary public, i.e., by an official and 

sworn person, with regard to whom it is unlikely that he might have permitted 

himself any fraud. Indeed, he would have been unable to do so without greatly 

endangering his honor and well-being; in addition, even from among 50 

notaries hardly one would have dared to commit such a vile action. The 

following arguments could be in favor of an answer in the affirmative: This 

notary is very ill-famed; and could have expected greatest benefits from the 

fraud; and especially that he had testified to something having no probability, 

as for example that someone had lent 10 000 gold coins to another person, 

whereas, according to everyone’s estimation, all his property then barely 

amounted to 100. 

    Here, if considering separately the argument from the character of the 

signatory, the probability that the document is authentic may be valued as 

49/50 of certainty. When, however, weighing the arguments favoring the 

opposite, it would be necessary to conclude that it is hardly possible that the 

document is not forged so that the fraud committed in the document is of 

course morally certain, that is, has 999/1000 of certainty. However, we should 

not conclude that the probabilities of authenticity and fraud are, in accordance 

with Item 7, in the ratio of 49/50 to 999/1000, or almost of equality. Because, 

if I believe that the notary is dishonorable, I am therefore assuming that he 

does not belong to the 49 honest notaries detesting deception but that he is 

indeed the fiftieth who has no scruples of fulfilling his duties faithlessly. This 



consideration completely destroys all the power of that argument, which in 

other cases could have been able to prove that a document is authentic. 

 

Chapter 4. On a Two-Fold Method of Investigating the Number of Cases. 

What Ought To Be Thought about Something Established by Experience. 

A Special Problem Proposed in This Case, etc 
 

    It was shown in the previous chapter how, – given the number of cases in 

which arguments in favor of some thing can exist or fail to exist, can provide 

evidence or not, or even prove the opposite, – the force of what they prove, 

and the probabilities of things proportional to these forces, can be derived and 

estimated by calculation. We thus see that for correctly conjecturing about 

some thing, nothing else is required than both precisely calculating the 

number of cases and finding out how much more easily can some of them 

occur than the others. Here, however, we apparently meet with an obstacle 

since this only extremely seldom succeeds, and hardly ever anywhere 

excepting games of chance which their first inventors, desiring to make them 

fair, took pains to establish in such a way that the number of cases involving 

winning or losing were determined with certainty and known and the cases 

themselves occurred with the same facility. 

    However, for most of other matters, depending either on the production of 

nature or the free will of people, this does not take place at all. Thus, for 

example, the number of cases is known in [a game of] dice. For each die there 

are manifestly as many cases as faces, and all of them are equally inclined [to 

turn up], since, owing to the similitude [congruence] of the faces and the 

uniform weight [density] of the die, there is no reason for one of them to turn 

up more easily than another
4.1

. This would have happened if the forms of the 

faces were dissimilar or if one part of the die consisted of a heavier substance 

than the other one. In the same way, the number of cases for drawing a white 

or a black ticket from an urn is known, and known [also] is that [the drawings 

of] all of them are equally possible. Indeed, the number of tickets of both 

these kinds is evidently determined and known, and no reason is seen for one 

of them to appear more easily than any other. 

    But, who from among the mortals will be able to determine, for example, 

the number of diseases, that is, the same number of cases which at each age 

invade the innumerable parts of the human body and can bring about our 

death; and how much easier one disease (for example, the plague) can kill a 

man than another one (for example, rabies; or, the rabies than fever), so that 

we would be able to conjecture about the future state of life or death? And 

who will count the innumerable cases of changes to which the air is subjected 

each day so as to form a conjecture about its state in a month, to say nothing 

about a year? Again, who knows the nature of the human mind or the 

admirable fabric of our body shrewdly enough for daring to determine the 

cases in which one or another participant can gain victory or be ruined in 

games completely or partly depending on acumen or agility of body? 

    Since this and the like depends on absolutely hidden causes, and, in 

addition, owing to the innumerable variety of their combinations always 

escapes our diligence, it would be an obvious folly to wish to find something 

out in this manner. Here, however, another way for attaining the desired is 

really opening for us. And, what we are not given to derive a priori, we at 

least can obtain a posteriori, that is, can extract it from a repeated observation 



of the results of similar examples. Because it should be assumed that each 

phenomenon can occur and not occur in the same number of cases in which, 

under similar circumstances, it was previously observed to happen and not to 

happen. Actually, if, for example, it was formerly noted that, from among the 

observed three hundred men of the same age and complexion as Titius now is 

and has, two hundred died after ten years with the others still remaining alive, 

we may conclude with sufficient confidence that Titius also has twice as many 

cases for paying his debt to nature during the next ten years than for crossing 

this border. Again, if someone will consider the atmosphere for many 

previous years and note how many times it was fine or rainy; or, will be very 

often present at a game of two participants and observe how many times either 

was the winner, he will thus discover the ratio of the number of cases in which 

the same event will probably happen or not also in the future under 

circumstances similar to those previously existing. 

    This empirical method of determining the number of cases by experiment is 

not new or unusual. Because the celebrated author of L’art de penser, a man 

of great intellect and acumen
4.2

, prescribes the like in Chapter 12 and in the 

next ones of the last part [of that book], and the same is also constantly 

observed in everyday practice. Then, neither can anyone fail to note also that 

it is not enough to take one or another observation for such a reasoning about 

an event, but that a large number of them are needed. Because, even the most 

stupid person, all by himself and without any preliminary instruction, being 

guided by some natural instinct (which is extremely miraculous) feels sure 

that the more such observations are taken into account, the less is the danger 

of straying from the goal. 

    Although this is known by nature to everyone, its proof, derived from 

scientific principles, is not at all usual and we ought therefore to expound it 

here. However, I would have estimated it as a small merit had I only proved 

that of which no one is ignorant. Namely, it remains to investigate something 

that no one had perhaps until now run across even in his thoughts. It certainly 

remains to inquire whether, when the number of observations thus increases, 

the probability of attaining the real ratio between the number of cases, in 

which some event can occur or not, continually augments so that it finally 

exceeds any given degree of certitude. Or [to the contrary], the problem has, 

so to say, an asymptote; i.e., that there exists such a degree of certainty which 

can never be exceeded no matter how the observations be multiplied, so that, 

for example, it is never possible to obtain more than a half, or than 2/3, or 3/4, 

of certainty in deriving the real ratio of cases. 

    To make clear my desire by illustration, I suppose that without your 

knowledge three thousand white pebbles
4.3

 and two thousand black ones are 

hidden in an urn, and that, to determine [the ratio of] their numbers by 

experiment, you draw one pebble after another (but each time returning the 

drawn pebble before extracting the next one so that their number in the urn 

will not decrease), and note how many times is a white pebble drawn, and 

how many times a black one. It is required to know whether you are able to do 

it so many times that it will become ten, a hundred, a thousand, etc., times 

more probable (i.e., become at last morally certain) that the number of the 

white and the black pebbles which you extracted will be in the same ratio, of 3 

to 2, as the number of pebbles themselves, or cases, than in any other different 

ratio. To tell the truth, if this failed to happen, it would be necessary to 

question our attempt at experimentally determining the number of cases. 



    If, however, this is attained and we thus finally obtain moral certainty (in 

the next chapter I shall show that this is indeed so), then we determine the 

number of cases a posteriori almost as though it was known to us a priori. In 

social life, where the morally certain, according to Proposition 9 of Chapter 2, 

is assumed as quite certain, this is undoubtedly quite sufficient for 

scientifically directing our conjectures about any contingent thing in a no 

lesser way than in games of chance. Because, if we replace an urn for example 

by air or by a human body, which contain in themselves sources of various 

changes or diseases just as the urn contains pebbles, we will be able to 

determine by observation in exactly the same way how much easier can one or 

another event occur in these things. 

    To avoid false understanding, it ought to be noted that the ratio between the 

numbers of cases which we desire to determine experimentally is accepted not 

as precise and strict (because this point of view would have led to a contrary 

result and the probability of determining the real ratio would have been the 

lower the more observations we would have taken)
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, but that this ratio be 

accepted with a certain latitude, that is, contained between two limits 

[boundaries] which could be taken as close as you like. Indeed, if in the 

example just provided concerning pebbles, we will assume two ratios, 

301/200 and 299/200, or 3001/2000 and 2999/2000, etc, one of which is very 

near but greater, and the other one very near but smaller than 3/2, it will be 

shown that, setting any probability, it can be made more probable that the 

ratio derived from many observations will be contained within these limits of 

3/2 rather than outside. 

    This, then, is the problem that I decided to make here public after having 

known its solution for twenty years. Its novelty and the greatest utility joined 

with an equal difficulty can attach more weight and value to all the other 

chapters of this doctrine [of the ars conjectandi]. However, before exposing its 

solution I shall defend myself in a few words from the objections to these 

propositions levelled by some scholars. 

    1. First, it was objected that the ratio of pebbles is one thing, whereas the 

ratio of diseases or changes in the air is something else. The number of the 

former is definite but the number of the latter is indefinite and vague. I answer 

this by saying that they both, in comparison to our knowledge, are equally 

indefinite and vague. However, we can imagine anything, that is such in itself 

and in accordance with its nature, not better than a thing created and at the 

same time not created by the Author of nature because everything done by 

God is determined thereby. 

    2. Second, it is objected that the number of pebbles is finite and that of 

diseases etc. is infinite. Answer. Rather immense than infinite. But let us 

assume that it is indeed infinite. Even between two infinities a definite ratio is 

known to be possible and to be expressed by finite numbers either precisely or 

at least with any desired approximation. Thus, the ratio of each circumference 

to [its] diameter is definite. [True,] it is not precisely expressed otherwise than 

by an infinitely continued Ludolphus’ cyclic number. However, Archimedes, 

Metius and Ludolphus himself
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 contained that ratio within limits 

[boundaries] sufficiently close to each other for practice. Therefore, nothing 

hinders a ratio of two infinities approximately expressed by finite numbers to 

be determined by a finite number of experiments either.  

    3. Third, it is said that the number of diseases does not remain constant but 

that new diseases occur every day. Answer. We are unable to deny that 



diseases can multiply in the course of time; and he who desires to conclude 

from present-day observations about the times of our antediluvian forefathers 

will undoubtedly deviate enormously from the truth. But nothing follows from 

this except that sometimes we ought to resume observations just as it would 

be necessary to resume observations with the pebbles if it is assumed that their 

number in the urn is variable. 

 

Chapter 5. Solution of the Previous Problem 

 
    To explicate the long demonstration as briefly and clearly as possible, I will 

attempt to reduce everything to abstract mathematics, eliciting from it the 

following lemmas after which all the rest will only consist in their mere 

application. 

    Lemma 1. Suppose that a series of any quantity of numbers 0, 1, 2, 3, 4, etc, 

follow, beginning with zero, in the natural order and let the extreme and 

maximal of them be r + s, some intermediate, r, and the two nearest to it on 

either side, r + 1 and r – 1. If this series be continued until its extreme term 

becomes equal to some multiple of the number r + s, that is, until it is equal to 

nr + ns, the intermediate number r and those neighboring it, r + 1 and r – 1, 

will be augmented in the same ratio, so that nr, nr + n and nr – n will appear 

instead, and the series itself 

 

    0, 1, 2, 3, 4, …, r – 1, r, r + 1, …, r + s 

 

will change becoming 

 

    0, 1, 2, 3, 4, …, nr – n, …, nr, …, nr + n, …, nr + ns. 
 
    With an increasing n both the number of the terms situated between the 

intermediate nr and one of the limiting terms, nr + n or nr – n, and the number 

of those terms which extend from these limits to the extreme terms nr + ns or 

0 will thus increase. However (no matter how large will n be assumed), the 

number of terms following after the larger limit nr + n will never be more 

than s – 1 times greater than, and the number of terms preceding the lesser 

limit nr – n will never be more than r – 1 times greater than the number of 

them situated between the intermediate nr and one of the limits, nr + n or nr – 
n. Because, after subtraction, it is clear that between the greater limit and the 

extreme term nr + ns there are ns – n intermediate terms, and between the 

lesser limit and the other extreme term 0 there are nr – n intermediate terms, 

and n terms between the intermediate and each of the limits. However, (ns – 
n) : n = (s – 1):1 and (nr – n):n = (r – 1):1. It therefore follows, etc. 

    Lemma 2. A binomial r + s raised to any integral power is expressed by 

terms whose number exceeds by 1 the number of unities in the exponent. 

Because a square [of a binomial] consists of three terms, a cube has 4, a fourth 

power has 5 terms, etc, as is known. 

    Lemma 3. For any power of this binomial (at least for an exponent equal to 

the binomial r + s = t, or to its multiple, for example, to nr + ns = nt), a 

certain term M will be maximal if the number of terms preceding and 

following it are in the ratio of s to r; or, which is the same, if the exponents of 

letters r and s in this term are in the ratio of the magnitudes r and s 

themselves. The term nearer to it from either side is greater than the more 



distant term on the same side; however, the same term M is in a lesser ratio to 

the nearer term than the nearer term to the more distant one if the numbers of 

intermediate terms are the same. 

    Dem[onstration]. 1. Geometers know well enough that the binomial r + s 

raised to the power nt, that is, (r + s)
nt

, is expressed by such a series: 

 

    r nt
 + 
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−ntnt
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rs nt–1

 + s nt
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Here, the powers of r gradually decrease and those of s increase, whereas the 

coefficients of the second and the last but one terms become nt/1; of the third 

counting from the beginning and the end, [nt (nt – 1)/1·2]; of the fourth from 

the beginning and the end, [nt (nt – 1)(nt – 2)/ 1·2·3], etc. 

    Since the number of all the terms excepting M is, according to Lemma 2, nt 
= nr + ns, and, as assumed, the numbers of terms preceding and following M 

are as s to r, these numbers are ns and nr respectively. Therefore, in 

accordance with the law of the [formation of the] series, the term M will be 
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and, in the same way, the terms nearest to it on the left and the right are 
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and in the same way the next ones on the left and the right are 
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    After a preliminary suitable cancellation of common multipliers from both 

the coefficients and the powers themselves, it becomes clear that the term M is 

to its nearest on the left as (nr + 1)s to nrs; this latter to the next one, as (nr + 

2)s to (ns – 1)r, etc, and also that the term M is to its nearest on the right as (ns 

+ 1)r to nsr, this latter to the next one, as (ns + 2)r to (nr – 1)s, etc. But 

 

    (nr + 1)s > nrs, and (nr + 2)s > nsr – r, etc. 

 

Also, 

 

    (ns + 1)r > nsr and (ns + 2)r > nrs – s, etc. 

 

It follows that the term M is greater than either of the nearest terms on either 

side which [in turn] are greater than the more remote terms on the same side, 

etc. QED. 

    2. The ratio (nr + 1)/ns, as is clear, is less than the ratio (nr + 2)/(ns – 1). 

Therefore, after multiplying [them] by one and the same ratio s/r, the ratio 
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Just the same, it is evident that the ratio 
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Consequently, after multiplying [this inequality] by one and the same ratio r/s, 

also 
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    But the ratio 

 

    
nsr

snr )1( +
 

 

is equal to the ratio of the term M to its nearest term on the left and the ratio
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is the same as that has to the next one. And the ratio 

 

    
nrs

rns )1( +
 

 

is that of the term M to its nearest term on the right, and 

 

    
snr

rns

)1(
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is the ratio of that term to the next one. What was just shown may in the same 

way be also applied to all the other terms. 

    Therefore, the maximal term M is in a lesser ratio to the nearer term on 

either side than (if the intervals between the terms are the same) the nearer 

term is to the more distant one on the same side. QED. 

    Lemma 4. The number n in a binomial raised to the power nt can be taken 

so great that the ratio of the maximal term M to [any of the] two others, L and 


, distant from it by n terms on the left and on the right [respectively], would 

be greater than any given ratio. 

    Dem[onstration]. Since in the previous Lemma the maximal term M was 

found to be equal to 
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the terms on the left and on the right, L and 
, in accordance with the law of 

the [formation of the] series (adding n to the last multiplier in the numerators 

of the coefficients, and subtracting n from the last multiplier in their 

denominators, adding the same n to the power of one of the letters r and s, and 

subtracting it from the power of the other letter), will be 
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so that, after a suitable cancellation of common multipliers, 
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or (with rn and sn being equally distributed among the [other] multipliers, 

equal in number) 
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    However, when n is assumed infinite, these ratios will [also] be infinitely 

large, because then the numbers 1, 2, 3 etc will vanish as compared with n, 

and the numbers themselves nr ± n �  1, nr ± n �  2, nr ± n �  3, etc, and ns ± 
n �  1, ns ± n �  2, ns ± n �  3, etc will have the same value as nr ± n and ns ± 
n [respectively], so that, after dividing [both parts of both last fractions] by n, 
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    It is clear that these ratios are composed of as many ratios [(rs + s)/(rs – r)] 

or [(rs + r)/(rs – s)] as there are multipliers whose number is n, that is, infinite 

because the difference between the first multipliers nr + n or ns + n, and the 

last ones, nr + 1 or ns + 1, is n – 1. These ratios [M/L and M/
] will therefore 

be equal to [(rs + s)/(rs – r)] or [(rs + r)/(rs – s)] raised to an infinite power 

and therefore simply infinite. If you doubt this conclusion, imagine an infinity 

[of ratios] in a continued proportion with their ratio being as rs+s to rs – r or 

rs + r to rs – s. The first ratio will be to the third as the square; to the fourth, 

as a cube; to the fifth, as the fourth [power], etc. Finally, the first ratio will be 



to the the last one as infinite powers of the ratio [(rs + s)/(rs – r)] or [(rs + 
r)/(rs – s)]. It is known, however, that the ratio of the first [ratio] to the last 

one is infinitely large since the last one = 0 (see Coroll. to Prop[osition] 6 of 
our [Tractatus de] Seriebus Infinitis [etc]

5.2
). It is therefore clear that infinite 

powers of the ratio [(rs + s)/(rs – r)] or [(rs + r)/(rs – s)] are infinite. It is thus 

shown that the ratio of the maximal term M to [any of the] two others, L and 


, exceeds any assigned ratio. QED. 

    Lemma 5. Assuming the same as above, it is possible to imagine such a 

large number n, that the sum of all the terms from the intermediate and 

maximal M to both the [to any of the] terms L and 
 inclusive, is to the sum 

of all the other terms exterior to the limits L and 
, in a ratio greater than any 

given ratio. 

    Dem[onstration]. Let the terms between the maximal M and the limiting 

term L on the left be designated: the second one from the maximal
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, F, the 

third one, G, the fourth one, H, etc; and the second one beyond L, P, the third 

one, Q, the fourth one, R, etc. Since according to the second part of Lemma 3 

the ratios 

 

    M/F < L/P, F/G < P/Q, G/H < Q/R, etc, 

 

we will also have 

 

    M/L < F/P < G/Q < H/R, etc. 

 

    Since, according to Lemma 4, the ratio M/L for an infinitely large n is 

infinite, the ratios F/P, G/Q, H/R, … will all the more be infinite and therefore 

the ratio  
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is also infinite; that is, the sum of the terms between the maximal term M and 

the limit L is infinitely greater than the sum of the same number of terms 

beyond and nearest to L. And since according to Lemma 1 the number of all 

the terms outside L is not more than s – 1 times (i.e., not more than a finite 

number of times) greater than the number of terms between this limit and the 

maximal term M, and the terms themselves, in accordance with the first part 

of Lemma 3, become the smaller the further they are from the limit, the sum 

of all the terms between M and L (even without considering M) will be 

infinitely greater than the sum of all the terms beyond L. In a similar way it is 

shown that the sum of all the terms between M and 
 is infinitely greater than 

the sum of all the terms beyond 
 (whose number, according to Lemma 1, is 

not more than r – 1 times greater than the number of the former). Therefore, 

finally, the sum of all the terms situated between the limits L and 
 (the 

maximal term may be excluded) will be infinitely greater than the sum of all 

the terms beyond these limits. Consequently, this statement persists all the 

more if the maximal term is included [in the first sum], QED. 

    Explanatory Comment. Those, who are not acquainted with inquiries 

involving infinity may object to Lemmas 4 and 5, That, – although, if n is 

infinite, the multiples of the magnitudes expressing the ratios M/L and M/
, 

that is, nr ± n �  1, nr ± n �  2, nr ± n �  3, etc, and ns ± n �  1, ns ± n �  2, ns 



± n �  3, etc, have the same value as nr ± n and ns ± n since numbers 1, 2, 3, 

… vanish with respect to each multiplier, – it can still happen that, taken 

together and multiplied one by another, they increase to infinity (because the 

number of multipliers is infinite) and will infinitely decrease, that is, make 

finite, the infinite powers of the ratios [(rs + s)/(rs – r)] or [(rs + r)/(rs – s)]. I 

cannot obviate these scruples better than by showing now a method of actually 

deriving a finite number n, or a finite power of a binomial, for which the sum 

of the terms between the limits L and 
 has a larger ratio to the sum of the 

terms beyond them than any no matter how great given ratio, which I 

designate by letter c. Once this is shown, the objection will necessarily fall 

away. 

    To this end, I choose some ratio [greater than unity] less, however, than the 

ratio [(rs + s)/(rs – r)] (for the terms on the left), – for example, the ratio [(rs 
+ s)/rs] or (r + 1)/r, – and multiply it by itself so many times (m times) that 

the product becomes equal or exceeds the ratio of c(s – 1) to 1; that is, until 

 

    [(r + 1)
 m

 /r m
] ≥  c(s – 1). 

 

When will this happen can be advantageously investigated by means of 

logarithms. Because, taking logarithms, we obtain 

 

    m Log(r + 1) – m Log r ≥  Log [c(s – 1)]  

 

and, after dividing, we find at once that 
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    Having found this, I continue in the following way. With regard to a series 

of fractions or multipliers  
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from which, according to Lemma 4, the ratio M/L is obtained by multiplying 

them one by another, it may be remarked that, although the separate fractions 

are less than the fraction [(rs + s)/(rs – r)], they approach it the nearer the 

larger is the assumed n. Therefore, one of them will sooner or later become 

equal to the ratio [(rs + s)/rs] = [(r + 1)/r] itself. It should be therefore found 

out how great n ought to be taken for the fraction whose ordinal number is m 

to become equal to [(r + 1)/r] itself. But (as it is seen from the law of the 

formation of the series) the fraction of ordinal number m is 
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Equating it to [(r + 1)/r], we obtain 

 

    n = m + 
1+

−

r

sms
 so that nt = mt + 
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    I maintain that if this is the power to which the binomial (r + s) is raised, 

the maximal term M will be more than c(s – 1) times greater than the limit L. 

Indeed, for the assumed value of n the fraction of ordinal number m will be 

equal to [(r + 1)/r], and the fraction [(r + 1)/r], being multiplied by itself m 

times, that is [the fraction] [(r + 1)
m
/rm

], is (as constructed) equal or greater 

than c(s – 1). Therefore, this fraction [of ordinal number m] multiplied by all 

the previous fractions will all the more exceed c(s – 1) since all these are 

greater than [(r + 1)/r].  

    Consequently, the product, being multiplied by all the following [fractions], 

will all the more exceed c(s – 1) because each of these is at least greater than 

unity. But the product of all the fractions expresses the ratio of the term M to 
term L and it is therefore absolutely clear that the term M exceeds the limit L 

over c(s – 1) times.  

    But, as was shown, 

 

    M/L < F/P < G/Q < H/R, etc. 

 

It follows that the second term after the maximal term M exceeds the second 

term after the limit L more than c(s – 1) times, that the third term [after M] 

still more exceeds the third term [after L], etc. Therefore, finally, the sum of 

all the terms between the maximal M and the limit L will exceed the sum of 

the same number of maximal terms situated beyond this limit more than c(s – 

1) times, and more than c times the same sum taken (s – 1) times. 

Consequently, it is still more evident that it exceeds more than c times the sum 

of all the terms situated beyond the limit L whose number is not more than s – 

1 times greater [than the number of terms between M and L].  

    I proceed in the same way with regard to the terms on the right. I take the 

ratio 
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Then, from among the series of fractions 
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included in the ratio M/
, I assume that the fraction having ordinal number m, 

namely, 
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is equal to [(s + 1)/s]. I derive therefrom 

 

    n = m + 
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    After this, it will be shown just as before that the maximal term M of the 

binomial r + s raised to this power will be more than c(s – 1) times greater 

than the limit 
, and also, consequently, that the sum of all the terms between 

the maximal M and the limit L will be more than c times greater than the sum 

of all the terms beyond this limit whose number is not more than r – 1 times 

greater [than the number of terms between M and 
]. And so we finally 

conclude that, upon raising the binomial r + s to the power equal to the greater 

of two numbers, 
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the sum of all the terms included between the limits L and 
 exceeds more 

than c times the sum of all the other terms extending on either side beyond 

these limits. The finite power possessing the desired property is thus 

discovered, QED. 

    The Main Proposition. Now follows the proposition itself for whose sake 

all the previous was stated and whose demonstration ensues solely from the 

application of the preliminary lemmas to the present undertaking. To avoid 

tedious circumlocution, I name the cases in which some event can happen 

fecund or fertile; and sterile those in which the same event does not occur. In 

the same way, I name the experiments fecund or fertile if some fertile case 

appears in them and infertile or sterile when we observe something sterile. 

    Let the number of fertile cases be to the number of sterile cases precisely or 

approximately as r to s; or to the number of all the cases as r to r + s, or as r 

to t so that this ratio is contained between the limits (r + 1)/t and (r – 1)/t. It is 

required to show that it is possible to take such a number of experiments that 

it will be in any number of times (for example, in c times) more likely that the 

number of fertile observations will occur between these limits rather than 

beyond them, that is, that the ratio of the number of fertile observations to the 

number of all of them will be not greater than (r + 1)/t and not less than (r – 

1)/t.  
    Dem[onstration]. Suppose that the number of the available observations is 

nt. It is required to determine the expectation, or probability that all of them 

without exception will be fecund; that all of them will be such with one, with 

two, 3, 4, etc being sterile. Since, according to the assumtion, there are t cases 

in each observation, r of them fecund and s sterile, and because separate cases 

of one observation can be combined with separate cases of another one, and 

then again combined with separate cases of the third, the 4
th

, etc, it is easy to 

see that the Rule attached to the end of the notes of Proposition 12
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 of Part 1 

[of this book] and its second corollary containing the general formula by 



whose means the expectation of the lack of sterile observations, r nt : t nt
, of 

one, two, three etc sterile observations 
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are here suitable. 

    Therefore (after rejecting the common term t nt
) it becomes clear that the 

degrees of probability, or the number of cases in which it can happen that all 

the experiments are fecund, or all excepting one sterile, excepting two, 3, 4 etc 

sterile, are expressed, respectively, by 
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that is, by the terms themselves of the binomial raised to the power of nt, 
which were just studied in our lemmas. All the rest is now manifest. Namely, 

it follows from the nature of the series that the number of cases, which add nr 
fecund to ns sterile observations, is indeed [corresponds to] the maximal term 

M since, according to Lemma 3, ns terms precede, and nr terms succeed it. In 

the same way, the number of cases in which there occurred either nr + n or nr 
– n fecund observations with the others being sterile, are expressed by the 

terms L and 
, n terms apart on either side from the maximal term M. 

Consequently, the total number of cases in which there are not more than nr + 
n, and not less than nr – n fecund observations, is expressed by the sum of the 

terms situated between the limits L and 
. The total number of the other cases 

in which there occur either more or less fecund observations is expressed by 

the sum of the other terms beyond the limits L and [or] 
. The power of the 

binomial may be taken so great that, according to Lemmas 4 and 5, the sum of 

the terms between the limits L and 
 inclusive is more than c times greater 

than the sum of all the other terms exceeding these limits. It is thus possible to 

take so many observations, that the number of cases in which the ratio of the 

number of fecund observations to the number of all of them does not exceed 

the limits 
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is greater than c times the number of the other cases. That is, it will become 

greater than c times more probable that the ratio of the number of fecund 

observations to the number of all of them is contained between the limits [(r + 

1)/t] and [(r – 1)/t] rather than beyond them. Quod demonstrandum erat. 

    When applying this to separate numerical examples, it is self-evident that 

the greater, in the same ratio, we assume the numbers r, s and t, the narrower 

can be made the boundaries (r + 1)/t and (r – 1)/t of the ratio r/t. Therefore, if 

the ratio of the number of cases r/s that should be determined by observation 

is, for ex[ample], one and a half, I take for r and s not 3 and 2, but 30 and 20, 

or 300 and 200, etc. It is sufficient to assume r = 30, s = 20 and t = 50 for the 

limits to become (r + 1)/t = 31/50 and (t – 1)/t = 29/50. Suppose in addition 

that c = 1000. Then, according to what was prescribed in the Explanatory 



Comment, it will occur that, for the terms on the left and on the right 
respectively, 
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    From which, as it was demonstrated there, it will follow that, having made 

25 550 experiments, it will be more than a thousand times more likely that the 

ratio of the number of obtained fertile observations to their total number is 

contained within the limits 31/50 and 29/50 rather than beyond them. And in 

the same way, assuming c = 10 000 or c = 100 000 etc, we will find that the 

same is more than ten thousand times more probable if 31 258 experiments 

will be made; and more than a hundred thousand times if 36 966 experiments 

will be made; and so on until infinity, always adding 5708 other experiments 

to the 25 550 of them. This, finally, causes the apparently singular corollary: if 

observations of all events be continued for the entire infinity (with probability 

finally turning into complete certitude), it will be noticed that everything in 

the world is governed by precise ratios and a constant law of changes, so that 

even in things to the highest degree casual and fortuitous we would be 

compelled to admit as though some necessity and, I may say, fate
5.5

. I do not 

know whether Plato himself had this in mind in his doctrine on the restoration 

of all things according to which everything will revert after an innumerable 

number of centuries to its previous state. 

 

    Notes 

 
    2.1. It was Bortkiewicz (1917, p. x) who noticed the new word in the Ars 
Conjectandi and put it into scientific circulation, although Prevost & Lhuilier 

(1799, p. 3) had preceded him. The Oxford English Dictionary included this 

word, which had already appeared in ancient Greece (Hagstroem 1940), with 

a reference to a source published in 1662. I am not sure that the noun 

stochastics (in my translation) is generally used. 

    2.2. Although an astrologer, Kepler (1610, §115; p. 238 in 1941) simply 

refused to answer definitely the same question. Times had changed! Bernoulli 

resumed this discussion in his Chapter 3. 

    2.3. The application of stochastic reasoning to one single case conforms to 

modern ideas.  

    2.4. John Owen (1563 – 1622). Haussner (Bernoulli 1713, German transl., 

p. 311) saw five editions of his Epigrams. 

    3.1. Lambert indicated that the main formula above was faulty, see 

Haussner (Bernoulli, 1899, p. 311). 

    4.1. This is the very old principle of indifference. It can be perceived, for 

example, in the use of the arithmetic mean in astronomy since Kepler’s time. 

    4.2. Arnauld was the main author of L’art de penser (Arnauld & Nicole 

1662). 

    4.3. Bernoulli wrote stones; the German translation mentioned small stones 

(Steinchen). 



    4.4. The maximal term of the binomial (r + s)
n is approximately equal to  

1/ nrsπ2  and therefore decreases with an increasing n as 1/�n, see e.g. Feller 

(1950, §3 of Chapter 6). 

    4.5. Adriaan Metius (1571 – 1635); Ludolph van Ceulen (1540 – 1610). 

    5.1. A misprint in this ratio was corrected without comment in all the 

translations. 

    5.2. Separate parts of Bernoulli’s Tractatus de Seriebus Infinitis appeared in 

1689 – 1704, and, for the first time as a single entity, in 1713 together with the 

Ars Conjectandi. 
    5.3. The “second” (repeated in the same sense in the Explanatory Comment 

below) is unusual: Bernoulli actually had in mind the term immediately 

neighboring M. Cf.: February is the second month of the year, not the second 

after January. A similar remark is of course valid with respect to the “third” 

and the “fourth”. 

    5.4. Bernoulli wrongly referred to Proposition 13. Haussner (Bernoulli 

1713, German transl., p. 262) corrected him without comment. 

    5.5. Bernoulli obviously had in mind the archaic notion of the Great Year 

(“innumerable number of centuries”). 
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