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0. Introduction
| do feel how wrongful it was to work for so
many years at statistics and neglect its history
K. Pearson (1978, p. 1)

0.1. General Information.This book is intended for those interested in
the history of mathematics or statistics and moress acquainted with the
latter. It will also be useful for statisticiansyMxposition is based, in the
first place, on my own investigations publishedros@me 35 years and
monograph (2009) and | stop at the axiomatizatigorabability and at the
birth of the real mathematical statistics, i.efFigher. In § 9.1.3 | succeeded
in greatly simplifying Gauss’ mature justification least squares.

Among the preceding literature | single out gineat work of Hald (1900;
1998). However, his second book does not toucthemrdontribution of the
Continental direction of statistics (see my § 14dd only describes
everything from a modern point of view. It is thiere only intended for
highly qualified readers (my account is much easiemderstand). Second,
Hald does not describe the contents of any givetribmtion and the reader
will not know what exactly was contained in, sayy af Laplace’s
memoirs.

At least in my field the situation is greatlprsened by bad reviewing.
Reputable publishers sometimes reprint literatutbomt consulting their
authors so that the unsuspecting reader gets gdtethation. Gnedenko &
Sheynin (1978/1992) reprinted in 2001 in the volyueout by Birkhauser
is a good example. Many bad books are also appebeoause their
manuscripts had not been properly reviewed. Sulesgqomments are
often no more than sweet nothings or downright@aiding. An ignorant
author who stated that Poisson had proved thegtean of large numbers
was praised as a scholar of the first rank.

In some cases the cause of such facts is appawneell described by the
sayingScratch my back, and I'll scratch youtsacidentally, this is a
consequence of publishers supplying free copi¢lsedf new books to
editors of periodicals. Then, abstracting jourrsats as a rule publishing
whatever they get from their reviewers. But, fastl foremost, the scientific
community wrongly does not set high store on thastnmportant work.
Even worseTruth is dismissed as an old-fashioned superstifidns
conclusion (Truesdell 1984, p. 292) which concersmdntific work in
general fell on deaf ears.

About 1985 the then Editor blistoria Mathematicavisited Moscow and
made a report at the (now, Vavilov) Institute fastdry of Natural Sciences
and Technology. Answering a question, he saiddahbta few readers of
his periodical read Russian. | do not think that tituation had changed,
much to the detriment of science. For that masteidents of the humanities
certainly become versed in older masters, butmaotodernity. How,
indeed, can we otherwise explain why did a yourigpoing of the British
Royal family go to a fancy-dress party clad as entaa officer of SS?

With sincere gratitude | recall the late Pretas Youshkevitch, without
whose assistance |, living in Moscow, would haverbenable to publish
abroad, and Truesdell, the Editor of thehive for History of Exact
Scienceswho had to busy himself with my English and coligogeme to



pay due attention to style. In 1991, after movim@sermany, | became able
to continue my work largely because of ProfessanPdgl’s warm support.
He secured a grant for me (which regrettably dupdong ago) from Axel-
Springer Verlag. Professor Strecker essentiallpdetime to prepare and
publish both English editions of my Russian boo®©@). In my papers, |
had acknowledged the help of many colleagues iuduithe late Doctors
Chirikov (an able mathematician whose bad healtfatted his scientific
career) and Eisenhart. Professor Herbert A. Ddemld State University)
and especially Professor Ulrich Krengel providedfuscomments on this
text.

A final remark. According to some clever regigia, Bernstein, who
published many contributions abroad and spellech&iise in that way,
should now be called Bernshtein. This is ugly arabrrupts his pen-name
(if not real name). And why then are we not ordeespell Markof,
Chuprof? When | began publishing abroad, | hadchosen the best
spelling of my name, but it became my pen-name,|aeflise to change it.

Some explanation

Abbreviation

CLT — central limit theorem
LLN — law of large numbers
MLSq - method of least squares
W-i — Gausd)\Verke Bd. i

WI/Erg-i — GaussNerke Erganzungsreihe, Bd. i

Notation
[ab]  =aib; + ... +ayb, (introduced by Gauss).
Inx = log natx, Ig x = logio X

References in text

A double page number, e.g. 59/216, means itirehe pertinent source
has double paging, or a reference to a later editiothat it was translated
from Russian into English with p. 59 of the oridinantribution
corresponding to p. 216 of the translation.

0.2. The Pertinent Scientific Disciplines and TheiStages

My subject covers a great chronological peaad is very wide since it
includes the theory of probability and statistiwgjch are difficult to
separate, while statistics itself is a vast subjgath ought to be
subdivided. | also have to explain the relatiothef theory of errors to
statistics. In addition, | subdivide the historytoé development of these
disciplines into stages to help the readers graspce their general outline.

Theory of Probability

1. Its prehistory (from Avristotle to the mid*@entury).

2. Its early history (from Pascal and Fermaiakob Bernoulli).

3. The creation of its initial version (com@étby Jakob Bernoulli, De
Moivre and Bayes).

4. Its development as an applied mathematisalgline (from Bayes to
Laplace and Poisson to Chebyshev).

5. A rigorous proof of its limit theorems (Clyshev, Markov, Liapunov)
and its gradual transition to the realm of purelheatatics.



6. Axiomatization.

In the second half of the "t @entury and the first decades of th&'20
mathematicians barely recognized probability thesorgt perhaps to our day
all but ignore the Gaussian theory of errors.

Mathematical Statistics. It originated in the early years of the"20
century in the Biometric school and the Continedtedction of statistics
and Fisher moved it to the realm of pure mathersalis aim is the
systematizing, processing and utilizing statistaata, — information on the
number of the specified objects (Kolmogorov & Proidv 1988/1990, p.
138). Unliketheoretical statisticsit does not include collection of data or
exploratory data analysis which means revealingg@structures in the
data (e. g., blunders, systematic influences, dex®p

The Statistical Method. Usually,statisticsis meant to study population
and the ternstatistical methods applied in all other instances. The
statistical method underwent three stages. At, fo@tclusions were being
based on qualitative regularities conforming toéseence of ancient
science. Indeed, a Roman scholar Celsus (1935) stdi@ed:

Careful men noted what generally answered the hettel then began to
prescribe the same for their patients. Thus spnamghe Art of medicine.

During the second stage (Tycho in astronomgu@trin demography and
medical statistics) statistical data became avialabonclusions were made
by means of simple stochastic ideas and methodseor directly, as before.
At the present stage, which dates back to Poisstarences are being
checked by quantitative stochastic rules.

The Theory of Errors. From its origin in the mid-18century and until
the 1920s the stochastic theory of errors had beanst important chapter
of probability theory (P. Lévy 1925, p. vii) and thamatical statistics
borrowed from it its principles of maximum likelibd and minimal
variance. It is the application of the statisticathod to the treatment of
observations.

The determinate error theory examines the goémeasurement
without applying stochastic reasoning and is relateexploratory data
analysis and experimental design. Consequentydies systematic errors.
Its application began in ancient astronomy (8 bug)its real development
was due to the differential calculus which ensuhedstudy of functions of
measured magnitudes. Gauss and Bessel assumedd¢hahstrument was
faulty unless and until the ensuing random andesyatic errors were
minimized. Thus originated a new stage in experiadestience.

The theory of errors has its own stages. At@stronomers were dealing
with observations as they saw fit. At the secomaget beginning with Tycho
Brahe, observations ceased tgbeate property but their treatment was
not yet corroborated by quantitative consideratidités happened during
the third stage (T. Simpson, Lambert), and thd filoarth stage was the
completion of the classical theory of errors (Lagland especially Gauss)
although Helmert fruitfully continued the relevamtestigations.



1. Prehistory
| trace the prehistory of statistics until Kepand Galileo inclusively and
describe the appearance of randomness and prapasilphilosophical
notions. Statistical considerations were mostlyebam general
impressions. The arithmetic mean appeared in astngras a universal
estimator. Kepler rejected the Ptolemaic systeth@ivorld.

Key words: randomness, probability, cause vs chance, gtiaéita
correlation, expectation

1.1. Randomness

Is an infinite (a much more difficult questianfinite) number sequence
random or not? This is a fundamental problem. Aaogoint is the role of
randomness in natural sciences, for example inugeal of species or the
kinetic theory of gases. Then, in statistics, alcan variable should be
statistically stable, but in natural science tleistriction is not necessary, cf.
Poincaré (1896/1912, p. 3), so how to check stgBilll this exonerates
the need to study the history of randomness, awtjentally, to see how a
philosophical concept becomes a mathematical notion

Early scientists threw light upon randomnessstatle’s examples of
random events are a sudden meeting of two acquaegdPhys 196b30)
and a sudden unearthing of a buried treaddetgphys1025a). Lack of
aim or intersection of chains of events is alsmsedHiobbes’ remark
(1646/1840, p. 259):

When a traveller meets with a shower, the jourrey & cause, and the
rain had a causég...], but because the journey caused not the rain, ner th
rain the cause, we say that they were contingeattoranother

Cournot (1843, 8 40) revived the first exanghle to Aristotle as an
intersection of two independent chains of eventslath illustrate one of
Poincaré’s interpretations of randomness (1896/1912): if equilibrium
was unstable, a small cause determined a consldegtibct. Again, an
event was random if its causes were complicatechanterous.

| continue to dwell on Aristotle, but leavedssiseveral other ancient
philosophers because their understanding of randesseems difficult to
explain. Aristotle’s special examplPlfys.199b1; also seBe generatione
animalium767b5) mentioned deviations from law, monstrosifidee first
departure of nature from the tymethat the offspring should become female
instead of malef...] as it is possible for the male sometimes not évait
over the femald...] He did not consider such events random; indeede.
g., De Caelo283b) stated that chance did not occur alwaysoally.
Possibly, however, the sex of the offspring is dateed either by small, or
by complicated and numerous causes, so that ttiedsia female (or a
male) is a random event.

An addition is necessary. A chaotic procesendgred by a small
corruption of the initial conditions of motion céead to exponential
deviation of the appropriate path. A coin toss dasnstant number of
outcomes whose probabilities persist, whereas whamitions imply a



rapid increase of their instability with time amountless positions of
their possible paths.

According to Aristotle (e. gMetaphys1064b15)none of the traditional
sciences busies itself about the accidepta). Neither does the theory of
probability consider the accidental, but rathedss the laws of
randomness. Randomness was indirectly mentiongdlian philosophy as
intersection of chains of events (Belvalkar et@27, p. 458):

The crow had no idea that its perch would causetim-branch to
break, and the palm-branch had no idea that it widag broken by the
crow’s perch; but it all happened by pure Chance

In medicine, we find randomness occurring weeuilibrium is unstable
(Galen, 2° century/1951, p. 202):

In those who are healtHy..] the body does not alter even from extreme
causes, bun old men even the smallest causes produce tleegte
change

Chance was recognized in biology as an intrifesature of nature. Thus,
Harvey (1651/1952, p. 338) stated that spontangensration occurred
accidentally and even Lamarck (1809/1873, p. 6p} kethe same opinion.
He (1815, p. 133) also maintained that the dewiatioom the divine lay-out
of the tree of animal life had been occasioned bguse accidentelle

The Old Testament also contains statementsecomg randomness, for
exampleA certain man drew his bow at a venture and stthekKing of
Israel (1 Kings 22:34, 2 Chronicles 18:33). Kepler (16@®@, p. 163)
denied it, called iain idol, but his laws of planetary motion were unable to
justify the values of the eccentricity of their isbHe (1618 —
1621,1620/1952, p. 932) had to consider them randamsed by
disturbances, deviations from (Divine) laws of matand Poincaré
(1896/1912, p. 1) formulated the dialectical lirdtwween randomness and
necessity (but did not mention regularity of massdom events):

There exists no domain where precise laws decids/thing, they only
outline the boundaries within which randomness maye. In accordance
with this understanding, the word randomness hpeeaise and objective
sense.

Kant (1755/1910, p. 337) repeated Kepler's pumtement about
deviations from laws. And, in spite of Newton’s pfdhat the eccentricities
were determined by the planets’ velocities, Lapldd®6/1884, p. 504, note
7) followed suit.

1.2.Probability

Aristotle @nal. Priora70a0) also reasoned about logical or subjective
probability which isA generally approved propositi@nd Rhetorica
1376a19) recommended the use of probabilitieswnclaurts. In the
Talmud, the part of forbidden food should not haxeeeded certain limits
and Maimonides, in the f'Zentury (Rabinovitch 1973, p. 41), listed seven
relevant ratios, i.e., seven different probab#ited eating it. His works also



contain an embryo of a random variable (Ibiden¥,4): Among contingent
things some are very likely, other possibilitsee very remote, and yet
others are intermediatén the new time one of the first to follow suit i
natural science was Maupertuis (1745/1756, pp~12P1) who explained
instances when a child resembled one of his reamatestors, as well as
mutations bynon-uniformrandomness.

Subjective probability can lead to sophisms.eHs the opinion of Rabbi
Shlomo ben Adret, 1235 — 1310 (Rabinovitch 1973l(). There are
several pieces of meat, all of them kosher exceet Bating the first one is
allowed, since it is likely kosher; the same wtike second one etc, and
when only two pieces of meat are left, the forbidgesce was likely
already eaten and they are also allowed.

1.3.Cause vs Chance.

In jurisprudence, attempts to separate negegshitine punishment) from
chance were made in ancient India (Buhler 1886/1p6Z67): if a withess
in law-suits pertaining to loans within seven dafter he had given
evidence experienced a misfortuhe,shall be made to pay the debt and a
fine, — he was considered a liar. An attempt to sepaliaine design and
chance was the main aim of De Moivr&sctrine of Chancegs 4.3).

In the Old Testament we also find a separatfamecessity and chance:
Job (9:24 and 21:17 — 18) decided that the worlglgixgen over to the
wicked[this being the cause] sinteeir lamp was put out rarelylhe
Talmud (Taanid 9 decides whether deaths in a town were normaltevan
occasioned by the beginning of a plague epidemidtaseems likely that a
disregarded probability of 1/8 meant an occurresfdee first alternative.

Galileo (1613) managed to separate cause @eguthation of the newly
discovered sunspots with the Sun itself) and ché&heg random proper
motion relative to the Sun’s disc). The same geatill with us in
mathematical statistics, e. g., in clinical trigBalen (1946, p. 113)
indirectly mentioned it:

What is to prevent the medicine which is beingeteiiom having a given
effect on twdof three]hundred people and the reverse effect on twenty
others, and that of the first six people who werensat first and on whom
the remedy took effect, three belong to the thuemlied and three to the
twenty without your being able to know which thbeéong to the three
hundred and three to the twerjty.]. You must needs wait until you $e€]
very many people in succession

Qualitative correlation, corresponding to tlhalgative nature of ancient
science, was introduced and served to separate d@aus chance. Here is
an example (Hippocrates, flourished 400 BC, 1952,4d):fat men are apt
to die earlier than those who are slend@r, Aristotle Problemata892a0):
Why is it that fair men and white horses usuallyengrey eyes Statements
amounting to qualitative correlation can be foum@antributions of many
ancient scientists. Again, conforming to the natfrancient science,
conclusions had been made by issuing from genagaigssion. Thus,
climatic belts were introduced in antiquity withauty quantitative support.
In 1817, Humboldt introduced them anew, but bakecthton mean yearly
temperatures.



1.4.Expectation

Expectation was introduced on a layman’s leveth earlier than in
science. Maimonides (Rabinovitch 1973, p. 164) stii@at a marriage
settlement (providing for a widow or a divorced &)ibf 1000zuzcan be
sold for 10gof such monetary unitshut a settlement of 100 can be sold
only for less than 10t follows that there existed a more or lessdixe
expected value of a future possible gain. Largemmais were thus valued
comparatively higher and this psychologically deteed subjective
attitude can also be traced in later lotteriescupur days (Cohen et al 1970;
1971).

A marriage settlement is a particular casexsfiiance; the latter possibly
existed in an elementary form even in th& 2éntury BC (Raikher 1947, p.
40). Another statement of Maimonides (Rabinovitéii3, p. 138) can also
be linked with jurisprudence and might be considexg an embryo afakob
Bernoulli’'s (1713, part 4) thoughts about arguments

One should not take into account the number of toutut rather
consider how great is their incongruity and whathsir disagreement with
what exists. Sometimes a single doubt is more golntban a thousand
other doubts.

Expectation was indirectly mentioned in ancieia (Al-Biruni (973 —
1048) 1887, vol. 2, pp. 158 — 160): in law-counts;ertain cases many
kinds of oaths had been demanded in accordancdlvatialue of the object
of the claim. The probability of lying with impugitmultiplied by that value
was the expectation of fraudulent gain.

Expectation is connected with mean values, @nohoral issues, with
mean behaviour. Aristotle (for examplkthica Nicomached104a24)
believed that mean behaviour, moderation possegste@dal properties.
Analogous statements had appeared even earlieciard China; the
doctrine of means is attributed to a student offGans (Burov et al 1973,
pp. 119 — 140). Again, a similar teaching existethe Pythagorean school
(Makovelsky 1914, p. 63), and Nicomachus of Geraaal00 BC (1952, p.
820) stated that a perfect number was a mean betweabers the sum of
whose divisors was less, and greater that the nuitsied; was between
excess and deficiency. In medicine the mean wasidered as the ideal
state (of health). Thus (Galen 1951, pp. 20 — 2Igood constitution is a
mean between extreméds games of chance the (arithmetic) mean was
believed to possess certain stochastic propegiesl(1). In the new time,
the arithmetic mean became the main estimatoreo€éimstants sought in
the theory of errors and has been applied in bfeil

The Talmud (Jerus. Talmud/Sangedfivtas also concerned with the
redemption of the first born by lot. Mosesote Leviteon 22, 273 ballots
and added 273 more demanding five shekels eacly.22t000Levite
ballots were needed so that Moses ran the risésirfigg some of the required
money. Nevertheless, the losing ballots turnedtupgular intervals, which
was regarded as a miracle. The existence of therbuqpus ballots was not
explained; the Israelites were apparently mistakénhking that the last
273 of them to draw the lots will be the loserg aesimilar example in
Tutubalin (1972, p. 12).
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1.5.Astronomy

Ancient astronomers did not mention randomnasisthey knew that
some, and only some errors acted systematicaltyef@ample, refraction), e.
g., Ptolemy, ¥ c. (1984, IX, 2). Lloyd (1982, p. 158, n66) nothdt
Ptolemy had a special term feignificant and noteworthgtifferences. |
myself cite Ptolemy (1956, IlI, 2, p. 231):

Horoscopic instruments..] are frequently capable of error, the solar
instruments by the occasional shifting of theiriposs or of their gnomons,
and the water clocks by stoppages and irregulagitrethe flow of the water
from different causes and by mere chance

All this (and the following) directly bears uporetdeterminate error theory.

Ancient astronomers had been ablsdlect best conditiongime of
observation) for given errors to influence the hssas little as possible.
Hipparchus, ¥ c. BC (Toomer 1974, p. 131) was aware of that dact
Aaboe & De Solla Price (1964, pp. 2 and 3) condiudheat

In the pre-telescopic era therelis.] a curious paradox that even a well-
graduated device for measuring celestial angle$ is hardly a match for
the naked and unaided eye judiciously applied

They even mentionaglalitative measurements the title of their paper.
Neugebauer (1948/1983, p. 101) more carefully reaththat in antiquity

All efforts were concentrated upon reducing to aimum the influence
of the inaccuracy of individual observations withiae instruments...].

The second feature of ancient astronomy wadétermination of bounds
for the constants sougta,well known technique, practiced for instance by
Aristarchus, Archimedes and Eratosphe(iesomer 1974, p. 139). The
third and last feature was the practice of regokaervations. Neugebauer
(1975, p. 659) credited Archimedes and Hipparchitis systematic
observations of the apparent diameters of the sdriree moon. And
Hipparchus could have otherwise hardly been abt®tapile his star
catalogue.

Al-Biruni (1967, pp. 46 — 51), rejected foudirect observations of the
latitude of a certain town in favour of its singled direct measurement. He
(1967) tells us about his own regular observationparticular (p. 32) for
predicting dangerous landslides (which was hardlsble; even latitude
was determined too crudely).

Levi ben Gerson (Goldstein 1985, pp. 29, 93 H0f@) indirectly but
strongly recommended regular observations. Initetivo cases he
maintained that they proved to him that the detlims of the stars and the
lunar parallax respectively were poorly known.

Al-Biruni (1967, p. 152) was the first to coder, although only
gualitatively, the propagation of computationabesrand the combined
effect of observational and computational errors:
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The use of sines engenders errors which becomeeaippie if they are
added to errors caused by the use of small instrisn@nd errors made by
human observers

His statement (Ibidem, p. 155) on the obseowadif lunar eclipses for
determining the longitudinal difference between titees testified to his
attempt to exclude systematic influences from fresgllts: Observers of an
eclipse should

Obtain all its timegphasesko that every one of these, in one of the two
towns, can be related to the corresponding timghéother. Also, from
every pair of opposite times, that of the middléhefeclipse must be
obtained

Contrary to modern notion, ancient astronomegsrded their
observations as their private property, did nobrepejected results or
explain their methods of treating them (Pannekdx111989, pp. 339
340). It is possible that, when selecting poinineates for the constants
sought, they had been choosing almost any numlikinvéiome appropriate
bounds. Indeed, modern notions about treating ghsens, whose errors
possess haddistribution, justify such an attitude, which, raover,
corresponds with the qualitative nature of ancssmnce.

1.6.Astrology

It was practised in good faith by the most bedéed astronomers, and
gualitative correlation was present there as Welpler considered himself
the founder of scientific astrology, of a scientearelational rather than
strict influence of heaven on men and states. TKapler 1619/1997, book
4, pp. 377 — 378), his heavenly bodies were notchitgr but Copernicus
and Tycho Brahe, and the constellations at his loinly woke rather than
heartened his spirit and the abilities of his séuld (1610/1941, p. 200),
heaven and earth are not coupled as cog-wheelsclockwork Before him
Tycho likely held the same view (Hellman 1970, pO¥ As an astrologer,
Ptolemy (1956, I, 2 and I, 3), also believed thatinfluence of the heaven
was a tendency rather than a fatal drive, thablagty was to a large extent
a science of qualitative correlation, alldBiruni (1934, p. 232) likely
thought the same wayhe influence of Venus is towards], The moon
tends[...]. Maimonides (1977, pp. 118 — 129) was an ekoepThe
theories of the astrologists are devoid of any galu

For Kepler, the main goal of astrology was thet compilation of
horoscopes concerning individuals, but the deteaitron of tendencies in
the development of states for which such circunt&sms geographical
position, climate, etc, although not statisticalagiahould also be taken into
account.

1.7.Treatment of Observations

The treatment of direct measurements is stualyettie theory of errors
(see below), but it had to be done from most andiares. In § 1.5, |
mentioned the qualitative approach to it by ancésttonomers. In Kepler’s
time, and possibly even somewhat earlier, thermetic mean became the
generally accepted estimator of such measuremedeed, Kepler



(1609/1992, p. 200/63), when treating four obseéownat selected a number
as themedium ex aequo et bofia fairness and justice). A plausible
reconstruction assumes that it was a generalizédraatic mean with
differing weights of observations. More importathie Latin expression
above occurred i€icero, 106 — 43 BCRro A. Caecina oratij and carried
an implicationRather than according to the letter of the |aam expression
known to lawyers. In other words, Kepler, who like¢ad Cicero, called the
ordinary arithmetic meathe letter of the lawi.e., the universal estimator of
the parameter of location.

Kepler repeatedly adjusted observations. Hosvieaconvinced himself
that Tycho’s observations were in conflict with f®lemaic system of the
world? | believe that Kepler applied the minimainpiple demanding that
the residual free term of the given system of dqunat maximal in absolute
value, be the least from among all of its posssoleitions He (1609/1992,
p. 286/113) apparently determined such a minimutngagh only from
among some possibilities, and found out that tesidual was equal to 8
which was inadmissible. Any other solution would&deen even less
admissible, so that either the observations outtterlying theory were
faulty. Kepler reasonably trusted Tycho’s obseoraiand his inference
was obvious.

| am unaware of any sound discussion of Tycbbservations and a
particular pertinent question also suggests it3@fmporary removals of at
least one of his instruments had been certainlgssary. This would have
likely led to systematic shifts in the mean measumets, so how did he
manage in such cases?

When adjusting observations, Kepler (Ibidenm334/143) corrupted them
by small arbitrary corrections. He likely appliddraents of what is now
called statistical simulation, but in any case hestninave taken into account
the properties afisualrandom errors, i.e., must have chosen a larger
number of small positive and negative correctiamd @about the same
number of the corrections of each sign. OthervKsmler would have
hardly achieved success.

In astronomy, numerous observations distribotezt years and even
centuries are necessary for determining astrondmicestants and
estimating, say, the proper motion of stars. Ireotiranches of natural
sciences the situation is not so straightforwamyl& (1772/1999, p. 376),
the cofounder of scientific chemistry and co-autbiothe Boyle — Mariotte
law, when discussing experiments rather than obsens, kept to his own
rule:

Experiments ought to be estimated by theirejahot their numbeq...] a
single experimert..] may as well deserve an entire treafise]. As one of
those large and orient pearls may outvalue a veeagnumber of those
little [...] pearls, that are to be bought by the ouficq.

Flamsteed'’s attitude would have also been advidaldescribe. This is,
however, difficult, but at least | am referringBaily (1835, p. 376) and
Rigaud (1841, pp. 129 — 131).

So are series of observations always needddfepénds on the order of
the random errors, their law of distribution, ol thagnitude of systematic
influences, the precision and accuracy requireg fitist term concerns
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random errors, the second one describes systecoatigtion) and on the
cost of observation. In any case, it is hardly sabie to dissolve a sound
observation in a multitude of worse measuremengsciically, the danger
of systematic corruption demands that a programinite elimination be
drawn up and this means that the number of obsengashould be known
beforehand. Sequential analysis is ruled out.
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2. The Early History
In the 1 century gambling led to the development of thecens
probability theory; in jurisprudence, a bit latéochastic ideas began to be
applied for objectively solving civil cases. Sontedses pertaining to
insurance of life had been based on probabilitrestality tables appeared
and elements of population statistics and stasistself had emerged.

Key words: games of chance, theory of probability, mortalggpulation
statistics, expectation

2.1. Stochastic Ideas in Science and Society

2.1.1.Games of ChanceThey fostered the understanding of the part of
chance in life whereas mathematicians discoveradsiich games provided
formulations of essentially new problems. Pasc@b4b/1998, p. 172)
suggested a remarkable term for the nascent thedigae geometria, La
Géométrie du hazard.ater Huygens (1657/1920, pp. 57 — 58) prophlyica
remarked that it was not a simpéai d’espritand that it laid the foundation
d’'une spéculation fort intéressante et profanideibniz (1704/1996, p. 506)
noted that he had repeatedly advocated the creattianew type of logiso
as to studyhe degrees of probabilignd recommended, e. g., in 1703, in a
letter to Jakob Bernoulli, to examine in this coctien all kinds of games of
chance. Actually, Bernoulli began studying themi&75 (Biermann 1955).

Even in antiquity games of chance provided eamof stochastic
considerations (Aristotld)e caelo292a30 and 289b22):

Ten thousand Coan throviiwhatever that meanih succession with the
dice are impossiblat is difficult to conceive that the pace of eatdrs
should be exactly proportioned to the size ofiide, —

their invariable mutual arrangement cannot be remdo

The theory of probability had originated in théd-17" century rather
than earlier. Exactly then influential scientifiscgeties came into being,
scientific correspondence became usual and gamasate provided
models for posing natural and properly formulatextisastic problems. In
addition, they were in the social order of the daeviously, they had not
been sufficiently conducive to the developmentto€lastic ideas because
of the absence @ombinatorial ideagnd of the notion of chance events, of
superstition and moral or religiobarriers (M. G. Kendall 1956/1970, p.
30).

Montmort (1708/1713, p. 6) had testified to shperstition of gamblers;
Laplace (1814/1995, pp. 92 — 93) dPaisson (1837a, pp. 69 — 70) repeated
his statement (and adduced new examples). llluggiss even in our time
although Bertrand (1888a, p. XXII) had remarked tha roulette wheel
hadni conscience ni mémoir&ven a just game (with a zero expectation of
loss for each participant) is ruinous and is thaeebased on superstition.
Petty (1662/1899, p. 64) stated that lotteries wweoperly a Tax upon
unfortunate self-conceited foasd Arnauld &Nicole (1662/1992, p. 332)
indicated that large winnings in a lottery werasiry. They came out
against hoping for unlikely favourable events. ®a tontrary, it is
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reasonable to be guarded against unlikely unfavmeents which is the
rationale behind the institution of insurance.

On the other hand, gamblers had been noticitegasting regularities.
Apparently during 1613 — 1623 Galileo (ca. 1613623, publ. 1718/1962)
wrote a note about the game of dice. He calculdtechumber of all the
possible outcomes of a throw of three dice andffie$that gamblers were
believing that 10 or 11 points turned out morerofttean 9 or 12. If only
these events are considered (call theemdB respectively), then the
difference between their probabilities

P(A) = 27/52,P(B) = 25/52, P = 1/26 = 0.038

can be revealed thus strengthening the trust immalaes (8 1.4).

Galileo had predecessors, Fournival, the prigbalthor of thdde Vetula
(Bellhouse 2000), and Cardari2e Vetula written in the mid-1% century,
considered the throws of three dice. Bellhouse lcoiedl that it had led to
elementary probability calculatiortseingestablished and known in Europe
from about 1250He also provided an English translation of its
mathematical lines. At the time and even earliem&nts of combinatorial
mathematics had been certainly known outside Eumpecent source
about ancient India is Raju (2010).

Bellhouse (2005) believes that Cardano haddhamsestochastic
reasoning ome Vetula Cardano (Ore 1953; Hald 1990, pp. 36 — 41)
compiled a book on games of chance (dicing, indgdgilaying with
imagined dice having 3 — 5 sides, and card ganmdg)pablished in 1663.
He enumerated the possible outcomes of throwsreéttiice and effectively
applied theclassicaldefinition of probability; true, he worked with dsl
rather than probabilities.

At the end of his life Cardano (1575) compitesl biography which
contained a chapter callddhings of worth which | have achievgip. 215 —
219 of the English edition of 1962) where he onntioned a particular
stochastic problem but formulated it incompreheelsiviNevertheless, his
was the first discussion of stochastic methodshen(see my § 3.2.3)
applied, as other scientists then did, the simpégstula pertaining to the
prehistory of the LLN.

2.1.2. Jurisprudence One of the first tests for separating chance from
necessity was provided for the administration efige (8 1.3). It seems,
however, that the importance of civil suits ancckastic ideas in law courts
increased exactly in the mid-titentury. A comparison of the attitudes of
Kepler (1610/1941, p. 238) and Jakob Bernoulli @ 7it. 4, Chapt. 2) is
instructive. Kepler refused to answer someone vérdils absentee friend
was alive or not. Bernoulli, however, was quitegared to weigh the
probabilities of such facts against each other ¢tvivas just what Nikolaus
Bernoulli did, see § 3.3.2). Descar{@644/1978, pt. 4, § 205, p. 323) put
moral certainty into scientific circulation, appatly bearing in mind
jurisprudence. See § 3.2.2 on Jakob Bernoullitesiants about that notion.

Niklaus Bernoulli (§ 3.3.2), in the beginninftbe 18" century, devoted
his dissertation to the application of @ of conjecturingo jurisprudence.
Leibniz (1704/1996, pp. 504 — 505) mentioned degyégoroofs and doubts
in law and in medicine and indicated that
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our peasants have since long ago been assuminghaialue of a plot is
the arithmetic mean of its estimates made by threeps of appraisers

That mean was considered as an approximation texjpected value of the
plot, cf. § 1.4.

2.1.3. Insurance of Property and Life InsuranceMarine insurance was
the first essential type of insurance of propetyiblacked stochastic ideas
or methods. There existed an immoral and repeaj@dlyibited practice of
betting on the safe arrivals of ships. Anyway, mainsurance had been
apparently based on rude and subjective estimatdsicke ActeNo. 12 of
1601 Statutes of the ReaJmol. 4, pt. 2, pp. 978 — 979) mentiongalicies
of assurancén marine insurance:

It hathe bene tyme out of myride] in this realme and in forraine
nacyons to have assurance of goodes, merchandizes,and things
adventured.

Life insurance exists in two main forms. Eittiee insurer pays the
policy-holder or his heirs the stipulated sum o& dlecurrence of an event
dependent on human life; or, the latter enjoy$eadnnuity. Annuities were
known in Europe from the Yentury onward although later they were
prohibited for about a century until 1423 when aadull officially
allowed them (Du Pasquier 1910, pp. 484 — 485hefiin the mid-17
century (Hendriks 1853, p. 112), or even, in EndJaturing the reign of
William 111 [1689 — 1702] (K. Pearson 1978, p. 13#)e annuitant’'s age
was not usually taken into consideration. Othenihsy had been allowed
for only in a generalized way (Kohli & van der Wden 1975, pp. 515 —
517; Hald 1990, p. 119). The situation began tmgkaat the end of the 47
century.

However, in the 1§ and even in the mid-Tocentury, life insurance
hardly essentially depended on stochastic congidasa moreover, the
statistical data collected by the insurance saseds well as their methods
of calculations remained secret and honest bushees=d on statistics of
mortality barely superseded cheating before therskbalf of the 19
century. Nevertheless, beginning at least fromi@ecentury, life
insurance strongly influenced the theory of proligbisee 88 4.2 and 6.1.1-
3.

De Witt (1671) distinguished four age groupd aithout proof assumed
that the chances of death increased in a defiratefrom one group to the
next one but remained constant within each of throording to his
calculations, the cost of an annuity fmungmen should have been 16
times higher than the yearly premium (not 14, agi$ thought). Enestrom
(1896/1897, p. 66) noted that De Witt's proposeaindes of death were
contrary to what was calculated and that his risttying concerned an
infant and was explained misleadingly. But stillikely corollary of De
Witt’'s work was that the price of annuities soldHolland in 1672 — 1673
depended on the age of the annuitants (Commeli8,369205). De Witt's
appendix to the main text (Hendriks 1853, pp. 11118) contained an
interesting observation belonging to the prehistdrthe LLN. Examining
considerably more than a hundred different classash class consisting of
about one hundred persarige found that aurchaser of ten or more life
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annuities will certainly gaiprofit. Several authors mentioned the practice,
possibly justified by intuitive stochastic reasapiof insuring a number of
healthy infants cf. § 3.2.3.

In the same year, De Witt (Hendriks 1853, @)l¢alculated the cost of
annuity on several lives (an annuity that shoulge out until the death of
the last person of the group, usually, of a marceabple) and thus
determined the distribution of the maximal termacferies of observations
[obeying a uniform law]. Kohli & van der Waerderd{b) described the
history of life insurance including the work of D¢itt and Huygens (8
2.2.2).

The first estimation of the present worth & Bnnuities, based on a table
of expectations of life, was made by the Praetdfieefect Ulpianus (170 —
228), see Hendriks (1852) and Greenwood (1940 84d + 1943). His
sources are not known, neither is it clear wheltli®expectatiorcoincided
with our present notion, but at least methodoldtidas table constituted
the highest achievement of demographic statistiis the 17" century.

Leibniz (MS 16807?/1872) described his consiti@na about state
insurance, see Sofonea (1957a). He had not stiiechnce as such, but
maintained that thprincesshould care about the poor, that the society
ought to be anxious for each individual etc. Muatet Stissmilch (8 6.2.2)
formulated similar ideas.

Tontines constituted a special form of mutnalrance. Named after the
Italian banker Laurens Tonti, 1630 — 1695 (Hendti&63), they, acting as a
single body of participants, distributed the t@ams of annuities among
their members still alive, so that those, who lil@ager, received
considerable moneys. Tontines were neither socaitgpted nor
widespreadn the assumed rationale that they are too sefrath
speculativeHendriks 1853, p. 116). Nevertheless, they didtar the 17"
century. Euler (1776) proposed flexible tontinethwiariable ages of their
members as well as their initial contributions. IStantines would then
become perpetual bodies rather than remainingfonlg few decades in
existence. Apparently for the same reason his @aguwad not been
adopted.

2.1.4. Population StatisticsThe Old Testament (Numbers, Chapter 1)
reports on a census of those able to bear armsaacdidingly, the Talmud
estimated the population of towns only by the nundesoldiersbrought
forth [when needed]. In China, in 2238 BC or thereaharnsestimation of
the population was attempted and the first censtiseowarrior caste in
Egypt occurred not later than in thé™@entury BC (Fedorovitch 1894, pp.
7 — 21). In Europe, even in i%entury Italy, for all its achievements in
accountancy and mathematics (M. G. Kendall 1960),

counting was by complete enumeration and still éeinid be a record of a
situation rather than a basis for estimation or ghicion in an expanding
economy.

Only Graun(1662) and, to a lesser extent, Petty (1690) cacabbed the
fathers of population statistics. They studied pafon, economics, and
commerce and discussed the appropriate cause®andations by means
of elementary stochastic considerations. Pettyddhe new discipline
political arithmeticand its aims were to study from a socio-econoraintp
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of view states and separate cities (or regionshbgns of (rather unreliable)
statistical data on population, industry, agricrdfLcommerce etc. However,
neither Petty, nor his followers ever introduceg dafinition of political
arithmetic. Petty (1690/1899, p. 244) plainly folated his denial of
comparative and superlative Wordrd attempted to express himself in
Terms of Number, Weight, or MeasurpGraunt undoubtedly did, if not
said the same.

Petty (1927, vol. 1, pp. 171 — 172) even prepds establish eegister
generall of people, plantations & trade of Englatal collect the accounts
of all theBirths, Mariages, Buriall§...] of the Herths, and Hous¢s.] as
also of the People, by their Age, Sex, Trade, S idad OfficeThe scope of
that Registewas to be wider than that of our existing Regisfiice
(Greenwood 1941 — 1943/1970, p. 61).

At least 30 Petty’s manuscripts (1927) pertaiteepolitical arithmetic.
This source shows him as a philosopher of scieangenial in some
respects witheibniz (pp. 39 — 40):

What is a common measure of Time, Space, Wé&ighotion? What
number of Elementall sounds or letters, \ill] make a speech or
language? How to give names to names, and howde add subtract
sensata, & to ballance the weight and power of wpwehich is Logick &
reason

Graunt (1662) studied the weekly bills of mbtyan London which
began to appear in thel6entury and had been regularly published since
the beginning of the I7century. His contribution had been (but is
apparently not anymore) attributed to Petty whdaps qualifies as co-
author. For my part, | quote hHdiscourse(1674):1 have alsdlike the
author of those Observatiofike Graunt!]) Dedicated this Discourse ...
Graunt used the fragmentary statistical data imes¢ the population of
London and England as well as the influence ofoteridiseases on
mortality and he attempted to allow for systematicruptions of the data.
Thus, he reasonably supposed that the number tigdgam syphilis was
essentially understated out of ethical considenatiblis main merit
consisted in that he attempted to find definitautagties in the movement
of the population. Thus, he established that bexes were approximately
equally numerous (which contradicted the then distadd views) and that
out of 27 newly born about 14 were boys. When degalith large numbers,
Graunt did not doubt that his conclusions refleabgkctive reality which
might be seen as a fact belonging to the prehisibtiye LLN; the ratio
14:13 was, in his opinion, an estimate of the rafithe respective
probabilities.

Nevertheless, he had uncritically made conchsbased on a small
number of observations as well and thought thaptyilation increased in
an arithmetical progression since replaced by dmrgetrical progression
definitely introduced by Sissmilch and Euler (8.8)2

In spite of the meagre and sometimes wrongmnmédion, Graunt was able
to compile the first mortality table (common fortbsexes). He somehow
calculated the relative number of people dying imithe first six years and
within each next decade up to age 86. Accordingddable, only one
person out of a hundred survived until that ages ¥éry invention of the
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mortality table was the main point here. The inthdacauses of death were
also incomplete and doubtful, but Graunt formulageche important
conclusions as well (although not without seriousrs). His general
methodological (but not factual) mistake consistethat he assumed,
without due justification, that statistical ratidgring usual years (for
example, the per cent of yearly deaths) were st&@unt had influenced
later scholars (Huygens, letter of 1662/1888 — 19891, p. 149; Hald
1990, p. 86):

1.Grant’'s[!] discourse really deserves to be considered arke litt very
much. He reasons sensibly and clearly and | adiming he was able to
elicit all his conclusions from these simple obaé@inns which formerly
seemed useless.

2. Graunt reduced the data frgeveral great confused Volumes into a
few perspicuous Tablesd analysed them afew succinct Paragraphs
which is exactly the aim of statistics.

Huygens (8 2.2.2) made use of Graunt’s moyt#dible and so did,
indirectly, Jakob Bernoulli (§ 3.2.2).

Halley (1694a; 1694b), a versatile scholar améstronomer in the first
place, compiled the next mortality table. He masle of statistical data
collected in Breslau, a city with a closed popualatiHalley applied his table
for elementary stochastic calculations and thusdanathematical
foundation of actuarial science. He was also abfetl out the general
relative population of the city. Thus, for eachubkand infants aged less
than a year, there were 855 children from one toytears of age, ..., and,
finally, 107 persons aged 84 — 100. After summipallthese numbers,
Halley obtained 34 thousand (exactly) so that #tie rof the population to
the newly born occurred to be 34. Until 1750 hid¢aemained the best one
(K. Pearsori978, p. 206).

The yearly rate of mortality in Breslau was@,/the same as in London,
and yet Halley considered that city as a statissitzandard. If such a notion
is appropriate, standards of several levels oughetintroduced. Again,
Halley thought that the irregularities in his datauld rectify themselves
were the number of yeafsf observationjnuch more considerabl&uch
irregularities could have been produced by systiem#tuences, but
Halley’s opinion shows the apparently wide-sprealiehin an embryo of
the LLN. Halley’s second note is interesting agaspbning on the welfare of
the population. Thus, he emphasized the need pothelpoor, especially by
finding them jobs.

Success came immediately. K. Pearson (1978)pndicated that Halley
had madall the use that a modern actuary cowlthis data and that he had
computed his life-tablas we should do it todagofonea (1957b, p. 31%)
called Halley’s contributiothe beginning of the entire development of
modern methods of life insuran@nd Hald (1990, p. 141) stated that it
became of great importance to actuarial scieridewing on Halley, De
Moivre (1725/1756) introduced the uniform law of niadity for ages
beginning at 12 years.

In 1701 Halley (Chapman 1941, p. 5) compiladhart of Northern
Atlantic showing the lines of equal magnetic deafions so that he (and of
course Graunt) might be called the founders of @gpbry data analysis, see
§0.2.
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In 1680 — 1683 Leibniz wrote several manussnpbstly pertaining to
statecraft (8 6.2.1) and published in 1866 (Leiti886, pp. 340 — 349, 370
— 381, and 487 — 491). He recommended the conymlatistate tables
(numerical or not?) of remarkable facts and themparison, year with
year, or state with state, by a special recordifigeo He thought it
advisable to collect information about scientifaheevementsglever ideas
and medical and meteorological observations, amstablishsanitary
boardsfor compiling data on a wide range of subjectstéomlogy,
medicine, agriculture). One of Leibniz’ manuscrifiteibniz 1986, pp. 456
— 467, or, with a German translation, 2000, pp.4285) was devoted to
political arithmetic. There, he introduced tmeyenne longueur de la vie
humaine necessary, as he remarked, for calculating teeaf@annuities;
assumed without substantiation several regulayitorsexample, that the
ratio of mortality to population was equal to 1:40d wrongly stated that
the mortality law for each age group including mfawas uniform.
Following Arnauld & Nicole (1662/1992, pp. 331 aB8R), he discussed
apparenceor degré de la probabilitdndapparence moyenrexpectation].
When discussing the game of dice, Leibniz madedglementary mistakes.
Much worse, he argued that the birth-rate couldibe or ten times higher
than it actually was.

Population statistics owed its later developnternhe general problem of
isolating randomness from Divine design. Kepler Biegvton achieved this
aim with regard to inanimate nature, and scienti&e quick to begin
searching for the laws governing the movement giujedion.

2.2. Mathematical Investigations

2.2.1. Pascal and Fermatn 1654 Pascal and Fermat exchanged several
letters (Pascal 1654a) which heralded the beginoiinige formal history of
probability. They discussed several problems; etiee most important of
them which was known even at the end of th dentury. Two or three
gamblers agree to continue playing until one ofrttseores points; for
some reason the game is interrupted and it is redjto divide the stakes in
a reasonable way. Both scholars solvedghidblem of pointssee Takéacz
(1994), by issuing from one and the same rulewtimaings of the gamblers
should be in the same ratio(s) as existed betweeaxpectations of their
scoring then points. The actual introduction of that notionpegtation, was
their main achievement. They also effectively aggblihe addition and the
multiplication theorems. About 1400 an anonymoakdh author (Franklin
2001, pp. 294 — 296) correctly solved a particaéme of the same problem,
but did not introduce expectation.

The methods used by Pascal and Fermat diffevedeach other. In
particular, Pascal solved the above problem by sieathe arithmetic
triangle (Edwards 1987) composed, as is well knafiinomial
coefficients of the development (1 4" fr increasing values of. Pascal’s
relevant contribution (1665) was published posthushg but Fermat was at
least partly familiar with it. Both there, and irs letters to Fermat, Pascal
made use of partial difference equations (H&80, pp. 49 and 57).

The celebrated Pascal wager (1669/2000, pp-—-6&i), also published
posthumously, was a discussion about choosing athgpis. Does God
exist, rhetorically asked the devoutly religioushenr and answered: you
should bet. If He does not exist, you may live dglfand sin]; otherwise,
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however, you can lose eternity. In the mathemasieake, Pascal’'s
reasoning is vague; perhaps he had no time tdeditagment. Its meaning
is, however, clear: if God exists with a fixed drwvever low probability,
the expectation of the benefit accrued by belieumigim is infinite. Pascal
died in 1662 and the same year Arnauld & Nicole&6@l6992, p. 334)
published a similar statement:

Infinite things, like eternity and salvation, caotie equated to any
temporal advantagd...] We should never balance them with anything
wordly.[...] The least degree of possibility of saving onesatfidore
valuable than all the earthly blessings taken tbgetand the least peril of
losing that possibility is more considerable thdhtlae temporal evil§...].

2.2.2. HuygensHuygens was the author of the first treatise on
probability (1657). Being acquainted only with tpeneral contents of the
Pascal — Fermat correspondence, he independetrdirced the notion of
expected random winning and, like those scholalected it as the test for
solving stochastic problems. He went on to prow thevalue of
expectatiorof a gambler who gessin p cases antl in g cases was

pa+ gb
p+q

(1)

Jakob Bernoull{1713/1999, p. 9) justified the expression (1) much
simpler than Huygens did: if each of fhgamblers geta, and each of the
others receiveb, and the gains of all of them are the same, then t
expectation of each is equal to (1). After Berniphlbwever, expectation
began to be introduced formally: expressions otype of (1) followed by
definition.

Huygens solved the problem of points underotarinitial conditions and
listed five additional problems two of which weneedto Fermat, and one, to
Pascal. He solved them later, either in his cooedpnce, or in manuscripts
published posthumously. They demanded the useecddHition and
multiplication theorems, the introduction of comatital probabilities and the
formula (in modern notation)

P(B)= P(A)P(BIA),i=1,2,..n.

Problem No. 4 was about sampling without regaent. An urn
contained 8 black balls and 4 white ones and itnegaired to determine
the ratio of chances that in a sample of 7 ballee&, or were not white.
Huygens determined the expectation of the formenely means of a
partial difference equation (Hald 1990, p. 76). Moays such problems
leading to the hypergeometric distribution (J. Bedh 1713/1999, pp. 167
— 168; De Moivre 1712/1984, Problem 14 and 171831 P5oblem 20)
appear in connection with statistical inspectiomnaiss production.

Pascal’'s Problem No. 5 was the first to distheggambler’s ruin.
GamblersA andB undertake to score 14 and 11 points respectivedy i
throw of 3 dice. They have 12 counters each arsdréquired to determine



the ratio of the chances that they be ruined. Tipelated numbers of points
occur in 15 and 27 cases and the ratio sougheiefibre (5/9'.

In 1669, in a correspondence with his brotherygens (1895), see Kohli
& van der Waerden (1975), discussed stochastic pnsbé@nnected with
mortality and life insurance. Issuing from Grauntisrtality table (§ 2.1.4),
Huygens (pp. 531 — 532) introduced the probablatdunr of life (but not
the term itself). On p. 537 he specified that exgedife ought to be used in
calculations of annuities and the former for bettom human lives. Huygens
also showed that the probable duration of life dda¢ determined by means
of the graph (plate between pp. 530 and 531) ofuthetiony = 1 —F(x),
where, in modern notatiof(x) was a remaining unknown integral
distribution function with admissible values of #wgument being 0 x
100.

In the same correspondence Huygens (p. 528)ierd the expected
period of time during which 40 persons aged 46 didl out; and 2 persons
aged 16 will both die. The first problem proved thfficult, but Huygens
might have remarked that the period sought waseé@sy(according to
Graunt, 86 years was the highest possible agemisiakenly solved a
similar problem by assuming that the law of motyalvas uniform and that
the number of deaths will decrease with time, bu&fdistribution,
continuous and uniform in some intervalprder statistics will divide it into
(n + 1) approximately equal parts and the annualhdeatll remain about
constant. In the second problem Huygens applieditonal expectation.
When solving problems on games of chance, Huygenged from
expectations which varied from set to set rathan tihom constant
probabilities and was compelled to compose andesdifference equations.
See also Shoesmith (1986).

2.2.3. NewtonNewton left interesting ideas and findings pertagnio
probability, but more important were his philosagativiews (K. Pearson
1926):

Newton’s idea of an omnipresent activating deitypuwnaintains mean
statistical values, formed the foundation of stat#d development through
Derham, Sussmilch, Niewentyt, Price to Queteletllndence Nightingale
[...]. De Moivre expanded the Newtonian theology and thckstatistics
into the new channel down which it flowed for ngaricentury. The cause
which led De Moivre to hipproximatio[1733]or Bayes to his theorem
were more theological and sociological than punelgthematical, and until
one recognizes that the post-Newtonian English ema#tticians were more
influenced by Newton’s theology than by his mathiesahe history of
science in the 8century — in particular that of the scientists wiliere
members of the Royal Society — must remain obscure

On De Moivre see Chapt. 4 aBdyes theorers a misnomer (§ 5.1).
Then, Newton never mentioned mean values. In 1&7dwering my
guestion on this point, the Editor of his book (83E. S. Pearson, stated:

From readingthe manuscript of that book}hink | understand what K.
P. meant]...] He had stepped ahead of where Newton had to gstaling
that the laws which give evidence of Design, appeéne stability of the
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mean values of observations. i.[eg] supposed Newton was perhaps
unconsciously thinking what De Moivre put into ward

Indeed, | have since found that K. Pearson&1p@. 161 and 653) had
attributed to De Moivre (1733/1756, pp. 251 — 2&%@) Divinestability of
statistical ratios, that is, the original determiinan of original desigrand
referred to Laplace who (1814/1995, p. 37) had tdated a related idea:

In an infinitely continued sequence of eventsatti®mn of regular and
constant causes ought, in the long run, to outwéigh of irregular causes

However, cf. also my § 7.1-3, Laplace never memibBivine design. And
here is Newton’s most interesting pronouncemen®4117782, Query 31):

Blind fate could never make all the planets mawe @and the same way in
orbs concentrick, some inconsiderable irregulastexcepted, which may
have risen from the mutual actions of comets aadgik upon one another,
and which will be apt to increase, till this systemnts a reformation. Such
a wonderful uniformity in the planetary system nhestillowed the effect of
choice. And so must the uniformity in the bodiesniinals.

Newton’s idea of a divine reformation of thessym of the world was
later abandoned, but his recognition of the extsteand role of its random
disturbances is very important. At the same time/fda (1958, pp. 316 —
318) denied randomness and explained it by ignerahcauses. The future
theologian Bentley, in 1693, expressed his thougft&s discussing them
with Newton. The texts of two of his sermons, ofltien’s letters to him,
and an article on Newton and Bentley are in NewWi®58).

Newton (MS 1664 — 1666/1967, pp. 58 — 61) galimxd the notion of
expectation and was the first to mention geomeibdability: If the
Proportion of the chancds..] bee irrational, the intereshay bee found
after ye same mannddewton then considered a throw of an irregular di
He remarked that [neverthelegsinay bee found how much one cast is
more easily gotten than anothéte likely bore in mind statistical
probabilities. Newton (1728) also applied simplechistic reasoning for
correcting the chronology of ancient kingdoms:

The Greek Chronologefs..] have made the kings of their several Cities

[...] to reign about 35 or 40 years a-piece, one witlothar; which is a
length so much beyond the course of nature, astisonbe credited. For by
the ordinary course of nature Kings Reign, one \aitlother, about 18 or 20
years a-piece; and if in some instances they R&ge,with another, five or
six years longer, in others they reign as much &mod 8 or 20 years is a
medium.

Newton derived his own estimate from other abtogical data and his
rejection of the twice longer period was reasondiévertheless, a
formalized reconstruction of his decision is diffic within one and the
same dynasty the period of reign of a given kimgatly depends on that of
his predecessor. Furthermore, it is impossiblesterthine the probability of
a large deviation of the value of a random varidtden its expectation
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without knowing the appropriate variance (which Neamwestimated only
indirectly and in a generalized way). K. Pearsd@®2@) described Newton’s
later indication of the sources of his estimate dwelt on Voltaire’'s
adjoining remarks, and, especially, on the relevamk of Condorcet.

And here is the opinion of Whiteside (privaterenunication, 1972)
about his thoughts concerning errors of observation

Newton in fac{but not in explicit statemenhad a precise understanding
of the difference between random and structuratiguilt’ errors. He was
certainly, himself, absorbed by the second typgmbiilt’ error, and many
theoretical models of differing types of physicgitical and astronomical
phenomena were all consciously contrived so thegdtstructural errors
should be minimized. At the same time, he didisim$tronomical practice,
also make suitable adjustment for ‘random’ errarobservation..

Most important were the optical experiments; tiain sources are
Newton’sLectures(1669 — 1671) and hRapers and Letter§1958).

2.2.4. Arbuthnot. He (1712) assembled the existing data on baptisms
London during 1629 — 1710. He noted that during¢h®2 years more boys
(m) were invariably born than girl§) (@nd declared that that fact wast the
Effect of Chance but Divine Providence, workingdajood EndBoys and
men, as he added, were subject to greater danggtheir mortality was
higher than that of the females. Even disregarbwoit) that unsubstantiated
statement and such [hardly exhibited] regulariigsheconstant Proportion
m:f andfix’d limits of the differencer( — 1, theValue of Expectationf a
random occurrence of the observed inequality westlean (1/2¥, he
stated.

Arbuthnot could have concluded that the bidhboth sexes obeyed the
binomial distribution, which, rather than the inatity m > f, manifested
Divine design; and could have attempted to estimaigarameter. Then,
baptisms were not identical with births. Grauntg26end of Chapt. 3)
stated that during 1650 — 1660 less than half@fggneral [Christian]
population had believed that baptism was neces€dmystians perhaps
somehow differed from other people, London was gestan exception.

One more point. Denote a yearrhyr f if more boys or girls were
respectively born. Any combination of thés andf’s in a given ordelhas
the same probability Z in Arbuthnot’s case). However, if the order is of
no consequence, then those probabilities will ¢yehifer. Indeed, in a
throw of two dice the outcome “1 and 2” in any argetwice as probable as
“1 and 1”. It is this second case which Arbuthnkelly had in mind.

| note Laplace’s inference (1776/1891, p. 182t4/1995, p. 9) in a
similar case: a sensible word would have hardlgdraposed by chance
from separate letters. Poisson (1837a, p. 114)igedvan equivalent
example and made a similar conclusion. Howevegfaition of a random
sequence (and especially of a finite sequenceillia subject of subtle
investigations.

Freudenthal (1961, p. xi) called Arbuthnot #uthor of the first
publication on mathematical statistics, see alsmeSiith (1987) and H. A.
David & Edwards (2001, pp. 9 — 11). Arbuthnot wkoahe first to publish
a trick equivalent to the application of a genexgfiunction of the binomial
distribution although only for its particular cagekob Bernoulli (8 3.1.2)
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actually applied a generating function before Anmait did, but his book
only appeared in 1713.

Bellhouse (1989) described Arbuthnot’'s manysaxiritten in 1694.
There, the author examined the game of dice, ateirtp study chronology
and to a certain extent anticipated his published nf 1712.
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3. Jakob Bernoulli and the Law of Large Numbers
| consider Bernoulli's main work, thArs conjectand{AC), which blazed
a new trail by proving that statistical probabildgn be considered on a par
with the theoretical probability. Also describedhg work of his
contemporaries.

Key words: law of large numbers, statistical probability, raccertainty,
stochastic arguments

3.1. Bernoulli's Works

3.1.1. The Diary Meditatione3. There, Bernoulli studied games of
chance and the stochastic side of civil law. H&BL®. 47) noted that the
probability of a visitation of a plague in a givgear was equal to the ratio
of the number of these visitations during a longqukeof time to the number
of years in that period. He thus applied the definiof probability of an
event (of statistical probability!) rather than nmakuse of chances. On p.
46, in a marginal note, he wrote out the imprina@éview of Graunt’s book
(8 2.1.4) which Bernoulli possibly had not seent B most important in
theMeditationeds a (fragmentary) proof of the LLN which meanatth
Bernoulli proved it not later than in 1690.

3.1.2. TheArt of Conjecturing(1713). Its ContentsNiklaus Bernoulli
compiled a Preface (J. Bernoulli 1975, p. 108) whéar the first time ever,
the termcalculus of probability(in Latin) had appeared. The book itself
contained four parts. Interesting problems areesbin parts 1 and 3 of the
AC (the study of random sums for the uniform arelliimomial
distributions, a similar investigation of the sufradandom number of
terms for a particular discrete distribution, aiion of the distribution of
the first order statistic for the discrete unifodmstribution and the
calculation of probabilities appearing in samphmighout replacement). The
author’s analytical methods included combinataaizlysis and calculation
of expectations of winning in each set of finitelanfinite games and their
subsequent summing.

Part 1 is a reprint of Huygens’ tract (8§ 2.2B8rnoulli also compiled a
table which enabled him to calculate the coeffitdeafx™ in the
development of}(+ > + ... +X%)" for small values oh. That polynomial to
the power oh was the generating function of the binom@t{gx) with p =
Q.

Part 2 dealt with combinatorial analysis artdoduced th&ernoulli
numbers.

Part 4 contained the LLN. There also is anrmial classical definition of
probability (which Bernoulli had not applied when formulatithgit law), a
reasoning on the aims of the art of conjecturirggédmination of
probabilities for choosing the best solutions aflppems, apparently in civil
life) and elements of stochastic logic.

Bernoulli likely considered the art of conjethg as a mathematical
discipline based on probability as a measure dac#y and on expectation
and including (the not yet formally introduced) dgoh and multiplication
theorems and crowned by the LLN.

In a letter of 3 Oct. 1703 Bernoulli (Kohli 1847, p. 509) informed
Leibniz about the progress in his work. He had bmenpiling it for many
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years with repeated interruptions caused byrimate lazinessand

worsening of health; the book still lackedrit®st important partthe
application of the art of conjecturing to civildifnevertheless, he, J. B., had
already shown his brother [Johann] the solutioa difficult problem,

special in its own way [8 3.2.3], that justifiecethpplications of the art of
conjecturing.

Leibniz, in his own letters to Bernoulli, ne\agreed that observations
could secure moral certainty but his arguments \Wwardly convincing.
Thus, he in essence repeated Arnauld & Ni¢b662/1992, pp. 304 and
317) in that the finite (the mind; therefore, olvsé¢ions) can not always
grasp the infinite (God, but also, as Leibniz stageay phenomenon
depending on innumerable circumstances).

He understood randomness as somethimgse complete proof exceeds
any human mingLeibniz 1686/1960, p. 288) which does not corittaal
modern approach to randomness founded on complaxdyhe was also
right in the sense that statistical determinaticanrs not definitively
corroborate a hypothesis. Cf. Cicero (1991, Buch 27, p. 149)Nothing is
more opposed to calculation and regularity thanmte Leibniz had also
maintained that the allowance for the circumstanges more important
than subtle calculations.

Gauss (88 9.1.3 and 9.1.5) stated that the kauge of the essence of the
matter was extremely important. Later Mill843/1886, p. 353) contrasted
the consideration of circumstances wathborate applicatiorof probability,
but why contrasting rather than supplementing? Aaywnore than a half
of Chapter 4 of Part 4 of the AC in essence coettidith passages from
Bernoulli’'s letters to Leibniz.

In 1714, in a letter to one of his corresponslebeibniz (Kohli 1975b, p.
512) softened his doubts about the applicatiortaifssical probabilities. For
some reason he added that the late Jakob Berhadltultivatedthe theory
of probability in accordance with his, Leibnxhortations

3.2. TheArt of Conjecturing Part 4

3.2.1. Stochastic Assumptions and ArgumentBernoulli used the
addition and the multiplication theorems for conibgvarious arguments.
Unusual was the non-additivity of the probabiliti#aus,something
possesses 2/3 of certainty but its opposite haef3/drtainty; both
possibilities are probable and their probabilibes as 8:9. See Shafer
(1978) and Halperin (1988). Shafer also studiedawtdfitive probabilities in
Lambert’sArchitectonic(1771). Koopman (1940) resumed the study of such
probabilities whose sources can be found in theienatidoctrine of
probabilismthat considered the opinion of each theologiaprabable.
Franklin (2001, p. 83) dated the origin of probisioil as 1611 or (p. 74)
even as 1577. Similar pronouncements on probasldf opinion go back
to John of Salisbury (the £Zentury) and even to Cicero (Garber & Zabell
1979, p. 46).

Bernoulli (1713/1999, p. 233) wrodes conjectandi sive stochastj@nd
Bortkiewicz (1917, p. x) put that Greek word intccalation. Prevost &
Lhuillier (1799, p. 3) anticipated him, but appatgitheir attempt was
forgotten. TheOxford English Dictionaryncluded it with a reference to a
source published in 1662.
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3.2.2. Statistical Probability and Moral Certainty. Bernoulli explained
that the theoreticalumber of casewas often unknown, but what was
impossible to obtain beforehand, might be deterchimgobservations. In
his Diary, he indirectly cite@Graunt and reasoned how much more probable
was it that a youth will outlive an old man thawoesversa. Bernoulli
maintained that moral certainty ought to be admitie a par with absolute
certainty. His theorem will show, he declared, statistical probability was
a morally certain (a consistent) estimator of theotetical probability. He
also maintained that in ordinary life people oughthoose what is more
probable. This idea goes back to Cicero (1997, Bodk12, p. 7)Many
things are probable anf..] though these are not demonstrably true, they
guide the life of the wise mén.]. A similar statement was formulated in
China in the & century BC (Burov et al 1972, p. 203):

Who even before battle gains victory by militargmeation, has many
chances]...] Who has many chances gains victory, who has fawcels
does not gain victory. All the less he who hashrances at all

3.2.3. The Law of Large NumbersBernoulli proved a proposition that,
beginning with Poisson, is called the LLN. lreinds be natural numbers,
=r + s, n, a large natural number=nt, the number of independent trials in
each of which the studied event occurs with thézakprobabilityr/t, p —
the number of the occurrences of the event (oftloeesses). Then
Bernoulli proved without applying mathematical giséd that

and estimated the value ohecessary for achieving a giverr 0. In a
weaker form Bernoulli’s finding meant that

imp |- < e =1, z ¥
n t
(2

where, as also in (1), pivas the statistical probability.

Markov {(Treatise 1924, pp. 44 — 52) improved Bernoulli’s estimate
mainly by specifying his intermediate inequaliteesd K. Pearso(iL925), by
applying the Stirling formula, achieved a practigalbbmplete coincidence
of the Bernoulli result with the estimate that mskse of the normal
distribution as the limiting case of the binomi@hl Pearson (p. 202)
considered Bernoulli’s estimate of the necessambyar of trials in formula
(1) crudeand leading to the ruin of those who would havelied it. He
also inadmissibly compared Bernoulli's law with thieong Ptolemaic
system of the world (and De Moivre with Kepler axelwton):

Bernoulli saw the importance of a certain problesu;did Ptolemy, but it

would be rather absurd to call Kepler’'s or Newtos@ution of planetary
motion by Ptolemy’s narhe
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The very fact described by formulas (1) andwas, however, extremely
important for the development of probability andtistics; and, anyway,
should we deny the importance of existence thed?eédesnoulli’s result
proved that, given a large number of observatistagistical probability
provided moral certainty and was therefore not eaéhsin the theoretical
probability. His main aim was to discover whether imit (2) existed and
whether it was indeed unity rather than a lessseitipe number. The latter
would have meant that induction (from the&ials) was inferior to
deduction.

Stochastic reasoning was now justified beydwmdprovince of games of
chance, at least for the Bernoulli trials. Straggelough, statisticians for a
long time had not recognized this fact. Haushadt&7@, pp. 107 — 108)
declared that statistics, since it was based auciieh, had nantrinsic
connectionwith mathematics based on deduction. And Macigje(911,
p. 96) introduced atatistical law of large numbeiastead of the Bernoulli
proposition that allegedly impeded the developnodistatistics. His own
law qualitatively asserted that statistical indacatexhibited ever lesser
fluctuations as the number of observations increeasel his opinion likely
represented the prevailing attitude of statistisiddortkiewicz(1917, pp. 56
— 57) thought that the LLN ought to denotguite generafact,
unconnected with any stochastic pattern, of a degfstability of statistical
indicators under constant or slightly changing ¢bonls and a large number
of trials. Even Romanovsky (1912, p. 22; 1924, q1.115; 1961, p. 127)
kept to a similar view.

That elementary understanding of the LLN hapithistory, see the
statements of De Witt (§ 2.1.3) and Halley (8 2.1Adain, it was thought
that the number of successesiBernoullitrials with probabilityp was
approximately equal top. Cardano applied this formula in calculations
connected with games of dice (Ore 1953/1963, pp.-1554 and 196).

In astronomy, the arithmetic mean became tinewsal estimator of the
constant sought (8 1.7). Recall also (8§ 2.1.3)ptlaetice of buying annuities
upon several young liveBoscovich (1758, § 481) had somewhat vaguely
maintained that the sum (not the mean!) of randagmiudes decreased
with an increase in the number of terms (Gower 199272). My
correction also applies to the other statementseatmwhich | am now
adding Kepler (Sheynin 1973c, p. 120). He rematkeatithe total weight of
a large number of metal money of the same coinayeat depend on the
inaccuracy in the weight of the separate coinsnE¥elmert (1905/1993, p.
200) had to refute that mistake.

3.2.4. Randomness and Necessi#ypparently not wishing to encroach
upon theology, Bernoulli (beginning of Chapter éfused to discuss the
notion of randomness and subjectively describeatn¢ingentout at the
beginning of Chapter 4 explained randomness bydtkien of numerous
complicated causes, cf. 8§ 11.3. The last linessobbok stated that some
kind of necessity was present even in random thiHgseferred to Plato
who had indeed taught that after a countless nuwibenturies everything
will return to its initial state at the moment e€ation. In accordance with
that archaic notion of th@reat Yeay Bernoulli thus unjustifiably
generalized the boundaries of his law.
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It is noteworthy that Kepler (1596) believedttthe end of the world was
unlikely but his reasoning is difficult to undensta In 1621, in the second
edition of that book, he substantiated his conolusly stating, in essence
like Oresme (1966, p. 247) did before him, that tasadomly chosen
numbers wer@robablyincommensurable. Without mentioning the end of
the world, Levi ben Gerson (1999, p. 166) stated tine heavenly bodies
will be unable to return to their initial positidgintheir velocities were
incommensurable. However, | do not see any cormebigtween
astronomical distances or velocities and that motio

3.3. Bernoulli’'s Contemporaries

3.3.1. Arnauld. Arnauld & Nicole anonymously put out tiet of
Reasoning1662). Arnauld, who was the main author, hadiadghe term
probabilité,although without a formal definition, and expresgizhs later
repeated by Bernoulli (who cited him).

3.3.2. Niklaus Bernoulli.He published a dissertation on the application
of the art of conjecturing to jurisprudence (17@¥1). It contained the
calculation of the mean duration of life and recoamated to use it for
ascertaining the value of annuities and estiméatiegorobability of death of
absentees about whom nothing is known; methodaialiations of
expected losses in marine insurance; calculati@xpécted losses in the
celebrated Genoese lottery and of the probabifityuth of testimonies; the
determination of the life expectancy of the lasvawr of a group of men
(pp. 296 — 297), see Todhurn(tE865, pp. 195 — 196). Assuming a
continuous uniform law of mortality (the first camious law in probability
theory), he calculated the expectation of the gmaie order statistic and
was the first to use, in a published work, botks thistribution and an order
statistic.

Bernoulli's work undoubtedly fostered the spreh stochastic notions in
society (cf. § 2.1.2), but he borrowed separatsagss from thars and
even from theMeditationegKohli 1975c, p. 541), never intended for
publication. His general references to Jakob derotise his plagiarism.

3.3.3. Montmort. He published an anonymous book (1708), important in

itself and because of its influence upon De Mo{@bhapter 4js well as on
Niklaus Bernoulli, the correspondence with whom Mwoart included in
1713 in the second edition of his work. In thedniuction he noted that,
being unable to formulate appropriséigotheseshe was not studying the
applications of [stochastic] methods to civil life.

Henny (1975) and Hald (1990) examined Montnsditidings. The latter
listed Montmort’s main methods: combinatorial asédyrecurrent formulas
and infinite series; and the method (the formufahodusion and exclusion

( )P( A)= PA)- PAA)+ PA A A)- ...
3

whereAy, Ay, ..., Aywere events anid j < k < ...This formula is a
stochastic corollary of a proposition about arlilyaarranged sets. Here are
some problems solved by Montmort:

1) The problem of points. Montmort arrived la¢ hegative binomial
distribution and returned to this problem in hisrespondence with Niklaus
Bernoulli.
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2) A study of throwing points withn dice, each havinfjfaces.
Montmort applied the combinatorial method and folar(@3).

3) A study of arrangements and, again, of aggafdice. Montmort
arrived at the multivariate hypergeometric, andrthdtinomial
distributions.

4) A study of occupancies. Tickets numbered, 1,.,n, are extracted
from an urn one by one without replacement. Deteentihhe probability that
at least one ticket with numblerl k n, will occur at thek-th extraction.
Montmort derived the appropriate formulas

Po=1-1/21+ /31— ... + (<Iy ¥n!, limP, =1 - 1&, n

Niklaus Bernoulli and De Moivre returned to thi®plem, see H. A. David
& Edwards (2001, pp. 19 — 29).

3.3.4. Montmort and Niklaus Bernoulli: Their Correspondence.l
outline their correspondence of 1710 — 1713 (Momtrhd08/1713, pp. 283
— 414).

1) The strategic gantéer (Hald 1990, pp. 314 — 322) depending both on
chance and decisions made. The modern theory oégatndies it by
means of the minimax principle. For his part, Bedlhiandicated that the
gamblers ought to keep to [mixed strategies].

2) The gambler’s ruin. Montmort wrote out tlesults of his calculations
for some definite initial conditions whereas Bertliaodicated, without
derivation, the appropriate formula (an infiniteies). Hald believes that he
obtained it by means of formula (3). On this p@ntl on the appropriate
findings of Montmort and De Moivre see also Thatdd®57), Takacz
(1969) and Kohli (1975a).

3) The sex ratio at birth. I only dwell on Beutli’s indirect derivation of
the normal distribution. Let the sex ratiord, n, the total yearly number of
births, and p andh(- p), the numbers of male and female births ieary
Denote

Am+H=r,m(m+f)=p film+H=q,p+q=1,

and lets= 0( n). Then Bernoulli’'s formula (Montmort 1708/1980,. 388 —
394) can be presented as

P(lu—rm| s) (t— 1)L,
t [1+s(m+H/mf¥ expEi(m + HZ2mfr,
P(u-rm| s) 1-exp§i2pan),

2
|72 npl

PR ES 1 expf %].

It is not an integral theorem sing&s restricted (see above) and neither is

it a local theorem; for one thing, it lacks thetéacy2/ . A. P. Youshkevich
(1986) reported that at his request three matheraai had examined that
reasoning and concluded that Bernoulli came clogké local theorem but
they did not mention the missing factor. The vest tthat it took three
mathematicians to deal with that subject is notéwyor
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4) The Petersburg game. In a letter to Montnigetnoulli (Ibidem, p.
402) described his invented garBghrows a die; if a six arrives at once, he
receives acufrom A, and he obtains 2, 4, 8, écusif a six only occurs at
the second, the third, the fourth, ... throw. Deterenie expectation &'s
gain. Gabriel Cramer insignificantly changed thadibons of the game; a
coin appeared instead of the die, and the occwerehbeads (or tails) has
been discussed ever since. The expectation ofogaiame

E =112+21/4+41/8+ ... = ,
(4)

although a reasonable man will never pay any cenaide sum in exchange
for it.

Additional conditions were being introduced; éxample, suggestions
were made to neglect unlikely gains, i.e., to tatedhe series (4); to restrict
beforehand the possible payoff; and to replace&agien bymoral
expectation§ 6.1.1). Daniel Bernoulli published his memairHetersburg,
hence the name of the invented game. In additiond@rcet (1784, p. 714)
noted that the possibly infinite game provided aoye trial and that only
many such games can lead to an expedient solutideed, Freudenthal
(1951) proposed to consider a number of gamestivitole of the
gamblers in each of them to be decided by lot. |Findne Petersburg game
caused Buffon (1777, § 18) to carry out the appfrdinst statistical
experiment. He conducted a series of 2048 gamesn#an payoff was 4.9
units, and the longest duration of play (in sixesgsnine throws. The game
introduced a random variable with an infinite expaé&on.

Spiel3 (1975) dwelt on the early history of Betersburg game and Dutka
(1988) described later developments and adducecaksdts of its
examination by statistical simulation. Howeverspecially mention Jorland
(1987) who provided a vast relevant picture.
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4. De Moivre and the De Moivre — Laplace Limit Thecem

De Moivre contributed to insurance of life lyroducing the uniform law
of mortality, discussed the initial concepts oflpability theory and solved
several important stochastic problems. His mainesgiment was the proof
of the first version of the central limit theorem.

Key words: central limit theorem, chance and design, gansbtem

4.1.The Measurement of Chancgé712)

In his first probability-theoretic work, a pireinary version of his later
contributions, De Moivre (1712/1984) justified thetion of expected
random gain by common sense rather than definifagritally as has been
done later, cf. § 2.2.2; introduced the classiedingtion of probability
usually attributed to Laplace and the multiplicattbeorem for chances
(mentioning independence of the events) and apglie@ddition theorem,
again for chances; and, in solving one of his motd (No. 26), applied the
formula (3.3) of inclusion and exclusion. | deserdbme of his problems; |
have mentioned Problem 14 (repeated in De Moivb@strine of chances
in §2.2.2.

1) Problem No. 2. Determine the chances of imgim a series of games
for two gamblers if the number of remaining gangesat larger than, and
the odds of winning each game arb. De Moivre notes that the chances of
winning are as the sums of the respective terntisenflevelopment of(
+b)".

2) Problem No. 5. The occurrence of an evestl@ances out ofa(+
b). Calculate the number of trials) @fter which it will happen, or not
happen, with equal probabilities. After determiniigom the equation

@+ b - =D
De Moivre assumed thatb = 1/q, q , and obtained

1 +x/q + X/2q° +x360° + ... = 2,x = gIn2,
1)

which resembles the Poisson distribution.

3) A lemma. Determine the number of chanceshieroccurrence &
points in a throw of dice each having faces. Later De Moivre (1730, pp.
191 - 197; 1718, Problem No. 3, Lemma) solvedphablem by means of a
generating function of a sequence of possible onésoof a throw of one
die.

4) Problem No. 9 (cf. Pascal’s problem from&2). Gambleré\ andB
havep andq counters, and their chances of winning each gama andb,
respectively. Determine the odds of their ruiniBg.a clever trick that can
be connected with the notion of martingale (Sea8&8, pp. 78 — 79) De
Moivre obtained the sought ratio:

Pv/Ps = a'(a”- 1) + bP(a - ).
(2)
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He left aside the elementary caseaaf b.

5) Problem No. 25. Ruining of a gambler duranfinite number of games
played against a person with an infinite capitad.Ndoivre described the
solution in a generalized way; its reconstruct®due to Takacz (1967, pp.
2 — 3) and Hald1990, pp. 358 — 360).

4.2. Life Insurance

De Moivre first examined life insurance in teginning of the 1720s.
Issuing from Halley'dable (§ 2.1.4), he (1725/1756, pp. 262 — 263)
assumed a continuous uniform law of mortality flbages beginning with
12 years and a maximal duration of life equal to/8érs and he solved a
number of pertinent problems by applying the in&&galculus.

Here is an example (p. 324). Determine the giboiby of one person
outliving another one if the complements of theie$ aren andp, n > p.
Let the random durations of the livesf&ndB be and . Then, since at
some moment the complement ok'’s life is (n — X,

(n- 2)dz _ P(n- z)dz=1 p

P( x, =X)= ,P(>)—0

pn 2n’

Probabilities of the type d¥( > x) easily lead to integral distribution
functions.

Hald (1990, pp. 515 — 546) described in detail the wadrke Moivre and
of his main rival, Simpson (1775), in life insur@&impson improved on,
and in a few cases corrected De Moivre. Hald (o) ®éncluded that
Simpson’s relevant results represerdaacessential step forward

4.3. TheDoctrine of Chanceg1718, 1738, 1756)

This work published in three editions, in 1718, 8 78nd, posthumously,
in 1756, was De Moivre’s main achievement. He devedl it from his
previous memoir (8§ 4.1) and intended it for gambky that many results
were provided there without proof. Then, followitng post-Newtonian
tradition, De Moivre did not use the symbol of gration; Todhunter
inadequately described De Moivre’s main finding}(8) and Laplace
(1814/1995, p. 119) did not sufficiently explainAll this caused his book,
whose translation into French contemplated bothrdrageand Laplace, see
Lagrange (1776b), to remain barely known for maegadies. | refer to its
last edition.

In his Introduction, De Moivre listed his mamethods: combinatorial
analysis, recurrent sequences (whose theory heslideseloped) and
infinite series; in particular, he applied apprapely truncated divergent
series. Also in the Introduction, on pp. 1 — 2phee more provided the
classicaldefinition of probability but kept to the previotsasoning on
expectation (8 4.1) and even introduceduakle of expectatio(p. 3),
formulated the multiplication theorem for probatés (not for chances, as
previously) and, in this connection, once more noeeid independence.
Two eventsA andB, were independent, if, as he stated,

P(B) = P(B/A), P(A) = P(A/B)
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(modern notation here and below). For dependentts\(p. 6), three in
number (say),

P(A-B-Q = P(A) P(B/AP(C/IA-B.
(3)

| list now some of the problems from thectrine mentioned by Hald
(1990, pp. 409 — 413) without repeating those diesdrin § 4.1 and, for the
time being, leaving aside the normal distribution.

1) The Huygens additional Problem No. 4 (§2).ihcluding the
multivariate case. The appearance of the hypergemnaéstribution:
Problems NNo. 20 and 26.

2) Runs of successesnmBernoullitrials including the case of
Problems NNo. 34 and 74.

3) Coincidences. A generalization of Montmofirslings (8 3.3.3) by the
method of inclusion and exclusion: Problems 35 2.d

4) The gambler’s ruin: Problems 58 — 71.

5) Duration of game: Problems 58 — 64, 68 — 71.

For the general reader the main merit ofbetrinewas the study of
many widely known games whereas De Moivre himselfledicating its
first edition to Newton (reprinted in 1756 on p932perceived his main
goal, i. e., the aim of the theory of probabilityworking out

A Method of calculating the Effects of Chahcg and thereby fixing
certain rules, for estimating how far some sorEgénts may rather be
owing to Design than Change.] [so as to learnfrom your Philosophy
how to collect, by a just Calculation, the Evidenoé exquisite Wisdom and
Design, which appear in the Phenomena of Natureugihout the Universe

4.4. The De Moivre — Laplace Theorem

In 1730 De Moivre published hidiscellanea analyticand later
appended two supplements. He printed the secon@l@38) in a small
number of copies and sent it out to his colleaguesly call it a supplement
for the sake of tradition; its extant copies irgktfibraries are bound to that
book. In 1738 De Moivre translated it into Englesid included in the
second, and then, in an extended form, in the #@dition of theDoctrine
Its title includes the wordsinomial(a + b)" so that, although studying the
symmetric binomial, De Moivre thus thought abow ¢eneral case. He also
stated that the transition to the general casenatdifficult. On the first
page of the Latin original De Moivre noted thatha& concluded (at least
its mathematical part) about 12 years earlier.

1) In Book 5 of théisc. anal.De Moivre determined the ratio of the
middle term of the symmetric binomial to the sunalbfof its terms, and in
the first supplement to that work he derived, irefegently from, and
simultaneously with Stirling, the so-called Stidiformula. Only the value

of the constant/2 , the latter communicated to him.

In the same supplement De Moivre included &etablgn! for n =10
(10) 900 with 14 decimals; reprinted: (1718/1756333). Eleven or twelve
decimals were correct; a misprint occurred in thki@ of Ig 380!.

2) In the same Book, De Moivre calculated tgalithm of the ratio of
the middle term of the binomial (1 +"1jo the term removed Hdyfrom it,
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but only in the second supplement he calculatedatie of the sum of the
terms between the middlemost and the one remowed ifrby| to the sum
of all the terms. It was equal to

2 ( z3+ 4° )
J2n 1en 28?0

He calculated this sum either by numericalgra&on, or, fol < n/2, by
leaving only a few of its first terms. For his main result can be
written as

-np

Jnpg

10 7
£t}=\/? exp(—?)dz

limPat
(4)

Here was the number of successgs= E andnpq=var .

This is the integral De Moivrel-aplace theorem (see § 7.1-3), as
Markov (1900/1924, p. 53) called it, — a particudase of the CLT, a term
introduced by Poly&1920). Neither De Moivre, nor Laplace knew about
uniform convergence with respecta@ndb that takes place here.

In 1812, Laplace (8 7.1-3) proved (4) simpled @rovided a correction
term allowing for the finitiness af. De Morgan (1864) was the first to
notice the normal distribution in (4). However,ade unbelievably wrong
statements about the appearance of negative ptiealand those
exceeding unity. More: in a letter of 1842 he (Safbe Morgan 1882, p.

147) declared thattan=cot = +-1.

De Moivre (1718/1756, p. 252) mentioned thelgtof the sex ratio at
birth (8 2.2.4) and illustrated it by imagined tiwoof dice. His reasoning
(and his general considerations) meant that, for, the binomial
distribution was a divine law of nature, stochastity because of possible
deviations from it. De Moivre thus recognized thetual action of necessity
and randomness, cf. § 1.1.
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5. Bayes

Bayes proved the inverse law of large numbgradsuming that an
unknown constant was a random variable with an owknlaw of
distribution. His result completed the first versiof the theory of
probability.

Key words: law of large numbers, inverse law of large numspérst
version of probability theory

5.1. The Bayes Formula and Induction

| dwell on the posthumous memoir (Bayes 1764 — 1é6mplete with
the commentaries by Price. In its first part Bay#soduced his main
definitions and proved a few theorems; note thaldfened probability
through expectation. There was no hint of the dled¢®8ayes theorem

P(B/ A)A(A)

P(A/B) =
_ P(BI A)R(A)

j =

(1)

and it were I. W. Lubbok & J. E. Drinkwater-Bethunbo first applied that
term, as noted by David & Edwards (2001, p. 216), @ournot (1843, §
88) followed suit. Bayes had in essence introdueddction into
probability and his approach that assumed theengst of prior
probabilities or distributions greatly influencdetdevelopment of
mathematical statistics.

A modern encyclopaedia (Prokhorov 1999) costauh items mentioning
him, for example, Bayesian estimator, Bayesian @ggr. There also, on p.
37, the author of the appropriate entry mistakeiybutes formula (1) to
Bayes.

Bayes studied an imaginary experiment, a ladllhfy on pointr situated
in a unit squardBCD, to the leftor to the rightof some straight lin&N
parallel to, and situated betweAB andCD. If, after (p + q) trials, the point
r occurredp times to the right oMN andq times, to the left of it, then

Mb£r£@=cwa-m%¢1W@ v dv
b 0
(2)

wherebcis a segment withiAD. Bayes derived the denominator of (2)
obtaining the value of the [beta-functidB(p + 1; g + 1) and spared no
effort in estimating its numerator, a problem treahained difficult until the
1930s. The right side of (2) is now known to beada the difference of
two values of the incomplete beta-function

l(p+1,g+1)—kp+1,q+1).

Thus, given the results of the experiment, asgliming a uniform prior
distribution of the location d¥IN andr, which represented ignorance, he
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determined the appropriate theoretical probabihigvertheless, it would be
wrong to apply formula (2) for determining, saye frobability that some
far digit in the development ofequals 4 (Neyman 1938/1967, p. 337). A
constant is not a random variable.

Bayes himself had not stated that his distrdouivas uniform, but this
assumption is necessary (K. Pearson 1978, p. B&thout providing any
explanation, Mises (1919, § 9.2) remarked that Bdygl considered the
general case as well. Following Czuber, Mises pidbat the influence of
non-uniformity weakened with the increase in thenbar of observations.

In his covering letter to the Bayes memoirc@provided purely
methodical illustrations; one of them required pinebability of the next
sunrise observed i@imes in succession. Formula (2) indirectly ansnes
guestion ifb = 1/2 andc = 1 are chosen; it also provides the probability of
the contrary event i = 0 andc = 1/2. Price (Bayes 1764/1970, pp. 149 and
150 — 151) also solved the same questiopforl andg = 0 and obtaine@
= 3/4 which is doubtful: knowing nothing about the&sce of a
phenomenon we should have ot 1/2 (cf. Poisson’s reasoning in 8
8.1.4). In this case, formula (2) is wrong. Theuatprobability of the next
sunrise is

p+l

1 1
P= xP™dx, x°dx=
0 0 p+2

and Poly4 (1954, p. 135) remarked that each cotise@uccess (sunrise)
provided ever less justification for the next one.

Cournot (1843, § 93) considered a similar problA woman gave birth
to a boy; determine the probability that her ndxtccwill also be a boy.
Without justification, he stated thpérhapsthe odds were 2:1 but that it
was impossible to solve that problem. See the opiof Laplace (88 7.1-1)
and Chebyshev (8 12.2-5) about the Bayesian apiprdamther point
concerned the Bayesian treatment of an unknowntaotrsin formula (2)
as a random variable, see above.

Beginning with the 1930s and perhaps for thiesades English and
American statisticians had been denying Bayes fif$teand the main critic
of the Bayegheoremor formula was Fisher (1922, pp. 311 and 326). It
seems that he disagreed with the introduction afliz&nown prior
probabilities and/or with the assumption that theye equal to one another,
cf., however, Laplace’s general statement abotifysaw hypotheses (8§
7.2-1). Thenverse probabilitydefined by formula (1) is tantamount to
conditional probability given that the stipulatezhdition has indeed been
fulfilled.

5.2. The Limit Theorem

Bayes had not expressly discussed the case=dp + Q) . Price,
however, remarked that, for a finiteDe Moivre’s results were not precise.
In another posthumous note published in 1764, Baxgred
mathematicians about the danger of applying divergeries. He had not
named De Moivre, but apparently had in mind thevdéion of the De
Moivre — Laplace theorem (4.4) as well. De Moivnel dis contemporaries
had indeed employed convergent parts of divergenmngsfor approximate
calculations, and about a century later Poisso84ag8p. 175) stated that
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that trick was possible. De Moivre considered tges included in the
Stirling formula.

Timerding, the Editor of the German translatodthe Bayes memoir,
nevertheless went on to consider the limiting chieissued from Bayes’
calculations made for large but finite valuep@ndqg. Applying a clever
trick, he proved that, as , the probability of the ball falling to the
right of MN obeyed the proposition

IimP{W A= J;_O exp(-w22)dw,
3

where (not indicated by Timerding)= p/n=E , pg/r? = var .

The functions in the left sides of formulas (4.4343) are random
variables, centred and normed in the same way; Bayighout knowing the
notion of variance, apparently understood that)(@as not sufficiently
precise for describing the problem inverse to statlied by De Moivre.
Anyway, Price (Bayes 1764/1970, p. 135) statedhkadinew

of no person who has shewn how to deduce the @olotithe converse
problem[...]. What Mr De Moivre has done therefore cannot loeigint
sufficient...

Jakob Bernoulli maintained that his formulas wdse &t for solving the
inverse problem — but how precisely? De Moivre @1I56, p. 251) also
stated that he had proved the inverse problem #s we

Converselyif from numberless observations we find the Rattithe
Events to converge to a determinate quarjtity, then we conclude that
this ratio expresses the determinate Law accortiinghich the Event is to
happen

This insufficiently known problem due to Baysyery important.
Together with the integrdde Moivre — Laplace theorem it completed the
creation of the first version of the theory of pabbity and could have
stimulated Mises (who did not notice that posdijli

5.3. Additional Remark

In 1983, Stigler quoted a curious statementt{ela1749, pp. 338 — 339)
and interpreted it as a testimony against Bayaeripy. After referring to
De Moivre, Hartley wrote, in part:

An ingenious friend has communicated to me a swludf the inverse
problem of determining the probability of an evgiven the number of
times it happened and failed

Later Stigler (1986, pp. 98, 132) recalled Kgrand his own earlier
paper of 1983, but did not definitively repeat pisvious inference. Then,
however, he (1999, pp. 291 — 301) reprinted thpepand added a tiny
footnote brushing aside all the criticism publistgdthat time.

Stigler inferred that the author of the Bayt&orem was Saunderson
(1682 — 1739), and by applying formula (1), he efeemd that his
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conclusion was three times more probable thandiradr opinion.

However, he assumed that the prior probabilitiethefauthorship of Bayes
and Saunderson were the same. This means thatttheneathematical
arguments (for example, the evidence of Pricepsecfriend of Bayes) were
not considered at all. In addition, not only a h&irgersonality as
Saunderson, but almost any pretender will be abtdaim equal prior rights
with an established author (or a politician) of gast. For my part, | think
that it was Bayes himself who communicated to legrthe solutiorof the
inverse problem
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6. Other Investigations before Laplace
| consider the work of several scientists (RaBiernoulli in the first
place), geometric statistics and applications atistics. Together with De
Moivre, Bernoulli was the main predecessor of Lapla

Key words: the Buffon needle, the Ehrenfests’ model, moxgpleetation,
inoculation of smallpox

6.1. Stochastic Investigations

6.1.1. Daniel Bernoulli.He published a number of memoirs pertaining to
probability and statistics, and, before that, h&36]) provided a simple
stochastic reasoning on the structure of the Syfstem. | consider some of
Bernoulli's memoirs and postpone the study of hieeowork until 88§ 6.2.3
and 6.3.1.

In a letter of 1742 he left a curious but uaclstatement (Fuss
1843/1968, t. 2, p. 496):

| believe that mathematics can also be rightfupléed in politics[...]
An entirely new science will emerge provided thgateny observations are
made in politics as in physics

Mathematicdhere likely meant probability theory to which | @aamning
now.

1) Moral expectation. While attempting to explthe paradoxical nature
of the Petersburg game (8 3.3.4), Bernoulli (1&2f)gested that the gain
of a gambler was determined by his winnixgs accord with the
differential equation (the first such equation mlpability)

dy = cdx/xc> 0, so thay = f(x) = cIn(x/a)

wherea was the gambler’s initial capital. The logarithrfuaction also
appears in the celebrated Weber — Fechner psychmahlaw and is
applied in the theory of information.

Bernoulli also proposed that the expected wigsi pix/ p; wherep
were the appropriate probabilities be replacedneyr tnoral expectation p;
f(x)/ pi. He indicated but had not proved (see § 7.1-9)dliah gustgame
with a zero expected loss for each participant inecdisadvantageous
because the moral expectation of winnings, agaiedch, was negative,
and that the paradoxical infinite expected gaithanPetersburg game (3.4)
can be replaced by a finite moral expectation. ol his innovation to a
study of marine shipping of freight, he maintairfadain, without proof, see
same subsection) that the freight should be ewdistyibuted among several
vessels.

Bernoulli appended the text of a letter of 17i&2n Gabriel Cramer to
Nikolaus Bernoulli which contained his (not Danggltermmoral
expectationCramer also indirectly suggested to select

f(x) = min & 2*) orf(x) = x.

42



Moral expectation had become popular and Lap{@812/1886, p. 189)
therefore proposed a new term for the previggigalexpectation calling it
mathematicglhis expression regrettably persists at leadtenRrench and
Russian literature. At the end of thé™@ntury, issuing from Bernoulli's
idea, economists began to develop the theory ofjimalrutility thus
refuting Bertrand’s opinion (1888a, p. 66) that al@xpectation was
useless:

The theory of moral expectation became clagsical never was a word
applied more exactly. It was studied and taughtvas developed in books
really celebrated. With that, the success camedtp; no application was
made, or could be made, of it

2) A limit theorem. While studying the same leam concerning the sex
ratio at birth (88 2.2.4, 3.3.4, 4.4), BernoullvfD — 1771) first assumed
that male and female births were equally probdbfellowed that the
probability that the former constituted a half &f Births will be

13 % x(N 1)
p=""""7 F-g(N).
2x4 % x XN

He calculated this fraction not by the Waltisrhula but by means of
differential equations. After deriving(N — 1) andq(N + 1) and the two
appropriate values ofqg, he arrived at

dg/dN = — (2N + 2), dg/dN = — (2N — 1)

and,in the meandg/dN = — q(2N + 1/2). Assuming that the solution of this
equation passed through polht 12 andy(12) as defined above, he
obtained

1.12826

VAN +1°

Application of differential equations was Bernosllusual method in
probability, also see item 1.

Bernoulli also determined the probability o thirth of approximatelyn
boys (see below):

P(m = N + 1) = gexp(— f/N) with p of the order of N.
1)

In the second part of his memoir Bernoulli ased that the probabilities
of the birth of both sexes were in the ratiadd. Equating the probabilities
of mand (n + 1) boys being born, again being giveMadrths, he thus
obtained the [expected] number of male births

_ 2Na- b 2Na
_ »
a+b a+b

Em=M
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which was of course evident. More interesting wasnBulli’'s subsequent
reasoning for determining the probability of aniteoy m (for p of the
order of N):

2N- M

PmM=M+p+1)-PMm=M+p) d = —@b =—— dyu,
M+ +1
d _ *l+ a/bdu.
m+ +1

The subsequent transformations included thamsipn of In[M + 1 +
/(M + 1)] into a power series. Bernoulli’'s answer was

@+b) ?
PM=Mz p)= =P(m=M e
M=M=z W= =Pm=Mexp[-_ °

1,
hence (1). Note that Bernoulli had not appliedltoal De Moivre (—
Laplace) theorem.

Issuing from some statistical data, he compasedpossible pertinent
ratiosa/b but had not made a final choice in favour of eitbiethem. He
also determined such a value of p that the sunnaifgbilities (1),
beginning from p = 0, equalled one half. Applyingrsnation rather than
integration, he had not therefore arrived at aegrdl limit theorem and
(also see above) he did not refer to, and appgrbat not known about De
Moivre’s findings. This shows, once again (cf. 8)4that they had for a
long time been forgotten.

3) Urn problems. | consider two of these. An aontaina pairs of white
and black stripes. Determine the number (here atah actually, the
expected number) of paired stripes left after{2) extractions without
replacement. By the combinatorial method Berndlfi68a) obtained

X = r(r — 1)/(4— 2); andx = r¥/4niif n =

He derived the same result otherwise: whdacreases bgr the
correspondinglx is either zero j(— 2x) cases] odr (2x cases) so that

dx = [(r —2x) 0 + dr]/r, x = r?/4n sincer = 2nif x = n.

Bernoulli then considered unequal probabilibésxtracting the stripes of
different colours and (1768b) applied his findingstudy the duration of
marriages, a subject which was directly linked vintburance of joint lives.

Suppose now that each of two urns containgjaalenumben of balls,
white and black, respectively. Determine the nundfavhite balls in the
first urn afterr cyclic interchanges of one ball. Bernoulli (1780)ved this
problem by the same two methods. Thus, the diftexleapproach led him
to

dx = — xdr/n+ [(n — ¥/n]dr so thatx  (1/2)n[1 +e 2.

Bernoulli then combinatorially considered tlase of three urns with
balls of three different colours. He noted thatrkenber of white balls in
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the first urn was equal to the sum of the firsg fburth, the seventh, ...
terms of the development ofif¢ 1) + 1] divided byn™™. For the other urns
he calculated, respectively, the sums of the sedabtwedifth, the eighth, ...,
and the third, the sixth, the ninth, ... terms. R first urn he obtained

A=t [(n-1) +C*(n-1y2+cP(n-1)°+.] ne™s,
2) n
The expression designated®gbeyed the differential equation
sdrin®=ds
and was therefore equal to
S =ad" +be " sin¢ 3/2n) +ce """ cos¢ 3/2n)

where, on the strength of the initial conditioas; 1/3,b = 0,c = 2/3.

Bernoulli derived similar expressions for thieer urns, calculated the
number of extractions leading to the maximal nundsevhite balls in the
first urn, and noted the existence of a limitingtst of an equal number of
balls of each colour in each urn. This can be gasiified by referring to
the theorem on the limiting transition matrix innhegeneous Markov
chains and his problem anticipated the celebratedrifests’ model (1907),
the beginning of the history of stochastic processe

Bernoulli obtained formula (2) by issuing afsom differential equations

dx = —xdr/n +[n —(X + y)]dr/n, dy = — ydr/n + xdr/n

wherex, y, and h —(x + y)] were the numbers of white balls in the urns
afterr interchanges. | return to this problem in 87.1h&e, | note that
Todhunter (1865, pp. 231 — 234) simplified BernicaiBolution and made it
more elegant. He wrote the differential equations a

dx = (dr/n)(z — %, dy = (dr/n)(x —y), dz= (dr/n)(y — 2
and noted that the suBwas equal to

S :(1/3)[e r/n +e r/n +e r/n]

with , , being the values of1.

Bernoulli'sxin his first problem, and hiSandA from (1) depend on
discretetimer/n, which is characteristic of stochastic processiés mon-
homogeneous time.

Lagrange (1777) solved such and other stoehpstblems by means of
partial difference equations.

6.1.2. D’Alembert. In the theory of probability, he is mostly known as
the author of patently wrong statements. Thus,1i&84) maintained that the
probability of heads appearing twice in succesgian equal to 1/3 rather
than to 1/4. Then, he (1768a) reasoned on therelifte between
mathematicabhndphysicalprobabilities, stating without justification that,



for example, after one of two contrary events hecliaed several times in
succession, the appearance of the other one begiyeisally more
probable. He was thus ridden by prejudices whicmtdmrt had already
mentioned and which Bertrand latefuted by a few words (8§ 2.1.1). At the
same time, D’Alembert recommended to determine gdvdities
experimentally but had not followed his own adviedich saved him from
revealing his mistakes). Finally, he (1768b) derfexldifference (perfectly
well understood by Huygens, § 2.2.2) between thanpand the probable
durations of life and even considered its existaaxan (additional)
argument against the theory of probability itself.

It is opportune to recall Euler’s opinion asnfailated in one of his private
letters of 1763 (Juskevic et al 1959, p. 221): [@Wbert triesnost
shamelessly to defend all his mistaldsyway, D’Alembert (1768d, pp.
309 — 310) did not ascribe the theory of probapitlit aprecise and true
calculus with respect either to its principles esults

On the other hand, D’Alembert thought thataisingle trial, rare events
should be considered unrealizable (Todhunter 18@&,3) and that absolute
certainty was qualitatively different frothe highest probabilityit followed
from the latter statement that, given a large nunobebservations, an
unlikely event might happen (cf. the strong lawasfe numbers), and,
taken together, his considerations meant thati&ery of probability ought
to be applied cautiously. D’Alembert also reasopatiljected tdaniel
Bernoulli’'s work on prevention of smallpox and fartated his own
pertinent ideas (§ 6.2.3). | ought to add that @Hbert was indeed
praiseworthy for his work in other branches of neatlatics (and in
mechanics); note also that Euler had not elabottelikely correct
remark.

On D’Alembert’s work see also Yamazaki (19H¢. published many
contributions on probability and its applicatiomslat is difficult to organize
them bibliographically; on this point see Paty (88

6.1.3. Lambert.He was the first follower of Leibniin attempting to
create a doctrine of probability as a componera géneral teaching of
logic. Like D’Alembert, Lambert explained randomsdsy ignorance of
causes, but he also stated that all digits in itgfidecimal developments of
irrational numbers were equally probable, which wadeuristic approach
to the notion of normal numbers, and he formula@&dodern-sounding idea
about the connection of randomness and disordenlfea 1771, § 324,
1772 — 1775). His thoughts were forgotten until ot (1851/1975, § 33,
Note) noted them, and only Chuprov (1909/1959 88) Inentioned them
afterwards.

Lambert did not go out of the confinesuniiform randomnesg.he
philosophical treatises of the "L8entury testify to the great difficulties
experienced in generalizing the notion of randomnalso see § 2.2.4. Even
in the 19" century, many scientists, imagining that randoramvess only
uniform, refused to recognize the evolution of $pec

6.1.4. Buffon.He (1777) is mostly remembered for his definitive
introduction of geometric probabilities (8 6.1.Be experimentally studied
the Petersburg game (8 3.3.4), proposed the valie0DO as a (non-
existing) universally negligible probability, wrolygsolved the problem of
the probability of the next sunrise (8§ 5.1) and pded tables of mortality
which became popular.
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Negligible, as he thought, was the probabditgleath of a healthy man
aged 56 during the next 24 hours, but his figure agparently too low; K.
Pearson (1978, p. 193) thought that 1/1,000 woald&heen more
appropriate. In addition, negligibility ought to baly chosen for a
particular event rather than assigned universalliythe above is contained
in Buffon’s main work (1777). There also (8 8, Note published the text
of his letter of 1762 t®aniel Bernoulli which contained an embryo of
Quelelet’s celebrated Average man (see my § 10.5):

Mortality tables are always concerned with the aggr man, that is, with
people in general, feeling themselves quite weill dnealthy or infirm,
robust or feeble

6.1.5. CondorcetHe attempted to apply the theory of probability to
jurisprudence in the ideal and tacitly assumed cassdependent
judgements made by jurors or judges. He also estifrthe trustworthiness
of testimonies and critically considered elect@rablems.

His main method was the application of differengaaions. Todhunter
(1865, pp. 351 — 410) described the work of Conetorcdetail and
concluded (p. 352) that in many cases it alasost impossible to discover
what he had meanthe obscurity and self contradiction are withouyan
parallel [...] He, Todhunter, will provide some illustratigrisit no amount
of examples can convey an adequate impressiore @xent of the evilét
the very least, however, Laplaaed Poisson continued to apply probability
to jurisprudence and certainly profited to somesekfrom the work of
Condorcet. Poisson (1837a, p. 2) mentioned hissidaée favourably.

| note however that, while discussing gameshaince, Condorcet
(1785/1847, p. 561) expressed himself rather unfately, and stated on
the next page without any justification that Damernoulli had not
removed all the objections to thée of expectation which was allegedly
achieved by D’Alembert. In 1772, in a letter to ot, he (Henry
1883/1970, pp. 97 — 98) told his correspondenthieavasamusing himself
by calculating probabilities, had compiladooklefwhich remains
unknown]on that subjecand was keeping to the opinions of D’Alembert.
On Condorcet see also Yamazaki (1971).

6.1.6. Geometric ProbabilitiesThese were decisively introduced in the
18" century although the definition of the notion itsand, for that matter,
only on a heuristic level, occurred in the mid2x@ntury (§ 10.3). Newton
(8 2.2.3) was the first to think about geometrichability; Daniel Bernoulli
(8 6.1.1) tacitly applied it in 1735 as did somewlager De Moivre
(1725/1756, p. 323), T. Simpson (1757) (8 6.3.1 Bayes(8 5.1). Dealing
with the continuous uniform distribution, De Moivassumed, for example,
thatif0< <band 0 <a<b, thenP (0 < <a)=][0;a] + [O; b].

The Michell problem (1767) became classicaltelraine the probability
that two stars from all of them, uniformly distriied over the celestial
sphere, were situated not farther than 1° from edlocér. Choose an
arbitrary point A) on a sphere with centf@ and imagine a circle
perpendicular t®A having distance 1° frorA. The probability sought is
the ratio of the surface of the spherical segmand bbtained to that of the
sphere.
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Newcomband Fisher calculated the expected number of glaselated
stars (8 10.8-4) and general issues were alsoeébgtothers. Thus,
Proctor (1874, p. 99) wished to determwmieat peculiarities of distribution
might be expected to appear among a number of pepread over a plane
surface at randonHis was a question now belonging to mathematical
statistics and concerning the deviations of an eéngdidensity curve from
its theoretical counterpamertrand (1888a, pp. 170 — 171) remarked that
without studying other features of the sidereatesysit was impossible to
decide whether stars were arranged randomly.

Buffon (8 6.1.4) expressly studied geometrhability; the first report
on his work likely written by him himself was Anompus (1735). Here is
his main problem: A needle of lengthfalls randomlyon a set of parallel
lines. Determine the probabilify that it intersects one of them. It is seen
that

P=4r a
3)

wherea > 2r is the distance between adjacent lines. Buffon éihted,
however, only determined the ratia for P = 1/2. His main aim was

(Buffon 1777/1954, p. 471) fout geometry in possession of its rights in the
science of the accidentaflany commentators described and generalized the
problem above. The first of them was Laplace (TBFR366) who noted that
formula (3) enabled to determine [with a low premi$ the number .

6.2. Statistical Investigations

6.2.1. Staatswissenschaft (Statecraft, Universityaistics). In mid-18"
century Achenwall created the Goéttingen schodbtaiatswissenschaft
which described the climate, geographical situapoaditical structure and
economics of separate states and estimated thailgdmn by issuing from
data on births and mortality but did not study tieless between quantitative
variables. Achenwall advised state measures fogtéhnie multiplication of
the population and recommended censuses withowahwhir63/1779, p.
187) aprobable estimatef the population could be still got, see above. H
(1752/1756, Intro.) also left an indirect definitiof statistics:

In any case, statistics is not a subject tlzat be understood at once by
an empty pate. It belongs to a well digested pbpby, it demands a
thorough knowledge of European state and naturstiony taken together
with a multitude of concepts and principles, andaaility to comprehend
fairly well very different articles of the constians of present-day
kingdomg Reichg.

Achenwall’s student Schlozer (1804, p. 86) fagively stated that
History is statistics flowing, and statistics istary standing stillFor those
keeping taStaatswissenschattis pithy saying became the definition of
statistics which was thus not compelled to studysabhconnections in
society or discuss possible consequences of inlomgtThen, only political
arithmetic was mostly interested in studying popatg finally, wordy
descriptions rather than numbers lay at the héaheoworks of the
Gottingen school.
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Knies (1850, p. 24) quoted unnamed German asitibo had believed,
in 1806 and 1807, that the issues of statistichbtggbe the national spirit,
love of freedom, the talent and the characteristidhe great and ordinary
people of a given state. This critic has to do \lih limitations of
mathematics in general.

Moses (Numbers 13: 17 — 20), who sent out dpid¢ise land of Canaan,
wished to find ouWhether the people who dwell in it are strong ealy
whether they are few or many wished to know both numbers (roughly)
and moral strength. Ankh a multitude of people is the glory of a kingt b
without people a prince is ruing@roverbs 14:28).

Tabular statistics which had originated withcAarsen (1741) could have
served as an intermediate link between words antbets, but Achenwall
(1752, Intro.) haexperienced a public atta@gainst the first edition of that
book (published in 1749 under a previous title AmghersenTabular
statisticians continued to be scorned, they weltecc@abellenfabrikanten
andTabellenknechtéslaves of tables) (Knies 1850, p. 23).

By the end of the fdcentury the scope &taatswissenschafarrowed,
although it still exists, at least in Germany, ineav form: it includes
numerical data and studies causes and effectd anthe application of the
statistical method to various disciplines and agisgtate, but statistics, in its
modern sense, owed its origin to political arithimet

6.2.2. Population StatisticsStussmilch (1741) adhered to the tradition of
political arithmetic. He collected data on the mmeait of population and
attempted to reveal pertinent divine providencehzutreated his materials
loosely. Thus, when taking the mean of the dattapeng to towns and
rural districts, he tacitly assumed that their dapans were equally
numerous; in his studies of mortality, he had ritemapted to allow for the
differences in the age structure of the populatmirite various regions etc.
Nevertheless, his works paved the way for Que(gl&0.5); in particular,
he studied issues which later came under the prtewih moral statistics
(e.g., illegitimate births, crime, suicides) and tables of mortality had been
in use even in the beginning of thé™@ntury, see Birg (1986) and
Pfanzagl & Sheynin (1997). After A. M. Guerry andégelet the domain of
moral statistics essentially broadened and includeg for example,
philanthropy and professional and geographical higluf the population.

Like Graunt, Stussmilch discussed pertinenteaasid offered
conclusions. Thus, he (1758) thought of examinimgdependence of
mortality on climate and geographical position aecknew that poverty and
ignorance were conducive to the spread of epidemics

Sussmilch’s main contribution, ti&bttliche Ordnungmarked the origin
of demography. Its second edition of 1765 includexhapteOn the rate of
increase and the period of doublifwf the population]; it was written
jointly with Euler and served as the basis of ohEwer's memoirs (Euler
1767). Sussmilch thought that the multiplicatiom@dnkind was a divine
commandment and that rulers must take care of slubjects. He
condemned wars and luxury and indicated that tH&aweeof the poor was
to the advantage of both the state, and the richpertinent appeals brought
him into continual strife with municipal (Berlinughorities and ministers of
the state (Prussia). He would have likely agreati wimuch later author
(Budd 1849, p. 27) who discussed cholera epidemics:
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By reason of our common humanity, we are all theemearly related

here than we are apt to think..] And he that was never yet connected with

his poorer neighbour by deeds of Charity or Lovaymne day find, when it
is too late, that he is connected with him by adoahich may bring them
both, at once, to a common grave.

Sussmilch’s collaboration with Euler and frequeeferences to him in his
book certainly mean that Euler had shared his g¢secial views. Malthus
(1798) picked up one of the conclusions in@ttliche Ordnungviz., that
the population increased in a geometric progres&tiha more or less
received statement). Euler compiled three tablegvsly the increase of
population during 900 years beginning with Adam &we. His third table
based on arbitrary restrictions meant that eacye24s the number of living
increased approximately threefold. Gumbel (1918yed that the numbers
of births, deaths and of the living in that tablerevapproaching a geometric
progression and noted that several authors sin@@ iéd proposed that
proportion as the appropriate law.

Euler left no serious contribution to the theof probability, but he
published a few memoirs on population statistiaes.ditl not introduce any
stochastic laws, but such concepts as increasepulg@tion and the period
of its doubling are due to him, and his reasoniag elegant and
methodically interesting, in particular for lifesarance (Paevsky 1935).

Lambertpublished a methodical study in population staiss{iL772).
Without due justification he proposed there sevienab of mortality
belonging to types IX and X of the Pearson curg$4.2). Then, he
formulated the problem about the duration of mge& studied children’s
mortality from smallpox and the number of childiarfamilies (8 108). See
Sheynin (1971b) and Daw (1980) who also appendeahalation of the
smallpox issue. When considering the last-menticnudygject, Lambert
issued from data on 612 families having up to li#tlodn, and, once more
without substantiation, somehow adjusted his malerHe arbitrarily
increased the total number of children by one lidty attempting to allow
for stillbirths and the death of children. Elsewdnée (8 68) indicated that
statistical inquiries should reveal irregularities.

6.2.3. Medical Statistics|t originated in the 1®century, partly because
of the need to combat the devastating visitatidreholera. At the end of
the 18" century Condorcet (1795/1988, p. 542) advocatéidatin of
medical observations and Black (1788, pp. 65 -e88) compiled a
Medical catalogue of all the principal diseases amagualties by which the
Human Species are destroyed or annayed reminded of Leibniz’
thoughts (8 2.1.4). He also appended to his bo®kaat of all the fatal
diseases and casualties in London during 1701 — 1776By means of
such charts, he (p. 56) statede shall[...] be warned to make the best
disposition and preparation for defende an earlier publication Black
(1782), however, expressed contradictory views.

D’Alembert (1759/1821, pp. 163 and 167) arrdtyatleclared that

Systematic medicine is a real scourge of mankindtiple and detailed
observations, conforming to each other, thig| is what the reasoning in
medicine ought to be reduced
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A physician is a blind man armed with a club. Heslit without knowing
who will he hit. If he hits the disease, he kifjsfihe hits Nature, he kills
Nature

The physician most deserving to be consultedagisvtho least believes in
medicine

All this is contained in the second edition of haok, but was written not
later than in 1783, the year of his death.

Especially important was the study of prevamntib smallpox
(Condamine 1759, 1763, 1773; Karn 1931). Condartiirib9) listed the
objections against inoculation, both medical anidjics. Indeed, an
approval from theologians was really needed. Wi896/1898) described
thewarfare of science with theologynd included (vol. 2, pp. 55 — 59)
examples of fierce opposition to inoculation (amgolto 1803, to vaccination
of smallpox). Many thousands of Canadians perishéde mid-19' century
only because, stating their religious belief, thag refused to be inoculated.
White distinguished between theology, the oppo$ange, andpractical
religion. Condamine (1773) included his correspameein particular with
Daniel Bernoulli, to whom he had given the datasorallpox epidemics
which the latter used in his research.

Karn began her article by stating that

The method used in this paper for determiningrnifieence of the death-
rates from some particular diseases on the duradibiife is based on
suggestions which were made in the first place ayi€ Bernoulli.

Daniel Bernoulli (1766) justified inoculatiomhat procedure, however,
spread infection, was therefore somewhat dangdosuke neighbourhood
and prohibited for some time, first in England,rthe France. Referring to
statistical data, but not publishing it, Bernouliroduced necessarily crude
parameters of smallpox epidemics and assumedibatdculation itself
proved fatal in 0.5% of cases. He formed and sotkiecappropriate
differential equation and thus showed the relabietween the age, the
number of people of the same age, and of thodeeof tvho had not
contacted smallpox. Also by means of a differergggiation he derived a
similar formula for a population undergoing inodida. It occurred that
inoculation lengthened the mean duration of life3byears and 2 months
and was therefore extremely useful. Vaccinatibe,inestimable discovery
by Jenner, who had thereby become one of the gtdad@efactors of
mankind(Laplace 1814/1995, p. 83),
was introduced at the end of théh]@ntury. Its magnificent final success
had not however ruled out statistical studies. Sirfi®87, vol. 1, p. 230)
concluded that only comprehensive national staistould duly compare it
with inoculation.

D’Alembert (1761; 1768c) criticized Daniel Beulli, see Todhunter
(1865, pp. 265 — 271, 277 — 278 and 282 — 286).eMetyone will agree, he
argued, to lengthen his mean duration of life atekpense of even a low
risk of dying at once of inoculation; then, moraheiderations were also
involved, as when inoculating children. Without dierg the benefits of that
procedure, D’Alembert concluded that statisticahdan smallpox should be
collected, additional studies made and that theliesof those dying of
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inoculation should be indemnified or given memoneddals. He also
expressed his own thoughts applicable to studiesef unpreventable
diseases. Dietz et al (2000; 2002) described Bdliisoand D’Alembert’'s
investigations on the level of modern mathematqadlemiology and
mentioned sources on the history of inoculatiom. e partK. Pearson
(1978, p. 543) stated that inoculation vgagd to have been a custom in
Greece in the 17 century and was advocatgd.] in thePhilosophical
Transactions of the Royal Sociatyl713 Also see Sheynin (1972/1977,
pp. 114 — 116; 1982, pp. 270 — 272).

6.2.4. MeteorologyLeibniz (§ 2.1.4) recommended regular
meteorological observationsdeed (Wolf 1935/1950, p. 312),

Observations of barometric pressure and weatheditmms were made
at Hanover, in 1678, and at Kiel, from 1679 to 1,7a#the instigation of
Leibniz.

TheSocietas meteorologica PalatimaPfalz (a principality in Germany)
was established in 1780, and, for the first timéhm history of experimental
science, it organized cooperation on an internatiscale. At about the
same time th&ociété Royale de Médecifiaris) conducted observations in
several European countries (Kington 1974) and avéime 1730s — 1740s
they were carried out in several towns in Sibariagcordance with
directions drawn up by Daniel Bernoulli in 1733KAomirov 1932). In the
second half of the fBcentury several scholars (the meteorologist Cotte,
Lambertand Condorcet) proposed plans for comprehensieenational
meteorological studies.

Lambert (1773) studied the influence of the Moo the air pressure and
Daniel Bernoulli encouraged him (Radelet de Gravad €979, p. 62): if the
influence of the Moon on ther is similar to its influence on the seas, it
should be observable, because the Moon’s distaariesy but the elasticity
of air and its weak inertia should be allowed fand, further:

Your considerationfs..] are quite justified; publish them without
hesitating[...] whatever are the resulfs..]. Only try to establish them

properly.

Toaldo (1775; 1777) statistically studied tlo@mections between
phenomena concerning meteorology atated that the weather depended
on the configurations of the Moon. His opinion weas abandoned until the
mid-19" century (Muncke 1837, pp. 2052 — 2076).

6.3. Treatment of Observations

It became necessary after regular astronoralzsgrvations had begun
(since Tycho Brahe). A problem of determining tregtR's figure presented
itself in the second half of the 'f@entury. Newton proved that the Earth
was an ellipsoid of revolution with its equatoniatlius @) larger than its
polar radiuslf), and attempts were being made to prove or disgptios
conclusion by meridian arc measurements. Theirtlengere indirectly
calculated by triangulation. Two such measuremarasieeded for
calculating the parameters of the ellipsoid (altftolocal deviations of the
figure of the Earth corrupt the results) whereakinelant measurements
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lead to systems of linear equations in these unkisomhich can then be
derived more precisely. Nowadays, according takitesovsky ellipsoid of
1940 (Sakatov 1950, p. 364), it is held taat 6356.8kmandb =6356.8
km so that 2a is approximately equal to 40,0@én corresponding to the
initial definition of the metre. However, in 1980t metre was defined in
terms of the wavelength of light. Natandb were actually derived, but
rathera and thdlattening(a — B/a. That parameter had also been
determined by pendulum observations, cf. § 10.9.1.

The introduction of the metric system, anddeenands of cartography,
physics and chemistry led to the advancement ofréament of
observations. Scientists recognized the commoractearof adjusting direct
and indirect observations: in both cases the unkisomere called/ittel

(Lambert 1765b, § 6) anilieu (Maire & Boscovich 1770, pp. 484 and 501).

6.3.1. Direct MeasurementsThe first to touch on this case was Cotes
(1722), see Gowing (1983, p. 107).Without any jicsttion he advised to
regard the weighted arithmetic mean, which he coethwith the centre of
gravity of the system of points, — of the obseadi— as thenost probable
estimator of the constant sought:

Let p be the place of some object defined by @htien, g, r, s the places
of the same object from subsequent observationsheee also be weights
P, Q, R, S reciprocally proportional to the dispdagents arising from the
errors in the single observations, and which aneegi by the limits of the
given errors; and the weights P, Q, R, S are corezkas being placed at p,
g, r, S, and their centre of gravity Z is foundsdy the point Z is the most
probable place of the object

Cotes appended a figure (perhaps representinge-thmensional picture)
showing nothing except these four points. He haderplained what he

meant bymost probablenor did he describe his statement clearly enough.

Nevertheless, his authority gave support to thetexg common feeling (8
2.1.1). Without mentioning Cotes Condamine (175238) recommended
to apply that estimator. Then, Laplace (1814/1903,21) stated thal
calculatorsfollowed the Cotes rule. Even before Cotes Pi¢h6®3/1729,
pp. 330, 335, 343) called the arithmetic meéritable

T. Simpson (1756), see also Shoesmith (19&fipljed, for the first time
ever, stochastic considerations to the adjustmiemieasurements by
assuming that observational errors obeyed sometgdas and thus
extended probability to a new domain and effecyiwelroduced random
observational errors. He aimed to refute some umedagmthors who had
maintained that one good observation was as plieuasthe mean of many
of them, cf. end of § 1.7. Simpson assumed thathlaces of observational
errors

-v,—-v+1, ..,-2,-1,0,1,2,.v—1,v
were equal [proportional] either to
-V -1 v-1 v
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or to
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Yo =0 vt (vi+ 1), vr, (v=1YE L 2

Takingr = 1 he thus introduced the uniform and the tridaigdiscrete
distributions. Denote the observational errorsbgnd byN, the number of
some chances. Then, as Simpson noted,

N( 1+ 2+ ...+ »=m)was the coefficient af" in the expansions of

(G S S ) WESY (o Y ey
(R SRR S (VRS ) e S Al o o IS el (¢ NP ) we (¢ P s S

The left sides of these two equalities were gemegdtinctions with unit
coefficients in the first case, and coefficient@ 1,..,v+ 1, ... 2, 1 in the
second instance.

For both these cases Simpson determined thoapilay that the absolute
value of the error of the arithmetic meamaibservations was less than
some magnitude, or equal to it. Consequently, loeddd that the mean was
always [stochastically] preferable to a separasenlation and thus
arbitrarily and wrongly generalized his proof. Ssop also indicated that
his first case was identical with the determinatdthe probability of
throwing a given number of points withdice each having/# 1) faces. He
himself (1740, Problem No. 22), and earlier Montn{8r3.3.3), although
without introducing generating functions, and Deiwle (1730, pp. 191 —
197) had studied the game of dice. In the contiswease, Simpson’s
distributions can be directly compared with eadteattheir respective
variances are’/3 andv’/6.

Soon Simpson (1757) reprinted his memoir adtbngan investigation
of the continuous triangular distribution to whicé passed over by
assuming thav| with (m/n)/v remaining constant. Hers/nwas the
admissible error of the mean. However,
his graph showed the density curve of the erraghefmean which should
have been near-normal but which did not possesdistiactive form of the
normal distribution.

Without mentioning Simpson, Lagrange (1776aglistd the error of the
mean for several other and purely academic didtabs, also by applying
generating functions (even for continuous lawssthanticipating the
introduction of characteristic functions). He whs first to use integral
transformations, and, in Problem 6, he derivecetingation of the
multivariate normal distribution. In his 8§ 18 heroduced the terraourbe
de la facilité des erreurA possible though inadequate reason for ignoring
Simpson was the heated dispute over priority batvizx Moivre and him:
Lagrange apparently had not wanted to be evendaitlyrinvolved in it. De
Moivre was a scholar of a much higher calibre ¢ tearly recognized by
Simpson) and 43 years the senior. At least on aéiraportant occasions
Simpson did not refer to him and, after being aedusy De Moivre (1725;
only in edition of 1743, p. xii) ofnaKing] a Shew of new Rules, and works
of mine Simpson (posthumous publication, 1775, p. 144)
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appealed] to all mankind, whether in his treatment of me ag[hot]
discovered an air of self-sufficiency, ill-natuead inveteracy, unbecoming
a gentleman

The ternirheory of errorgTheorie der Fehléris due toLambert (1765a,
Vorberichte and § 321) who defined it as the stoidiye relations between
errors, their consequences, circumstances of aésenvand the quality of
the instruments. He isolated the aim of Tieory of consequencas the
study of functions of observed (and error-riddemmtities. In other words,
he introduced the determinate error theory and evim it 8§ 340 — 426 of
his contribution. Neither Gauss, nor Laplace ewsduhe new terminology,
but Bessel (1820, p. 166; 1838b, § 9) applied ®pressiortheory of errors
without mentioning anyone and by the mid®@ntury it became generally
known.

Lambert studied the most important aspectseating observations and
in this respect he was Gauss’ main predecessofl H&®, 88 271 — 306)
described the properties w$ualrandom errors, classified them in
accordance with their origin (§ 282), unconvincingtoved that deviating
observations should be rejected (88 287 — 291 )eatichated the precision
of observations (8§ 294), again lamely but for tingt time ever. He then
formulated an indefinite problem of determiningstafistic] that with
maximal probability least deviated from the reduesof the constant sought
(8 295) and introduced the principle of maximaelikood, but not the term
itself, for a continuous density (8 303), maintagihowever (8 306), that in
most cases it will provide estimates little dewigtirom the arithmetic
mean. The translator of Lambert’s contribution iGerman left out all this
material claiming that it was dated.

Lambert introduced the principle of maximunelikood for an
unspecified, more or less symmetric and unimodalesuas shown on his
figure, call it (X — %), wherex, was the sought parameter of location.
Denote the observations &y x,, ..., X,, and, somewhat simplifying his
reasoning, write his likelihood function as

(X1—=Xo) (X2—=Xo) ... (X% — ).

When differentiating it, Lambert had not indicatedt the argument here
was the parametes, etc.

In a few years Lambert (1765a) returned tottbatment of observations.
He attempted to estimate the precision of the rmuetiic mean, but did not
introduce any density and was unable to formulatefanite conclusion. He
also partly repeated his previous consideratiodisodiered a derivation of a
density law of errors occurring in pointing an nushent (88 429 — 430) in
accordance with the principle of insufficient reasib was a semi-
circumference (with an unknown radius) simply beseatihere were no
reasons for itangularity.

In a letter of 1971 E. S. Pearson informed Inaduriouslyhis father’s
Lectureg(1978), — then not yet published, — omitted LamMdet explained:

It was not becausg.ambert’s]writings were in German of which my
father was an excellent scholar. | supppsg that he selected the names of
the personalities he would study from a limited banof sources, e.g.,



Todhunter, and that these did not include Lamberéisie [Todhunter did
refer to Lambert but had not described his wo@¥.fourse, K. P. was over
70 by the time his history lectures passed the $&&0, and no doubt his
exploration was limiting itself to the four Frencem Condorcet,
D’Alembert, La Grange and Laplace

Johann 11l Bernoulli (1785) published a passiige a manuscript of
Daniel Bernoulli (1769/1997) which he had receiwed 769 but written, as
its author had told him, much earlier. There, Deagsumed the density law
of observational errors as a semi-ellipse or saraumference of some
radiusr ascertained by assigning a reasonable maximal @érabservation
and the location parameter equal to the weightiédnaetic mean with
posterior weights

p=r’—(x—x). 4)

Here,x; were the observations arxd the usual mean. The first to apply
weighted, or generalized arithmetic means was Si@63). This estimator
demanded a subjective selection of weights andlyt provided a correction
to the ordinary arithmetic mean which tended tostafor even density
functions.

In his published memoir Daniel Bernoulli (17 ®)jected to the
application of the arithmetic mean which (8 5) oobnformed to an equal
probability of all possible errors and was tantantdo shooting blindly. K.
Pearson (1978, p. 268), however, reasonably artpnadmall errors were
more frequent and had their due weight in the mbwtead, Bernoulli
suggested the maximum likelihood estimator of teation parameter.
Listing reasonable restrictions for the densityweuibut adding the
condition of its cutting the abscissa axis almasppndicularly), he selected
a semi-circumference with radius equal to the gstgiossible, for the
given observer, error. He then (8 11) wrote outlitedihood function as

{Ir*= &= [r* - k=% [r*- x =) ..}

wherex was the unknown abscissa of the centre of the-sgmimference,
andxy, X, X, ..., were the observations. Preferring, howeveease
calculation, he left the semi-circumference foraan of a parabola but he
had not known that the variance of the result oletiwill therefore change.

For three observations his likelihood equati@s of the fifth degree.
Bernoulli numerically solved it in a few particuliastances with some
values ofx;, X, andxz chosen arbitrarily (which was admissible for such a
small number of them). | present his equation as

e T e

r- (- X1)2 r- (x- x2)2 -

so that the maximum likelihood estimate is

Xo = [pX b= 1 (5; 6)

P rf- %= %)°
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with unavoidable use of successive approximatibos some inexplicable
reason these formulas are lacking in Bernoulli’'srmoe although the
posterior weights (6) were the inverse of the wesidh) from his
manuscript and heuristically contradicted his owgliminary statement
about shooting skilfully. It is now known, howevérat such weights are
expedient in case of some densities.

Euler (1778, § 6) objected to the principler@ximum likelihood. He
argued that the result of an adjustment shouldyahange whether or not
a deviating observation was adopted, but that #heevof the likelihood
function essentially depended on that decision.retisark should have led
him to the median. Euler then (§ 7) remarked thatd was no need

to have recourse to the principle of the maximuntesthe undoubted
precepts of the theory of probability are quitefisignt to resolve all
guestions of this kind

Instead of the arithmetic mean Euler recommendecstimate (5) with
posterior weights (4) and mistakenly assumed tleah&ulli had chosen
these same weights.

Euler denoted the observations bya, +b, +c,...and (811)
remarked that his estimate can be obtained fronadhdition

[ — xo— @)% + [r*— (X0 —b)?)*+ [r*— (xo—©)7]* + ... = max.
(7)

The quantities in parentheses are the deviatioobsdrvations from the
estimate sought and their fourth powers are ndgégo that condition (7)
is equivalent to the requirement

(Xo—a)? + (Xo—b)® + (xo —C)* + ... = min,
(8)

whence follows the arithmetic mean. Condition &7lheuristically similar to
the principle of least squares (which in case @& onknown leads to the
arithmetic mean) and resembles the Gaussian plknafpnmaximum weight,
8 9.1.3. A small corruption of condition (8) doessg, it is caused by
inevitable deviations of the observations fromphaposed (or assumed)
symmetrical law. Bernoulli noted this fact, anduadly proposed the
general arithmetic mean.

In his last memoir devoted to pendulum obs@&matDaniel Bernoulli
(1780) separated, for the first time ever, obsésmat errors into random
(momentanearujrand systematiacfironicarun), although not for
observations in general. He indicated that thess®acted proportionally
to the square root of, and to the tirtself respectively. Making use of his
previous findings (8 6.1.1), Bernoulli justifiedshinvestigation by the
normal distribution which thus first occurred irettheory of errors,
although only as a limiting law.

From A daily vibrations of a pendulum, as Bernoulli assdp{d + )
were slower, and\ — M) faster than stipulated, with periods of (1)4and
(1 — ) respectively. His pattern meant that the numlbg@ositive (say)
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errors possessed a symmetric binomial distribudiweh that the error of the
pendulum accumulated after a large number of vidomatwill have a normal
distribution.

Bernoulli had not investigated the more genpatiern of an unequal
number of the slower and the faster vibrationsaait/h it corresponded to
the case of unequal probabilities of male and ferbaths, also studied by
him (8 6.1.1). Neither had he said anything abbeatgossible dependence
between the periods of successive vibrations.

In his previous work Bernoulli (1770 — 1771 e that, folN = 10,000
and p =47.25

2

2 X 1
TN PO
Now, havingN = 43,200, he obtained, for the same probability/af

W =47.25432 100.

It was this calculation that caused his coriolugabove) about the
behaviour of random errors. Already in thé"I@ntury, however, it became
known that such errors can possess other lawsstfliition (end of §

10.5).

Note also that Bernoulli came close to intradgdhe probable error; to
recall (8§ 2.2.2)Huygensdiscussed the probable duration of life. Bernoulli
was also the first to introduce elementary errbda not, however, set high
store by this fact; indeed, this notion is not reseey for proving the CLT.

6.3.2. Indirect measurementsHere, | consider the adjustment of
redundant systems

ax+hby+..+s=v,i=12, ..n
9)

in kunknowns k < n) and residual free ternvg

1) In case of two unknowns (cf. beginning &.8) astronomers usually
separated systems (9) into all possible groupwofeguations each and
averaged the solutions of these groups. As diseovierthe 19 century, the
least-squares solution of (9) was some weightechroéthese partial solutions
(Whittaker & Robinson 1924/1949, p. 251).

In 1757 and lateBoscovich, see Cubranic (1961, pp. 90 — 91) andéVai
& Boscovich (1770, pp. 483 — 484), applied this moet but it did not
satisfy him, see below. In the first case he (Cniora961, p. 46) derived
the arithmetic mean of four latitudinal differenéesan unusual way: he
first calculated the half-sums of all six pairsdifferences and then took
their mean. He apparently attempted to reveal tiaveaidable systematic
errors and to ensure a (qualitative) estimatiotheforder of random errors.

2) For three unknowns that method becomes udwién an astronomical
context, Mayer (1750) had to deal with 27 equatiorthiree unknowns. He
calculated three particular solutions (see belanyl averaged them. The
plausibility of the results thus obtained dependedhe expediency of the
separation and it seems that Mayer had indeed magkesonable choice.
Being mostly interested in only one unknown, hduded the equations



with its greatest and smallest in absolute valwedfaments in the first, and
the second group respectively. Note also that Mbagieved that the
precision of results increased as the number cdrobtions, but in his time
this mistake was understandable.

Mayer solved each group of equations underdalitianal condition

\/i:O,

wherei indicated the number of an equation; if the fipsiup included the
first nine of them, then=1, 2, ..., 9.

In a letter of 185@Gauss (W/Erg-5, Tl. 6, p. 90) remarked that Mayad h
only calculated by means of primitive combinatiode.referred to Mayer’s
manuscripts, but it is likely that Mayer’s trick svalmost the same in both
cases. And Gauss himself, in an earlier lettehefsame year (Ibidem, pp.
66 — 67), recommended a similar procedure for caiibg an aneroid.
Anyway, Laplace (1812/1886, pp. 352 — 353) tesdifigat thebest
astronomers had been following Mayer. A bit eafBest (1811, pp. 202 —
203) reported much the same.

The condition above determines the methoalvefagesand Lambert’s
recommendation (1765b, § 20) about fitting an emoglistraight line might
be interpreted as its application. Lambert sepdrtte points (the
observations) into two groups, with smaller angéarabscissas, and drew
the line through their centres of gravity, and iséweral groups when fitting
curves.

3) The Boscovich methoHe (Maire & Boscovich 1770, p. 501) adjusted
systems (9) under additional conditions

Vi+Vot ..o+ =0, 1] + Vo] + ... + V| = min, (10;
11)

the first of which can be allowed for by summingtaé equations and
eliminating one of the unknowns from the expressiars obtained. The
second condition linked Boscovich’ method with thedian. Indeed, he
adjusted systems (9) by constructing a straigletwhose slope was equal to
the median of some fractions. In 1809, Gauss nibta(11) led exactly tk
zero residuals;, which follows from an important theorem in thehnot

yet known theory of linear programming.

Galileo (1632), see Hald (1990, § 10.3), &=hiel Bernoulli (1735/1987,
pp. 321 — 322) applied condition (11) in the case/hich the magnitudes
such as/; were positive by definition. Just the same, W.ddbel (1805)
determined the movement of the Sun by issuing fiteerapparent motion of
the stars. The sum of these motions depends dotimer and its minimal
value, as he assumed, estimated that movementché¥ssequations were
not even algebraic, but, after some necessary ssigeeapproximations,
they might have been considered linear. In thasegithe motion of a star
could have been discovered only in the plane pelipalar to the line of
vision.

Here is W. Herschel’'s earlier reasoning (178321, p. 120):

We oughk...] to resolve that which is common to all the sfarg into a
single real motion of the Solar system, as farhas will answer the known
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facts, and only to attribute to the proper moti@igach particular star the
deviations from the general law the stars seeroltow ...

This statement resembles NewtoR'sles of Reasoning in Philosophy
(1729, Book 3): admit no more caugkan such that are both true and
sufficient Even Ptolemy (1984, Ill, 4, p. 153) maintainedtt simpler
hypothesis would seem more reasonable.

When treating direct measurements W. Hersdi848g) preferred the
median rather than the arithmetic mean (Sheynidd9gp. 172 — 173).

4) The minimax method. Kepler (§ 1.7) had appdy made use of some
elements of this method although it did not ensyrtemal, in any sense,
results.Laplace (1789/1895, pp. 493, 496 and 506 and elsaylapplied it
for preliminary investigations. This method corres@s, as Gauss (1809, §
186) remarked, and as it is easy to prove, to ¢melition

lim (2 + ™ + ...+ v,?) = min, k

5) Euler (1749, 1755, 1770) had to treat irtirmeasurements as well. At
least in the first two instances his goal was mmahe difficult than that
outlined in § 1.7 where the underlying theory wagmosed to be known.
Concerning the first of his contributions, Wilsd®80, p. 262n) remarked
that Euler was

Stymied by the finding that, for certain of theiahles, the equations led
to wildly different values

Euler did not attempt to build a general thetwy wished to achieve
practical results and turned in some cases to themax principle. On the
last occasion Euler did not keep to any definitéhoe and combined
equations in a doubtful manner. So as to elimioagunknown, he
subtracted each equation from (say) the first tines assigning it much
more weight.

Stigler (1986, pp. 27 — 28) call&diler's memoir (1749) atatistical
failure and, in his opinion, Euler was a mathematician distrustedthe
combination of equations. Not understanding thenngaial of the method of
minimax, he mentioned a classic in a free and e@myner, so that his
statement was absolutely inadmissible, see also6téelow. In his second
book Stigler (1999, pp. 317 — 318) unblushinglyedhEuler a great
statistician but did not notice his inadequate oaasy concerning deviating
observations (§ 6.3.1).

6) In the 18 century practitioners at least sometimes expegiénc
difficulties when deciding how to adjust their obssions (Bru 1988, pp.
225 — 226). Indeed, Maupertuis (1738/1756, p. 1686b, pp. 311 — 319)
calculated his triangulation 12 times (taking iatzount differing sets of
observations), selected two of his results and tadbiheir mean value.

At the turn of that century Laplace and Legendfused to adjust a
triangulation chain laid out between two baselindsely fearing the
propagation of large errors, they calculated eathdf the chain starting
from its own baseline. Much later Laplace (ca. 18886, pp. 590 — 591)
defended their decision by previous ignorance ewthie théorieof
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adjustment and added that his (not Gauss™) jastiion of the MLSqg had
changed the situation.
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7. Laplace

Laplace devoted a number of memoirs to therthebprobability and
later combined them in hiBhéorie analytique des probabilit€EAP)
(1812). He often issued from the non-rigorousiyweCLT by applying
characteristic functions and the inversion formakdculated difficult
integrals, applied Hermite polynomials, introdutlee Dirac function and
(after Daniel Bernoulli) the Ehrenfests’ model,diad sampling, but left
probability on its previous level. His theory of@s was impractical.
However, issuing from observations, Laplace prabved the Solar system
will remain stable for a long time and completee #xplanation of the
movement of its bodies in accordance with the lawversal gravitation.
Many commentators reasonably stated that his ¢rions made difficult
reading.

Key words: CLT, criminal statistics, theory of errors, ahgel
expectation, stochastic processes

7.1. Theory of Probability

| describe the secoridvre of the TAP; in the first one he studied the
calculus of generating functions with applicatiorthie solution of ordinary
and partial difference equations and the approxmatculation of integrals.
In many instances he treated the problems invalvdis earlier memoirs.
As indirectly seen in hiEssay(1814/1995, pp. 2, 43 — 44), Laplace thought
that the main aim of probability theory was to diger the laws of nature.

1)In Chapter 1 Laplace provided thelassicaldefinition of probability
(introduced by De Moivre, see my § 4.1), formulatteel addition and
multiplication theorems for independent events al as theorems
concerning conditional probabilities. Elsewhere(1#&14/1995, p. 10),
added to this general subject matter the so-c8&astheorem (5.1),
calling it a principle.

2) InChapter 2 Laplace solved a number of problems by means of
difference, and partial difference equations. Istder three other problems
(88 13, 15, 15).

a) In an astronomical context Laplace studading with replacement.
Tickets numbered from O toare extracted from an urn. Determine the
probability that the sum d¢f numbers thus extracted will be equatto
While solving this problem, he applied a discontias factor (1 ™)™
withl =0orlandan=1, 2, ...

Laplace considered the cases,of and his derived formula for the
distribution of the sum of independent, continuvasables obeying the
uniform law on interval [0; 1] corresponded with deon literature (Wilks
1962, § 8.3.1) which does not, however, demanctlaadues ok andn.

b) Non-negative random variablest, ..., tx with differing laws of
distribution (t) are mutually independent and their sura.iBetermine the
integral

(tl; t; ...; tk) 1(t) z(t) k(t) dt]_ dtz dtk
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over all possible values of the variablesyas yet to be chosen. Laplace
then generalized his very general problem stillereond derived the
Dirichlet formula even in a more general setting.

c) An intervalOA s divided into equal or unequal parts and
perpendiculars are erected to the intervals at #rels. The number of
perpendiculars ig, their lengths (moving fror® to A) form a non-
increasing sequence and the sum of these lengingeis. Suppose now that
the sequence is chosen repeatedly; what, Lapl&se &8l be the mean
broken line connecting the ends of the perpendis@lahe mean value of a
current perpendicular? Or, in the continuous cdmemean curve? Each
curve might be considered as a realization of ehststic process and the
mean curve sought, its expectation. Laplace wastaldetermine this mean
curve and to apply this finding for studying expapinions.

Suppose that some event can occur becauseaftually exclusive
causes. Each expert arranges these in an incrgasidgcreasing) order of
their [subjective] probabilities, which, as it ocsudepend only on and the
number of the cause, and are proportional to

1 1 1
——+..+

n n-1 n-|+1'

The comparison of the sums of these probabilibegéch cause allows to
show the mean opinion about its importance. Touoe, glifferent experts
will attribute differing perpendiculars to one athé same cause.

3)Thethird Chapter is devoted to the integr@le Moivre — Laplace
theorem and to several interesting problems coedesith the transition to
the limit. Here is that theorem:

2 INn/2eo¢ 2 n I2n
-np-27 )=~ exp(-t)dt + - ),
Hlu-np-2 1) vl Xp(=t%) 1/ZXX(texp( P d

p was the probability of success in a single Bernaudl, 1, the total
number of successesirtrials,q = 1 — p, zwas unknown but] < 1,x = np
+z,andx =nq-z

In proving it, Laplace applied the EuleMacLaurin summation formula,
and his remainder term allowed for the case ofedmgt finite number of
trials. He indicated that his theorem was appliedbf estimating the
theoretical probability given statistical data, ttie Bayes theorem in § 5.2,
but his explanation was not clear. Molina (193@&6) quoted Laplace’s
memoir (1786/1894, p. 308) where he (not clearlyugin) had contrasted
theappraisalsadmitted in probability with certainty provided amalysis.

Already Daniel Bernoulli (8 6.1.1) solved orfeLaplace’s problem:
There are two urns, each containmpalls, some white and the rest black;
on the whole, there are as many white balls akldaes. Determine the
probabilityu that the first urn will have white balls after cyclic
interchanges of one ball. The same problem wasddly Lagrange
(1777/1869, pp. 249 — 251), Malfatti (Todhunter 386p. 434 — 438) and
Laplace (1811; and in the same way in the TAP)la@pworked out a
partial difference equatiomutilated it most unsparingfodhunter 1865,
p. 558) and expressed its solution in terms oftions related to the




[Chebyshev —] Hermite polynomials (Molina 1930385). Hald (1998, p.
339) showed, however, that Todhunter’s criticisns wafounded.

Markov(1915b) generalized this problem by consideringcdmes oh

andr/n andn andr/n = const and Steklov (1915) proved the

existence and uniqueness of the solution of Lajdatiferential equation
with appropriate initial conditions added whereadd{2002) described the
history of those polynomials. Hostinsky (1932, @) Bonnected Laplace’s
equation with the Brownian movement and thus withdppearance of a
random process (Molina 1936).

Like Bernoulli, Laplace discovered that in thmeit, and even in the case
of several urns, the expected numbers of whitesltame approximately
equal to one another in each of them irrespectitkeoinitial distribution of
the balls. Finally, Laplace (1814/1995, p. 42) attteat nothing changed
even if new urns, again with arbitrary distribusoof the balls, were placed
among the original urns. He declared, apparentyogtimistically, that

These results may be extended to all naturally mogycombinations in
which the constant forces animating their elemestablish regular
patterns of action suitable to disclose, in theyumist of chaos, systems
governed by these admirable laws.

The Daniel Bernoull- Laplace problem coincides with the celebrated
Ehrenfests’ model (§ 6.1.1).

4)1 touch onChapter 4 in § 7.2-3. Laplace devotéghapter 5 to the
detection of constant causes (forces) in naturas;The attempted to
estimate the significance of the daily variatiortteg atmospheric pressure.
K. Pearson (1978, p. 723) remarked that nowadaySthdent distribution
could be applied in such cases, that some of Laf@assumptions proved
to be wrong and that Laplace unjustifiably rejedtease days during which
the variation exceededmm

Laplace solved Buffon’s problem on geometrichability anew. To
repeat (8 6.1.6), a needle of lengthfalls from above on a set of parallel
lines a distanca 2 2r apart and the probabilifythat the needle intersects a
line is

p=4/ a

Without proof Laplace mistakenly stated that,dor 1, 2 = /4 was the
optimal length of the needle for statistically dateing although he had
the correct answery 2 1, in the first edition of the TAP. A much easie
justification than provided by commentators, Todienr§1865, pp. 590 —
591) and Gridgeman (1960), is possibde] E (4/p®)dp so thatp, and
thereforer, ought to be maximal, and according to the cooditf the
problem,r =a/2 =1/2.

5)In Chapter 6 Laplace solved some problems by means of the Bayes
approach (see 8§ 5.1) although without referringito; true, he mentioned
Bayes elsewhere (1814/1995, p. 120). Here is otigenfi. Denote the
unknown probability that a newly born baby is a lbgy and suppose that
during some tim@ boys andj girls were born. Then the probability of that
compouncevent will be proportional to
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y =x(1-x)4,
(1)

b 1
P(a€ xEbD= ydx vydx0< & k1.
a 0

For large values gf andqg Laplace expressed that probability by an integral
of an exponential function of a negative square.
For the curve (1) the point of its maximum

=plp +q)
(@)

seems to be chosen by Laplace as a natural estinfatdbut E, or, more
precisely, the expectation of a random variabhgth distribution

1
xP1-x)9, xP(1-x)%dx
0
does not coincide with (2): the latter is only ayraptotically unbiased
estimator of. This expectation is evidently

E=_P"

p+q+2

After discussing the bivariate case Laplaceesbbhnother problem.
Suppose that the inequalipy> q persisted during a number of years.
Determine the probability that the same will hapfmrthe next hundred
years (under invariable social and economic cooiatsti).

He also considered the celebrated problem abheytrobability of the
next sunrise. Finally, Laplace determined the pafh of France given
sampling data, and, for the first time ever, esteddhe precision of (his
version of) sampling. Suppose tihandn are the known numbers of yearly
births in France as a whole and in some of itsoregandnis the
population of those regions. Laplace naturally as=dithatv = (m/n)N. He
then had to estimate the fraction, see Hald (1p9238),

1 1
XL =)™ M NG X2 =x)™"dx.
0

K. Pearsol1(1928) achieved a reduction of the variance oféssilt; it
should have been multiplied byN- 1) = (N + n)]*%. Here are his two main
remarks. First, Laplace considered () and M, n) as independent samples
from the same infinite population whereas they wereindependent and
the very existence of such a population was dout$cond, Laplace chose
for the magnitude sought an absolutely inappropnigtiform prior
distribution (as is usual when keeping to the Bayeapproach).

The first remark had to do with Laplace’s s@opéntary urn problem.
Suppose that an urn contains infinitely many whitd black balls. Aften
drawings with replacememt white balls were extracted; a second sample of



an unknown volume (with expected valuar/m) providedr white balls.
Laplace derived a limit theorem

P(| —nrim<z)=1-2 @/ 9expt M2/ 3dz=S2 frn Jorm)

The limits of integration, as Laplace formally assd, werez and .

6) InChapter 7 Laplace studied the influence of a possible inatuaf
probabilities assumed equal to each other. For plgmhen tossing a coin
the probability of heads can pe= (1 +a)/2 with an unknowra. Supposing
that both signs were equally probable, Laplacevedrihe probability of
throwingn heads in succession; for> 1 it was greater than 1/2Then he
considered the general case: the probability wasZ), [z a, with density

2.

Turning to urn problems, Laplace assumed tiaptobabilities of
extracting tickets from them were not equal to anether. However, the
inequalities will be reduced had the tickets beehimto the urn according
to their random extraction from an auxiliary urndastill more reduced in
case of additional auxiliary urns. Laplace justifibis statement by a
general principle: randomness diminished when stéjeto more
randomness. This is perhaps too general, but Laglaxample was
tantamount to reshuffling a deck of cards (to esveoinnected into a
Markov chain), and his conclusion was correct @ell950, § 9 of Chapter
15).

7)Chapter 8 was devoted to the mean durations of life and rages.
Laplace did not apply there any new ideas or methddwever, he studied
anew theDaniel Bernoulli model of smallpox (§ 6.2.3), adegimore
general assumptions and arrived at a more geniffierlethtial equation
(Todhunter 1865, pp. 601 — 602).

8) InChapter 9 Laplace considered calculations made in connegtitin
annuities and introduced ti®issongeneralization of the Jakob Bernoulli
theorem (Molina 1930, p. 372). Suppose that twdraoy events signify a
gain and aloss p and can occur in each independahit with
probabilitiesqg; andp; respectivelyg + pi=1,i= 1, 2, ...,s. For constant
probabilitiesq andp the expected gain after all these trials willstg —
pu), as Laplace for some reason concluded in a doatptl way. He then
considered the case of a laggey means of his theorem of § 7.1-3. Then,
generalizing the result obtained to variable prdliiggs, he introduced the
characteristic function of the final gain

[P1 +aiexp( 1 )] [Pz +qexp(2 1)] ... [Ps +aexp(s i)],
applied the inversion formula and obtained the ramiistribution, all this
similar to the derivation of the law of distributiof a linear function of
observational errors (§ 7.2-3).

9) InChapter 10Laplace described moral expectation (§ 6.1.1hdf t
physical capital of a gamblerxshis moral capital will be

y = Knx + Inh, h, x> 0.

Let xtake values, b, c, ... with probabilities, g, r, ... Then
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By = KpIn(x + @) +qIn(x + b) + ...] + Inh,
EyYy<E X

Thus, even a just game of chance XE 0) was disadvantageous. He then
considered shipping of freight and proved thahddd be evenly
distributed among several vessels, see my pap&(1977, pp. 112 — 113).
On this occasion Laplace (1814/1995, p. 89) expekbanself in favour of
insurance of life and compared a nation with alme@asonwhose members
mutually protect their property by proportionallygporting the costs of this
protection

10) In theeleventh the lastChapter, and, in part, irBupplement 1o
the TAP, Laplace examined the probability of tesimes. Suppose that an
urn contains 1,000 numbered tickets. One of theextiacted, and a witness
states that that was ticket numibet i 1,000. He may tell the truth and
be deceived or not; or lie, again being deceivedatbr Laplace calculated
the probability of the fact testified by the witsagven the probabilities of
all the four alternatives. In accordance with ohais corollaries, the
witness’s mistake or lie becomes ever more probidgidess likely is the
fact considered by itself.

Laplace next introduced the prior probability oftadied event confirmed
by mwitnesses and denied hythers. If it was 1/2 and the probability of
the truthfulness of each witness washen the probability of the event was

p= pm-n
pm—n+(1_ p)m n’

He derived several other pertinent formulas, famegle, describing the
probability of an event reported by a chain of wises, and examined
verdicts brought in bgindependent judges (jurors) assuming that each of
them decides justly with probability> 1/2.

Then, if the probability of a just verdict réa&cl by each judge (juror) was
unknown, ang judges condemned, anbf them acquitted the defendant,
the indirect probability of a just final verdict wa

WP —u)idu . V(1 —v)%dv.
0

1/2
In passing, Laplace (1816, p. 523) stated thavéndicts were independent.

7.2. Theory of Errors

In the 18 century, Laplace was applying the comparatively t@ol, the
density, and trying out several rules for the gedecof estimators for the
constants sought. His equations proved too contpticand he had to keep
to the case of three observations. Later Laplaceqal (not rigorously)
several versions of the CLT and was able to drepdstriction, but he had
to adopt other conditions. Bienaymé (1853/18671,1) remarked that

For almost 40 years Laplace had been preseritingmemoirs on
probabilities, buf...] did not want to combine them into a general theery
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until the (non-rigorously proved) CLT enabled hioncompile his TAP. His
main achievements in error theory belong to tH déhtury. Laplace
(1774/1891, p. 56) noted the appearancgnafiouvealgenre de probleme
sur les hazardand even (1781/1893, p. 383)wfe nouvelle branche de la
théorie des probabilitéeof mathematical statistics).

He (1814/1995, p. 37) provided examplestafistical determinism- of
the stability of the number of dead letters anthefprofits enjoyed by
organizers of lotteries. He (1796/1884, p. 504)litatavely (and wrongly,
see § 7.3) explained irregularities in the Solateay by the action of
random causes. Elsewhere he (1812/1886, p. 3@&pdtaat a certain
magnitude, although having been indicated by [nwogrobservation[s],
was neglected by most astronomers, but that hetwaed its high
probability and then ascertained its reality. THieglace understood that in
general, unavoidable ignorance concerning a siragldom event becomes a
cognizable regularity.

1)In the 18" century, he published two interesting memoirs (1774;
1781) hardly useful from the practical side. Thesjntroduced, without
due justification, two academic density curveseafty then, in 1781,
Laplace offered his main condition for adjustingedt observations: the
absolute expectation of error should be minimathin19" century, he
applied the same principle for justifying the MLSdhich was only possible
for the case of normal distribution (existing oe gtrength of his non-
rigorous proof of the CLT when the number of obaéions was large).

In 1781, Laplace proposed, as a density curve,

(¥=0,x=; (x=q 0,x 0.

His deliberations might be described by the Diraktadfunction which had
already appeared in Euler's works (Truesdell 198447, Note 4, without an
exact reference). One of his conclusions was basaxnsidering an integral
which has no meaning in the language of generahzections, but his
finding is extremely interesting on tiphysical level

Also in 1781 he first discussed the problemZt1Some of Laplace’s
assumptions were not really justified, and he (hepl1814/1995, p. 116;
1798 — 1825/1878 — 1882, t. 3, p. xi) argued thatadopted hypotheses ought
to beincessantly rectified by new observatiamgil veritable causes or at
least the laws of the phenomdmadiscovered. Cf. Double et al (1835, p. 176
— 177): the main means for revealing Héeité were induction, analogy and
hypotheses founded on facts andessantly verified and rectified by new
observations

2)The Years 1810 — 1811.aplace (1810a) consideredindependent]
discrete random magnitudes uniformly distributedraarval [-h; h]. After
applying a particular case of characteristic fumsi and the inversion
formula, he proved, carelessly and non-rigorousigt, in modern notation,
asn :

|l J3 s 2

S) = exp(- %) dxi=1,2,..,n,

n \/2_0

where 2 =h%3 was the variance of eachHe then generalized his
derivation to identically but arbitrarily distribed variables possessing

limP (

2
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variance. When proving the CLT he (1810a/1898,0d) 3nade use of an
integral of a complex-valued function, remarked ti@hoped to interest
géometresn that innovation and thus separated himself f(pare)
mathematicians, see also similar reservations élee(Laplace
1774/1891, p. 62; 1812/1886, p. 365).

In a supplement to the first-mentioned memaiplace (1810b),
apparently following Gauss, justified the principlieleast squares without
making any assumptions about the arithmetic mefag @.1.3), but he had
to consider the case of a large number of obsemnvatnd to suppose that
the means of their separate groups were also niyraiatributed. Soon
enough Laplace (1811) returned to least squares.tifine he multiplied the
observational equations in one unknown

ax+s=ii=1,2,..,n,

where the right sides were errors rather than vedsd by indefinite
multipliersg, and summed the obtained expressions:

[ad]x + [sd = [ q].

The estimator sought was

% =—[sd/[aq +[ dl[aq ° —[sd/[aq] + m.

Tacitly assuming that all the multipliegswere of the same order, Laplace
non-rigorously proved a version of the local CLT o

1 ey ld T
P(m= )= expl ), ‘m=k k= X)dx
( ) - 2T o . ()

where (X) was an even density of observational errors [E383g variance.
Then Laplace determined the multipliegydy demanding minimal absolute
expectation of error which led him to the principldeast squares (in the
case of one unknown) so that [ad/[ad].

Finally, Laplace generalized his account todage of two unknowns.
The derived principle of least squares essenttlyended on the existence
of the normal distribution. No wonder that Laplact#ieory was not
practically useful.

3) Chapter 4 of the TAP.Laplace non-rigorously proved the CLT for
sums and sums of absolute values of independamttically distributed
errors restricted in value as well as for the sofrtheir squares and for their
linear functions. All, or almost all of this matairhad already been
contained in his previous memoirs although in 1B&bnly proved the local
theorem for linear functions of errors. In § 23 lzage formulated his aim: to
study the mean result observations nombreuses et non faites enciines
was apparently the first direct statement abouegsrpopulations.

4) InSupplement 1o the TAP Laplace(1816) considered observational
equations in (say) two unknowns

ax+biy+li =v,i=1,2,..5.
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Suppose thatx and y are the errors of the least-squares estimatatseof

unknowns, denote the even density of the obsematerrors by (u/n)

with Ju| £ n, the moments by the lettkmwith appropriate subscripts=
XS = YSs,

W 2k,n%Ys

Js k

2 k 2_ S 2
=, Q= i +b ) andt=
K, - 2k, =, @ +h)

Laplace calculated
P(; )~ exp{-~Q“(2[w] — 2t 9)}, P(t) ~ exp{— ( %/4n’) [t + Qs 9)]%.

He also obtaineB( ; ;t) which showed thatwas independent of ;
or, that the sample variance was independent frenestimators of the
unknowns, cf. 8 9.2; to repeat, the observationalrs were assumed to
possess an even distribution, — and a normal loligton in the limit. For a
proof see Meadowcroft (1920).

Finally, Laplace derived a formula for estimagtihe precision. Without
explanation (which appeared on p. 571 of3upplemen?) he
approximated the squared sum of the real errothdogame sum of the
residuals and arrived at an estimator of the vagam= ([wj/s)*2
Interestingly, Laplace (1814/1995, p. 45) stated tiie weight of the mean
result increases like the number of observationgldd[divisg by the
number of parameters

5)In Supplement 20 the TAP Laplace (1818) adopted the normal law
as the distribution of observational errors thewesslnd not only as the law
for their means. Indeed, as he noted, the mepeatingtheodolites
substantially reduced the influence of the errareaiding and thus equated
its order with that of the second main error of tireasurement of angles in
triangulation, the error of sighting.

Laplace studied the precision of triangulatiathout allowing for two
conditions corresponding to the existence of tweebaes and, possibly,
two astronomical azimuths. In line with Bayes (§)5he tacitly assumed
that the parameter of precision of the normal iigtron was a random
variable. Laplace also discussed the Bosconiethod of adjusting
meridian arc measurements (8 6.3.2-3) and shovesitadp his derivation on
variances rather than on absolute expectationsfasd) that the Boscovich
method was preferable to the MLSq if, and only if,

1 ¥
4°%0)>— .,k = x* (Xd
0) " X (X) dx

where (X) was the even density of observational error§Supplement 3
Laplace again applied the variance as the mainuneads precision of the
observations.

According taKolmogorov (1931), the median is preferable to the
arithmetic mean if for the population median

DY
2 (m)
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While translating Laplaceldécanique Célestato English, Bowditch
(Laplace 1798 — 1825/1832, vol. 2, 8§ 40, Note)estat

The method of least squares, when appliedstgstem of observations, in
which one of the extreme errors is very great, dagggenerally give so
correct a result as the method proposed by Boshqvid; the reason is,
that in the former method, this extreme eildee any otherlaffects the
result in proportion to the second power of theoerbut in the other
method, it is as the first power.

In other words, the robustness of the Boscomelthod is occasioned by
its connection with the median.

7.3. Critical Conclusions

Laplace (1814/1995, p. 2) stated that, for adnable tacomprehendll
the natural forces, and smbmit these data to analysteere would exist no
randomnesand the future, like the past, would be opeit. Nowadays,
this opinion cannot be upheld because of the rgcdistcovered
phenomenon of chaos (8 1.1). Then, such a mind mlmesxist so that he
actually recognized randomness, and Maupertuis6d, /> 300) and
Boscovich (1758, 8385) had anticipated him. Lapldd&6/1891, pp. 144 —
145) did not formally recognize randomness andairpt it by ignorance
of the appropriate causes, or by the complexithefstudied phenomenon;
in such cases, we nevertheless recognize randor(ghésk). Without
indicating the dialectical link of randomness amdessity, he even declared
that the theory of probability was indebted foratgyin to the weakness of
the mind.

He applied an unsuitable model when calculategpopulation of
France and he insisted on his own impracticalfjaation of the MLSqg and
virtually neglected Gauss. He had not even heaablyiintroduced the
notion ofrandom variableand was unable to study densities or
characteristic functions as mathematical objects tikory of probability
therefore remained an applied mathematical dis@plinyielding to
development which necessitated its constructiomva@airiously, Laplace
(1796/1884, p. 504), actually attributed the planetccentricities to
randomness:

Had the Solar system been formed perfectlyrtyrdine orbits of the
bodies composing it would have been circles whiaeep coincided with
the plane of the Solar equator. We can perceiveelvewthat the countless
variations that should have existed in the tempeest and densities of the
diverse parts of these grand masses gave riseetedbentricities of their
orbits and the deviations of their movement fromgtane of that equator.

Curiously, since Newton had proved that theegtitcities were
determined by the planets’ initial velocities. Haxg did Newton get rid of
randomness? No, not at all: those velocities seee random.

It is opportune to conclude by quoting Fou(E829, pp. 375 — 376):
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We cannot affirm that it was his destiny to creagzience entirely new,
like Galileo and Archimedes; to give to mathematetzctrines principles
original and of immense extent, like Descartes, tdeand Leibniz; or, like
Newton to be the first to transport himself into the eas, and to extend
to all the universe the terrestrial dynamics of i&al: but Laplace was born
to perfect everything, to exhaust everything, andrive back every limit, in
order to solve what might have appeared incapabkotution. He would
have completed the science of the heavens, isthetce could have been
completed

Noteworthy in my context was also Fourier’s opin{pn379) about Laplace
(1796):

If he writes the history of great astronomical digeries, he becomes a
model of elegance and precision. No leading faet egcapes hinj...]
Whatever he omits, does not deserve to be.cited

So, did Fourier fail to notice Laplace’s mistakr was he ignorant of
Newton'’s discovery as well?
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8. Poisson

Poisson introduced the concepts of random bkeriand distribution
function. He contributed to limit theorems and lgbuinto use the law
of large numbers proving it for the caseRafisson trials studied
criminal statistics and systematically determinteel gignificance of
empirical discrepancies which proved essentiatiferdevelopment of
statistics and stressed the difference betweemstiNg and objective
probabilities.

Key words: law of large numbers, criminal statistics, medical
statistics, null hypothesis

8.1. Probability and Statistics
8.1.1. General Statementd.ibri Carruci et al (1834, p. 535)
advocated the need for basing statistics on tharyhef probability:

The most sublime problems of the arithmétiquéate can only be
resolved with the help of the theory of probahility

For their part, Double et al (1835, p. 174) notscconnection with
treating mass phenomena:

Statistics carried into effect always is, after, #ile functioning
mechanism of the calculus of probability, nece$gaonncerning infinitg?]
masses, an unrestricted number of faatsl(p. 176) [with respect to the
applicabilityof mathematicsihe state of the medical sciences is not worse
than, not different from the situation with all thRysical and natural
sciences, jurisprudence, moral and political sceEnetc.

Social arithmetic denoted demography, medicalstiesi and actuarial
science. In both cases Poisson was co-author.

He (1837a, pp. 1 and 36) remarked that in 8fecentury,
probability became a main branch of mathematich vaspect both to
the number and utility of its applications and kired of analysis
which it engendered. And, too categorically: Noestpart of
mathematics is capable of more or more immediatséful
applications.

On pp. 35 — 36 Poisson defined the aims offtkery of probability
as determining the cause for believing that a tiertgue, and for
comparing those causes for widely differing proldeie added that
These principles should be regarded as a necessgylement to
logic. The connection of probability with logic origireat with Leibniz
and Lambert and was developed in th® &&ntury by Boole, Jevons
and Venn.

Poisson (1837a) consistently demanded to ctiexkignificance of
empirical discrepancies, for example between regiltifferent series
of observations; along with Bienaymé, he was tloeeethe Godfather
of the Continental direction of statistics (8 14.ue, his approach
was restricted (8 8.5).
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Poisson’s programme (1837c¢) of probability ahls paid serious
attention to population and medical statistics stadistics of financial
institutions. He also participated in reviewing thesirability of
establishing a tontine (§ 2.1.3) (Fourier et al@87The reviewers
opposed that project.

Poisson (1837a, pp. 140 — 141) introduced eelis random
variable but called it by a provisional terainose Athen (p. 254) went
over to a continuous random variable. There (18873a74), and
earlier he (1833, p. 637) corroborated the tramsiftom discrete to
continuous by a trick that can be describedDbgc’s delta-function.
When considering density(x) equal to zero everywhere excepting a
finite number of points;, i = 1, 2, ...,n, and such that

G+
x)dx=g, g=1, 0,
-

Poisson had thus introduced that function of tipetgf (X) = g (X —G).
He (1829, 8§ 1; 1837b, pp. 63 and 80) also defiime distribution
function asg=(x) = P( <x) and the density as the derivativergk).
Such functions only became widely used in th8 &éntury although
Davidov (1885) noted Poisson’s innovation (Ondaf1)9
8.1.2. The De Moivre — Laplace TheorenfRoisson (p. 196) derived the
integral De Moivre — Laplace theorem with a corie@tterm as an
asymptotic corollary of his own formula (p. 189 the probability of an
event occurring not less thamtimes in g =m + nBernoulli trials with
probability p of its happening in each trial agd= 1 —p

m(m+1)q2+ 4 m(m+1) ... (m+ n+ 1)qn

— M
P=pAL+mq+ 21 ' !

}.

For small values af Poisson (p. 205) then derived the approximation
P e(@+ + 421+..+ "n

wheremq pg = . He had not provided the expresskR(n =m) =¢e

"l

His approximation had been all but ignored,dowample, by
Cournot (1843), until Bortkiewicz (1898a) introdddeis law of small
numbers, allegedly a breakthrough. Kolmogorov ()96dwever,
identified it as the Poisson formula, but did ndtjfy his statement,
and | (2008) proved it.

8.1.3. Poisson TrialsPoisson (1837a) generalized the law
introduced by Jakob Bernoulli (8 3.2.3) on the cafseariable
probabilities of success in different trials. Suppdthat contrary events
AandB occur in trial] with probabilitiesp; andg; (p; + gj = 1).
Poisson (p. 248) determined the probability thattimals eventA
occurredmtimes, and everB, ntimes ( + n = 9. He wrote out the
generating function of the random variabidor, the bivariate
generating function ah andn) as



X = (upy +Vvap) (Up2 +Vep) ... (Ups + VCE)

so that the probability sought was the coefficigniv, in the development
of X. His further calculations (lacking in Chapter 9 @flace’s TAP)
included transformations

u=é*,v=e™ up +vg = cox +i(p— q) six = ;exp(r;),
i = {cos’ + [(p — q)sind?} M2, r; = arctan[; — g)tarx].

Excluding the case @f or g; decreasing with an increasisgand without
estimating the effect of simplifications made, Rois (pp. 252 — 253)
derived the appropriate local and integral limgdrems. They were,
however, complicated and their importance appayeathsisted in
extending the class of studied random variables.

8.1.4. Subjective Probabilitiesln connection with a generally
known game Poisson (1825 — 1826) studied samplitigput
replacement. Cards were extracted one by one frontesks shuffled
together as a single whole until the sum of theésain the sample
obtained was in the interval [31; 40]. The sampéswot returned and
a second sample of the same kind was made. ltegasred to
determine the probability that the sums of the {soivere equal.
Poisson was able to solve this difficult analytipedblem; from the
statistical angle, it was interesting in that tihelabilities involved
were assumed the same for both samples which iaateastic for the
subjective viewpoint, cf. 8 1.2. Another problenoig3on 1837a, p.
47) concerned an urn containing a finite numbewrlote and black
balls in an unknown proportion. The subjective @bty of
extracting a white ball occurred to be equal ta Iizhe theory of
information, it would have meant least possibl@infation. Just the
same, the unknown probability of each outcome @dia toss can be
proved to be 1/2.

8.1.5. The Law of Large NumbersHere is how he (1837a, p. 7) defined
this law in his Préambule:

Things of every kind obey a universal law thatmay call the law of
large numbers. Its essence is that if we obsemaryalarge number of
events of the same nature, which depend on constases and on causes
that vary irregularly, sometimes in one manner stirmes in another, i.e.,
not progressively in any determined sense, theostlconstant proportions
will be found among these numbers.

He went on to state qualitatively that the déwns from his law became
ever smaller as the number of observations inccedsatkiewicz (1904, p.
826, Note 13) remarked that the Préambule wasliacgatained in
Poisson’s previous work (1835). Poisson (1837a8ppl11) illustrated his
vague definition by various examples, which, howgdal not adequately
explain the essence of the law but were interestidged. Thus (pp. 9 and
10), the LLN explains the stability of the mean baeel and the existence of
a mean interval between molecules. Beginning w291 Poisson’s
contributions had been containing many direct directt pronouncements
on molecular conditions of substance, local parameif molecular
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interactions, etc. sometimes connected with the ENeynin 1978b, p.
271, note 25).

Poisson then (pp. 138 — 142) formulated butdidprove three
propositions characterizing the LLN. These wereeas the standard
formula (which Poisson had not written out)

P(B) = P(A) P(B/A).

In actual fact, he studied the stability of statetindicators by means of the
CLT, see Hald (1998, pp. 576 — 582). Poisson desdrhis law in a very
complicated way; no wonder thRaortkiewicz (1894 — 1896, Bd. 8, p. 654)
declared thathere hardly exists such a theorem that had mét satmany
objections as the law of large numbeérkere, in addition, is a passage from
Bortkiewicz’ letter to Chuprov of 1897 (Sheynin 1292011, p. 60):

Or take[...] my last three-hour talk with Markov about the lafassm.
[small] numberd8 14.1.2] It caused me nothing but irritation. He again
demanded that | change the title. With respechitotbpic we got into
conversation about the law of I. nn. It happeng Warkov (like Chebyshev
attributes this term to the case when all the pioliges following one
another in n trials are known beforehard.] In concluding, Markov
admitted that perhaps there did exist ‘some kindrobiguity’ in Poisson’s
reasoning, but he believed that it was necessatgke into account the
later authors’ understanding of the term ‘law ohh.’

It is indeed difficult to examine Poisson’s s@erations on that point,
but at least one of his examples (p. 148ff) isrclgaleals with a throw of
many coins of the same denomination amate de fabricatiorAnd,
although Poisson (p. 147) argued that the prolglufi(say) heads could be
established statistically, it seems that his exarhpld to do with unknown
probabilities. Other examples mentioned above l@ed and interval
between molecules) can only be understood to irciudknown
probabilities.

The LLN was not recognized for a long timel1B65 Bienaymé declared
that it contained nothing new (8 10.2-2) which app#y compelled
Cournot (1843) to pass it over in silence; Bienayae to this view even
in 1842 (Heyde & Seneta 1977, pp. 46 — 47). Eveomtater Bertrand
(1888a, pp. XXXII and 94) considered it unimportant lacking in rigour
and precision. However, alreaBgssel (1838b, especially § 9) guardedly
called the LLN gurinciple of large numbers, Buniakovsky (1846, p. 35)
mentioned it and Davidov (18547?; 1857, p. 11) thduigimportant.

There is a lesser known aspect of the LLN 288.8Bernoulli, De
Moivre and Poisson (thieoisson form of the LUNalleged that their
findings were just as applicable for the inversge¢an which the
probabilityp (or probabilitiegy) was (were) unknown and had to be
estimated by the observed frequency. Even morendgdli and
Poisson (1836; 1837a) thought that even the existefp (or p;) was
(were) not necessary. The former provided an examian
individual being taken ill by an infectious diseaBeisson mentioned
several such cases as stability of the mean seh Evthe mean
interval between molecules of a body, and (18378)%f the sex
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ratio at birth. Nevertheless, it was Bayes (8 WB) investigated the
inverse case.

Poisson proved his LLN by issuing from the Gkfiich he (1837a,
pp. 254 — 271) was yet unable to justify rigorously had not even
stated the imposed conditions clearly enough. He applied the CLT
for estimating the significance of discrepanciesveen indicators
obtained from different series of observations @odrnot (1843,
Chapters 7 and 8) borrowed his findings without tioging him.
Poisson proved the CLT even earlier (1824; 1829)heé first instance
he introduced the Cauchy distribution and found(@624, 88 4 and
6) that it was stable.

Statisticians only recognized the LLN for tteese of Bernoulli
trials, and only when the probability of the stuble/ent existed,
otherwise they refused to turn to the theory obpility at all (§
3.2.3). Even worse, as a rule, they only understbed.LN in a loose
sense (Ibidem).

8.2. Theory of Errors

In the theory of errors Poisson offered his prdahe CLT and a
distribution-free test for the evenness of the dgrmdg observational errors
(1829, § 10). When discussing the precision ofdjriPoisson (1837b, p. 73)
stated that the less was the scatter (the appteprdaiance) of hit-points,
the better was the gun. He thus made a step toweedgnizing Gauss’
choice of least variance as the criterion for aifigsobservations (§ 9.1.3),
but he followed Laplace and never mentioned thes&#ueory of errors
partly since French mathematicians had been rebgoaagered by Gauss’
attitude towards Legendre (§ 9.1.1). One of hibjams (1837b, § 7)
consisted in determining the distribution of the@® of the distance of
some point from the origin given the normal digitibns of the point’s
distances from the two coordinate axes. He thuspsdsaps the first to treat
clearly the densities as purely mathematical object

8.3. Criminal Statistics

Unlike Laplace, Poisson introduced the priafability of the
defendant’s guilt, not to be applied in individgakes. One of
Poisson’s statements (1837a, pp. 375 — 376) istalelea he thought
that the rate of conviction should increase wiiimer. At the same
time he (p. 21) recognized that criminality reprasel’état moral de
notre pays

The application of probability theory to jurisplence had been
criticized time and time again. Poinsot (PoissoB6L$. 380) called it
une fausse application de la science mathématiquaeunwisely
quoted Laplace (1814/1886, p. XI) who had rematketl the theory
of probability was very delicatéinwisely because the sarBssai
contained a page (p. LXXVIII) entitledpplication du calcul des
probabilités aux sciences moralebere Laplace declared that such
applications were theffets inévitables du progres des lumiéidse
sameEssaialso contained three chapters devoted to suclicapiphs
to say nothing of Laplace’s own work on criminadtgtics.

Then, Mill (1843/1886, p. 353) had called tipplecation of
probability to jurisprudence aspprobrium[disgracejof mathematics
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In 1899, Poincaré (Sheynin 1991a, p. 167) apprdyiciged him in
connection with the notorious Dreyfus case and Idi®96/1912, p.
20) stated that people act like tim®utons de Panurge

Leibniz, in his letters to Jakob Bernoulli etvery beginning of the
18" century, Mill, and several modern authors, rattegssed the
importance of the pertinent circumstances. Neviatise Heyde &
Seneta (1977, pp. 28 — 34) discussed criminaks$taiand noticed, on
p. 31, thathere was a surge of activity stimulated by Poissalfand
& Solomon (1973) reviewed Poisson’s study and idethinformation
about the French legal system of his time.

8.4. Statistical Physics

Poisson qualitatively connected his LLN witle #xistence of a
stable mean interval between molecules (Gillis@&3l p. 438). The
creators of the kinetic theory of gases could hagk mentioned this
opinion as also his important related consideratitt nothing of the
sort actually happened.

8.5. Medical Statistics

Double et al (1835, p. 173, 174 and 176) witiksfon as co-author
stated that the application of statistics to mediavas quite possible.
Anyway, the statistical method did gnaw its wayititat science.
First, population statistics was closely conneetétt medical
problems. Leibniz (8§ 2.1.4) advocated the compmilatf various
pertinent data. Halley (Ibidem) compiled the fifstter Graunt’s not
really reliable finding) mortality table for a cked population and
estimated populations from data on births and de&hniel Bernoulli
(86.2.3) and Lambert (8§ 6.2.2) studied mortaliigthorates and
sicknesses and their work belongs to the histogyrotbability and of
medicine.

Second, the range of application of the staismethod greatly
widened after the emergence, in the mid-&éntury, of public
hygiene (largely a forerunner of ecology) and epiaidogy. Third,
about the same time surgery and obstetrics, brarmhmedicine
proper, yielded to the statistical method (8 10.8burth and last, in
1825 a French physician Louis (8 10.8) introdudexigo-called
numerical method (actually applied much earlievanous branches
of science) of studying symptoms of various disealskés proposal
amounted to the use of the statistical method witiovolving
stochastic considerations. Discussions about th& afoLouis lasted
at least a few decades. Gavarret (1840) notednibrecomings of the
numerical method, popularized the formulas of philiig theory and
advised to check the null hypothesis. Before takmmedicine,
Gavarret had graduated from the Ecole Polytechnigere, he
studied under Poisson whose influence he (184XlI}).sincerely
acknowledged. Many authors repeated his recommienddtut he
was not mentioned in the literature pertaining® lbreakthrough in
surgery that took place in the mid-century, theadtiction of
anaesthesia and antiseptic measures (Sheynin 8 %82). Indeed,
numerous observations, advocated by Poisson andagne needed in
other branches of medicine (epidemiology).
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Thus, Liebermeister (ca. 1877, pp. 935 — 94@)ed that in
therapeutics large numbers of observations wekergand that,
anyway, recommendations based on several (reliabkgrvations
should be adopted as well:

Theoreticians rather often categorically tell psactical physicians, that
all our inferences about the advantages or shoriogsiof some methods of
treatment, so far as they are based on resultsiwhave really taken place,
simply remain up in the air if only we do not appborous rules of the
theory of probability]...] Physicians have until now applied that theory so
seldom not so much because they sometimes didtach @roper
significance to it, but mainly since its analytieabenal was too imperfect
and awkward[...] Mathematicians say: If you, physicians, wish tovar at
plausible conclusions, you must invariably workhwi@rge numbers; you
ought to collect thousands and hundred thousandsmhtions|...] This,
however, is impossible for statistics of a generaktitioner. And,
nevertheless, if this condition is fulfilled, itivaften be doubtful whether
the theory of probability is necessary in the sgressing manney...]
Gavarret somewhat arbitrarily presumed, as Poisalso did in several
problems, that 0.9953 or 212:213.] is a sufficient measure of probability
[...] Suppose that the successes of two methods aheettire only as
10:1, would not that be sufficient for preferringetfirst on@

Liebermeister’s criticism is still valid. Thebeginning with 1863
and even earlier astronomers and geodesists ha begffer tests
for rejecting outliers quite in vein with his reasag. Previous
practitioners had also made plausible inferencethemstrength of
scarce data (Bull 1959) whereas Niklaus Bernotlfio@/1975, p. 302)
thought that an absentee ought to be declaredateaadhis death
becomes only twice as probable as his remainivg ali

Liebermeister studied the possibility of digtishing between equality
and inequality of success probabilities in two dreaties of binomial trials.
Starting from d_aplacean formula based on the existence of unifaior
distribution, and assuming that the two probalet#itcoincided, he
considered the size of the tail probability (of thgergeometric
distribution). His main formula had hardly everppaared. See Seneta
(1994).
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9. Gauss, Helmert, Bessel

Gauss introduced the MLSq and Helmert complasedevelopment
whereas Bessel made important discoveries in agtrgrand geodesy but
was often extremely inattentive. Gauss’ final cdiodi of least variance led
to effective estimators of the unknowns soughjotatly effective in case of
the normal distribution of the observational errors

Key words: principle and method of least squares, samplianeg,
adjustment of triangulation, personal equationjaten from normality

9.1. Gauss

His correspondence and scientific legacy ineladtudy of the mortality
of newly-born and of the members of tontines, hsitnhain achievement
was the development of the MLSq.

9.1.1. Adjustment of ObservationsDenote the observations of a
constant sought by

X1, X2y oy Xny X1 X2 . Xne

(1)

It is required to determine its value, optimal amee sense, and estimate the

residual error, its deviation from theal valueof the unknown constant, i.
e., to adjustlirect observationsThe classical theory of errors considers
independent observations and, without loss of geitygrthey might be
regarded as of equal weight.

Suppose now th&tunknown magnitudes, y, z ... are connected by a
redundant system afequationsk < n)

aXx+by+cz+..+5=0
(2)

whose coefficients are given by the appropriatepand the free terms are
measured. The approximate valuex,0f, z,... were usually known, hence
the linearity of (2). The equations are linearlgiependent (a later notion),
so that such systems are inconsistent and savedby allowing small
enough residual free terms (denote thenv;pyThis procedure is called
adjustment of indirect observatians

Since the early focentury the usual condition for solving (2) waattbf
least squares

W=[W =vi? + V2 + ... + i’ = min

3)
among all possible values, so that

TW/ 1 X = TW Ty = = 0.
4)

Equations (4) easily lead to a systermofmal equations
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[aal% + [ably + ... +Jad = 0, [al] % + [bb]§ + ... + b = O, ...,
%)

having a positive definite and symmetric matrixr Bvect measurements
the same condition (3) leads to the arithmetic m&auss (1828) devised
another no less important and barely known tosttei@ns pattern of
adjusting indirect observations.

9.1.2. The Priority Strife. Legendrg1805, pp. 72 — 73) was the first to
state publicly theonditionof least squares. Declaring that the extreme
errors without regard to sign should be containétiwas narrow limits as
possible (which is achieved by the minimax prineither than by least
squares!), he, as translated by Hald (1998, p., XtéYinued:

Among all the principlefof adjusting observationsjthink there is no
one more general, more exact and more easy to dpafythat which we
have made use of in the preceding researfingbe same contribution],
and which consists in making the sum of the squafrdse errors a
minimum. In this way there is established a soddfilibrium among the
errors, which prevents the extremes to prevail @ndell suited to make us
know the state of the system most near the.truth

Here, Legendre made a mistake: he should have omextinot errors, but
residuals. Those shortcomings did not deter St{dl@86, p. 13) who called
Legendre’s expositio@ne of the clearest and the most elegant introdacti
of a new statistical method in the history of stits And on p. 146 Stigler
wrongly praised Legendre as opposed to Gauss.

Gauss publicly derived th&inciple of least squares in 1809, but stated
(1809, § 186) that he had applied toaditionof least squares from 1794 or
1795 and called it his own. His statement offendeglendre (letter to Gauss
of 31 May 1809, see Gauss, W-9, p. 309) as waltlaar French
mathematicians although not Laplace.

Gauss (letter of 17.10.1824 to H. C. Schumg¢kee W/Erg-5, Tl. 1, p.
413) bitterly lamented over Legendre’s fate:

With indignation and distress | haje.] read that the pension of the
elderly Legendre, an ornament to his country arsddpoch, was cancelled

May (1972, p. 309) formulated a likely opiniabout the problem of
priority as approached by Gauss:

Gauss cared a great deal for priorify..] But to him this meant being
first to discover, not first to publish; and he wsstisfied to establish his
dates by private records, correspondence, crymimarks in publications.
[...] Whether he intended it so or not, in this way hentamed the
advantage of secrecy without losing his priorityhe eyes of later
generations.

Here is another comment (Biermann 1966, p. \Mat is forbidden for
usual authors, ought to be allowed for Gaussesiarahy case we must
respect higGauss’]initial considerations

81



And of course Legendre’s qualitative statement (@abthat, not quite
correct) was not comparable to Gauss’ deliberations

Robert Adrain was an American scientist who aerived the normal
distribution of observational errors, see Coolih@26). His not at all
rigorous work was published in an obscure periddica809 (Hogan 1977)
rather than in 1808 as stated there.

9.1.3. The Two Justifications of Least Squares (Gas 1809; 1823b).
In 1809 Gauss (8 177) assunasdan axionthat the arithmetic mean of
many observations was the most probable valueeoimiBasured constaifit
not absolutely precisely, then very close td@ dgether with the principle of
maximal likelihood (8§ 6.3.1), his axiom postulate(Bertrand 1888a, p.
176) led to the normal distribution of the obseiwaal errors as the only
possible law. He was hardly satisfied with his dation. His axiom
contained qualification remarks, other laws of emwere possible and
maximum likelihood was worse than an integral cidie. It is somewhat
strange that Gauss himself only mentioned thetiast In his letter to
Bessel of 1839 (Plackett 1972/1977, p. 287) hedtttat théargest
probability of the value of an unknown parameter was stilhitély small
so that he preferred to rely on tleast disadvantageous ganoa minimal
variance.

In 1823 Gauss provided his final justificatiofithe principle of least
squares by the principle of maximum weight [of mial variance]

¥
m = § X% (X) dx= min

where (x) was an even unimodal function. He (88 18 andal$)
introduced independence of linear functions: theyutd not contain
common observations. Then Gauss (88 37 — 38) prihatdforn
observations ankl unknowns, the unbiassed sample variance and its
estimator were, respectively,

nf = EM/(n =R, m§ = Wi/(n - K. (6a, b)

Instead of the mean value, the sum of squandstfelf has to be applied.
Coupled with the principle of maximal weight, fortasi (6) provide
effective estimators, as they are now called. Withmentioning Laplace (8§
7.2-4), Gauss (1823b, 88 37 — 38) noted that teeigusly known formula
was not good enough. Elsewhere, he (1823a/188R9).stated that the
change was also necessary fordignity of science

Gauss (8 40) calculated the boundaries of #énefvby means of the

fourth moment of the errors but made a mistake8s@2.1 note that the
derivation of (6a) does not depend on the princgdleeast squares which
now follows immediately

The unavoidable presence of systematic erreantthat formula (6b)
should only be applied after completing all theassary work. For a
triangulation chain closures of the triangles al§ a®the discrepancies
between the baselines situated at the ends ohtiia and between its
astronomically fixed end lines are computed andipiethev;’s thus
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revealing the influence of systematic errors ashmagpossible. In
particular, during observations at a given statiormula (6b) should not be
relied upon; indeed, Gauss observed each angbehtteangulation station
until being satisfied that further work was usel@3® rejection of outliers
remains a most delicate problem; at best, stadistiateria are only
marginally helpful.

Gauss’ opinion notwithstanding, his first jéisation of the principle of
least squares became generally accepted, in gartloecause the
observational errors were (and are) approximatetynal and the work of
Quetelet (8§ 10.5) andllaxwell (8 10.8.5) did much to spread the idea of
normality whereas his mature contribution (1823b¥swxtremely
uninviting. However, the proof of formula (6a), fnovhich the condition of
least squares immediately follows, is not diffic@auss himself provided
it; it demands linearity and independence of thigainequations (2) and
unbiassedness of the sought estimators of the wrkdrherefore, it is
methodically possible to disregard Gauss’ maineswely difficult
justification of that condition, to rest contenttvthe actual second
substantiation. Then, it will not be practicallycessary to restrict the
description of least squares by his initial reasgrof 1809.

Why then did not Gauss himself change his detsan accordingly? At
least he could have additionally mentioned thersédtieve. May (1972/1977,
p. 309) provided a general comment which likelyagrs my question: In
particular, bycareful and conscious removal from his writingsibtrace of
his heuristic method&sauss]maintained an advantage that materially
contributed to his reputatiorMuch earlier, Kronecker (1901, p. 42) voiced
the first part of May’s pronouncement.

Examples of deviation from the normal law waceumulating both in
astronomy and in other branches of natural scieasegell as in statistics,
see the same § 10.5 (and the missed opportunittioned in § 9.3), which
supported the rejection of the first substantiabbthe principle of least
squares.

Tsinger (1862, p. 1) wrongly compared the inigace of the Gaussian
and the Laplacean approaches:

Laplace provided a rigorou®] and impatrtial investigatiof...]; it can
be seen from his analysis that the results of tethad of least squares
receive a more or less significant probability onlythe condition of a
large number of observationg;.] Gauss endeavoured, on the basis of
extraneous considerations, to attach to this metodbsolute significance
[...]. With a restricted number of observations we haveassibility at all
to expect a mutual cancellation of errors gnd] any combination of
observations caf..] equally lead to an increase of errors as to their
diminution.

Tsinger lumped together both justificationghaf principle of least
squares due to Gauss. Then, practice demandeck#tméent of a finite (and
sometimes a small) number of observations rathaar limit theorems.
Tsinger’s high-handed attitude towards Gauss (am8lmd respect for
Laplace) was not an isolated occurrence, see 83.ZE®en a recent author
(Eisenhart 1964, p. 24) noted that the existenthefecond Gaussian
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approaclseems to be virtually unknown to almost all Amerigaers of
least squares except students of advanced mathmhstiatistics

Gauss (1823b) called his estimatmiest plausibleln mathematical
statistics, they are callasbnsistentandeffective meaning that they
converge in probability to the respective unknoand that, among such
estimators, their variance is minimal. In casehef normal distribution, they
arejointly effective(Petrov 1954) which means that the joint distitouif
two (say) estimators has the least variance amociy distributions of any
other two estimators (Cramér 1946, § 32.6). Al tisiin spite of Markov
(1899a/1951, p. 246) who defended Gauss’ secotifigason of the
principle of least squares but declared that theSifllvas not optimal in any
sense (hence, did not need any justification!).

9.1.4. The True Value of a Measured ConstanAstronomers,
geodesists, metrologists and other specialistsmyakieasurements have
always been using this expression. Mathematictiits has done away
with true values and introduced instead parametiedensities (or
distribution functions), and this was a step intilgét direction: the more
abstract was mathematics becoming, the more usgifidved to be.

Fisher was mainly responsible for that chamydeed, he (1922, pp. 309
— 310) defined the notions of consistency, efficikeand sufficiency of
statistical estimators without any reference te twalues. But then, on p.
311, he accused the Biometric school of applyirgsidime names the true
value which we should like to kngw.] and to the particular value at which
we happen to arrive. So the true value was then still alive and even
applied, as in the lines above, to objects havimgxistence in the real
world.

Incidentally, the same can be said about GEL&k5, §§ 3 and 4) who
repeatedly considered the true value of a meadyresoision of
observations. And HalfL998) mentionetfue valuemany times in
Chapters 5 and 6; on p. 91 he s# estimation of the true value, the
location parameter.

So what is a true value? Markov (1900/1924823) was the only
mathematician who cautiously, as was his wont, reethlt is necessary in
the first place to presume the existence of thebeusnwhose approximate
values are provided by observatiofiis phrase first appeared in the 1908
edition of hisTreatise(and perhaps in its first edition of 1900). He Imad
attempted to definue value but this is exactly what Fouri€t826/1890,
p. 534) had done more than a century before hinddt#ermined the
véritable objet de la recherch{the constant sought, or itsal value) as the
limit of the arithmetic mean af appropriate observations as
Incidentally, he thus provided the Gapsstulatewith a new dimension.

Many authors, beginning perhaps with Timerdit@l5, p. 83) [and
includingMises (1919/1964a, pp. 40 and 46)], without mentigr-ourier
and independently from each other, introduced #émeesdefinition. One of
them (Eisenhart 1963/1969, p. 31) formulated thevaidable corollary: the
mean residual systematic error had to be includedatreal value:

The mass of a mass standardl.is] specified...] to be the mass of the
metallic substance of the standard plus the ma#iseohAverage volume of
air adsorbed upon its surface under standard coods.
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However, even leaving systematic influencedeggdhe precision of
observations is always restricted so that the temih in the Fourier
definition (which is in harmony with the Mises ddfion of probability)
must not be understood literally.

9.1.5. Did Gauss Really Apply Least Squares befof805?1 (Sheynin
1999b; 1999d) described the possible cases andchanaey of his
colleagues and friends to whom he had communidatediscovery.
Among them were Olbers, Bessel (1832/1848, p.&W,Wolfgang Bolyai
(father of the better known Janos Bolyai, a cofarraf the non-Euclidean
geometry).

Unexpectedly, it occurred thadn Zach, who allegedly refused to testify
to Gauss’ priority, had not until 1805 known thenfailation of the principle
of least squares, and, furthermore, that he (181338n) indirectly agreed
with the latter’s statements by repeating them athrany qualification
remark:

The celebrated Dr Gauss was in possession oftlefthtod since 1795
and he advantageously applied it when determirtiegeiements of the
elliptical orbits of the four neyminor] planets as it can be seen in his
excellent wor§Theoria motup

Regrettablyijt is not seen there. This passage is even more fardhan
Zach's editorial acceptance of Gauss’ priority (Eul996, p. 357): in 1809,
Zach’s periodicalMonatliche Correspondengarried an anonymous review
of GaussTheoria motusand there, on p. 191, Gauss’ pertinent claim was
repeated.

The case of Olbers is special. 4 Oct. 1809 &asked himbo you still
remembef...] that[...] in 1803 | talked with you about the principle
Olbers apparently did not answer (or answered tiir@uthird party). Then,
on 24 Jan. 1812 Gauss asked Olbers whether hpwilicly attest to the

same fact. Yesyith pleasureanswered Olbers 10 March 1812 and, indeed,

fulfilled his promise in 1816. All this is documewt by Plackett (1972/1977,
pp. 283 — 285).

However, Stigler (1986, p. 145), for the fitiste ever, questioned Gauss’
integrity: Gauss solicited reluctant testimony from frienc the had told
them of the methdokefore1805 And in 1999, on p. 322, repeating his
earlier (of 1981) statement of the same @kbers did support Gauss’s
claim[..]] but only after seven years of repeated proddinGgayss
Grasping at straws, Stigler adds an irrelevantesfee to Plackett (1972).
But why did Olbers wait several years (1812 — 1818¢cause, during that
time he had not published anything suitable, seafpropriate volume of
the Royal Society’€atalogue of Scientific Literature

Much later, 3 Dec. 1831, in a letter to H. Ch&@macher (W/Erg-5, Tl. 1,
p. 292) Gauss remarked that, had he known (be#tealled) Olbers’
intention, he would have objected to it. He apptydmecame sick and tired
with the entire business. Still later Encke (18512) stated that Gauss had
applied the condition of least squares when detengithe orbit of the first-
discovered minor planet (in 1802). Gauss did natroent.

Stigler made many other unwarranted and absglutadmissible
remarks humiliating Gauss (and Euler). Here isafiitbem (Stigler, 1986,

p. 146), appropriate with respect to a suspectedtrebut not to Gauss:
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Although Gauss may well have been telling the talibut his prior use
of the method, he was unsuccessful in whateveanpttehe made to
communicate it before 1805

Gauss’ claim about his early use of least segier not generally
accepted, see for example Marsden (1995, p. 18%) ,nevertheless had not
mentioned the opposite opinion of Brendel (1924) @alle (1924, p. 9) or
of Gauss’ contemporaries. Gerardy (1977), drawm@rehival sources,
discovered that Gauss, in 1802 — 1807, had paatetpin land surveying
(in part, for his own satisfaction) and concludexd p. 19 (note 16) that
Gauss started using the method not later than08.1Begrettably, Gerardy
concentrated on describing Gauss’ simple calculatand his statement
mentioned just above was not quite definite. Camogrthese testimonies,
it is not amiss to recall Gauss’ opinion (W-14, pp1 — 204) about the
application of the theory of probability as disced$n a letter of 1841 by W.
E. Weber: An approach only based on numbers cailgréatly mistaken,
the nature of the studied subject also ought tabken into account.

There are many other instances including theitianed by von Zach
(above) in which Gauss could have well appliediingntion at least for
preliminary, trial calculations, or short cuts. Ffoem (Gauss 1809, § 185),
least squares were not a cut and dry proceduraljdwveed himself
approximate calculations. Then, possible mistakeslculations and
weighing the observations could have made justibcampossible.

9.2 Helmert

He mainly completed the development of thesitad Gaussian theory of
errors and some of his findings were interestimgriathematical statistics.
Until the 1930s, Helmert's treatise (1872) remaittezlbest source for
studying the error theory and the adjustment ahggulation. When
adjusting a complicated geodetic net, Helmert (18®6 1 and 86)
temporarily replaced chains of triangulation by dettc lines. His
innovation had been applied in the Soviet Uniore Thains of the national
primary triangulation were situated between basslind astronomically
determined azimuths. Before the general adjustmiethie entire system,
each chain was replaced by the appropriate geddeticonly they were
adjusted, then the chains were finally dealt wiitheipendently one from
another.

Elsewhere Helmert (1868) studied various camgjons of geodetic
systems. In accordance with the not yet existingdr programming, he
investigated how to achieve necessary precision Mést possible effort,
or, to achieve highest possible precision withveegiamount of work. Some
equations originating in the adjustment of geodegéitworks are not linear,
not even algebraic; true, they can be linearized,@erhaps some elements
of linear programming could have emerged then 8681 but this had not
happened. Nevertheless, Helmert noted that it wpsdéent to leave some
angles of particular geodetic systems unmeasuradib remark was purely
academic: all angles ought to be measured atfi@ashecking the work as
a whole.

Abbe (1863) derived the chi-square distributgee also Sheynin (1966)
and M. G. Kendall (1971), as the frequency of tln@ ®f the squares of
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normally distributed errors. Helmert (1875; 1876jided the same
distribution by induction beginning with= 1 and 2 and Hal{L952/1960,
pp. 258 — 261) provided a modernized derivationcMiater Helmert
(1905) offered a few tests for revealing systemaficences in a series of
errors. Among other results, | note that he (1&8#8)ved a formula that
showed that, for the normal distributiomy], — and, therefore, the variance
as well,— and the arithmetic mean were independ#had thus proved the
important Student — Fisher theorem although withi@aying any attention to
it.

Czuber (1891, p. 460) testified that Helmed treought that vary /¢

was more important than va§ by itself and Eddingtoi1933, p. 280)

expressed the same opinion. Czuber also provedftihahe normal
distribution, that relative error was minimal ftvetestimator (6b).

In addition, Helmert noted that for small vausn the vamy did not

estimate the precision of formula (6b) good enodjs.considerations led
him to the so-called Helmert transformations.

Finally, Helmert (1904) corrected the boundanéthe estimator (6b).
Kolmogorov et al (1947) independently repeatedihiding and wrote the
correct formula more properly whereas Maltzev ()9#dved that the
lower bound was attainable.

9.3. Bessel

His achievements in astronomy and geodesydiecihe determination of
astronomical constants; the first determinatioa efar’s parallax; the
discovery of the personal equation; the developroéatmethod of
adjusting triangulation; and the derivation of gaameters of the Earth’s
ellipsoid of revolution. He (1838a) also proved @IeT, but its rigorous
proof became possible, with a doubtful exceptionrad of Cauchy’s
memoirs (8 10.1), only much later (8 12.1-3). Irithlly, Gauss was
familiar with the pertinent problem. In the samideto Bessel of 1839
(89.1.3), he stated that he had read that prithf great interestbut that

this interest was less concerned with the thingjfithan with your
exposition. For the former has been familiar toforemany years, though |
myself have never arrived at carrying out the depelent completely.

The personal equation is the systematic diffeeeof the moments of the
passage of a star through cross-hairs of the eyepiean astronomical
instrument as recorded by two observers. When stgdiiis phenomenon,
it is necessary to compare the moments fixed bysti®nomers at different
times and, consequently, to take into account ¢éineection of the clock.
Bessel (1823) had indeed acted appropriately,rbahe case he failed to do
so, and his pertinent observations proved usehessjade no such
comment. When studying Bradley’s observations, 8gd4:818) failed to
note the deviation of their errors from normaliynd | (Sheynin 2000)
discovered 33 mistakes in arithmetical and simfgel&aic operations in
Bessel’'s contributions collected in $handlunger{1876). Not being
essential, they testify to his inattention and undee the trust in the
reliability of his more involved calculations.



That Gauss had been familiar with the derivatiothefCLT could have
angered Bessel. Anyway, in 1844, in a letter to Haldt he (Sheynin
2001b, p. 168) stressed Legendre’s priority indsgute. Moreover, in
1825 Bessel met Gauss and quarrelled with himoagth no details are
known (Ibidem) and even in 1822 Olbers in a leweBessel (Erman 1852,
Bd. 2, p. 69) regretted that the relations betwbertwo scholars were bad.

10. The Second Half of the 19th Century

Many scientists participated in developing titeeatment of observations
and statistics whose scope had greatly widened. $¢gamtific disciplines
inseparably connected with it had originated andesdiscoveries
concerning the theory of probability were also malileough its general
level did not change.

Key words: new chapters of statistics, new scientific diBogs, theory
of evolution, kinetic theory of gases

Here, | consider the work of several scholsiatistics, and its application
to various branches of natural sciences. The fogglof some natural
scientists are discussed separately since it prdifgcult to describe them
elsewhere but | included Helmert in Chapter 9.

10.1. Cauchy

He published not less than 10 memoirs devotedadrdatment of
observations and the theory of probability. In jgaitar, he studied the
solution of systems of equations by the princiglenmimax (8 1.7), proved
the theorem in linear programming known to Gauss.882-3) and applied
the method of averages (8 6.3.2-2). Linnik (195811% 14.5) found out
that the pertinent estimators were unbiased aralleaéd their effectiveness
for the cases of one and two unknown(s).

Cauchy (1853b) derived the even density of nlagm®nal errors
demanding that the probability for the error of afi¢he unknowns,
included in equations of the type of (6.9), to remaithin a given interval,
was maximal. Or, rather, he derived the appropohtgacteristic function

()=exp(-c "M,c, >0

and noted that the cases u = 1 and O led to thmaldaw and to th€auchy
distribution, cf. § 8.1.

In two memoirs Cauchy (1853c; 1853d) provedGhd for the linear
functionA = [m ] of independent errorg having an even density on a finite
interval. In both cases he introduced characteratictions of the errors
and of the functiom\, obtained for the latter

() =exp(-s?
where 2 was close to?, the variance of, and arrived at

2

2
P ) ﬂoexp(-zxz)dx.
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He had also estimated the errors due to assumsphade and
Freudenthal (1971, p. 142) declared that his pnad rigorous; see,
however, Heyde & Seneta (1977, pp. 95 — 96).

Cauchy devoted much thought to interpolatiofuattions, and, in this
connection, to the MLSq, but, like Poisson, he neited Gauss. In one
case he (1853a/1900, pp. 78 — 79) even indicatdhib MLSq provided
most probable results only in accordance with thpldcean approach [that
is, only for the normal distribution] and appargrdbnsidered this fact as an
essential shortcoming of the method.

10.2. Bienaymeé

Heyde & Seneta (1977) described his main figslinh abbreviate their
work as HS. Bru et al (1997) published two of Bign&’s manuscripts and
relevant archival sources.

1) The Liapunov inequalities (Bienaymé 18408, Igp. 111 — 112).
Without proof, Bienaymé indicated that the absolnigal moments of a
discrete random variable obeyed inequalities whimhld be written as

EIM™ EN™0 m n
Much later Liapunov (1901a, § 1) proved that
EINT<EIN"<E(IP™ s>m>n 0.

He applied these inequalities when proving the CLT.

2) The law of large numbers. Bienaymé (1839¢dahat the fluctuation
of the mean statistical indicators was often greidi@n it should have been
in accordance with the Bernoulli law, and suggestpadssible reason: some
causes acting on the studied events, as he thaeghmajned constant within
a given series of trials but essentially changethfone series to the next
one. Lexis and othéZontinentalstatisticians took up this idea without
citing Bienaymé (Chapter 14) but it was also knowthe theory of errors
where systematic errors can behave in a similar Begnaymé, in addition,
somehow interpreted the Bernoulli theorem as amit to study suchlike
patterns of the action of causes. He (1855/18 f®ated this statement and,
on p. 202, he mistakenly reduced the Poisson LLtéacase of variable
probabilities whose mean value simply replacedcctrestant probability of
the Bernoulli trials, also see HS, § 3.3.

3) The Bienaymé — Chebyshev inequality (Bien&y@53; HS, pp. 121 —
124; Gnedenko & Sheynin 1978/2001, pp. 258 — ZB&is is the name of
the celebrated inequality

P(| —E|< )>1-var/ ? >0.

Differing opinions were pronounced with regéwdts name and to the
related method of moments. Markov touched on #sge four times. In
1912, in the Introduction to the German editiorhizfTreatise(1900a), he
mentionedhe remarkable Bienaymé — Chebyshev methAbdbout the
same time he (1912b, p. 218) argued that
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Nekrasov's statemefthat Bienaymé’s idea was exhausted in
Chebyshev’s
works]is refuted by indicating a number of my papers Witiontain the
extension of Bienaymé’s methaal the study of dependent random
variables].

Then, Markov (1914/1981, p. 162) added thasthging pointof
Chebyshev’s second proof of Poisson’s Lh&d beer...] indicated by
[...] Bienayméand that in 1874 Chebyshev himself called thi®opeo
consequence of the new method that Bienaymé gaaxeerbheless, Markov
considered itmore correcto call the method of moments after both
Bienaymé and Chebyshev, asmimetime®nly after the latter, sindeonly
acquires significance through Chebyshev’s wiedpecially through his
work on the CLT]. Finally, MarkovTreatise 1924, p. 92) stated that
Bienaymé had indicated the main idea of the prédfieinequality,
although restricted by some conditions, wheread@teev was the first to
formulate it clearly and to justify it.

Bienaymé (1853/1867, pp. 171 — 172) considarexhdom sum,
apparently (conforming to the text of his memoiaashole) consisting of
identically distributed terms, rather than an adoit magnitude, as in the
formula above. This is what Markov possibly thoughtvhen he mentioned
some conditions. HS, pp. 122 — 123, regarded lisfpunlike Chebyshev’s
substantiation [8 12.1-2%$hort, simple, andl...] frequently used in modern
courses... Yes, Hald (1998, p. 510) repeated it in a fewedimnd then got
rid of the sum by assuming that it contained omg term. Gnedenko
(1954/1973, p. 198) offered roughly the same pbadfwithout citing
Bienaymé.

Bienaymé hardly thought that his inequality waportant (Gnedenko &
Sheynin 1978/2001, p. 262; Seneta 1998, p. 296)nt4in goal was to
prove that only the variance was an acceptablenasir of precision in the
theory of errors and, accordingly, he comparedtit the fourth moment of
the sums of random [and independent] errors. Caresdly, and the more
so since he never used integrals directly, | beligat Chebyshev (1874);
see also Gnedenko & Sheynin (1978/2001, p. 2622estienated the part of
his predecessor in the creation of the method oherds. Here are his
words:

The celebrated scientist presented a method trssrdes special
attention. It consists in determining the limitinglue of the integrd|...]
given the values of the integrals...

The integrand in the first integral mentioned bye@Gyshev was$ (x) and the
limits of integration were [Ga]; in the other integralf (x), X (X), ... with
the same limits of integratioh(x) > 0 andA > a.

4) Runs up and down (Bienaymé 1874; 1875; iS1p4 — 128).
Suppose that observations of a continuous random variable arergi
Without proof Bienaymé indicated that the numbeintérvals between the
points of extremum (almost equal to the numbehesé points) is
distributed approximately normally with parameters

mean ...(A —1)/3, variance ... (16— 29)/90.
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5) The MLSq (Bienaymé 1852; HS, pp. 66 — 7i¢nBymé correctly
remarked that least variance for each estimataraggy was not as
important as the minimal simultaneous confidenterwal for all the
estimators (as joint efficiency!). He assumed thatdistribution of the
observational errors was known, made use of &$ firoments and even
introduced the first four cumulants and the mulizt® Gram — Charlier
series (Bru 1991, p. 13; Hald 2002, pp. 8 — 9)dermined that
confidence interval by applying the principle ofxmaum likelihood,
introducing the characteristic function of the weaif the errors and making
use of the inversion formula. True, he restricteddhoice of the confidence
region, but derived here thé distribution.

6) A branching process (Bienaymé 1845; HS14{F.— 120). Bienaymé
had formulated the properties of criticality of @ibching process while
examining the problem of the extinction of noblmfies that became
attributed to Galton. D. G. Kendall (1975) recousted Bienaymé’s proof
and reprinted his note.

7) When investigating the stability of statisii frequencies (see also item
2 above), Bienaymé (1840a; HS, pp. 108 — 110) espakideas that
underlie the notion of sufficient estimators.

10.3. Cournot

He intended his main contribution (1843) for a lkeracircle of readers.
However, almost completely declining the use ofrfolas, he hardly
achieved his goal. Recall also (8 8.1) that Coupaatsed over in silence the
LLN. I describe his work as a whole; when referriadhis main book, |
mention only the appropriate sections. Chuprov $89P926, p. 227) called
Cournotthe real founder of the modern philosophy of sti@BsThis seems
to be exaggerated. He did rsatbstantiateandcanonicallyprove the LLN
(Chuprov 1905/1960, p. 60; 1909/1959, pp. 166 9,148 not even
formulate that law.

1) The aim of the theory of probability. It wake creation of methods for
assigning quantitative values to probabilitigs 181). He thus moved away
from Laplace (8 7.1) who had seen the theory agsansfor revealing the
laws of nature.

2) The probability of an event. Cournot’s défon (§ 18) included
geometric probability, which had been lacking amgrfula, and combined it
with the classical case. He (8 113) also introdymedbabilities unyielding
to measurement and (88 233 and 240.8) called gitelmsophical They
might be related to expert estimates whose tredtimemw included in the
province of mathematical statistics.

3) The termmédianeThis is due to Cournot (8 34).

4) The notion of randomness. Cournot (8 40gated its ancient
connection with the intersection of chains of eggnty § 1.1), and, in § 43,
indirectly connected randomness with unstable dagiuim by remarking
that a right circular cone, when stood on its verfell in arandom
direction. Cournot (1851, 8§ 33, Note 38; 1861, 8l 65 — 66) also
recalled Lambert’s attempt to study randomnessi{seg 6.1.3), and
(1875/1979, pp. 177 — 179) applied Bienaymé’s (@410.2-4) for
investigating whether the digits of the numbevere random but
reasonably abstained from a final conclusion.
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5) Dependence between the decisions of judg@®ijurors. Cournot
(1838; 1843, 88 193 — 196 and 206 — 225) gave thicogthis issue but his
study was hardly successful in the practical sense.

6) A critical attitude towards statistics; asdeption of its aims and
applications (Chapters 7 and 8 and 88 103 — 128)is8cs (8 105) should
have its theory, rules, and principles, it oughbéomost widely applied; its
main goal was to ascertdime knowledge of the essence of thitgstudy
the causes of phenomena (8§ 120) angtireipe de Bernoullivas its only
pertinent sound foundation (8 115). Statistics bladsomed exuberantly
and [the society] should be on guard againgtriésnature and wrong
applications which might discredit it for some tirfg103).

7) Explanation of known notions and issues@48§- 65, 73 — 74).

10.4. Buniakovsky

His treatise (1846) was the first comprehen&ussian contribution so
that Struve (1918) called himRussian student of the French mathematical
school A list of his contributions is iMaterialy (1917).

1) The theory of probability. Buniakovsky (1846 I) correctly
attributed it to applied mathematics.

2) Moral expectation (see § 6.1.1). Buniakov&lg46, pp. 103 —
122) independently proved Daniel Bernoulli’'s corsotun that an equal
distribution of the cargo on two ships increasealrtioral expectation
of the freightowner’s capital as compared with $faortation on a
single ship. Later he (1880) considered the casmefual
probabilities of the loss of the ships.

3) Geometric probabilities (8§ 6.1.6). Buniakioy$1846, pp. 137 —
143) generalized the Buffon problem by considethgfall of the
needle on a system of congruent equilateral tresmdflis geometric
reasoning was, however, complicated and his finahar, as Markov
(Treatise 1900/1924, p. 270) maintained, was wrong. Earlier
Buniakovsky (1836 — 1837) remarked that the sotutibsuch
problems might help to determine the values of sphé@nscendental
functions.

4) Statistical control of quality. Buniakovsky846, Adendum)
proposed to estimate military losses by sample lolatis study was
hardly useful. He (1846, pp. 468 — 469) also indiddhat his findings
might facilitate the acceptancéa very large number of articles and
suppliesonly a fraction of which was actually examined.

5) The history of the theory of probability. idakovsky was one of
the first after Laplace to consider this subjeat arade a few of
factual mistakes.

6) Population statistics. Buniakovsky (1846, pp3 — 213)
described various methods of compiling mortalityiéa, studied the
statistical effect of a weakening or disappearaic®me cause of
death (cf. 8 6.2.3), calculated the mean and tbbgiie durations of
marriages and associations and, following Laplaok/ed several
other problems.

After 1846, Buniakovsky continued these invgaibns. He
compiled mortality tables for Russia’s Orthodoxié&etrs and tables
of their distribution by age (1866a; 1866b; 1874j @stimated the
number of Russian conscripts ten years in advat®é5p). No one
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ever verified his forecast and the comments upserndiles
considerably varied. Bortkiewicz (1898b) sharplyicized them.
Finally, Novoselsky (1916, pp. 54 — 55) indicathdttBuniakovsy’s
data were inaccurate and incomplete (as Buniakokiskgelf had
repeatedly stressed) but called his tablgseat step forward.

7) Buniakovsky’s urn problem (1875a) was coneeevith partition of
numbers. An urn contaimsballs numbered from 1 through All at once;m
balls (m < n) are extracted; determine the probability thatshmn of the
numbers drawn was equalgorhis problem is due to Laplace (TAP,
Chapter 2) and Laurent (1873) who referred to E{il@48, Chapter 16).

Markov (1914/1981, p. 162) considered Buniakgisstreatise (1846
beautiful workand Steklov (1924, p. 177) believed that it wamplete and
outstanding Buniakovsky did not, however, pay attention te work of
Chebysheyv; after 1846, he actually left probabiiiystatistics.

10.5. Quetelet

At the beginning of his scientific career Queteisited Paris and | think
that Fourier (1821 — 1829) had inspired him. Quttidelessly treated
statistical data and attempted to standardizesitation an international
scale. He was co-author of the first statistick#nence book (Quetelet &
Heuschling 1865) on the population of Europe (idolg Russia) and the
USA that contained a critical study of the initikgita; in 1853, he (1974, pp.
56 — 57) served as chairman of ®enférence maritime pour I'adoption
d’un systeme uniforme d’observation météorologiguEsmerand the
same year he organized the firgiernational Statistical Congresk.
Pearson (1914 — 1930, 1924, vol. 2, p. 420) praiyeetelet folorganizing
official statistics in Belgium and..] unifying international statisticsAbout
1831 — 1833 Quetelet had suggested the formatianSaétistical Society in
London, now called thRoyal Statistical Society

Quetelet’s writings (1869; 1871) contain mayeh of pages devoted to
various measurements of the human body, of puldeespiration, to
comparisons of weight and stature with age, etd.hrenextended the
applicability of the normal law to this field. Folking Humboldt's advice
(Quetelet 1870), he introduced the teanthropometryand thus curtailed
the boundaries of anthropology. He was influence8&bbage (1857), an
avid collector of biological data. In turn, Quetdlapressed Galton (1869,
p. 26) who called hinthe greatest authority on vital and social statisti

Quetelet (1846) recommended the compilatioguafstionnaires and the
preliminary checking of the data; maintained (p8Rthat too many
subdivisions of the data washarlatanisme scientifigyand, what was
then understandable, opposed sampling (p. 293wiD41887, vol. 1, p.
341) approvingly cited that contribution wherease€@iet never mentioned
Darwin and (1846, p. 259) declared tha plants and the animals have
remained as they were when they left the handseoCteator He collected
and systematized meteorological observations asdited the tendency of
the weather to persist by elements of the theoryiod, cf. § 10.8.3. Kbppen
(1875, p. 256), an eminent meteorologist, notetidhar since the early
1840sthe Belgian meteorological observatigrsved to be the most lasting
[in Europe]and extremely valuable

Quetelet discussed the level of postal chafb@89, t. 1, pp. 173 and
422) and rail fares (1846, p. 353) and recommenalatldy statistically the
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changes brought about by the construction of tafg@ygtines and railways
(1869, t. 1, p. 419). He (1836, t. 2, p. 313) gitatively described the
monotone changes in the probabilities of convicobthe defendants
depending on their personality (sex, age, educptind Yule (1900/1971,
pp. 30 — 32) called it the first attempt to measaggociation.

Quetelet is best remembered for the introdaatibthe Average man
(18324, p. 4; 1832b, p. 1; 1848b, p. 38), inclmadito crime (1832b, p. 17;
1836, t. 2, p. 171 and elsewhere) and marriage8@, 34 77; 1848b, p. 38),
— actually, the appropriate probabilities, — andnfostaken (Rehnisch 1876)
statements about the constancy of crime (182%2®pnd 35 and many
other sources) whose level he (1836, t. 1, p. @8phected with the general
organization of the society. The two last-mentioiteths characterized
Quetelet as the follower of Sissmilch (8§ 6.2.2)riiginating moral
statistics. Quetelet (1848a, p. 82; 1869, t. 327) indicated that the
inclination to crime of a given person might diffeynsiderably from the
apparent mean tendency and (1848a, pp. 91 — @2¢dethese inclinations
to the Average man, but statisticians did not motiat reservation and
denied inclinations and even probability theoryud,rmany of them, e. g.,
Haushofer (1882) or Block (1886), only appliedlarittic.

The Average man, as he thought, was the typleeofiation and even of
entire mankind. Reasonable objections were levelfginst this concept.
Thus, he (1846, p. 216) only mentioned the Poigddhin connection with
the mean human stature. The Average man was pbygsially impossible
(the averages of the various parts of the humagy f@dle inconsistent one
with another), and Bertrand (1888a, p. XLIlI) ridied Quetelet:

In the body of the average man, the Belgian auphaced an average
soul. He has no passions or vigesong, see abovehe is neither insane,

nor wise, neither ignorant nor learneld..] [He is] mediocre in every sense.

After having eaten for thirty-eight years an averagtion of a healthy
soldier, he has to die not of old age, but of aerage disease that statistics
discovers in him

However, that concept is useful at least agvamnage producer and
consumer; Fréchet (1949) replaced him by a closgéfedtypical man.

Quetelet (1848a, p. 80; 1869, t. 2, pp. 30434 noticed that the
curves of the inclinations to crime and to marriptmted against ages were
exceedingly asymmetric. He (1846, pp. 168 and 4424} also knew that
asymmetric densities occurred in meteorology an(lLB48a, p. viii)
introduced a mysteriousi des causes accidentelle$iose curve could be
asymmetric (1853, p. 57)! No wonder Knapp (1872,33) called hinrich
in ideas, but unmethodical and therefore unphildscgl. Nevertheless,
Quetelet had been the central figure of statistithe mid-19' century.

10.6. Galton

Being influenced by his cousiDarwin, Galton began to study the
heredity of talent (1869). In a letter of 1861 Dan{d903, p. 181)
favourably mentioned it. Darwin (1876/1878, p. Ao asked Galton to
examine his investigation of the advantages ofszfedilization as
compared with spontaneous pollination. Galton sbhat problem by
applying rank correlation. Then, he (1863) deviaarexpedient system of
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symbols for weather charts and immediately disced¢ne existence of
previously unknown anticyclones. He (K. Pearsord1:91930, vol. 2,
Chapter 12) also inventedmposite photographsf people of a certain
nationality or occupation, or criminals, all of theaken on the same film
with an appropriately shorter exposure.

Galton, in 1892, became the main inventor mgérprinting. Another of
Galton’s invention (1877) was the so-caltptincunx a device for
demonstrating the appearance of the normal digtoibas the limiting case
of the binomial law which also showed that the nalrtaw was stable.
Galton’s main statistical merit consisted, howewethe introduction of the
notions of regression and correlation. The develamnof correlation theory
became one of the aims of the Biometric school(&)1 and Galton’s close
relations with Pearson were an important causesduccesses.

10.7. Statistics

Delambre (1819, p. LXVII) argued that statistweas hardly ever engaged
in discussions or conjectures and did not aim €epeng theories, and that
political arithmetic ought to beistinguishedrom it. Under statistics he
understood geodetic, meteorological and medica, daineralogical
descriptions and even art expositions.

The London Statistical Society declared thatisticsdoes not discuss
causes, nor reason upon probable effédisonymous 1839, p. 1). True,
they denied thahe statis{!] rejects all deductionyr thatstatistics
consists merely of columns of figueewd stated thatll conclusions shall be
drawn from well-attested data and shall admit otmeanatical
demonstrationThis announcement was thus ambiguous; the Society
attempted to adhere to its former statement, buain. Woolhouse (1873,
p. 39) testified thalThese absurd restrictions have been necessarily
disregardedIndeed, that statistics should explain the presete of a
nation by considering its previous states was dedla century before
(Gatterer 1775, p. 15). And the very title of Dufd840) called statistics
The theory of studying the laws according to whighsocial events are
developing

During the 18 century the importance of statistics had beenidenably
increasing. Graunt (1662/1939, p. 79) was not ainether his work would
benecessary to many, or fit for others, than the 8nga, and his chief
Ministers[...] and the investigations of the sex ratio atb{g§ 2.2.4, 3.3.4,
4.4, 6.1.1) had not found direct applications. Hoereby the mid-19
century it became important to foresee how vartoarssformations will
influence society and Quetel@ 10.5) repeatedly stressed this point. Then,
at the end of the 19century censuses of population, answering an ever
widening range of questions, began to be carri¢dnowarious countries.
However,

1) Public opinion was not yet studied, nor weesquality of mass
production checked by statistical methods.

2 Sampling had been considered doubtful. Cournot3)LBdssed it over
in silence and Laplace’s sample determination efgpulation of France (8
7.1-5) was largely forgotten. Quetelet (8 10.5)aged sampling. Much
later Bortkiewicz (1904, p. 825) and Czuber (192113) called sampling
conjectural calculatioralthough already the beginning of the century
witnessedegionsof new data (Lueder 1812, p. 9) and the tendemeyrtass
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sometimes useless or unreliable data revealed isehrious branches of
natural sciences (§ 10.8).

3) The development of the correlation theory begaheaend of the 19
century (88 10.6, 14.2), but even much later Kaufifi®22, p. 152)
declared thathe so-called method of correlation adds nothingeesial to
the results of elementary analys&ee, however, § 13.2-4.

4) Variance began to be applied in statistidy after Lexis (8§ 14.1.1),
but even later Bortkiewicz (1894 — 1896, Bd. 10, 33 — 354) stated that
the study of precision was a luxury, and that tagéical flair was much
more important. This opinion had perhaps been chiogehe presence of
large systematic corruptions in the initial matkstia

5) Preliminary data analysis (generally recagdionly a few decades
ago) is necessary, and should be the beginningeodtatistician’s work.
Halley, in 1701 see § 2.1.4drew lines of equal magnetic declinations over
North Atlantic, also see § 10.8.3, which was arspie example of such
analysis.

6) Econometrics originated only in the 1930s.

| list now the difficulties, real and imaginaf applying the theory of
probability to statistics.

7)The absence aqually possibleases whose existence is necessary for

understanding the classical notion of probabilgtatisticians repeatedly
mentioned this cause, also see § 3.2.3. Lexis (1803, pp. 241 — 242;
1886, pp. 436 — 437; 1913, p. 2091) wavered; henloadtegral viewpoint.

8) Disturbance of the constancy of the probabilityhaf studied event
and/or of the independence of trials. Before Lakagisticians had only
recognized the Bernoulli trials; and even muchr|again Kaufman (1922,
pp. 103 — 104), declared that the theory of prditghvas applicable only to
these trials, and, for that matter, only in thesprece of equally possible
cases.

9)The abstract nature of the (not yet axiomatizeddith of probability.
The history of mathematics testifies that the nadystract it became, the
wider had been the range of its applicability. Néweless, statisticians had
not expected any help from the theory of probabiliock (1878/1886, p.
134) thought that it was too abstract and shoutdeappliedoo often and
Knapp (1872, p. 115) called it difficult and hardigeful beyond the sphere
of games of chance and insurance. In 1911, G. vayr eclared that
mathematical formulas were not needed in statistnckprivately told
Bortkiewicz that he was unable to bear mathem#Bostkevich & Chuprov
2005, Letter 109 of 1911).

Statisticians did not trust mathematics; s82&oncerning the LLN.
They never mentioned Daniel Bernoulli who publisimagortant statistical
memoirs, see Bibliography, almost forgot insuramegely understood the
treatment of observations (see 8§ 9.1), did nottedQuetelet’'s mistakes or
his inclinations to crime and to marriage (see )10

Two circumstances explained the situation.tFm&athematicians often
did not show how to apply their findings in praeti®oisson (1837a) is a
good example; his student Gavarret (1840) simplifiess formulas, but still
insisted that conclusions should be based on a lamghber of observations
which was often impossible (see § 8.5). Secondlesitistatisticians barely
studied mathematics and, after graduation, didmst it; see § 3.2 re the
LLN.
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It is not amiss to mention here the pioneamafit to create mathematical
statistics (Wittstein 1867). He compared the siturain statistics with the
childhoodof astronomy and stressed that statistics (anelogty
population statistics) needed a Tycho and a Kepleroceed from reliable
observations to regularities. Specifically, he dateat statisticians did not
understand the essence of probability theory andmestimated the
precision of the results obtained. The tenathematical statistics
apparently due to him.

10.8. Statistics and Natural Sciences

The statistical method gave rise to stellar siaisepidemiology, public
hygiene (the forerunner of ecology), climatologyedital statistics,
geography of plants, zoogeography, biometry, andtla theory of gases.
Opposition to it can be explained by attachmenheén indicators to
individuals (Comte 1830 — 1842, t. 3/1893, No.@0329). Then, Louis
(1825) introduced the so-called numerical methoddigulating the
frequencies of the symptoms of various diseases $0 facilitate
diagnosing. He (pp. xvii — xviii) even thought thgiven observations, any
physician ought to make the same conclusion. Baudll(1836) favourably
described the numerical method. D’Alembert (8 6.Bf8ered astounding
and patently wrong statements on this subject amer@vood (1936, p. 139)
excessively praised it:

Some heart-breaking therapeutic disappointmentierhistory of
tuberculosis and cancer would have been avoid#deeimethod of Louis had
been not merely praised, but generally used dutiegast fifty years.

Compilation of data does not contradict statsthe numerical method
has its place in science. True, as Gavarret (184¢), remarked, it was not
in itself scientific and was not based general philosophyD’Amador
(1837, p. 12) wrongly attributed the numerical noetho probability theory.
The numerical method can be traced back to tffecg@tury (see below)
and my description (88 10.8. 1 — 10.8.4) showsithaintinued in existence
for many decades. Furthermore, empiricism had lbdeature of the
Biometric school (§ 14.2). It originated with Aneken (1741) when
statisticians have begun to describe states ibwdaaform (and thus
facilitated the use of numbers), see § 6.2.1. R€g&.1.4), moreover, that
Leibnizrecommended compilation 8taatstafeln

In statistics proper, Fourie®echerche§l821 — 1829) concerning Paris
and the Département de la Seine almost exclusoarigisted of statistical
tables with data on demography, industry, commexggculture and
meteorology. True, empiricism was not sufficieneeyor compiling tables.
Then, the abundance of materials led to the wrdag that a mass of
heterogeneous data was better than a small ambtaitable observations
(8 10.8.1).

10.8.1. Medicine In 1835, Double et al (§ 8.5) indicated that stef$s
might be applied in medicine. Surgery occurredddHe first branch of
medicine to justify their opinion. Already in 188%re appeared a (not
convincing) statistical study of the amputatiodiwibs. J. Y. Simpson
(1847 — 1848/1871, p. 102) mistakenly attempteobtain reliable results

97



by issuing from materials pertaining to several l[E&mghospitals during
1794 — 1839:

The data | have adducgd.] have been objected to on the ground that
they are collected from too many different hospjtahd too many sources.
But,[...] I believe all our highest statistical authoritiesll hold that this
very circumstance renders them more, instead of tagstworthy

| ought to add, however, that Simpson (Ibidpn93) stated that only a
statistical investigation could estimate the engulanger. Soon afterwards
physicians learned that the new procedure, anagaito®uld cause
complications, and began to compare statistichkyresults of amputations
made with and without using it.

Simpson (1869 — 1870/1871, title of contribnjialso coined the term
Hospitalismwhich is still in vogue. He compared mortalityrfro
amputations made in various hospitals and reaspralbicluded, on the
strength of its monotonous behaviour, that mostaticreases with the
number of beds; actually (p. 399), because of wongeof ventilation and
decrease of air space per patient. Suchlike jaatibn of conclusions was
not restricted to medicine, cf. Quetelet’s studypfbabilities of conviction
of defendants in § 10.5.

At about the same time Pirogov began to comiherenerits of the
conservative treatment of the wounded versus artipntdMuch later he
(1864, p. 690) called his tinteansitional

Statistics shook the sacred principles of the oltbsl, whose views had
prevailed during the first decades of this centurand we ought to
recognize it, — but it had not established its ginciples.

Pirogov (1849, p. 6) reasonably believed that tiy@ieation of statistics
in surgery was itomplete agreememtith the latter because surgical
diseases depended incomparably less on individflaences but he
indicated that medical statistics was unrelialflat {1864/1865 — 1866, p.
20) a general impression based on sensible obganaftcases waletter.
He (1879/1882, p. 40) singled aatremely different circumstancasd
stressed (1871, pp. 48 — 49) the importanceffafient administration.
Pirogov participated in the Crimean war, in whidarence Nightingale, on
the other side, showed her worth both as a medigale and a statistician.
She would have approved of Pirogov’s conclusiornvabo

Pirogov was convinced in the existence of ragtés in mass
phenomena. Thus (1850 — 1855/1961, p. 382), edderag disease as well
as eacltonsiderableoperation had a constant mortality rate, whereas w
was atraumatic epidemi¢1879/1882, p. 295). This latter statement
apparently meant that under war conditions thengisk rate and mortality
from wounds obeyed statistical laws. Then (1852)pthe skill of the
physicians [but not of witch doctors] hardly infeed the total result of the
treatment of many patients.

Farr’s study of cattle plague of 1866 (Brownl€d5) methodically
belonged to epidemiology. Here is his reasoninghdd@the number of
attacks of the plague during a period of four wemks and time byt. He
noted that the third differences otlwere constant, so that



s = Cexp{"t[t + m)*+n]}, C>0," < 0.

It was Brownlee who supplied this formula besm&arr was unable to
insert it in his newspaper letter. Farr’'s calcudatalues of did not agree
with actual figures, but at least he correctly jrttl a rapid decline of the
epidemic. Enko (1889) provided the first mathenatinodel (of measles)
in epidemiology proper (Dietz 1988).

Epidemiology was properly born when choleradepiics had been
ravaging Europe. Snow (1855) compared mortalitynfcholera for two
groups of the population of London, whose drinkiveger was either
purified or not, ascertained that purification dexged mortality by eight
times, and thus discovered how did cholera epidespcead. Pettenkofer
(1886 — 1887) published a monstrous collectiontatistical materials
pertaining to cholera, but was unable to processittHe (1865, p. 329)
stressed that cholera epidemics were impossildecattain moment without
a localdispositionto it which does not contradict modern ideas about
necessary threshold values. However, he did naveein contemporary
bacteriological studies.

Seidel (1865 — 1866) investigated the deperelehthe monthly cases of
typhoid fever on the level of subsoil water, andrtlon both that level and
the rainfall and quantitatively (although indirgcind with loss of
information) estimated the significance of the stdcdconnections.

AlreadyLeibniz (§ 2.1.4) recommended to collect and apply inforomat
concerning a wide range of issues, which pertaioguuiblic hygiene.
Condorcet (1795/1988, pp. 316 and 320) describeaiths of
mathématique socialgolitical arithmetic] and mentioned the studytioé
influence of temperature, climate, properties off $ood and general habits
on the ratio of men and women, birth-rate, mogaditd number of
marriages. M. Lévy (1844) attempted to considese¢hmauses.

Public hygiene began statistically studyingljems connected with the
Industrial Revolution in England and, in particully the great infant
mortality (Chadwick 1842/1965, p. 228). Also, wissd~arr (ca. 1857/1885,
p. 148):Any deaths in a people exceeding 17 in a 1,000ahynare
unnatural deathsUnnatural, but common!

Pettenkofer (1873) estimated the financial losthefpopulation of Munich
ensuing from such diseases as typhoid fever andduiklet can be
attributed to this discipline.

10.8.2. Biology.The attempts to connect the appearance of leaves,
flowers and fruits on plants of a given specieslite sums of mean daily
temperatures began in theé™@ntury (Réaumur 1738) and Quetelet (1846,
p. 242) proposed to replace those sums by the etistgiares, but he was
still unable to compare both procedures quanti¢htivAlso in the 19
century, vast statistical materials describingliteeof plants were published
(DeCandolle 1832), and Babbage (1857) compileatsstal questionnaire
for the class of mammalia. In Russia, Baer (188@75) with associates
conducted a large-scale statistical investigatiifisbing.

Humboldt created the geography of plants (Hudth® Bonpland 1815;
Humboldt 1816) which was based on collecting arineding statistical
data. Darwin had to study various statistical peats, for example on cross-
fertilization of plants (8 10.6), the life of eartbrms (8§ 11.2) and on the
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inheritance of a rare deformity in humans (1868B.,8®l. 1, p. 449).
Statistical tables and summaries with qualitatioemmentaries occur in a
number of Darwin’s writings and he also collectéatistical data.

The stochastic essence of the evolution hypigheas evident both for
its partisans and the opponents; Boltzmann, howeves an exception (8
10.8.5). I reconstruct now Darwin’s model of evaut Introduce am-
dimensional (possibly with = ) system of coordinates, the body
parameters of individuals belonging to a given gme@males and females
should be treated separately), and the approEiatedean space with the
usual definition of distances between its pointsmdmentt,, each
individual is some point of that space and the stakes place at moment
tm+1 for the individuals of the next generation. Be@aakthevertical
variation, these, however, will occupy somewhatedént positions.
Introduce in addition point (or subspa&g)corresponding to the optimal
conditions for the existence of the species, tkepvolution will be
represented by a discrete stochastic process aipiv@ximation of the
individuals toV (which, however, moves in accordance with the gkann
the external world) and the set of individuals @fiven generation
constitutes the appropriate realization of the pssc Probabilities
describing it (as well as estimates of the inflleenthabits, instincts, etc)
are required for the sake of definiteness, but #reyof course lacking.

Darwin (1859/1958, p. 77) vividly described thi#ficulties of his
hypothesis (and at the same time offered one dfiffering explanations of
randomness as the effect of complicated causes):

Throw up a handful of feathers and all fall to gmeund according to
definite laws; but how simple is the problem wheseh shall fall compared
with problems in the evolution of species.

The main mathematical argument against Darwigfsothesis was that a
purposeful evolution undemiformrandomness was impossible or at least
demanded enormous time. Only Mendel’s contributid®66; letters of
1866 — 1873, published in 1905), forgotten unt beginning of the 20
century, and then the study of mutation allowedriswer such criticisms.
Many objections and problems still remain, but Darhvad transformed
biology as a science. In addition, his work wapoesible for the
appearance of the Biometric school (8§ 14.2).

Mendel only applied the binomial distributionan elementary way, but
his memoir marked the origin of genetics and preglidn example of a
fundamental finding achieved by elementary meats ekperiments
became the object of discussions with regard tsiigective and objective
honesty. Fisher (1936) and van der Waerden (19&8icjpated in the
debates, and all doubts have possibly blown owentbre so since
Mendel’s life and his meteorological observationd avestigations testify
in his favour. According to a communication fromoRPMWalter Mann, a
grandson of Mendel's nephew Alois Schindler, arell#tter’s report of
1902, Mendel was German. In 1945 — 1946 the descesdf his relatives
were driven out of the then Czechoslovakia.

10.8.3. MeteorologyHumboldt (1818, p. 190) stressed the importance of
studying the mean state of the atmosphere:
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To discover the laws of natujm meteorologyjwe ought to determine
the mean state of the atmosphere and the constaatof its variations
before examining the causes of the local pertudpesti

In general, he (1845 — 1862, Bd. 1, pp. 18'&@dd. 3, p. 288)
conditioned the investigation of natural phenomlepaxamination of mean
states. In the latter case he mentiothexsole decisive methfid natural
sciences]that of the mean numbetde himself (1817, p. 466) introduced
isotherms and climatic belts (8 1.3) and thus sspdrclimatology from
meteorology; he (1845 — 1862, Bd. 4, p. 59) haddvezd the idea of
contour lines fronHalley (8 2.1.4). When defining climate, he (1881,
404) nevertheless had not directly linked it witkan states as later scholars
did (Korber 1959, p. 296).

Kbdppen (1874, p. 3) believed thhé introduction of the arithmetic mean
in meteorology was the most important stag, that it was not sufficient all
by itself. Indeed, Dove (1839, p. 285) formulatled &ims of meteorology
as thedetermination of mean valugsf temperature]derivation of the laws
of [its] periodic changes and indication of rules fdetermining its]
irregular changesLater he (1850, p. 198) introduced monthly isatie
Buys Ballot (1850, p. 629) stated that the studgie@fiations from mean
values (mean states) constituted the second stabe development of
meteorology. He (1847, p. 108) noted that a singtacess was going on in
astronomy and in all sciences that did not adnpeexnentation.

Meteorological observations multiplied, andythad been published
almost uselesslyBiot (1855, pp. 1179 — 1180) had opposed that mect
and Mendeleev (1876/1946, p. 267) remarked thapit&eailingcollecting
school of meteorologists needed nothingrwnbers and numberkater he
(1885/1952, p. 527) decided that a new meteoroleags being born and
thatlittle by little it had begun, [still] basing its work on statisliclata, to
master, synthesize, forecast

Lamont (1867, p. 247) maintained that the mtagtemporal changes of
the atmosphere were not randonthe sense of the calculus of probability
and (p. 245) recommended, instead, simultaneolsaditsons made at
different localities. Quetelet (1849, t. 1, Chaptp. 53) remarked that the
differences of such observations conformed to &edtal errors.

Lamarck occupied himself with physics, chenyisind meteorology. In
meteorology, he is remembered for pisneer work in the study of weather
(Shaw & Austin 1926/1942, p. 130). He applied #rentmétéorologie
statistique(e.g., 1800 — 1811, t. 4, p. 1) whose aim (lbiderhl, p. 9 — 10)
was the study of climate, or (Ibidem, t. 4, pp. 35B54) the study of the
climate, of regularities in the changes of the Wweatind of the influence of
various meteorological phenomena on animals, pmtssoil. Quetelet
(1846, p. 275) contended that meteorology was atiestatistics and cited
otheralien sciences, such as physical geography, mineralmmgny. His
statement was correct insofar as statistical melegy, stellar statistics etc.
belong to the appropriate sciences.

The study of densities of the distributionsyateorological elements
began in the mid-19century; Meyer (1891, p. 32), when mentioning that
fact, stated that the theory of errors was notiapple to meteorology.
However, K. Pearson (1898) made use of Meyer’s naafer illustrating
his theory of asymmetric curves.
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Lamarck (1800 — 1811) was one of the first schdiarsote the
dependence of the weather on its previous staggpsexample t. 5, pp. 5
and 8 and t. 11, p. 143 of that source.

Quetelet (1852; 1853, p. 68; 1849 — 1857, 1853, pp. 29 and 83)
analysed lasting periods of fair or foul weatherpplying elementary
stochastic considerations and concluded that theags of the weather
persisting (or changing) were not independent. Kdfpanalysis (1872)
was more mathematically oriented. Quetelet alsopii@h and systematized
meteorological observations. In many letters 0f11841860 Faraday (1991
—2008), see for example vol. 3, No. 1367 and4poNo. 2263, praised
Quetelet’'s observations of atmospheric electriditythe first instance he
wrote:

You are indeed a worthy example in activity & poteeall workers in
science and, if | cannot imitate your example,rl ealeast appreciate &
value it.

10.8.4. Astronomy.Already Daniel Bernoulli (§ 6.1.1) and Laplace (8
7.1-2) stochastically studied regularities in tloda® system. They actually
considered planets as elements of a single popaoland this approach was
vividly revealed in the later investigations of @h&teroids. Newcomb
(1861a and elsewhere) compared the theoreticaluleadd in accordance
with the uniform distribution) and the actual pasters of the orbits of
asteroids but was yet unable to appraise quangtgthis results.
Concerning their distribution, he (1862; 1881) seemhave intuitively
arrived at the following proposition: a large numbéindependent points
A; = (B + bit), A = (B2 + bot), ... wheret denoted time, and the other
magnitudes were constant, will become almost umfpdistributed over a
circumference.

In 1881 Newcomb remarked that the first pagdsgarithmic tables
wore outmuch fastethan the last ones and set out to derive the pilitya
that the first significant digits of empirically t@ned numbers will ba;, np,
... Without any proof he indicated that, if numbsrss,, ..., s, were
selected at random, the positive fractional partb® differencesy — ),

(2 —-%3), ... will tend, amn , to a uniform distribution over a
circumference, and that the empirical magnitudesytiich these differences
conform, will have equally probable mantissas eifrttogarithms.
Newcomb’s reasoning heuristically resembled the Mdelebrated theorem
that states that the terms of the sequenag {vherex is irrational,n =1,

2, ..., and the braces medrop the integral partare uniformly distributed
on a unit interval. In the sense of the informatio@ory, Newcomb’s
statement means that each empirical number tenoi®wde one and the
same information. Several authors independentlyfimme another proved
that Newcomb was right. One of them called hisestantan inspired guess
but reasonably noted that it was not universallidv@®aimi 1976, p. 536).

By the mid-century, after processing observetimade over about a
century, a rough periodicity of the number of swispvas established.
Newcomb (1901), who studied their observations fidgh0 onward,
arrived afT = 11.13 years which did not, however, essentiallfedifrom
the previous results. The present-day figure isll years but a strict
periodicity is denied. In any case, it might beuglbt that the numbers of
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sunspots constitute a time series, an object émhststic studies. | note that
Newcomb considered the maxima and the minima dfghanomenon as
well as half the sums of the numbers of the sussotesponding to the
year of minimum and the following maximum, or vieesa(p. 4). He
determined the four appropriate valued @nd their mean without
commenting on the possible dependence between them.

Variation of the terrestrial latitudes is knotenbe caused by the
movement of the pole about some point along a cresembling a
circumference with period 1.2 years. Newcomb (18%®cked the then
proposed hypothesis that the movement was penaithcT = 1.17 years.
He assumed that the pole moved uniformly alongamference. Some of
his calculations are doubtful and in any case afficgently detailed (a
feature peculiar to many of his works) but he odtyeconcluded that the
hypothesis was [apparently] valid.

In 1767 Michell (8 6.1.6) determined the probgbthat two stars were
close to each other. By applying the Poisson thstion, Newcomb (1859 —
1861, vol. 2, pp. 137 — 138) calculated the proligtihat some surface
with a diameter of 1° containexktars out ol scatterecit randomover the
celestial sphere and much later Fisher (Hald 1pp873 — 74) turned his
attention to that problem. Boole (1851/1952, p.)28&soned on the
distinction between a uniform and any otremdom distribution

A ‘random distribution’ meaning thereby a distribrt according to
some law or manner, of the consequences of whighadd be totally
ignorant; so that it would appear to us as likdiat a star should occupy
one spot of the sky as another. Let us term argr @itinciple of distribution
an indicative one

His terminology is now unsatisfactory, but siatement shows that
Michell’s problem had indeed led to deliberatiofg@eneral kind. See also
Newcomb (1904a). He (1861b) also determined thbalitity of the
distance between the poles of two great circledaany situated on a
sphere. Issuing from other initial consideratidregplace (1812/1886, p.
261) andCournot (1843, § 148) earlier provided solutiorféeding both
from each other and from Newcomb’s answer (She¥8Bva, pp. 166 —
167).

About 1784 William Herschel started counting ttumber of stars
situated in different regions of the sky. He thauiiat his telescope was
able to penetrate right up to the boundaries offthée) universe and hoped
to determine its configuration. In one sectionhsdf Milky Way he
(1784/1912, p. 158) counted the stars in six fisklectegpromiscuously
and assumed the mean number of them as an esfon#te entire section.
Later Herschel (1817) proposed a model of a unifgpatial distribution of
the stars. He fixed the boundaries for the distauioéé¢he stars of each
magnitude but allowed the stars to be randomlyidigied within these
boundaries and thus provided an example of randssnaygpearing
alongside necessity, cf. Poincaré’s statementlirl§

When estimating the precision of his modeltfa stars of the first seven
magnitudes, Herschel calculated the sum of theatiewis of his model from
reality. For the first four magnitudes the sum wamll although the
separate deviations were large. Recall (8§ 6.312&) when adjusting
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observations, Boscovich applied a similar test wat$pect to absolute
deviations and that Herschel independently (180&daruse of it when
determining the Sun’s movement (again 8§ 6.3.2-3).

Herschel (1817/1912, p. 579) wrongly indicateat any star
promiscuously chosdn..] out 0f[14,000 stars of the first seven
magnitudes]s not likely to differ much from a certain mearesof them all
With regard to size, the stars are incredibly ddfe; that mean value is a
worthless quantity, and, in general, stochastitesiants, made in the
absence of data, are hardly useful. However, itlwed that the stars, even
earlier than the asteroids, had been considereteagents of a single
population (in the last-mentioned instance, wrohgly

Stellar statistics really originated in the rii@" century with the study of
the proper motions of hundreds of stars (until 18#2en astronomers
started to use the Doppler’s invention, only in directions perpendicular
to the appropriate lines of sight). The calculatezhn proper motions for
stars of a given magnitude proved, however, almasningless since
magnitudes depended on distances. Beginning witki&¥schel,
astronomers thought that the proper motions wereéama, but they
understood randomness in different ways. NewcorBbZlassumed that
their projections on an arbitrary axis were norsdiktributed. He derived,
although without providing any calculations, thesigéy laws of their
projections on an arbitrary plane and their ownridistion. Both were
connected with th&? distribution.

The general statistical study of the starrwikeesbecame more important
than a precise determination of the parametersraesstar (Hill & Elkin
1884, p. 191):

The great Cosmical questions to be answeresharso much what is the
precise parallax of this or that particular stanyb— What are the average
parallaxes of those of the first, second, third &marth magnitude
respectively, compared with those of lesser madaff{And] What
connection does there subsist between the paraflaxstar and the amount
and direction of its proper motion or can it be ped that there is no such
connection or relatio®

Then, Kapteyi§1906b; 1909) described a stochastic picture ostakar
universe by the laws of distribution of the (randpparameters, parallaxes
and peculiar motions, of the stars. He (1906a) iaisi@ted the study of the
starry heaven by [stratified] sampling; here isaagage from a letter that he
received in 1904 on this subject from one of hikeagues and inserted on
his p. 67:

As in making a contour map, we might take #ight of points at the
corners of squares a hundred meters on a sidewbwghould also take the
top of each hill, the bottom of each lake.], and other distinctive points.

In statistics, sampling became recognized at ath@usame time, although
not without serious resistance (You Poh Seng 186d)its most active
partisan was Kiaer, also see § 10.7-2.

The compilation of vast numerical materialsét@gyues, yearbooks) was
also of a statistical nature. Sometimes this dimaadf work had been
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contrasted to theoretical constructions. Thus, terqd872) plotted 324
thousand stars on his charts attempting to leade asy theories on the
structure of the stellar system, but the develogroEastronomy proved
him wrong.

Calculation and adjustment of observationsr tleasonable comparison
has always been important for astronomy. Herealragught to mention, in
the first placeNewcomb. Benjamin (1910) and many other commergator
stated that he had to process more than 62 thowdzsavations of the Sun
and the planets and that his work included a cormapkyrision of the
constants of astronomy. | add that he discusseadamgpared observations
obtained at the main observatories of the worldthatihe hardly had any
aids except for logarithmic tables. In addition,published some pertinent
theoretical studies. He was of course unable tadahe perennial problem
of the deviating observations. At first he regartiesm with suspicion, then
(1895, p.186), however, became more tolerantsHraes of observations
did not obey the normal law, Newcomb (1896, p.pr&ferred to assign a
smaller weight to theemoteobservations, or, in case of asymmetric series,
to choose the median instead of the arithmetic midarhad not mentioned
Cournot (8 10.3-3), and, in two memoirs publishetha same time, he
(1897a; 1897b) called the median by two (!) otimeryadays forgotten,
terms.

Mendelee\§ 10.9.3) objected to combining different summané
observations; Newcomb, however, had to do it regzibgt and in such cases
he (1872), hardly managing without subjective cdesations, assigned
weights to individual astronomical catalogues delr@ynon their systematic
errors. Interestingly enough, he then repeated adplstments with
weights, depending on random errors.

After determining that the normal law cannasatée some astronomical
observations made under unfavourable conditiong,ddmb (1886)
proposed for them (and, mistakenly, for all astroital observations
altogether) a generalized law, a mixture of norlaals with differing
measures of precision occurring with certain praliiggs. The measure of
precision thus became a discrete random variabteiree parameters of the
proposed density had to be selected subjectivedyndied that his density
led to the choice of a generalized arithmetic m&#h weights decreasing
towards thdails of the variational series which was hardly betit@n the
ordinary arithmetic mean (8 6.3.1).

He had also introduced some simplificationsl kater authors noted that
they led to the choice of the location parametethigyprinciple of maximum
likelihood. Newcomb hardly knew that his mixturermfrmal laws was not
normal (Eddington 1933, p. 277). In turn, two aushgeneralized
Newcomb’s law, but their work was of little pra@iégmportance.

Like Mendeleev (8 10.9.3), Newcomb (1897b, gb)lthought that the
discrepancy between two empirical magnitudes wesresl if it exceeded
the sum of the two appropriate probable errors,iaeelems that this rigid
test had been widely accepted in natural scierttexe isMarkov’s relevant
pronouncement from a rare source (Sheynin 1990b}5H— 454): he

Like[d] very much Bredikhin’s rule according to which Grder to admit
the reality of a computed quantity, it should adetwice numerically
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exceed its probable error’. | ddne doeshot know, however, who
established this rule or whether all experienceltwalators recognized .t

In other words, the difference between zeroarahl non-zero quantity
must twice exceed its probable error, a statenfattctonformed to
Mendeleev’'sand Newcomb’s opinion. But still, Newcomb sevenalds
indicated that some quantiéydetermined by him had mean square doror
even when the latter much exceeded the formerdivaduthe case (1901, p.
9) ofa=0.05 andb = 0.92!

Repeatedly applying the MLSqg, Newcomb sometidegated from strict
rules; cf. my comment in § 9.1.5. In another cas¢€l895, p. 52) thought
that small coefficients in a system of normal et might be neglected,
but he had not provided any quantitative test. Newlz realized that, when
forming normal equations, the propagation of rooffderrors could result
in their interdependence, and he reasonably coadltitht in such cases the
calculations should be made with twice as manyiagmt digits. This is
what he (1867) did when studying the calculationthe Kazan astronomer
Kowalski, who had noted that, out of the four noreguations which he
formed, only two were independent. It is now knawat ill-conditioned
observational equations should rather be procesgbhdut forming normal
equations, — for example, by successive approxansti

Newcomb’s calculation (1874, p. 167) presergpecial case. Having 89
observational equations in five unknowns, he forraed solved the normal
equations. Then, however, he calculated the rekicketerms of the initial
equations and somehow solved them anew (providihgtbe results of
both solutions). He apparently wished to excluddesypatic influences as
much as possible, but how?

Newcomb (1895, p. 82; 1897b, p. 161) mistakstdyed, although
mentioning earlier the definitive Gaussian juséfion of the MLSq, that the
method was inseparable from the normal law. | atge his unfortunate
reasoning (Newcomb & Holden 1874, p. 270) simitatite one made by
Clausius (8 10.8.5): for systematic ers@nd random errong andr,, as he
went on to prove, and only for the normal law, bysidering the
appropriate double integral, that

E[(S + 1) (s + )] =&

Newcomb necessarily remained more or less witie boundaries of the
classical theory of errors and simple stochastitepas but the extant
correspondence between him and K. Peadgswimg 1903 — 1907 (Sheynin
2002b, § 7.1) testifies that he wished to mastethlen originating
mathematical statistics. Here is a passage frorteties of 1903 to Pearson:

You are the one living author whose productiaearly always read
when | have time and can get at them, and with whiootd imaginary
interviews while | am reading

| mention finally Newcomb’s statistical contuiiion (1904b) in which he
examined the classical problem of the sex ratlurét (see 88 2.2.4, 3.3.4,
4.4 and 6.1.1). He assumed that there existed kimds of families
numbered, sayn, n, andn, for whom the probabilities of the birth of a boy
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werep, p+ andp— respectively and he studied, in the first plabe, t
births of twins. The sex of the embryo, as he tiulgecame established
only after the action of a number of successiveseaunade it ever more
probable in either sense.

10.8.5. Physicsl) The kinetic theory of gases originated in mid®19
century as the result of the penetration of thessieal method into physics.
Truesdell (1975) discussed its early history; tfus28), it was Waterson
who, in 1843, introduced the mean free path of feoube, but his
innovation was not published. Clausius likely psbé&d the first memoir
(1849) belonging to physics (but did not deal vift molecular hypothesis)
and contained ideas and methods of the theoryatigtnility.

After Poisson’s death that theory sank intavidsh. No wonder that
Clausius (1889 — 1891, p. 71) made a point to ptobgeequality E(E ) =1
for the velocity of a molecule and Boltzmann (1896/1909, p. 57&est
that the normal law followed from equal probabégiof positive and
negative elementary errors of the same absoluteevalis was of course an
unworthy formulation of the CLT.

| ought to add that Boltzmann respected therthef probability. Thus
(1872/1909, p. 317),

An incompletely proved theorem whose correctnegsastionable
should not be confused with completely proved psiipos of the theory of
probability. Like the results of any other calcultise latter show necessary
inferences made from some premises

And again (1895/1909, p. 540): the theory of pralitgtbis as exact as any
other mathematical theorny, howeverthe concept of equal probabilities,
which cannot be determined from the other fundaatemtions, is
assumed

Maxwell twice mentioned Laplace (Sheynin 1985, 34 and 366n),
although without providing any definite referencebgereas Boltzmann,
who cited many scholars and philosophers in hisuf@pvritings, never
recalled him. Khinchin (1943/1949, p. 2) maintainledt Maxwell and
Boltzmann appliedairly vague and somewhat timid probabilistic
argumentsthat in their work

The notions of the theory of probability do appear in a precise form
and are not free from a certain amount of confusidrich often discredits
the mathematical arguments by making them eithier afoany content or
even definitely incorrect. The limit theorefns] do not find any
applicationsg|...].

His statement seems too harsh. First, | belieaeit was partly
occasioned by Boltzmann’s verbose style of writiBgcond, physicists
certainly applied the LLN indirectly. Third, Khinchsaid nothing about
positive results achieved in physics (formulatiéthe@ ergodic hypothesis,
use of infinite general populations, Maxwell’s iredit reasoning about
randomness). My first remark is indeed essenteie lis an extract from
Maxwell’s letter of 1873 (Knott 1911, p. 114):
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By the study of Boltzmann | have been unable tenstehd him. He
could not understand me on account of my shortresshis length was
and is an equal stumbling block to . me

And Boltzmann (1868/1909, p. 49) indeed owned ithats difficult to
understand Maxwell'®eduktion(1867)because of its extreme brevity

2) Clausius. He (1857/1867, pp. 238 and 2483rdsd that molecules
moved with essentially differing velocities. Even€8ovich (1758, § 481)
stated something similar but perhaps presumedhbatifferences between
these velocities were not large: Tpaints[atoms] ofa particle[of light, as
in 8 477, or of any body, as in § 478] mdwgether with practically the
same velocityand the entire particle withove as a whole with the single
motion that is induced by the siitine mean)f the inequalities pertaining
to all its points Clausius used a single mean velocity such asateerthe
entire kinetic energy of a gas equal to its actadfle. Later he (1862/1867,
p. 320) maintained that the velocities of molecudaslomly differed one
from another.

And he (1858/1867, p. 268) studied the lendtihe free path of a
molecule. Denote the probability of a unit freehplay a, then

W=4d=(€"%a>0

will be the probability of its being equal xphere,a is derived from the
molecular constants of the substance. Similar denations are in other
works of Clausius (1862/1867, § 29; 1889 — 1891,7p- 71 and 119). He
(1889 — 1891, pp. 70 — 71) also calculated the niregnpath of a molecule.
Actually, without writing it out, he considered &@aths of random lengih
and calculated the expected free path as an integeaall of its possible
values from 0 to .

Suppose now that

X=Xy +Xo+ ... +Xnp

wheremis an arbitrary natural number. Then, accordin@lausius’
assumptionsy, k=1, 2, ...,m, will not depend onxg + X, + ... +Xx1) and
the characteristic function fox will be equal to the product of these
functions for the previous's. In this instance, all these functions are
identical, and=(s), the integral distribution function of is therefore
infinitely divisible. Clausius’ achievements wergdresting, but he did not
attempt to construct the kinetic theory of gases stochastic basis.

3) Maxwell(1860) established his celebrated distributiorhefvelocities
of monatomic molecules

x) = j,exp(- )

He tacitly assumed that the components of the itglaere independent;
later this restriction was weakened (Kac 1939; lkrir952). He then
maintained that the average number of particlels wetocities within the
interval |v; v + dJ] was proportional to
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f(x) = ;\1/7v2 exp( V2 / ) du

This can be justified by noting that the prabbof such velocities can
also be represented as

2 v+dv ) s 5
d sin d texptt®/ “)dt
0O O Y

It is presumed here that the components of thecitglm each of the three
dimensions have the same distribution.

Maxwell left interesting statements about ttagistical method in
general, and here is one of them (1873b/1890, 4). 37

We meet with a new kind of regularity, the regulaof averages, which
we can depend upon quite sufficiently for all preadtpurposes, but which
can make no claim to that character of absolutecisien which belongs to
the laws of abstract dynamics

The drafts of the source just mentioned (Mak4@90 — 2002, 1995, pp.
922 —933) include a previously unpublished andg wateresting statement
(p. 930): abandoning trerict dynamical methoend adopting instead the
statistical methodk a step the philosophical importance of whichreztrbe
overestimated
And here is his definition (not quite formal) oktltatistical method which
heuristically resembles the formulation provideddmfmogorov &
Prokhorov (8 0.2): it consisted @stimating the average condition of a
group of atomg1871/1890, p. 253), in studyirtige probablgnot the
average'lhumber of bodies in each groupder investigation (1877, p.
242).

Maxwell gave indirect thought to randomnessieHs his first
pronouncement (Maxwell 1859/1890, pp. 295 — 296wkvas contained
in his manuscript of 1856 (1990 — 2002, 1990, f»)44nd certainly
describes his opinion about that phenomenon:

There is a very general and very important peabin Dynamic$...]. It
is this — Having found a particular solution of thgquations of motion of
any material system, to determine whether a shiggturbance of the motion
indicated by the solution would cause a small pdwariation, or a
derangement of the moti¢n.].

Maxwell (1873a, p. 13) later noted that in someesassmall initial
variation may produce a very great charige]. Elsewhere he (report read
1873, see Campbell & Garnett 1882/1969, p. 440)a@xed that in such
instances the condition of the system was unstatdleprediction of future
events becomes impossible. He (Ibidem, p. 442)igeavan example of
instability of a ray within a biaxial crystal andophetically stated (p. 444)
that in future physicists will studsingularities and instabilitied note that
in 1873 — 1882 Engels (1925/1971, p. 213) urgeehsisits to study both
necessity and chance.
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In a manuscript of the same year (1873) Max{@dimpbell & Garnett,
p. 360), remarked that

The form and dimensions of the orbits of the phef are not
determined by any law of nature, but depend uppar#cular collocation
of matter. The same is the case with respect tsitleeof the earth

This was an example illustrating Poincar&atement concerning
randomness and necessity (8§ 1.1), but it was ribtismtly specific; the
eccentricities of planetary orbits depend on tHeaiges of the planets, cf.
end of § 7.3.

And here is Maxwell’s position (1875/1890, 864 concerning
randomness in the atomic world:

The peculiarity of the motion of heat is that ipexfectly irregular [...]
the direction and magnitude of the velocity of devole at a given time
cannot be expressed as depending on the presdatibpad the molecule
and the time

At the very end of his life Maxwell (1879/1898p. 715 and 721)
introduced a definition for the probability of artaen state of a system of
material particles:

| have found it convenient, instead of considedng system df..]
particles, to consider a large number of systemslar to each othef...].
In the statistical investigation of the motion, eanfine our attention to the
number of these systems which at a given timenaagohase such that the
variables which define it lie within given limits.

Boltzmann (1868, § 3) defines the probabilitthe system being in a
phasq...] as the ratio of the aggregate time during whicis iin that phase
to the whole time of the motion

4) If the classical definition of probability included here, we can say

that Boltzmann used three formulations. Maxwedi(it2 above) mentioned

one of them, and another reference can be adddnmnn (1895 — 1899,

1895, Bd. 1, p. 50). Yet another one was that agdlly Maxwell (see same

subsection) although sometimes Boltzmann (1878/190252) did not
indicate which one he was employing. He (1872/190817) apparently
thought that these posterior probabilities wereedant.

In other words, with respect to separate maéscBoltzmann introduced
the time average probability, — and maintained ithats equivalent to the
usualphase average probability. When studying polyatogases,
Boltzmann (1871) defined the probability of itstetas a product such as
fd wheref was some function, varying in time, of the cooatés and
velocities of the separate molecules dndthe product of the differentials
of those parameters. For stochastic processes fsnictions determine the
distribution of a system of random variables atdppropriate moment.
Zermelo (1900, p. 318) and then Langevin (1913/1918) independently
stressed the demand to provideedinition correcte et claire de la
probabilité (Langevin). Like Maxwell, Boltzmann (1887/1909,364; 1895
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— 1899, 1899, Bd. 2, p. 144) used the conceptitidus physical systems
and infinite general population.

From 1871 onward Boltzmann had been connettiagroof of the
second law of thermodynamics with stochastic carsitibns; however, he
(1886/1905, p. 28) then indicated that th& t&ntury will be the age of
mechanical perception of nature, the age of Danaimd (1904a/1905, p.
368) that the theory of evolution was understanelabmechanical terms,
that (1904b, p. 136) it will perhaps become possibldescribe electricity
and heat mechanically. The possible reason fovibispoint was that he did
not recognize objective randomness. Another reaaba for any scholar
was of course the wish to keepaiostract dynamicssee Maxwell's
statement on thieew kind of regularitfitem 3 above) and the opinion of
Hertz (1894, Vorwort)Physicists are unanimous in that the aim of physics
is to reduce the phenomena of nature to the sitapls of mechanicsAnd
here is a lucid description of this point as faBa#tzmann was considered
(Rubanovsky 1934, p. 6): in his works

Randomnesk..] struggles with mechanics. Mechanical philosophy is
still able[...] to overcome randomness and wins a Pyrrhic victoer a
but recedes undergoing a complete ideological edtre

10.9. Natural scientists

10.9.1. Ivory.In 1825 — 1830 Ivory published 11 papers devotetdo
derivation of the flattening of the Earth’s ellipd@f rotation by means of
pendulum observations. In a letter of 1827 to Gip&auss (W/Erg-4, TI. 2,
pp. 475 — 476) called Ivory actutemathematician, but indicated that the
spirit of the MLSq was alien to him.

Ivory was ignorant of the MLSq, called it natagl enough but applied it,
perhaps not even realizing it at once and had pywliead the variance. Then,
having at his disposal 5 — 7 observations, onlya@nehich was made at a
southern station, he (1826a, p. 9) combined it wébh of the others (to
have pairs with a large latitudinal difference) aadculated the flattening
from the thus obtained pairs. The weight of theaggial observation
became absurdly great and its error corruptedhalpgirs in the same way.
Then, before an adjustment, stations having althessame latitude can be
combined to form a single mean station, which Iwtid/not do.

Because of local anomalies of gravity IvoryZ@B, p. 242) rejected up to
31% of the available observations. His final re¢$u828, p. 242) was,
however, sufficiently close to the flattening oétkrasovsky ellipsoid (8
6.3). Ivory actually wished to solve two problem®ace: to find out
whether the observations were consistent with lgpseidal Earth, and to
adjust them. The minimax method (8§ 6.3.2-4) is barssolving the first
problem.

10.9.2. FechnerHe (1860) was the founder of psychophysics and
became one of the first to introduce the statiktioethod, although not in
the crucial direction, into physics. He (1860, Bdp. 8, see also 1877, p.
213) defined that discipline as aract doctrine on the functional
correspondence or interdependence of body and #aabrding to modern
understanding, it is a study of quantitative relasi between sensations and
the stimuli that produce them.
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Fechner (1855 and 1864) did not comment oméweloping kinetic
theory of gases. His mathematical tools and approase primitive and
almost everything he achieved had to be repeatadhiher level.
Ebbinghaus (1908, p. 11) called Fechaghilosopher full of fantasidsuta
most strict physicistvho hadput|[...] together psychophysics as a new
branch of knowledgdeing the co-author of the logarithmic Weber —
Fechner law connecting stimuli with sensationshifec extended the range
of its application by experiments (1860; 1887).dtiedied the methods of
experimentation and the modern method of pairedpesisons (H. A.

David 1963) owes much to him.

In the theory of errors Fechner attempted, songs unsuccessfully, to
introduce innovations, or to repeat unknown to previous findings and he
somewhat furthered that theory. His main innovati@s the collective, —
the set of observed values of a random variablg1887) proposed to
study them by applying several mean values, thatual arrangement, and
their deviations (including absolute and normediatgwns) from the
observations. He paid attention to asymmetric cblles and attempted to
discover a universal asymmetric distribution faioes in natural sciences.

Fechner (1897, pp. 365 — 366) also studiedntieedependence of the
successive daily air temperatures by comparing ttweirse with the
arrangement of winning (numbered) tickets of a teguottery and
achieved an interesting result pertaining to thesrup and down (cf. § 10.2-
4). He even introduced a measure of dependencengarngm O to 1, but
describing onlypositivedependences. His contribution appeared
posthumously, after the Galton correlation theag bmerged.

Mises (1928/1972, pp. 26 and 99) highly ape@isechner’s efforts and
stated (p. 99) that Fechnecsnstructions prompted, at least fMises], to
adopt a new viewpoinK. Pearson (1905, p. 189) called him a leading
statistician and Freud (1925/1963, p. &d)owed that thinker upon many
important points.

10.9.3. Mendeleevi-rom 1893 to 1907 Mendeleev was Director of
Russia’s Main Board of Measures and Weights andgased observations
both as a chemist and a metrologist. He (1872b/195101) distrusted data
obtained under differing conditions, by differerdthrods and observees

compared with thosachieved by precise methods and experienced persons

Then (1887/1934, p. 82)jsadvantageoudata ought to be rejected,
otherwisea realistic resultis impossible to get.

No wonder that he (1872a/1939, p. 144) prefciwmanake a few but
precise and repeated measurememtd objected to amassing observations;
true, this attitude was partly due to his wish\oid calculations, cf.
Boyle's statement in 8§ 1.7. Mendeleev (1875b/1965@09) thought that an
observational series should lh@rmoniousso that its median should
coincide with its arithmetic mean, or that the meéits middlemost third
should coincide with the mean of the means ofitseene thirds. In the first
case, he mistakenly added that the coincidence tilegtrthe appropriate
distribution was normal. He had not said how tattibservations which
did not obey his wish.

The deviation of the arithmetic mean from thedmn, normed in a
certain way, is nowadays recognized as a measwagyaimetry of the
appropriate distribution (Yule & Kendall 1937/19%8,161). Mendeleev
had not mentioned the second Gaussian justificatidhe MLSq and made
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a few mistakes in his theoretical considerationse Of them was an
excessive belief in the arithmetic mean (1856/193431; 1877/1949, p.
156; 1895/1950, p. 159).
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11. Bertrand and Poincaré
Bertrand criticized everything, often mistakerilut he turned attention to
probability, and especially to the concept of umiacandomness. Poincaré
achieved interesting results in geometric probigbdnd in interpreting
randomness. He referred almost exclusively to Bedy never to
Chebyshev or Markov, and expressed strange ideag Hi® MLSq.

Key words: random chord, randomness in nature, geometricgtnibty,
justification of the MLSq

11.1. Bertrand: General Information

In 1855 Bertrand had translated Gauss’ worktherMLS(q into French,
but his own work on probability began in essenc&887 — 1888 when he
published 25 notes and his treatise (1888a), writiggreat haste and
carelessly and lacking a systematic descriptiatsafubject but in a very
good literary style. Gauss died the same year (L&88& was only able to
sendobservations about detai(8ertrand,C. r. Acad. Sci. Parig. 40, 1855,
p. 1190). Gauss is known to have refused to publishiench, — but
apparently did not object to being translated thett language.

1) Statistical probability and the Bayesian appro&tdads appearad =
500,391 times im = 1¢ tosses of a coin (p. 276; here and below | only
provide the page number of the treatise). Nonstmssved: the unreliable
statistical probability of that eventjis=0.500391, not a single of its digits
merits confidence. After making this astonishingldeation, Bertrand
compared the probabilities of two hypotheses, ngntleat the probability
was eitheip; = 0.500391, op, = 0.499609. However, instead of calculating
[p:"p2"] + [p2"p1"], he applied the De Moivre — Laplatteeorem and only
indicated that the first probability was 3.4 timkegher than the second one.
So what should have the reader thought?

As | understand him, Bertrand (p. 1@bndemnedheBayesprinciple
only because the probability of the repetitionted bccurrence of an event
after it had happened once was too high (cf. tbelpm about the sunrise in
§ 5.1). This conclusion was too hasty, and thegea@s again left in
suspense: what might be proposed instead? Not8#maand (p. 151)
mistakenly thought that the De Moivre — Lapldélceorem precisely
described the inverse problem, the estimation ®tlieoretical probability
given the statistical data, cf. § 5.2.

2) Statistics of population. Bertrand indicatldt there existed a
dependence between trials (or their series) aridhbkagrobabilities of the
studied events could change. He referred only toridy (8 14.1.1) and had
not provided any concrete examples, but he (p. B@®&d that, when
studying the sex ratio at birth, both Laplace an$bn had assumed
without justification that the probability of a neabirth was constant in time
and space. Yes, but their mistake was only metlogudl since they could
not have failed to understand this circumstance§ @f1-5.

3) Bertrand paid much attention to the matheraktreatment of
observations, but his reasoning was amateuristsamgtimes wrong. Thus,
he (pp. 281 — 282) attempted to prove that the Eangviance (9.6b) might
be replaced by another estimator of precision ltgpagismaller variance but
failed to notice that, unlike the Gauss statigtis,new estimator was
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biassed. He (p. 248) expressed a favourable opabont the second Gauss
justification of the MLSq but indicated (p. 267 athfor small errors, the
even distribution (X) = a + bX can be approximately represented by an
exponential function of a negative square, — thaffirst substantiation of
the method was approximately valid.

4) Several interesting problems dwelt on a eam@omposition of balls in
an urn; on sampling without replacement; on théobakoblem; and on the
gambler’s ruin.

a) He derived the most probable compositiothefurn (pp. 152 — 153)
filled with balls of two colours given a sampleeftracted balls.

b) An urn haspwhite balls andgqgblack onesp + = 1. Determine the
probability that aften drawings without replacement the sample will
contain Gp — B white balls (p. 94). For large valuessdndn Bertrand
obtainedan elegant formula

2
ks S

1
exp|— .
A2 pgn Pl 2pgn(s- r)] s-n

He (1887) published this formula earlier withowtjtication and noted that
that variable probability wasn quelque sorte un régulateur

c) An urn containm balls favourable for candidate A, andballs
favouring B (n > n). The balls are extracted one by one without
replacement. Then, the probabilRythatA was always ahead & (p. 18)
was equal t&® = (m — r)/(m + n). Thisballot problemhas many
applications. Takacz (1967, pp. 2 — 3; 1982/206#)ad its history back to
De Moivre (8 4.1-5); he himself, in 1960, had getieed it.

d) | select one out of the few problems ongambler’s ruin (pp. 122 —
123). GambleA hasm counters and plays with an infinitely rich partner.
His probability of winning any given gamepsDetermine the probability
that he will be ruined in exactlygamesii > m). Bertrand solved this
problem by applying his previous result. Calculdie probability thafA
loses 6 + m)/2 games and wins m)/2 times; then multiply it by the
probability that during that tim& will never have more tham counters,
that is, bym/n

5) In a brief chapter Bertrand largely denied evenghione in thenoral
applicationsof probability by Condorcet (and did not refertplace or
Poisson).

6) In two of his notes he (1888b; 1888c) came cloggawing that for a
sample from a normal population the mean and thamnvee were
independent.

Bertrand'’s treatise is impregnated with its foomstructive negative (and
often unjustified) attitude towards the theory oflpability and treatment of
observations and wrong statements. Thus, he pp.{326) alleged that
Cournot (cf. 8 10.3-5) had supposed that judgegldddheir cases
independently one from another. Nevertheless, beex a strong influence
upon Poincaré (a too strong influence!), and,pigtsand inattention to
Laplace and Bienaymé notwithstanding, on the réa¥/¢he interest of
French scientists in probability (Bru & Jongman€20

P=

11.2. Bertrand: The Random Chord
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By several exampld®ertrand proved that the expressaimrandom or
evenuniformly randomwas not definite enough. Thus, he maintained that
the Michell problem (8 6.1.6) should have been gaimed: remarkable was
not only a small distance between stars, but sdimer éeatures of their
mutual arrangement as well. One of his exampled)(pecame classical.
Determine the probability, Bertrand asked, tharadomly drawn chord of a
given circle was longer than the side of an egeiidttriangle inscribed in
the circle. He listed three possible answers:

a) One endpoint of the chord is fixgds 1/3.

b) The chord’s direction is fixe@;= 1/2.

c)The location of the centre of the chord iy point of the circle is
equally probablep = 1/4.

A curious statement about this problem is d@uBadrboux (1902/1912, p.
50):

In accord with considerations which seem equalaupible, he
[Bertrand]derived two different values for the probabilipught, 1/2 and
1/3. He investigated this question and found itstemn, but left its
discovery to the readers

In failing to mention the third solution he posgilidllowed Poincaré, see
below.

Poincaré (1896, p. 97; 1912, p. 118) considéredertrand problem.
Choosing two differing pairs of parameters (cadlith , and , ), each
defining the random chord, he noted that the irstisgsfd d andd d
over the given circle were not equal to each otllich as Poincaré stated,
explained the paradoxical nature of the problem.

Czuber (1903/1968, pp. 107 — 108) discovereektinore natural
solutions of the Bertrand problem, one of them cioiimg with Bertrand’s
first version. The other two were
p=1/3+ 3/2 0.609 and 1/3+ 3/4 0.746.

The Bertrand problem has an uncountable sabh®ivers (De Montessus
1903). Suppose that a certain diameter of the givetncircumference with
centreO is thex-axis and mark point® andC on its positive half,— its
intersections with concentric circumferences willnenon centre in poir®
and radiiOD = 1/2 andOC = 1. Each point fronD to infinity can indeed
belong to a chord (or its extension defining therdh satisfying the
condition of the problem. De Montessus also nobed the mean value of
the probability was 1/2.

Schmidt (1926) issued from Poincaré’s consiilema and indicated in
addition that the probability sought should persisder translation and
rotation of the coordinate system (invariance urat@nge of scale is also
needed). Accordingly, he proved that this condiiganly satisfied for a
certain polar coordinate system and when transfogntiinto another one
(with the appropriate Jacobian certainly allowed.fo

He also showed that the proper solution comedpd to choosing that
system of coordinates with origin at the centréhefcircle and fixing the
chord by the coordinates of its centre. The prdighvas thenp = 1/2, cf.
De Montessus’ study, a value gradually accepteldtey commentators,
which can be understood as complete ignorancel(8)8See Poisson’s
calculation of the probability of the unknown corsfimn of an urn and
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especially my example concerning the unknown priibabf the outcomes
of a coin toss in the same subsection.

| add a few words about geometric probabilityHie 19' century before
Bertrand. Cournot (1843, § 74) applied it for damiythe distribution of a
function of several random arguments. Here is driesoexamples. The
arguments of the functiam= |x — y} are uniformly distributed on segment
[0; 1]. After calculating the areas of the apprateifigures, he concluded
that

Pu a=(1-a9),0 a 1.

The determination of the probability of the trany event would have led
him to the once popular encounter problem (Laut&73, pp. 67 — 69): two
persons are to meet at a definite spot during eifsge: time interval, their
arrivals are independent and ocatirandom The first one to arrive waits
for a certain time and then leaves. Determine thbability of the
encounter.

Most eminent natural scientists of thd't@ntury tacitly applied
geometric probability, for example Boltzmann (88L8) and Darwin
(1881/1945, pp. 52 — 55) who found out that earttmgodid not seize by
chance any point of the perimeter of paper triamglaen carrying them off
to their burrows.

Seneta et al (2001) described the investigatadrgeometric probability
by Sylvester, Crofton and Barbier which led to #ppearance of integral
geometry. | mention Sylvester’'s remarkable probl&mdetermine the
probability that four points takeat randomwithin a finite convex domain
will form a convex quadrilateral. See Czuber (19988, pp. 99 — 102) for
a few particular cases of that problem.

For a modern viewpoint on geometric probabgiée M. G. Kendall &
Moran (1963). Then, Ambartzumian (1999) indicateat geometric
probability and integral geometry were connectetth wiochastic geometry.

11.3. Poincaré

Poincaré (1896/1912) had passed over in sileatenly the Russian
mathematicians, but even Laplace and Poisson, iarekposition was
imperfect. Following Bertrand, Poincaré (p. 62)edlthe expectation of a
random variable its probable value; denoted thesomesof precision of the
normal law either by or by h; made use of loose expressions such as
lies betweez andz + dz(p. 252). Also see § 11.2 (Poincaré’s contribution
to the celebrated Bertrand problem).

Commenting on the first edition of his treatiBertkiewicz(Bortkevich
& Chuprov 2005, Letter 19 of 1897) noted:

The excessively respectful attitude towdrd$ Bertrand is surprising.
No traces of a special acquaintance with the litera on probability are
seen. The course is written in such a way as thaagiace and Poisson,
especially the latter, never lived.

Several times Poincaré applied the formula
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L L
F" dx ()

where (X) was a restricted positive functio, the only point of its
maximum, and the limits of integration could haeeb infinite (although
only as the result of a formal application of theeyBsian approach).
Poincaré (p. 178) only traced its proof and somsg&iaions should perhaps
be added. To place Poincaré’s trick in the progesgective, see Erdélyi
(1956, pp. 56 — 57). | discuss now some issueslyniiosin Poincaré’s
treatise.

1) The theory of probability. Poincaré (p. 2dasonably stated that a
satisfactory definition of prior probability was possible. Strangely
enough, he (1902/1923, p. 217) declared dldhe sciencesvere but an
unconscious applicatioaf the calculus of probability, that the theory of
errors and the kinetic theory of gases were basdtdeLLN and that the
calculus of probability will evidently ruin thente§ entrainerait évidemment
dans sa ruing He concluded that the calculus was only of pecatt
importance. Then he (1896/1912, p. 34) apparendyntained that a
mathematician was unable to understand why forecastcerning mortality
come true.

In a letter of ca. 1899 connected with the riots Dreyfus casd_¢
procesl1900, t. 3, p. 325; Sheynin 1991a, pp. 166 — Baincaré followed
Mill (8 8.3) and even generalized him to includeral sciencesnd
declared that the appropriate findings mad€bwydorcet and Laplace were
senseless. And he objected to a stochastic stuldgraiwriting for
identifying its author.

2) Poincaré (1892a) had published a treatissh@modynamics which
Tait (1892) criticized for his failure to indicatiee statistical nature of this
discipline. A discussion followed in which Poinc41892b) stated that the
statistical basis of thermodynamics did not satisfig since he wished to
remainentirely beyond all the molecular hypotheses howegenious they
might be in particular, he therefore passed the kinetwotk of gases over
in silence. Soon he (1894/1954, p. 246) made knme/oubts: he was not
sure that that theory could account for all thewndacts. Later Poincaré
(1905/1970, pp. 210 and 251) softened his attitpdgsical laws will
acquire arentirely new aspecnd differential equations will become
statistical laws; laws, however, will be shown ®imperfect and
provisional.

3) The binomial distribution. Suppose thaBernoulli trials with
probability of succesp are made and the number of successesRgincaré
(pp. 79 — 84), in a roundabout and difficult wagrided (in modern
notation) E( —mp)? and E| —mp. In the first case he could have calculated
E 2 in the second instance he obtained

E| -mg  2mpaC;°p™q™, g =1 -p.

4) The Bayesiaapproach: estimating the total numbiy ¢f the
asteroids. Poincaré (pp. 163 — 168) assumed ttatvbof them were
known and that, during a certain yeaminor planets were observad,of
which were known before. Introducing a constanbpiolity p = n/N of
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observing an asteroid during a year and applyie@éyesian approach, he
obtained B n/p.He was not satisfied with this pseudo-answer and
assumed now th@twas unknown. Again applying the Bayesian approach
and supposing thattook with equal probability all values within the
interval [0; 1], he derived instead\NE= (M/m)n.

He could have written this formula at onceaddition, it was possible to
recall the Laplaceroblem of estimating the population of France &yple
data (8 7.1-5). It is nevertheless interesting Ba@hcaré considered the
unknown number of the minor planets as a randornalvia.

5) Without mentioning Gauss (1816, § 5), he @82 — 194) derived the
moments of the normal distribution and proved thatdensity function
whose moments coincided with the respective monritse normal law
was normal. This proposition was due to Chebysh887a), see also
Bernstein (1945/1964, p. 420).

Poincaré applied his investigation to the tlgeadrerrors and non-
rigorously proved the CLT: for errors sénsiblementhe same order and
constitutingune faible parof the total error, the resulting error followed
sensiblementhe Gauss law (p. 206).

Also for proving the normality of the sum ofans Poincaré (pp. 206 —
208, only in 1912) introduced characteristic fuaes which did not
conform to their modern definition. Nevertheless was able to apply the
Fourier formulas for passing from them to densiéied back. These
functions were

f( )= pe’,f( )= (X)e’ dx.He noted that( ) =1+ Ex/1!+
2BXC2! + ... (1; 2)

6) Homogeneous Markov chains. Poincaré providetesting examples
that might be interpreted in the language of tleésens and their ergodic
properties.

a) He (p. 150) assumed that all the asteromlgech along one and the
same circular orbit, the ecliptic, and explainedy\iliey were uniformly
scattered across it. Denote the longitude of aceninor planet by = at +
b wherea andb are random antlis the time, and, by(a; b), the continuous
joint density function o& andb. Issuing from the expectation

E™= (g b)d™™*Pda db

(which is the appropriate characteristic functioritie modern sense),
Poincaré not very clearly proved his propositioat tfesembled the
celebrated Weytheorem (beginning of § 10.8.4). The place of aglan
space is only known with a certain error, and thenber of all possible
arrangements of the asteroids on the ecliptic ntiggrtefore be assumed
finite whereas the probabilities of the changethete arrangements during
time period f; t + 1] do not depend an The uniform distribution of the
asteroids might therefore be justified by the efggdoperty of
homogeneous Markov chains having a finite numbgroskible states.

b) The game of roulette. A circle is alternatdivided into a large
number of congruent red and black sectors. A nasdihirled with force
along the circumference of the circle, and, afarihg made a great number
of revolutions, stops in one of the sectors. Exgrexe proves that the
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probabilities ofred andblackcoincide and Poincaré (p. 148) attempted to
justify that fact. Suppose that the needle stofes &favelling a distance

(2 <s < A). Denote the corresponding density ), a function
continuous on [2; A] and having a bounded derivative on the sameviater
Then, as Poincaré demonstrated, the differencedestthe probabilities of
red andblacktended to zero as the length of each red (andoéac

became infinitesimal (or, which is the sames dgcame infinitely large).

He based his substantiation on the method of arlgifunctions (Khinchin
1961/2004, pp. 421 — 422; von Plato 1983) and Hirsketched its essence.

c) Shuffling a deck of cards (p. 301). In atremely involved manner,
by applying hypercomplex numbers, Poincaré prohat after many
shuffling all the possible arrangements of the saethded to become
equally probable. See § 7.1-6.

7) Mathematical treatment of observations. posthumously published
Résuméf his work, Poincaré (1921/1983, p. 343) indidateat the theory
of errorsnaturally was his main aim in the theory of probability.hiis
treatise he (pp. 169 — 173) derived the normatitigion of observational
errors mainly following Gauss; then, like Bertraotanged the derivation
by assuming that not the most probable value oéstienator of the location
parameter coincided with the arithmetic mean, tsutiean value. He (pp.
186 — 187) also noted that, for small absolutersmg x,, ..., X,, the
equality off (2) to the mean value &fx), led toz, the estimate of the real
value of the constant sought, being equal to thieraetic mean ok;. It
seemed to him that he thus corroborated the Gastalpte.

Finally, Poincaré (p. 188) indicated that tlagiance of the arithmetic
mean tended to zero with the increase in the numibabservations and
referred to Gauss (who nevertheless had not ssatgtiing at all about the
case on ). Nothing, however, followed since other linearamg had
the same property, as Markov (1899a/1951, p. 2%0¢d on another
occasion. Poincaré himself (1896/1912, pp. 1961-&@ 217) twice
proved the consistency of the arithmetic meanhénsecond case he issued
from a characteristic function of the type of (hpg2) and passed on to the
characteristic function of the arithmetic mean.rééed that, if that function
could not be represented as (2), the consistenttyeadrithmetic mean was
guestionable, and he illustrated that fact by taacBydistribution. Perhaps
because of all this reasoning on the mean Poir{pad$88) declared that
Gauss'’ rejection of his first substantiation of MeSq wasassez étrange
and corroborated this conclusion by remarking thatchoice of the
parameter of location should not be made indepahdeom the
distribution (which directly contradicted Gauss’tor@ approach). In the
same context Poincaré (p. 171) argued that everyelieved that the
normal law was universal: experimentalists thoubght that was a
mathematical fact and mathematicians believeditheds experimental.

8) Randomness. Poincaré discussed randomn#ssbuos treatise and in
his scientific-popular booklets. In § 1.1 | notad statement about the link
between randomness and necessity. There alsaeiscaiption of chaotic
processes, and two of his explanations of chaneswll (8 10.8.5-3)
anticipated one of these, but did not mention chanc

| would argue that Poincaré initiated moderrdigs of randomness. For
him, the theory of probability remained an accegsaoibject, and his almost
total failure to refer to his predecessors exceptBnd testifies that he was
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not duly acquainted with their work. However, hisatise had for about 20
years remained the main writing on probability ur&pe. Le Cam’s
declaration (1986, p. 81) that neither Bertrana,Pmincaréappeared to
knowthe theory was unjust: at the time, Markov wasaapptly the only
one who did master probability.
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12. Chebyshev

Chebyshev proved his version of the LLN, alnr@girously justified the
CLT and greatly influenced Russian scholars. Hisifa to recognize
contemporary Western developments hampered Russtmrematicians.

Key words: LLN, CLT

12.1. His Contributions

1) The Poisson LLN (Chebyshev 1846); see Prakh(1986) for a
detailed exposition. Chebyshev solved the followpngblem. Inn
[independent] trials the probability of success wap,, ..., pn. Determine
the probability that the total number of successas not less than p. By
clever reasoning he obtained the formula

m nHml
P m N ns R

2\/5 m- ns m n- m

wherem > ns +1 andswas the mean probability of success.

His proof was rigorous (although he had notdatkd that the trials were
independent) and he (p. 259) had the right to @egrd?oisson whose
method of derivation did not provide the limitstbé error of his
approximate analysis. Later Chebyshev (1879 — 188®, pp. 162 — 163)
explicated one of his intermediate transformatimuse clearly, also see
Bernstein (1945/1964, p. 412). Chebyshev also bedate to prove the
Poisson LLN, cf. § 8.1.5, in the form

limP(|(uh) —s| < )=1,n

Then Chebyshev (1867) generalized this formanthproved the
Chebyshev form of the LLkor random variables having E; C; and

ETEC,
lim P{QUME( i —B% |< ]=1,n

2) The Bienaymé — Chebyshev inequality (cf0834). In his lectures
Chebyshev (1879 — 1880/1936, pp. 166 — 167) spedififor coinciding
random variables and obtained a most importantvanglsimple corollary:
the arithmetic mean was a consistent estimatdiegkpectation of a
random variable. He again assumed that the expmtéadnd variances of
the appropriate variables were uniformly restricted

Unlike Heyde & Seneta (8 10.2-4), | believettGaebyshev derived this
inequality in about the same way as Bienayhak only in much more
detail. True, he restricted his attention to diserariables whereas
Bienaymé, without elaborating, apparently had indarthe continuous case;
his memoir was devoted to the mathematical treatwieobservations.
Modern authors, whom | mentioned in § 10.2-4, regsaderivation for the
latter instance; actually, already Sleshinsky (38881 done it.
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3) The CLT. Chebyshev (1887b) noted that thabtem led to the MLSq
(in accordance with the Laplacean approakle)issued from his
inequalities (1874) published without proof foriategral of a non-negative
function whose moments up to some order coincidiétal thhe same
moments of the appropriate,a definite sensenormaldistribution.Markov
(1884)andthenStieltjessubstantiatethem but later he (1885) expressed
his regrets at having missed Markov’s contributidhebyshev justified his
inequalities afterwards but without mentioning pisdecessors, see Krein
(1951).

Chebyshev considered random variablgsi, ..., U, having densities

i(X) and uniformly bounded moments. He had not expressumed
independence and did not indicate the restriction

lim[ud/n 0,i=1,2,...,nn

(1)

It was not necessary for the moments to be unifpbolinded, but
Liapunov (1901b, p. 57) explained that demand bglyshev’s peculiar
turn of speech.

Chebyshev noted that the densify) of the fraction

X= u/ n

(2)

can be determined by means of the multiple integral

f(x)dx = 1(uy) 2(W2) ... n(Up)ddu,... du,
(3)
extended over the values of the variables at wiieHraction above is
situated within the intervak{ x + dX. He multiplied both parts of (3) g’
wheres was some constant and integrated them over, (~ ) so that the
right side became separated into a productiofegrals with the same limits
of integration. Chebyshev then developed both panp®wers of (the right

side, after taking its logarithm) and equated thefficients of the same
powers of that magnitude to each other. Thus ttegrals

F)dx, xf()dx, x°f(x)dx...

or the moments of magnitude (2), were determinetbigpme order (& —
1). It occurred that, as , again with the same limits of integration,

e f(x) dx= expE/2q°)
(4)
where 1¢f was the arithmetic mean of the second moments afd it is

here that the condition (1) was needed. Applyirggpgneviously mentioned
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estimates of the integral of a non-negative fum;tidhebyshev now
completed his proof:

Ui

_ 1
\J2 E[uu] )= T

lim P( exp(=A)dx, n

(5)

For finite values oh the same probability, as Chebyshev indicated witlao
rigorous demonstration, was determined by a dewvedop in polynomials
now called after Chebyshev and Hermite.

Markov (1898/1951, p. 268), when proving theeyshev theorem anew,
without explaining the situation had eliminatedediettt by introducing
instead of (1) additional restrictions

By =0, Eu" <¥, limE[uy O,n : (6a, b, c)

Sleshinsky (1892) issued from Cauchy’s findi(®40.1) and apparently
proved the CLT rigorously even before Markov ditha@ugh only for a
linear function of observational errors having &eredensity.

12.2. His Lectures

From 1860 to 1882 Chebyshev delivered lectarethe theory of
probability at Petersburg University. In 1936, A.Wylov published those
read in 1879/1880 as recorded by Liapunov ander rtef his publication by
mentioning only the page numbers of this sourtenslated this book
correcting perhaps a hundred (I repeat: a hundnadematical misprints.
Ermolaeva (1987) briefly described a more detaitaxbrd of Chebyshev’'s
lectures read during September 1876 — March 18%8odered by herself
but still unpublished. She had not indicated whethe newly found text
essentially differed from the published version.

The lectures were devoted to definite integitals theory of finite
differences and the theory of probability. Chebyshgempted to apply the
simplest methods; for example, he used summing,ibndcessary, went on
to integration only at the last moment; he intraetlicharacteristic functions
only in the discrete case; he did not specify Heatonsidered independent
events or variables; he was not interested in tilegophical aspect of
probability (Prudnikov 1964, p. 91); and, amongdjpglications of the
theory of probability, he almost exclusively dissed (not quite properly)
the mathematical treatment of observations.

1) The main notions. Chebyshev (p. 148) dedl#nat the aim of the
theory of probability was

to determine the chances of the occurrence of @iceeventand thathe
word ‘event’ means anything whose probability isgedeterminedand
probabilityserves to denote some magnitude that is to be mezhsu

Boole (1851/1952, p. 251) expressed similaasde
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The object of the theory of probabilities may hesthetated: Given the
separate probabilities of any propositions to fthe probability of another
proposition.

According to Prokhorov & Sevastianov (1999, p. g theory of
probability studies mathematical models of randmenés and,

Given the probabilities of some random events, si@kmssible to
determine the probabilities of other random evemisiehow connected with
the first ones.

Tacitly following Laplace (8 7.1-3), Chebyshgv 165) indicated that the
concept of limit in probability theory differed fnothat in analysis, but | am
still unable to understand such equalities (ortlaeg misprints?) as on pp.
167, 183, 204/156, 171, 190

limm/n =p.
(7)

2) The limit theorem for Poisson trials (pp7l&d 201ff). Determine the
probability

Pn, mthat inn trials an event having probabilitiesi = 1, 2, ...,n,
respectively, occurreonh times. Applying a little known formula from the
first section of hid.ecturesChebyshev obtained

1 . . . . .
Pam= - [P+ allpe'+q] .. [me' +ale™'d  6=1-p.

After some transformations and considering onlylbwadues of it
occurred that

Pnm= 1 exp(-nQ ?/2)cos [p—n) ]d

wherep was the mean probability of success @nd [pg]/n. Assuming for
large values of an infinite upper limit in the obtained integr@hebyshev
finally got

P{m/n — p| < 4/2Q/n] = j_ ' exp (-A)dz

(without the sign of limit!) and noted that formyld), or, as he concluded,
thePoisson LLN, followed from it. He naturally did nleére admonish his
predecessor.

3) The CLT (pp. 219 — 224). At the time, Chebyshad not yet known
its rigorous proof. | only note his pronouncemgnt424): the formula that
he obtained was not derived

in a rigorous way...]. We have made various assumptions but did not
determine the boundary of the ensuing error. lipresent state,
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mathematical analysis cannot derive this boundargny satisfactory
fashion.

4) Statistical inferences. Chebyshev solved pvaiblems which,
however, were considered before him. In the fifghese he (pp. 187 — 192)
derived the Bayes limit theorem (8 5.2) but did citeé anyone, and in the
second he (pp. 193 — 201) studied the probabifity subsequent result in
Bernoulli trials. An event occurred times inn trials; determine the
probability that it will happem times ink new trials. Guiding himself
mostly by the Stirling theorem, Chebyshev non-rigsty derived an
integral limit theorem similar to that obtained lbgplace (8 7.1-5).

5 Mathematical treatment of observations (pp. 22%2). Chebyshev (p.
227) proved that the arithmetic mean was a comgistgimator of the
unknown constant. Unlike Poincareé (8 11.3-7), e 828 — 231) justified
its optimality by noting that, among linear estiorat the mean ensured the
shortest probable interval for the ensuing errbie Variance of the
arithmetic mean was also minimal (Ibidem); altho@jtrebyshev had not
paid special attention to that estimator of precisit occurred that he, in
principle, based his reasoning on the definitivei§€sg&an substantiation of
the MLSq (8 9.1.3).

At the same time Chebyshev (pp. 231 — 236)\ddrihe normal
distribution as the universal law of error in abthg same way as Gauss did
in 1809.The Gauss metho&hebyshev (p. 250) maintained, bearing in
mind exactly that attempt later abandoned by Gamas,based on the
doubtfullaw of hypotheses- on theBayes theoremwith equal prior
probabilities. Chebyshev several times censuredadiavhen discussing
the Bayesian approach in his lectures and he @.®¢#bngly thought that
the Gauss formula (9.6b) had only appeaesgntlyand that it assumed a
large number of observations. He did not menti@t the Gauss formula
provided an unbiassed estimation. It might be aoexd that the treatment
of observations hardly interested him.

6) Cancellation of a fraction (pp. 152 — 193&termine the probabilit
that arandomfraction A/B cannot be cancelled. Markov remarked that
Kronecker (1894, Lecture 24) had solved the sarmoblem and indicated
Dirichlet’s priority. Kronecker had not supplied eract reference and | was
unable to check his statement; he added that Detitiad determined the
probability soughtf it existed at all Anyway, Bernstein (1928/1964, p. 219)
refuted Chebyshev’s solution and indicated (p. 2&@t the theory of
numbers dealt with regular number sequences wirogel or asymptotic
frequencies of numbers of some class, unlike pritibab, which we will
never determine experimentaliymight be studied. See Postnikov (1974) on
the same problem and on the stochastic theorymbeus.

12.3. Some General Considerations

And so, Chebyshev argued that the proposiwdiise theory of
probability ought to be rigorously demonstrated asdimit theorems
should be supplemented by estimation of the eobpse-limiting relations
(Kolmogorov 1947, p. 56). He himself essentiallyeleped the LLN and,
somewhat imperfectly, proved for the first time @ET; on the study of
these two issues depended destinyof the theory of probability (Bernstein
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1945/1964, p. 411). His students also contribubetthé theory (88 13.1,
13.2, 13.4).

Kolmogorov continued: Chebyshev was the fostppreciate clearly and
usethe full powerof the concepts of random variable and [its] exgutsmn.
However, Chebyshev had not made use of Poissoantsskie definition of
random variable (8 8.1), had not applied this tand did not study
densities or generating functions as mathematigjglcts. Then, the entire
development of the theory of probability from Chshgv onward might be
described as an ever fuller use of the power ohtimementioned
concepts; thus, it had since begun to study depgmdedom variables, their
systems and chains.

Here also is Bernstein’s conclusion (1945/1964132):

The genius of Chebyshev and his associates, witaisifield[theory of
probability], have left mathematicians of Western Europe fairgk have
surmounted the crisis of the theory of probabilitstt had brought its
development to a stop a hundred years ago.

However, Novikov (2002, p. 330) stated timaspite of his splendid
analytical talent, Chebyshev was a pathologicalsssuative He
corroborated it by referring to V. F. Kagan (18692953), an eminent
geometrician. The lattewhen being a young Privat-Doceihiad listened to
Chebyshev’s scornful statement on ttendy disciplines like the Riemann
geometry and complex-variable analystyen Liapunov (1895/1946, pp. 19
— 20) called Riemann’s ideagtremely abstrachis investigationgpseudo-
geometricand sometimes, again, too abstract and havingrpih
common with Lobachevskydeep geometric studielsiapunov did not
recall Klein, who had in 1871 presented a unifiexdyve of the non-
Euclidean geometry in which the findings of Lobagdley and Riemann
appeared as particular cases. On the other hakigpmiandritsky (1898, p.
IV) testified that in 1887 Chebyshev hstéted thaf...] it is necessary to
transform the entire theory of probability is difficult to say what exactly
did he mean.
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13. Markov, Liapunov, Nekrasov

| consider here the work of three outstandictyptars. Markov completed
the proof of the CLT and opened up a new direatigorobability.
Liapunov proved the CLT by following latest matheita developments.
Nekrasov attacked the CLT purely analytically arasuhe first to consider
the CLT in case of large deviations but got entadglhen, he hopelessly
linked probability with religion and shallow philoghy.

Key words: CLT, case of large deviations, Markov chains

13.1. Markov: Personal Traits

For his biography see Markov Jr (1951), a notetghematician in his
own right, and Grodzensky (1987). They describephiscipled stand on
burning social and political issues whereas Groskgrlso published many
of his pertinent newspaper letters, some of thenthi@first time;
apparently, the newspapers did not always accept.tMarkov struggled
against anti-Semitism and denounced the Russidro@uk Church, see
also Sheynin (1989, pp. 340 — 341; 2007b). Theshusad to call him
Militant academician(Nekrasov 1916, p. 9) adhdrew the Furious
(Neyman 1978).

In 1901 Tolstoy was excommunicated from ther€huDuring his last
days, the Most Holy Synod discussed whether heldhmadmitted to the
bosom of the Churchnd decided against it (Anonymous 1910), so that i
1912 Tolstoy’s excommunication was likely well remtgered. Then, in
1912 Markov submitted a request to the Synod fepexnunication
mentioning his doubts about eveatkegedly having occurred in bygone
timesand adding that he did nsgmpathise with religions which, like
Orthodoxy, are supported by, and in turn lend ttseipport to fire and
sword The Synod resolved that Markbad seceded from God'’s church
(Emeliakh 1954, pp. 400 — 401 and 408). In a
letter of 1915 (Sheynin 1993a, p. 200) Markov meimed that graduates of
Russian Orthodox seminaries

are getting accustomed..] to a special kind of reasoning. They must
subordinate their minds to the indications of th@yHathers and replace
their minds by the texts from the Scripture

In 1921 (Grodzensky 1987, p. 137) 15 profesebtke Petrograd
University declared that applicants ought to beseimoaccording to their
knowledge rather than to class or political consitiens; Markov was the
first to sign their unsuccessful statement.

Markov’s attitude towards other scholars hadrmbeen wrong. Just one
example,

AndreeV’s letter of 1915 to Nekrasov, see Sheyh8#9de, p. 132)Markov

Remains to this day an old and hardened sinngrawoking debate. |
had understood this long ago, and | believe thatdhly way to save myself
from the trouble of swallowing the provocateur’sths a refusal to respond
to any of his attacks...
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In his own scientific work, Markov had been toodigsee 88 13.2 — 13.3,
which negatively influenced his work. During histgears, in spite of
extremely difficult conditions of life in Russia @mis worsened health, he
completed the last posthumous edition ofTrisatisebut insufficiently
described there the findings of the Biometric s¢heach scholars as Yule
and Student (Gosset) were not mentioned and hefeu@nlated an
absolutely wrong statement (end of § 13.2.5). Taesextent, he became a
victim of his own rigidity; he failed, or did notigh to notice the new tide of
opinion in statistics (or even probability theory).

13.2. Markov: General Scientific Issues

1) History of the theory of probability. Markawestigated the Bernoulli
LLN (8 3.2.3); in 1913 he initiated a jubilee meetiof the Petersburg
Academy of Sciences celebrating the bicentenatiaiflaw, commented on
the history of the Bienaymé — Chebyshev inequalitgt the method of
moments (8 10.2-2) and stressed De Moivre’s pagstablishing the
Stirling formula The last edition of hi$reatiseincludes many interesting
historical remarks.

2) Insurance of life. Markov collaborated wgnsion funds (Sheynin
1997c) and in 1906 he destructively criticized apmsed scheme for
insuring children (reprinted in same article).

3) Calculations. | mention his table of themal distribution (1888)
which gave it to 11 digits for the argumert 0 (0.001) 3 (0.01) 4.8. Two
such tables, one of them Markov’s, and the othdbliphed ten years later,
remained beyond compare up to the 1940s (Flet¢ladrli®62). Markov
(1899h, p. 30) indirectly expressed his attitudeaa calculations:

Many mathematicians apparently believe thahgdeyond the field of
abstract reasoning into the sphere of effectivewations would be
humiliating

4) Correlation theory. In a letter of 1912 tmtSlutsky (Sheynin
1990a/2011, p. 64) stated thiaé shortcomings of Pearsorégposition are
temporaryand will be overcome. Markov, however, continuegddy to
ignore him. Thus, he (1916/1951, p. 533) reasonatitigzized the
correlation theory, actually since it was still ienfect, but did not mention
its possible worth:

Its positive side is not significant enough a&odsists in a simple usage of
the method of least squares to discover linear depeces. However, not
being satisfied with approximately determining was coefficients, the
theory also indicates their probable errors andexathere the region of
fantasy, hypnosis and faith in such mathematiaahédas that, in actual
fact, have no sound scientific justification.

Now, discovering dependences, even if onlydimes indeed important;
and the estimation of plausibility of the resultgained is an essential part
of any investigation.

5) Principles of the theory of probability. Ndaw (1911¢/1981, pp. 149 —
150) thought that their discussion was meaningiesiseven declared
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(1900/1924, c. 2) thatarious concepts are defined not by wdrdg but
rather by[our] attitude towards them ascertained little by litflde
axiomatic approach had been necessary, but Malkeva student of
Chebyshev, underrated both it and the complex aisa{. A. Youshkevich
1974, p. 125). He (1900/1924, pp. 10, 13 — 19 ah)ce2en claimed to have
proved the addition and multiplication theorems #nd to transfer the
calculus of probability to the realm of pure matlaics, — in spite of its
failure to study densities or characteristic fumet as mathematical objects,
cf. § 7.3. P. Lévi (1925) was apparently the ficstake this step.

Markov did not define probability anew eithkut this seems to be
impossible (and axiomatization did not help pramtiérs). In geometry, the
situation is better since such notions as areaofd are indirectly defined
by the appropriate integrals; on the other hanelsthaight line remained
undefined which prompted the appearance of thetharlidean geometry.

6) Mathematical statistics. By the end of ifis Markov, mostly under
the influence of Chuprov (Sheynin 1990a/2011, p.hr€letter of ca. 1924
to another statistician), somewhat softened hisid# to Pearson:

Markov regarded Pearson, | may say, with conteidiairkov’s temper
was no better than Pearson’s, he could not starma elightest
contradictions either. You can imagine how he togkpersistent
indications to the considerable scientific importarof Pearson’s works.
My efforts thus directed were not to no avail asved by[Markov 1924]
After all, somethingPearsonianjvas included in the field of Markov’s
scientific interests.

Chuprov (1925b) also published a review ofrttentioned edition of
Markov’s Treatise Here, | only cite his reasonable criticism of kar's
treatment of correlation theory:

The choice of questions on which attention is cotmaged is fortuitous,
their treatment within the bounds of the chaptettfmethod of least
squares is incomplete, the connection made bettheetmeory of
correlation and the theory of probability is inadexe...

Yes, Markov included some innovations in the lastien of hisTreatise a
study of statistical series, linear correlation.détermined the parameters
of lines of regression, discussed random varightssessing certain
densities and included a reference to Slutsky (1942 paid no attention
either to the chi-squared test (§ 13.3-1) or toRbarsonian curves.

7) Teaching probability theory in school. INLl#I9Nekrasov made an
attempt to introduce probability into the schoaolr@mulum. Markov (1915a)
protested against the proposed school programnueliduot object to the
very principle. He became a member of an ad hodeana& Commission
which voiced an extremely negative opiniéteport1916) about
Nekrasov’s programme and his understanding of thie woncepts of
mathematical analysis, see § 13.5.

8) Methodological issues. Many authors praitbedmethodological value
of Markov’s contributions, see however § 13.3-1garticular, his own
letter) and Idelson (1947, p. 101) who voiced aatigg opinion. Then,
Markov refused to apply the temrandom magnitudéas it has been called
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in Russia) and the expressior@mal lawandcoefficient of correlation
were likewise absent in his works. And, not wishiadgeave his field
(813.3-1, letter to Chuprov), he never mentiongaliaations of his chains
to natural sciences. The structure of hisatisebecame ever more
complicated with each new edition.

13.3. Markov: Main Investigations

1) Mathematical treatment of observations.gitesof several
commentators, | deny Markov’s accomplishments hdeyman (1934, p.
595) invented a non-existing Gauss — Markov theaaacthF. N. David &
Neyman (1938) repeated this mistake but finally iNag (1938/1952, p.
228) admitted it.

In hisTreatise(1900) Markov combined the treatment of observation
with the study of correlation, statistical seri@esl anterpolation, but his
innovation was methodically doubtful. While discngsstatistical series,
Markov did not mention Chuprov’s relevant pape®1@; 1918 — 1919).
When considering Weldon’s experiment with 26,30@ws of 12 dice (K.
Pearson 1900), Markowv (eatise1924, pp. 349 — 353) decided, after
applying the CLT and the Bayes theorem with tramsito the normal law,
that the probability of a 5 or a 6 was higher théh Unlike Pearson, he had
not used the chi-squared test and apparentlynefnaression that
(although suitable for a small number of trialsaeedl) it was not needed at
all. Markov possibly followed here his own rigidmeiple (Ondar
1977/1981, Letter 44 to Chuprov of 191D3¥hall not go a step out of that
region where my competence is beyond any doubt

The explication of the MLSq proper was involyada letter of 1910 to
Chuprov Markov (Ondar 1977/1981, p. 21) wrdthave often heard that
my presentation is not sufficiently cleém 1893, his former student,
Koialovitch (Sheynin 2006a, pp. 81 and 85), writtngMarkov, formulated
some puzzling questions about his university leur

2) The LLN. Markov (1906/1951, p. 341) notedttthe condition

imE{[E# ; —#E )]’} =0,n
(1)

was sufficient for the sequencg o, ..., n, ... of random variables to obey
the LLN; or to comply with the condition

imP{(L/n)|(# —#E )| < }=1,n

Then Markov (Ibidem, pp. 342 — 34@eatise 1913, pp. 116 — 129)
derived a few sufficient conditions for sequencemdependent, and,
especially, dependent random variables (1906/195351;Treatise1913,
p. 119; 1924, p. 174), provided examples of seqeenot obeying the law,
and (Treatise 1913, p. 129), proved that independent variabies/ed the
LLN if, for everyi, there existed the moments

Ei=a,E|li-a" <C,0<" <1.

Again, Markov Treatise 1900; p. 86 in the edition of 1924) had proved
that, for a positive random variable
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P( tE)>1-1f

and BortkiewiczZ1917, p. 36) and Romanovsky (1925a; 1925b) caled
inequality after Markov.

3) The CLT. As | mentioned at the end of § 12.Markov specified the
conditions of theorem (12.2) proved by Chebyshev(1898/1951, p. 268)
considered independent random varialblegith zero expectations and
introduced conditions (12.3) but he returned sdveres to the CLT.

a) He (1899a/1951, p. 240) additionally introeld two restrictions: as

IME[(Ur+ U + ... +u)? =, imM[E(Us + U+ ... +u)?/n] . (2;3)

b) Markov (1907, p. 708) again proved the CRE&ferring to his papers
(1898; 1899a), he now introduced conditions (12f8bjinite values of
and (3) but did not restrict the valuesupfOn his next page Markov
abandoned condition (&)only

lim Eu= ,n (4)

and the values af, remained finite. Restrictions (2) and (4) certainly
coincided.

c) Markov (1908a) essentially extended theiappllity of the method of
moments by replacing his conditions by Liapunowge restriction
(1901a/1954, p. 159)

Ely "

lim S
( varui)

=0,">0,n

In 1913 Markov included a modified version of hasttmentioned study in

his Treatise it is also reprinted (Markov 1900/1924; 1951, pp9 — 338).
Markov (1899b, p. 42) mentioned the examplevioled by Poisson

(1824, § 10) who proved that the limiting distrilout of the linear form

L= 1+1/3,+1/53+ ...

2|

of random variables with densitye ' ' was

imP(L| )=1-(4/)arctane®, n
In this example lim var [/(2n—1)] = 0,n

Markov himself (1899a/1951, pp. 242 — 246) gdeawvided an example in
which the condition (2) did not hold and the CLT diot take place.

The appearance of condition (3) remains, howewelear. Nekrasov
(1900 — 1902, 1902, pp. 292 and 293) introducéat independent
variables instead of restriction (4). Liapunov (1801954, p. 175)
maintained that it was not sufficient. Seneta (1$849) indicated,
however, that Markov’s published papers had notainad such examples
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and that condition (4) was necessary and suffidmmthe CLT in the case
of uniformly restricted variables.

4) Markov chains. This term is due to Berns{é®26, 816); Markov
himself (1906/1951, p. 354) called them simgpihains He issued from a
paper by Bruns of the same year, but the prehistbdarkov chains is
much richer. Here are the main relevant issues.

a) The Daniel Bernoulli — Laplace urn probldhe predecessor of the
Ehrenfests’ model (§ 7.1-3);

b) The study of the Brownian movement (BrusB8)9

c) The problem of the extinction of families18.2-4);

d) The problem of random walks (Dutka 1985);

e) Some of Poincaré’s findings;

f) The work of Bachelier (1900) on financiaksplations, also see
Courtault et al (2000) and Taqqi (2001).

Markov (1906/1951, pp. 345 and 354) consideragple homogeneous
chains of random events and discrete random vasaiid proved that the
LLN was applicable both to the number of succeaseisto the sequences of
these variables. Later he (1910/1951, p. 476) ee@the first of these
findings to simple non-homogeneous chains.

Markov proved the CLT for his chains. He coesétl simple
homogeneous chains of events (1906) and of randgworables (1908b); and
complex homogeneous (1911a; 1911b) chains of randwrables; simple
homogeneous chains of indirectly observed eve®$24). While studying
the chains, Markov established important ergodeotems but had not paid
them any special attention; in this connectionghtioned one of his solved
problems in § 7.1-3.

Markov widely applied the method of moments] anly he who repeats
some of his investigations will be able to apprectae obstacles which he
overcame. Bernstein (1945/1964, p. 427), howetrasted Markov and
Liapunov. The latter had applied the classicaldcamdental analysis as
developed by that time whereas the method of masn&etrnstein
maintaineddid not facilitate the problerfof proving the CLT]but rather
transferred all its difficulties elsewhere

13.4 Liapunov

The theory of probability remained an episadhis scientific work. He
(1900; 1901a) proved the CLT assuming a single itond5). | briefly
repeat (Bernstein 1945/1964, pp. 427ff) that aattaristic function
determines the sought law of distribution indepertigerom the existence
of the relevant momentkiapunov proved that under his condition the
characteristic function of a centred and normed stimndom variables
tended to the characteristic function of a normedal law. | also mention
Lindeberg (1922b, p. 211) whose proof of the CL Bwanpler and became
better known. He referred to his previous pape2?hd and continued:

| see now that already Liapunov had explicated garfendings which
not only surpass the results achieved by Mjsegbut which make it
possible to derive most of what | have established.The study of
Liapunov’s work prompted me to check anew the ndetinat | have
applied.
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Chebyshev thought that the limits of integnatioand , in formula
(12.2) describing that theorem, wexrey. Nekrasov (1911, p. 449) arbitrarily
interpreted that expression\aiable | discuss Nekrasov in 8§ 13.5; he
could have well indicated that, on the contraryhbd generalized the
Chebyshev theorem. In his previous polemic papapunov (1901b, p. 61)
declared that he had assumed that these limits gieea beforehand and
that otherwise the probability, written down in llkeé side of formula of the
CLT, could have no limit at all, — but nevertheléssasymptotically
expressed by the normal law of distribution.

13.5. Nekrasov

His life and work (Sheynin 2003a) are separatea twb stages. From
1885 and until about 1900 he had time to publishar&kable memoirs not
connected with probability both in Russia and Gerynand to become
Professor and Rector of Moscow University. In 1888ketched the proof
of the CLT for sums of lattice random variablesemhhowever, his
personality changed. His writings became unimadineérbose, sometimes
obscure and confusing, and inseparably linked wifitical, political and
religious considerations. Here is a comparativeilg mxample (1906, p. 9):
mathematics accumulated

psychological discipline as well as political amat&l arithmetic or the
mathematical law of the political and social deysteent of forces
depending on mental and physiological principles.

Furthermore, Nekrasov’s work began to abourttl elementary
mathematical mistakes and senseless statent@rtexample (1901, p.
237): it is possible to assume roughly, tkian > 0, is the limit of sirx as ¥|

0, andthe conclusions made pghebyshev, Markov and Liapunov]
never differ much from such an understanding oitlifnd here is his
astounding declaration (Archive, Russian Academ$ménces, fond 173,
inventory 1, 55, No. 5) from his letter of 1913Markov:

| distinguish the viewpoints of Gauss and Laplpmethe MLSq]by the
moment with regard to the experiment. The firstisrgosterior and the
second one is prior. It is more opportune to judgeosteriori because more
data are available, but this approach is delayiitdags behind, drags after
the event

At least the attendant reasons for such a eharege Nekrasov’s religious
upbringing (before entering Moscow University hadwated from a
Russian Orthodox seminary), his work from 1898 aminaes a high official
at the Ministry of People’s Education, and his teexary views. In his letter
of 1916 to the religious philosopher P. A. FlorgnéBheynin 1993a, p. 196)
Nekrasov stated th#te German — Jewish culture and literatymeshedus
to the crossroads. World War | was then going orciwvbnly partly
exonerates Nekrasov. | shall now dwell on some @adssues.

1) Teaching the theory of probability. In 8§ 2-3. | mentioned Nekrasov’s
proposal for teaching probability in school and tegection of the
curriculum drawn up by him.
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2) The MLSq. Nekrasov (1912 — 1914) mistakeattyibuted to Legendre
an interpolation-like application of the method gt€14) acknowledged his
failure to notice, in 1912, the relevant work ofr¥ehenko (1893a; 1893b).

3) The CLT. It was Nekrasov who had considehedCLT for large
deviations, — for the case that began to be stuahd50 years later. He
(1898) formulated six theorems and proved thenr [@00 — 1902).
Neither Markov, nor Liapunov had sufficiently stadithem; indeed, it was
hardly possible to understand him and Soloviev {12@08, p. 359)
reasonably stated:

| am firmly convinced that no contemporary mathecmeat or later
historian of mathematic had (has) ever studigthe memoir (1900 —
1902)]in any detail.

He himself only suggested that Nekrasov had ingeeded his theorems
and he reminded his readers that Markov had inelicedme mistakes made
by Nekrasov. Furthermore, Soloviev (pp. 356 — 3&W)arked that
Nekrasov had wrongly understood the notion ofdattiariables. He (p.

362) also stated that it was generally impossiblehieck some of
Nekrasov’s restrictions. Both he and Seneta (186%,agree in that
Nekrasov’s findings had not influenced the develeptrof the theory of
probability which was certainly caused both by Nekv’s inability to
express himself intelligibly and by the unwieldisex his purely analytical
rather than stochastic approach (Soloviev, p. 363).
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14. The Birth of Mathematical Statistics

By the end of the focentury, Lexis and his followers began to study th
behaviour of the probability of the studied evenbbservational series.
Their work led to general achievements, but it wesrshadowed by the less
rigorous tireless efforts of K. Pearson and hissthFisher, who originated
mathematical statistics, indirectly owed much tamen.

Key words: Continental direction of statistics, Biometridsol,
biometry

14.1. The Stability of Statistical Series

By the end of the 9 and in the beginning of the 2@entury, statistical
investigations on the Continent were mostly restddo the study of
population whereas in England scientific statisties mostly applied to
biology. The so-called Continental direction oftistacs originated as the
result of the work of Lexis whose predecessorshiesh Poisson,
Bienaymé, Cournot and Quetelet. Poisson and Co(§tl) examined the
significance of statistical discrepancies for géanumber of observations
without providing examples. Cournot (8 10.3-5) astempted to reveal
dependence between the decisions reached by joigesors). Bienaymé
(1839) was interested in the change in statisticitators from one series
of trials to the next one and Quetelet (§ 10.5g8tigated the connections
between causes and effects in society, attemptsthhalardize statistical
data worldwide and, following Stssmilch, createdahetatistics.

At the same time statisticians held that tie®ti of probability was only
applicable to statistics équally possible casegere in existence, and the
appropriate probability remained constant (8§88 1Q.760.7-8).

14.1.1. LexisHe (1879) proposed a distribution-free test foregaality
of probabilities in different series of observasoor, a test for the stability
of statistical series. Suppose that therenaseries oh; observations,= 1,
2, ...,m, and that the probability of succgswas constant throughout. If
the number of successes in seriessa;, the variance of these magnitudes
could be calculated by two independent formulaxid.&879, § 6)

#=pan, 2 =[WwW/(m- 1)
(1;2)

wheren was the mean af;, vi, the deviations od; from their mean, and =

1 —p. Formula (2) was due to Gauss, see (9.6b); he alew kormula (1),
see W-8, p. 133. The frequencies of success @isiidbe calculated twice.
Note however that Lexis applied the probable emdrer than the variance
and mistakenly believed that the relation betwéentean square error and
the probable error was distribution-free. Lexisl(§ called the ratio

Q= o1
the coefficient of dispersiorfor him, the cas® = 1 corresponded to normal

dispersion (with random deviations from unity calesed admissible); he
called the dispersion supernormal, and the stalmfithe observations
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subnormal ifQ > 1 (and indicated that the probabilgyvas not then
constant); finally, Lexis explained the ca3& 1 by dependence between
the observations, called the appropriate varianbe@mal, and the
stability, supernormal. He did not, however, pagtion to this possibility.

But how could the probability vary? Lexis (18§. 220 — 221 and 238)
thought that the variations followed a normal ldwrt then he (1877, § 23)
admitted less restrictive conditions (evennessiefappropriate density
function) and noted that more specific restrictiarese impossible. | am not
sure that Lexis had broken off with previous tritis, see § 10.7-7. He
(1879) discussed this issue once more, and evetianedirregular waves
(8 22), but it is difficult to follow him. He inteapted himself by providing
statistical examples and never gave precise fotmuk

Lexis had not calculated either the expectatorthe variance of his
coefficient (which was difficult). His main achianent was perhaps an
attempt to check statistically some stochastic maddie (1879, 8§ 1) also
qualitatively separated statistical series intcesavtypes and made a
forgotten attempt to define stationarity and trend.

A French actuary Dormoy (1874; 1878) precedexid, but even French
statisticians (who barely participated in the camperary development of
statistics) had not noticed his theory. It was kexho first discovered
Dormoy (Chuprov 1909/1959, p. 236) and Chuprov 6192 198/1960, p.
228) argued that the Lexian theory of dispersioghotio be called after
Dormoy and Lexis. Bortkiewicg1930), however, later ranked Dormoy far
below Lexis and, be that as it may, later staiestis had only paid attention
to Lexis.

14.1.2. Bortkiewicz.See also § 10.7-4. Of Polish descent, Vladislav
losifovich Bortkevich was a lawyer by education. Was born and studied
in Petersburg, but at the end of th& t@ntury continued his education in
Germany (he was Lexis’ student). In 1901 he secangfessorship in
Berlin and remained there all his life as Ladislaas Bortkiewicz. For
further detail see Sheynin (1990a/2011, § 7.3).

He (1903) sharply criticized Nekrasov (1902)tfee latter’s statements
that the theory of probability can softére cruel relationdetween capital
and labour (p. 215) and for attempts (p. 219) wnexate the principles of
firm rule and autocracy, for Nekrasowigkening oily toné€p. 215) and
reactionary longinggp. 216). Although Bortkiewicz was not initially
acquainted with mathematics, he achieved interg$imaings. Woytinsky
(1961, pp. 452 — 453) stated that he was caliedstatistical Pop&hereas
Schumacher (1931, p. 573) explained Bortkiewictituate towards science
by a quotation from Exodus 20:8ou shall have no other gods before me

Chuprov’s student and the last representafivkeoContinental direction,
Anderson (1932, p. 243/1963, Bd. 2, p. 531), dbsdriBortkiewicz’
achievements:

Our (younger) generation of statisticians is hgrdble to imagine that
mire in which the statistical theory had got intibea the collapse of the
Queteletian system, or the way out of it which duelyis and Bortkiewicz
[later, Anderson added Chuprdvdve managed to discover

Bortkiewicz’ work is insufficiently known mostlbecause of his
pedestrian style and excessive attention to detaitsalso since German
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statisticians and economists of the time (Bortkeawas also a celebrated
economist) had been avoiding mathematics. He dighap attention to
improving his style and refused to mend his waysRfér (1931, p. 1030)
guoted a letter from Bortkiewicz (date not giverfjomvas glad to find in
him one of the five expected readers of his wor&téHis Anderson’s
appraisal (1932, p. 245/1963, Bd. 2, p. 533):

Bortkiewicz did not write for a wide circle of reard[...] and was not at
all a good exponent of his own ideas. In addititmmade very high
demands on the readers’ schooling and intellecth\8tubbornness partly
caused by his reclusive lifg,.] he refused to follow the advice[of.]
Chuprov..

Bortkiewicz had determineddand EY* and Markov (1911c/1981, p.
153), see also Ondar (1977/1981, Letter 47 of 19i&3itively mentioned
his work. Then, Bortkiewicz introduced his ill-fatéaw of small numbers (8
8.1.2) for studying the stability of statisticalies and did not listen to
Chuprov’s mild criticism. Howevehe was the main author who picked up
Poisson’s law and for a long time his contribut{@898a) had remained the
talk of the town.

14.1.3. Markov and Chuprov.In his letters of 1910 to Chuprov, Markov
(Ondar 1977) proved that Lexis’ considerations wereng. It occurred that
the dispersion could also be normal when the olasens were dependent.
Also in 1910, Chuprov, in a letter to Markov, proed examples of
dependences leading to super- and sub-normaliyspersion; in 1914 he
decided that the coefficient of dispersion showddhelvedo which
Bortkiewicz strongly objected (Sheynin 1990a/204.1140). Then, in 1916
both Markov and Chuprov proved tha®E= 1 (p. 141). Finally, Chuprov
(Ibidem, p. 142), definitively refuted the applidély of the coefficient of
dispersion, but his conclusion is hardly known emew.

Chuprov (1918 — 1919, p. 205) proved, in ameletary way, a general
formula

(- e ) =

n
i=1

(1h%)  E(;i-E)*+@n) [E(xx)—E i E .

i=1 izl jEi
Included here were random variables; anyhow dependent on each other
and the results of a single observatpaof each of them.

While studying the stability of statistical s=, Chuprov achieved really
interesting results, see Seneta (1987), but, $sieansidered problems of
the most general nature, he inevitably derived aavkMiormulas.
Romanovsky (1930, p. 216) noted that Chuprov’s fdas, althouglbeing
of considerable theoretical interesterealmost uselesgue to complicated
calculations involved.

14.2. The Biometric School

The first issuef Biometrikaappeared in 1902. Its editors were Weldon (a
biologist who died in 1906), Pearson and Davenpocbnsultationwith
Galton. The editorial there contained the followpagsage:
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The problem of evolution is a problem in statisficq [Darwin
establishedthe theory of descent without mathematical conoegfi...]
[but] every idea of Darwin — variation, natural selectijon] — seems at
once to fit itself to mathematical definition arddemand statistical
analysis[...] The biologist, the mathematician and the staiistihiave
hitherto had widelyifferentiated fields of worK...] The day will comé...]
when we shall find mathematicians who are compdtiehdgists, and
biologists who are competent mathematicians ...

In 1920, Pearson (E. S. Pearson 1936 — 1937290p. 164) defined the
aim of the Biometric school as making statistidganch of applied
mathematics and providing various disciplines ajpygiyt with a new and
stronger technique. The success of the new scha®lpartly caused by the
efforts of Edgeworth who was excessively origitd an odd style and
was unable to influence strongly his contemporaries

Pearson’&srammar of sciencgl892) earned him the brand of a
conscientious and honest enemy of materiatéisoone of the most
consistent and lucid Machiargsenin in 1909, in hidaterialism and
Empiriocriticism); the latter term is tantamount to Mach’s phildspand
Mach (1897, Introduction) had most positively men&d Pearson’s
Grammar.Newcomb had highly regarded Pearson (§ 10.8.4).

After Todhunter (1865), Pearson (1978) was sgiby the first
considerable work in its field but it is more imfort to mention Pearson’s
fundamental biography of Galton (1914 — 1930), ppgithe most immense
book from among all works of such kind, whereved arhenever published.
Many of his contributions are reprinted in Pearfl848); see the
bibliography of his works in Morant et al (1939)daMerrington et al
(1983).

The work of Fisher began in 1911 but he way able to publish a single
paper inBiometrika(in 1915). However, at the end of the day he sisgs
Pearson. It was he rather than his predecessomidim the birth of the
real mathematical statistics is much more closehnected.

Pearson’s main merits include the compilatibnwonerous statistical
tables, development of the principles of the catreh theory and
contingency, the introduction of tiearsonian curveor describing
empirical distributions (1896 with additions in 1198nd 1916), rather than
for replacing the normal law by another universasity, and thé?test
(1900) which he had been applying for checkinggbedness of fit;
independence in contingency tables; and homogeriggrson constructed
the system of those curves in accordance with igedconsiderations and
defined it as the solution of the differential etijoia with four parameters.
He attempted, often successfully, to apply thasdteal method, and
especially correlation theory, in many other bragscbf science (1907, p.
613):

| have learnt from experience with biologists, amogists,
meteorologists, and medical men (who now occadynalit the
biometricians by night!) that the first introducti@f modern statistical
method into an old science by the layman is mét efiairacteristic scorn;
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but | have lived to see many of them tacitly adhgpthe very processes they
began by condemning

It was difficult to correlate Mendelism and ftetry: the former studied
discrete magnitudes while the latter investigat@atiouous quantitative
variations. Later developments threw a differegiition this subject
(Johannsen 1922).

| (2010) collected pronouncements of celebrat@entists about Pearson,
both positive (Kolmogorov, Bernstein, Mahalanobigwcomb) and
negative (Fisher). Here, | only quote two authors.

Fisher (1937, p. 306) objected to Pearson'saemaximum likelihood,
stating that his

Plea of comparabilitfbetween the methods of moments and maximum
likelihood]is[...] only an excuse for falsifying the comparigan|.

Hald (1998, p. 651) offered a reasonable géwlescription of one aspect
of the Biometric school:

Between 1892 and 1911 [Rearsonkreated his own kingdom of
mathematical statistics and biometry in which hgmed supremely,
defending its ever expanding frontiers againstcksa

Of special interest is the testimony of Cam@3@) who worked under
Pearson at the Galton laboratory. Although patgmtitifying Pearson, he
put forward facts and impressions hardly availaisewhere.

It is also necessary to mention W. S. Gossat-(fame Student). Not a
member of the Biometric school, he wase of the pioneers in the
development of modern statistical method and ifdiegtion to the design
and analysis of experimeniswin 1978, p. 409). Specifically, best known is
his work on treating small samples and thest. Fisher aptly called him the
Faraday of statisticg§lbidem, p. 410) since, in a sense, his intuifeging
was better than his mathematics. It was perhapsituiumstance that Karl
Pearson had in mind when, in a letter of ca. 181@huprov’s follower,
Anderson, he called Studérgin FachmaniiSheynin 1990a/2011, p. 153).

E. S. Pearson & Wishart (1943) published Sttideollected papers and
E. S. Pearson (1990) is a most informative soubceiiaStudent and his
contemporaries. It does not, however, include thkdgraphy of his works
nor contain a concise description of his findings.

14.3. The Merging of the Two Streams?

| (8 14.1-4) noted that the Continental statistisiavere not recognizing
Pearson. Many of his colleagues, Chuprov wridte,Markov, shelve the
English investigations without reading thefime cause of that attitude was
the empiricism of the Biometric school (Chuprov 8341919, t. 2, pp. 132
—133):

The reluctance, characteristic of English resbers, to deal with the
notions of probability and expectation led to mtrctuble. It greatly
damaged clearnegs..] and even directed them to a wrong trgck]
However, after casting away that clothing] and supplementing the
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neglected[the kinship between Lexasnd Pearsonyill become obvious.
[...] Not Lexis against Pearson, but Pearson refinetddxis, and Lexis
enriched by Pearson should be the slogan of thésease dissatisfied with
the heartless empiricism.

So, did the two statistical streams merge, lagp@yv would have it? In
1923 he had become Honorary Fellow of the RoyalsHizal Society and in
1926, after his death, the Society passed a résolot condolence (Sheynin
1990a/2011, p. 156) which stated that his

Contributions to science were admired by[all]. They did much to
harmonise the methods of statistical research a@esl by continental and
British workers.

Bauer (1955, p. 26) reported that he had inyaistd how both schools
had been applying analysis of variance and condl(de40) that their work
was going on side by side but did not tend to gatfon. More details about
Bauer's study are contained in Heyde & Seneta (487.7/57 — 58) where it
also correctly indicated that, unlike the Biomesahool, the Continental
direction had concentrated on nonparametric sizgdist

| myself (Gnedenk& Sheynin 1978/2001, p. 275) suggested that
mathematical statistics properly originated ascii@ing together of the two
streams. However, now | correct myself. At leadtluhe 1920s, say,
British statisticians had continued to work allthgmselves. E. S. Pearson
(1936 — 1937), in his study of the work of his &thhad not commented on
Continental statisticians and the same is true tatitwer such essays
(Mahalanobis 1936; Eisenhart 1974). | believe Hraglish, and then
American statisticians for the most part only aeailly discovered the
findings already made by the Continental schooltifexmore, the same
seems to happen nowadays as well. Even Hald (128i@Qd his book
History of Mathematical Statisticbut barely studied the work of that
school.

In 1919 there appearedBiometrikaan editorial entitledPeccavimuls
(we were guilty). Its author, Pearson, correctednhathematical and
methodological mistakes made during several yeatgevealed mostly by
Chuprov (Sheynin 1990a/2011, p. 75) but he hadaka&n the occasion to
come closer to the Continental statisticians. 16120ive essays were
published inBiometrika vol. 88, commemorating its centenary. They were
devoted to important particular issues, but nothuag said in that volume
about the history of the Biometric school, and @iety nothing about
Continental statisticians.
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Supplement: Axiomatization

| present a bibliographic survey of some imaotipoints.

The main essays are Barone & Novikoff (1978) Biochkirchen (1999)
and among the lesser known authors is Bernsteih7(1%\fter Hilbert
(1901), Kolmogorov (1933) made the decisive stapRmeudenthal &
Steiner (1966, p. 190) commented:daene with the Columbus’ egds the
legend goes, Columbus cracked an egg which enéhiedtand firmly on
his table. Among the new sources | list Hausd@®0g) who left an
important unpublished contribution, see Girlichg6® Shafer & Vovk
(2001) and Krengel (2011) who stressed the rolBabiimann. Vovk &
Shafer (2003, p. 27) characterized their book:

We show how the classical core of probability tlyeman be based
directly on game-theoretic martingales, with no epipto measure theory.
Probability again becomds] secondary concept but is now defined in
terms of martingales

In concluding, | quote Boole (1854/1952, p. 288

The claim to rank among the pure sciences musupest the degree in
which it[the theory of probabilityfatisfies the following conditions: 1°
That the principles upon which its methods are ftmehshould be of an
axiomatic nature

Boole formulated two more conditions of a genecatific essence.
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