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0. Introduction 

I do feel how wrongful it was to work for so  
many years at statistics and neglect its history 

K. Pearson (1978, p. 1) 
 

    0.1. General Information. This book is intended for those interested in 
the history of mathematics or statistics and more or less acquainted with the 
latter. It will also be useful for statisticians. My exposition is based, in the 
first place, on my own investigations published over some 35 years and 
monograph (2009) and I stop at the axiomatization of probability and at the 
birth of the real mathematical statistics, i.e., at Fisher. In § 9.1.3 I succeeded 
in greatly simplifying Gauss’ mature justification of least squares.  
    Among the preceding literature I single out the great work of Hald (1900; 
1998). However, his second book does not touch on the contribution of the 
Continental direction of statistics (see my § 14.1) and only describes 
everything from a modern point of view. It is therefore only intended for 
highly qualified readers (my account is much easier to understand). Second, 
Hald does not describe the contents of any given contribution and the reader 
will not know what exactly was contained in, say, any of Laplace’s 
memoirs.  
    At least in my field the situation is greatly worsened by bad reviewing. 
Reputable publishers sometimes reprint literature without consulting their 
authors so that the unsuspecting reader gets dated information. Gnedenko & 
Sheynin (1978/1992) reprinted in 2001 in the volume put out by Birkhäuser 
is a good example. Many bad books are also appearing because their 
manuscripts had not been properly reviewed. Subsequent comments are 
often no more than sweet nothings or downright misleading. An ignorant 
author who stated that Poisson had proved the strong law of large numbers 
was praised as a scholar of the first rank.  
    In some cases the cause of such facts is apparently well described by the 
saying Scratch my back, and I’ll scratch yours. Incidentally, this is a 
consequence of publishers supplying free copies of their new books to 
editors of periodicals. Then, abstracting journals are as a rule publishing 
whatever they get from their reviewers. But, first and foremost, the scientific 
community wrongly does not set high store on that most important work. 
Even worse: Truth is dismissed as an old-fashioned superstition. This 
conclusion (Truesdell 1984, p. 292) which concerned scientific work in 
general fell on deaf ears. 
    About 1985 the then Editor of Historia Mathematica visited Moscow and 
made a report at the (now, Vavilov) Institute for History of Natural Sciences 
and Technology. Answering a question, he said that only a few readers of 
his periodical read Russian. I do not think that that situation had changed, 
much to the detriment of science. For that matter, students of the humanities 
certainly become versed in older masters, but not in modernity. How, 
indeed, can we otherwise explain why did a young offspring of the British 
Royal family go to a fancy-dress party clad as a German officer of SS? 
    With sincere gratitude I recall the late Professors Youshkevitch, without 
whose assistance I, living in Moscow, would have been unable to publish 
abroad, and Truesdell, the Editor of the Archive for History of Exact 
Sciences, who had to busy himself with my English and compelled me to 
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pay due attention to style. In 1991, after moving to Germany, I became able 
to continue my work largely because of Professor Pfanzagl’s warm support. 
He secured a grant for me (which regrettably dried up long ago) from Axel-
Springer Verlag. Professor Strecker essentially helped me to prepare and 
publish both English editions of my Russian book (1990). In my papers, I 
had acknowledged the help of many colleagues including the late Doctors 
Chirikov (an able mathematician whose bad health thwarted his scientific 
career) and Eisenhart. Professor Herbert A. David (Iowa State University) 
and especially Professor Ulrich Krengel provided useful comments on this 
text.  
    A final remark. According to some clever regulation, Bernstein, who 
published many contributions abroad and spelled his name in that way, 
should now be called Bernshtein. This is ugly and it corrupts his pen-name 
(if not real name). And why then are we not ordered to spell Markof, 
Chuprof? When I began publishing abroad, I had not chosen the best 
spelling of my name, but it became my pen-name, and I refuse to change it.  
 
    Some explanation  
    Abbreviation  
    CLT        – central limit theorem  
    LLN       – law of large numbers  
    MLSq    – method of least squares  
    W-i        – Gauss, Werke, Bd. i 
    W/Erg-i – Gauss, Werke, Ergänzungsreihe, Bd. i 
 
    Notation 
    [ab]      = a1b1 + ... + anbn (introduced by Gauss). 
    ln x = log nat x, lg x = log10 x 
 
    References in text 
    A double page number, e.g. 59/216, means that either the pertinent source 
has double paging, or a reference to a later edition, or that it was translated 
from Russian into English with p. 59 of the original contribution 
corresponding to p. 216 of the translation.  
 
    0.2. The Pertinent Scientific Disciplines and Their Stages 
    My subject covers a great chronological period and is very wide since it 
includes the theory of probability and statistics, which are difficult to 
separate, while statistics itself is a vast subject which ought to be 
subdivided. I also have to explain the relation of the theory of errors to 
statistics. In addition, I subdivide the history of the development of these 
disciplines into stages to help the readers grasp at once their general outline.  
    Theory of Probability 
    1. Its prehistory (from Aristotle to the mid-17th century). 
    2. Its early history (from Pascal and Fermat to Jakob Bernoulli). 
    3. The creation of its initial version (completed by Jakob Bernoulli, De 
Moivre and Bayes).  
    4. Its development as an applied mathematical discipline (from Bayes to 
Laplace and Poisson to Chebyshev). 
    5. A rigorous proof of its limit theorems (Chebyshev, Markov, Liapunov) 
and its gradual transition to the realm of pure mathematics. 
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    6. Axiomatization.  
    In the second half of the 19th century and the first decades of the 20th 
mathematicians barely recognized probability theory and perhaps to our day 
all but ignore the Gaussian theory of errors. 
    Mathematical Statistics. It originated in the early years of the 20th 
century in the Biometric school and the Continental direction of statistics 
and Fisher moved it to the realm of pure mathematics. Its aim is the 
systematizing, processing and utilizing statistical data, – information on the 
number of the specified objects (Kolmogorov & Prokhorov 1988/1990, p. 
138). Unlike theoretical statistics, it does not include collection of data or 
exploratory data analysis which means revealing general structures in the 
data (e. g., blunders, systematic influences, deception).  
    The Statistical Method. Usually, statistics is meant to study population 
and the term statistical method is applied in all other instances. The 
statistical method underwent three stages. At first, conclusions were being 
based on qualitative regularities conforming to the essence of ancient 
science. Indeed, a Roman scholar Celsus (1935, p.19) stated:  
 
    Careful men noted what generally answered the better, and then began to 
prescribe the same for their patients. Thus sprang up the Art of medicine.  
 
    During the second stage (Tycho in astronomy, Graunt in demography and 
medical statistics) statistical data became available. Conclusions were made 
by means of simple stochastic ideas and methods or even directly, as before. 
At the present stage, which dates back to Poisson, inferences are being 
checked by quantitative stochastic rules.  
    The Theory of Errors. From its origin in the mid-18th century and until 
the 1920s the stochastic theory of errors had been a most important chapter 
of probability theory (P. Lévy 1925, p. vii) and mathematical statistics 
borrowed from it its principles of maximum likelihood and minimal 
variance. It is the application of the statistical method to the treatment of 
observations.  
    The determinate error theory examines the process of measurement 
without applying stochastic reasoning and is related to exploratory data 
analysis and experimental design. Consequently, it studies systematic errors. 
Its application began in ancient astronomy (§ 1.5) but its real development 
was due to the differential calculus which ensured the study of functions of 
measured magnitudes. Gauss and Bessel assumed that each instrument was 
faulty unless and until the ensuing random and systematic errors were 
minimized. Thus originated a new stage in experimental science. 
    The theory of errors has its own stages. Ancient astronomers were dealing 
with observations as they saw fit. At the second stage, beginning with Tycho 
Brahe, observations ceased to be private property, but their treatment was 
not yet corroborated by quantitative considerations. This happened during 
the third stage (T. Simpson, Lambert), and the final, fourth stage was the 
completion of the classical theory of errors (Laplace and especially Gauss) 
although Helmert fruitfully continued the relevant investigations. 
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1. Prehistory 

    I trace the prehistory of statistics until Kepler and Galileo inclusively and 
describe the appearance of randomness and probability as philosophical 
notions. Statistical considerations were mostly based on general 
impressions. The arithmetic mean appeared in astronomy as a universal 
estimator. Kepler rejected the Ptolemaic system of the world. 
 
Key words: randomness, probability, cause vs chance, qualitative 
correlation, expectation  
 

1.1. Randomness  
    Is an infinite (a much more difficult question: a finite) number sequence 
random or not? This is a fundamental problem. Another point is the role of 
randomness in natural sciences, for example in evolution of species or the 
kinetic theory of gases. Then, in statistics, a random variable should be 
statistically stable, but in natural science this restriction is not necessary, cf. 
Poincaré (1896/1912, p. 3), so how to check stability? All this exonerates 
the need to study the history of randomness, and, incidentally, to see how a 
philosophical concept becomes a mathematical notion.  
    Early scientists threw light upon randomness. Aristotle’s examples of 
random events are a sudden meeting of two acquaintances (Phys. 196b30) 
and a sudden unearthing of a buried treasure (Metaphys. 1025a). Lack of 
aim or intersection of chains of events is also seen in Hobbes’ remark 
(1646/1840, p. 259):  
 
    When a traveller meets with a shower, the journey had a cause, and the 
rain had a cause […], but because the journey caused not the rain, nor the 
rain the cause, we say that they were contingent one to another. 
 
    Cournot (1843, § 40) revived the first example due to Aristotle as an 
intersection of two independent chains of events and both illustrate one of 
Poincaré’s interpretations of randomness (1896/1912, p. 4): if equilibrium 
was unstable, a small cause determined a considerable effect. Again, an 
event was random if its causes were complicated and numerous. 
    I continue to dwell on Aristotle, but leave aside several other ancient 
philosophers because their understanding of randomness seems difficult to 
explain. Aristotle’s special example (Phys. 199b1; also see De generatione 
animalium 767b5) mentioned deviations from law, monstrosities. The first 
departure of nature from the type is that the offspring should become female 
instead of male; […] as it is possible for the male sometimes not to prevail 
over the female. […] He did not consider such events random; indeed, he (e. 
g., De Caelo 283b) stated that chance did not occur always or usually. 
Possibly, however, the sex of the offspring is determined either by small, or 
by complicated and numerous causes, so that the birth of a female (or a 
male) is a random event. 
    An addition is necessary. A chaotic process engendered by a small 
corruption of the initial conditions of motion can lead to exponential 
deviation of the appropriate path. A coin toss has a constant number of 
outcomes whose probabilities persist, whereas chaotic motions imply a 
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rapid increase of their instability with time and countless positions of 
their possible paths.  
    According to Aristotle (e. g., Metaphys. 1064b15), none of the traditional 
sciences busies itself about the accidental […]. Neither does the theory of 
probability consider the accidental, but rather studies the laws of 
randomness. Randomness was indirectly mentioned in Indian philosophy as 
intersection of chains of events (Belvalkar et al 1927, p. 458): 
 
    The crow had no idea that its perch would cause the palm-branch to 
break, and the palm-branch had no idea that it would be broken by the 
crow’s perch; but it all happened by pure Chance. 
 
    In medicine, we find randomness occurring when equilibrium is unstable 
(Galen, 2nd century/1951, p. 202):  
 
    In those who are healthy […] the body does not alter even from extreme 
causes, but in old men even the smallest causes produce the greatest 
change. 
 
    Chance was recognized in biology as an intrinsic feature of nature. Thus, 
Harvey (1651/1952, p. 338) stated that spontaneous generation occurred 
accidentally and even Lamarck (1809/1873, p. 62) kept to the same opinion. 
He (1815, p. 133) also maintained that the deviations from the divine lay-out 
of the tree of animal life had been occasioned by a cause accidentelle.  
    The Old Testament also contains statements concerning randomness, for 
example: A certain man drew his bow at a venture and struck the King of 
Israel (1 Kings 22:34, 2 Chronicles 18:33). Kepler (1606/2006, p. 163) 
denied it, called it an idol, but his laws of planetary motion were unable to 
justify the values of the eccentricity of their orbits. He (1618 – 
1621,1620/1952, p. 932) had to consider them random, caused by 
disturbances, deviations from (Divine) laws of nature and Poincaré 

(1896/1912, p. 1) formulated the dialectical link between randomness and 
necessity (but did not mention regularity of mass random events): 
 
    There exists no domain where precise laws decide everything, they only 
outline the boundaries within which randomness may move. In accordance 
with this understanding, the word randomness has a precise and objective 
sense. 
 
    Kant (1755/1910, p. 337) repeated Kepler’s pronouncement about 
deviations from laws. And, in spite of Newton’s proof that the eccentricities 
were determined by the planets’ velocities, Laplace (1796/1884, p. 504, note 
7) followed suit.  
 
    1.2. Probability  
    Aristotle (Anal. Priora 70a0) also reasoned about logical or subjective 
probability which is A generally approved proposition and (Rhetorica 
1376a19) recommended the use of probabilities in law courts. In the 
Talmud, the part of forbidden food should not have exceeded certain limits 
and Maimonides, in the 12th century (Rabinovitch 1973, p. 41), listed seven 
relevant ratios, i.e., seven different probabilities of eating it. His works also 
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contain an embryo of a random variable (Ibidem, p. 74): Among contingent 
things some are very likely, other possibilities are very remote, and yet 
others are intermediate. In the new time one of the first to follow suit in 
natural science was Maupertuis (1745/1756, pp. 120 – 121) who explained 
instances when a child resembled one of his remote ancestors, as well as 
mutations by non-uniform randomness.  
    Subjective probability can lead to sophisms. Here is the opinion of Rabbi 
Shlomo ben Adret, 1235 – 1310 (Rabinovitch 1973, p. 40). There are 
several pieces of meat, all of them kosher except one. Eating the first one is 
allowed, since it is likely kosher; the same with the second one etc, and 
when only two pieces of meat are left, the forbidden piece was likely 
already eaten and they are also allowed.  
 
    1.3. Cause vs Chance.  
    In jurisprudence, attempts to separate necessity (divine punishment) from 
chance were made in ancient India (Bühler 1886/1967, p. 267): if a witness 
in law-suits pertaining to loans within seven days after he had given 
evidence experienced a misfortune, he shall be made to pay the debt and a 
fine, – he was considered a liar. An attempt to separate divine design and 
chance was the main aim of De Moivre’s Doctrine of Chances (§ 4.3).  
    In the Old Testament we also find a separation of necessity and chance: 
Job (9:24 and 21:17 – 18) decided that the world was given over to the 
wicked [this being the cause] since their lamp was put out rarely. The 
Talmud (Taanid 34) decides whether deaths in a town were normal events or 
occasioned by the beginning of a plague epidemic and it seems likely that a 
disregarded probability of 1/8 meant an occurrence of the first alternative.  
    Galileo (1613) managed to separate cause (regular rotation of the newly 
discovered sunspots with the Sun itself) and chance (their random proper 
motion relative to the Sun’s disc). The same goal is still with us in 
mathematical statistics, e. g., in clinical trials. Galen (1946, p. 113) 
indirectly mentioned it: 
 
    What is to prevent the medicine which is being tested from having a given 
effect on two [of three] hundred people and the reverse effect on twenty 
others, and that of the first six people who were seen at first and on whom 
the remedy took effect, three belong to the three hundred and three to the 
twenty without your being able to know which three belong to the three 
hundred and three to the twenty […]. You must needs wait until you see […] 
very many people in succession. 
 
    Qualitative correlation, corresponding to the qualitative nature of ancient 
science, was introduced and served to separate cause from chance. Here is 
an example (Hippocrates, flourished 400 BC, 1952, No. 44): fat men are apt 
to die earlier than those who are slender. Or, Aristotle (Problemata 892a0): 
Why is it that fair men and white horses usually have grey eyes? Statements 
amounting to qualitative correlation can be found in contributions of many 
ancient scientists. Again, conforming to the nature of ancient science, 
conclusions had been made by issuing from general impression. Thus, 
climatic belts were introduced in antiquity without any quantitative support. 
In 1817, Humboldt introduced them anew, but based them on mean yearly 
temperatures. 
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    1.4. Expectation  
    Expectation was introduced on a layman’s level much earlier than in 
science. Maimonides (Rabinovitch 1973, p. 164) noted that a marriage 
settlement (providing for a widow or a divorced wife) of 1000 zuz can be 
sold for 100 [of such monetary units], but a settlement of 100 can be sold 
only for less than 10. It follows that there existed a more or less fixed 
expected value of a future possible gain. Large payments were thus valued 
comparatively higher and this psychologically determined subjective 
attitude can also be traced in later lotteries up to our days (Cohen et al 1970; 
1971). 
    A marriage settlement is a particular case of insurance; the latter possibly 
existed in an elementary form even in the 20th century BC (Raikher 1947, p. 
40). Another statement of Maimonides (Rabinovitch 1973, p. 138) can also 
be linked with jurisprudence and might be considered as an embryo of Jakob 
Bernoulli’s (1713, part 4) thoughts about arguments: 
 
    One should not take into account the number of doubts, but rather 
consider how great is their incongruity and what is their disagreement with 
what exists. Sometimes a single doubt is more powerful than a thousand 
other doubts.  
 
    Expectation was indirectly mentioned in ancient India (Al-Biruni (973 – 
1048) 1887, vol. 2, pp. 158 – 160): in law-courts, in certain cases many 
kinds of oaths had been demanded in accordance with the value of the object 
of the claim. The probability of lying with impunity multiplied by that value 
was the expectation of fraudulent gain. 
    Expectation is connected with mean values, and, in moral issues, with 
mean behaviour. Aristotle (for example, Ethica Nicomachea 1104a24) 
believed that mean behaviour, moderation possessed optimal properties. 
Analogous statements had appeared even earlier in ancient China; the 
doctrine of means is attributed to a student of Confucius (Burov et al 1973, 
pp. 119 – 140). Again, a similar teaching existed in the Pythagorean school 
(Makovelsky 1914, p. 63), and Nicomachus of Gerasa, ca. 100 BC (1952, p. 
820) stated that a perfect number was a mean between numbers the sum of 
whose divisors was less, and greater that the number itself; was between 
excess and deficiency. In medicine the mean was considered as the ideal 
state (of health). Thus (Galen 1951, pp. 20 – 21): A good constitution is a 
mean between extremes. In games of chance the (arithmetic) mean was 
believed to possess certain stochastic properties (§ 2.1.1). In the new time, 
the arithmetic mean became the main estimator of the constants sought in 
the theory of errors and has been applied in civil life.  
    The Talmud (Jerus. Talmud/Sangedrin 14) was also concerned with the 
redemption of the first born by lot. Moses wrote Levite on 22, 273 ballots 
and added 273 more demanding five shekels each. Only 22,000 Levite 
ballots were needed so that Moses ran the risk of losing some of the required 
money. Nevertheless, the losing ballots turned up at regular intervals, which 
was regarded as a miracle. The existence of the superfluous ballots was not 
explained; the Israelites were apparently mistakenly thinking that the last 
273 of them to draw the lots will be the losers, see a similar example in 
Tutubalin (1972, p. 12). 
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    1.5. Astronomy  
    Ancient astronomers did not mention randomness, but they knew that 
some, and only some errors acted systematically (for example, refraction), e. 
g., Ptolemy, 2nd c. (1984, IX, 2). Lloyd (1982, p. 158, n66) noted that 
Ptolemy had a special term for significant and noteworthy differences. I 
myself cite Ptolemy (1956, III, 2, p. 231): 
 
    Horoscopic instruments […] are frequently capable of error, the solar 
instruments by the occasional shifting of their positions or of their gnomons, 
and the water clocks by stoppages and irregularities in the flow of the water 
from different causes and by mere chance. 
 
All this (and the following) directly bears upon the determinate error theory. 
    Ancient astronomers had been able to select best conditions (time of 
observation) for given errors to influence the results as little as possible. 
Hipparchus, 1st c. BC (Toomer 1974, p. 131) was aware of that fact and 
Aaboe & De Solla Price (1964, pp. 2 and 3) concluded that  
 
    In the pre-telescopic era there is […] a curious paradox that even a well-
graduated device for measuring celestial angles […] is hardly a match for 
the naked and unaided eye judiciously applied. 
 
    They even mentioned qualitative measurements in the title of their paper. 
Neugebauer (1948/1983, p. 101) more carefully remarked that in antiquity  
 
    All efforts were concentrated upon reducing to a minimum the influence 
of the inaccuracy of individual observations with crude instruments […].  
 
    The second feature of ancient astronomy was the determination of bounds 
for the constants sought, a well known technique, practiced for instance by 
Aristarchus, Archimedes and Eratosphenes (Toomer 1974, p. 139). The 
third and last feature was the practice of regular observations. Neugebauer 
(1975, p. 659) credited Archimedes and Hipparchus with systematic 
observations of the apparent diameters of the sun and the moon. And 
Hipparchus could have otherwise hardly been able to compile his star 
catalogue. 
    Al-Biruni (1967, pp. 46 – 51), rejected four indirect observations of the 
latitude of a certain town in favour of its single and direct measurement. He 

(1967) tells us about his own regular observations, in particular (p. 32) for 
predicting dangerous landslides (which was hardly possible; even latitude 
was determined too crudely). 
    Levi ben Gerson (Goldstein 1985, pp. 29, 93 and 109) indirectly but 
strongly recommended regular observations. In the first two cases he 
maintained that they proved to him that the declinations of the stars and the 
lunar parallax respectively were poorly known.  
    Al-Biruni (1967, p. 152) was the first to consider, although only 
qualitatively, the propagation of computational errors and the combined 
effect of observational and computational errors: 
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    The use of sines engenders errors which become appreciable if they are 
added to errors caused by the use of small instruments, and errors made by 
human observers.  
 
    His statement (Ibidem, p. 155) on the observation of lunar eclipses for 
determining the longitudinal difference between two cities testified to his 
attempt to exclude systematic influences from final results: Observers of an 
eclipse should 
 
    Obtain all its times [phases] so that every one of these, in one of the two 
towns, can be related to the corresponding time in the other. Also, from 
every pair of opposite times, that of the middle of the eclipse must be 
obtained. 
 
    Contrary to modern notion, ancient astronomers regarded their 
observations as their private property, did not report rejected results or 
explain their methods of treating them (Pannekoek 1961/1989, pp. 339 − 
340). It is possible that, when selecting point estimates for the constants 
sought, they had been choosing almost any number within some appropriate 
bounds. Indeed, modern notions about treating observations, whose errors 
possess a bad distribution, justify such an attitude, which, moreover, 
corresponds with the qualitative nature of ancient science. 
 
    1.6. Astrology  
    It was practised in good faith by the most celebrated astronomers, and 
qualitative correlation was present there as well. Kepler considered himself 
the founder of scientific astrology, of a science of correlational rather than 
strict influence of heaven on men and states. Thus (Kepler 1619/1997, book 
4, pp. 377 – 378), his heavenly bodies were not Mercury, but Copernicus 

and Tycho Brahe, and the constellations at his birth only woke rather than 
heartened his spirit and the abilities of his soul. And (1610/1941, p. 200), 
heaven and earth are not coupled as cog-wheels in a clockwork. Before him 
Tycho likely held the same view (Hellman 1970, p. 410). As an astrologer, 
Ptolemy (1956, I, 2 and I, 3), also believed that the influence of the heaven 
was a tendency rather than a fatal drive, that astrology was to a large extent 
a science of qualitative correlation, and Al-Biruni (1934, p. 232) likely 
thought the same way: The influence of Venus is towards [...], The moon 
tends […]. Maimonides (1977, pp. 118 – 129) was an exception: The 
theories of the astrologists are devoid of any value.  
    For Kepler, the main goal of astrology was not the compilation of 
horoscopes concerning individuals, but the determination of tendencies in 
the development of states for which such circumstances as geographical 
position, climate, etc, although not statistical data, should also be taken into 
account. 
 
    1.7. Treatment of Observations  
    The treatment of direct measurements is studied by the theory of errors 
(see below), but it had to be done from most ancient times. In § 1.5, I 
mentioned the qualitative approach to it by ancient astronomers. In Kepler’s 
time, and possibly even somewhat earlier, the arithmetic mean became the 
generally accepted estimator of such measurements. Indeed, Kepler 
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(1609/1992, p. 200/63), when treating four observations, selected a number 
as the medium ex aequo et bono (in fairness and justice). A plausible 
reconstruction assumes that it was a generalized arithmetic mean with 
differing weights of observations. More important, the Latin expression 
above occurred in Cicero, 106 – 43 BC (Pro A. Caecina oratio), and carried 
an implication Rather than according to the letter of the law, an expression 
known to lawyers. In other words, Kepler, who likely read Cicero, called the 
ordinary arithmetic mean the letter of the law, i.e., the universal estimator of 
the parameter of location. 
    Kepler repeatedly adjusted observations. How had he convinced himself 
that Tycho’s observations were in conflict with the Ptolemaic system of the 
world? I believe that Kepler applied the minimax principle demanding that 
the residual free term of the given system of equations, maximal in absolute 
value, be the least from among all of its possible solutions. He (1609/1992, 
p. 286/113) apparently determined such a minimum, although only from 
among some possibilities, and found out that that residual was equal to 8′ 
which was inadmissible. Any other solution would have been even less 
admissible, so that either the observations or the underlying theory were 
faulty. Kepler reasonably trusted Tycho’s observations and his inference 
was obvious. 
    I am unaware of any sound discussion of Tycho’s observations and a 
particular pertinent question also suggests itself. Temporary removals of at 
least one of his instruments had been certainly necessary. This would have 
likely led to systematic shifts in the mean measurements, so how did he 
manage in such cases?  
    When adjusting observations, Kepler (Ibidem, p. 334/143) corrupted them 
by small arbitrary corrections. He likely applied elements of what is now 
called statistical simulation, but in any case he must have taken into account 
the properties of usual random errors, i.e., must have chosen a larger 
number of small positive and negative corrections and about the same 
number of the corrections of each sign. Otherwise, Kepler would have 
hardly achieved success.  
    In astronomy, numerous observations distributed over years and even 
centuries are necessary for determining astronomical constants and 
estimating, say, the proper motion of stars. In other branches of natural 
sciences the situation is not so straightforward. Boyle (1772/1999, p. 376), 
the cofounder of scientific chemistry and co-author of the Boyle – Mariotte 
law, when discussing experiments rather than observations, kept to his own 
rule:  
 
    Experiments ought to be estimated by their value, not their number; […] a 
single experiment […] may as well deserve an entire treatise […]. As one of 
those large and orient pearls may outvalue a very great number of those 
little […] pearls, that are to be bought by the ounce […].  
 
Flamsteed’s attitude would have also been advisable to describe. This is, 
however, difficult, but at least I am referring to Baily (1835, p. 376) and 
Rigaud (1841, pp. 129 – 131).  
    So are series of observations always needed? All depends on the order of 
the random errors, their law of distribution, on the magnitude of systematic 
influences, the precision and accuracy required (the first term concerns 
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random errors, the second one describes systematic corruption) and on the 
cost of observation. In any case, it is hardly advisable to dissolve a sound 
observation in a multitude of worse measurements. Specifically, the danger 
of systematic corruption demands that a programme of its elimination be 
drawn up and this means that the number of observations should be known 
beforehand. Sequential analysis is ruled out.  
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2. The Early History 

    In the 17th century gambling led to the development of the nascent 
probability theory; in jurisprudence, a bit later stochastic ideas began to be 
applied for objectively solving civil cases. Some studies pertaining to 
insurance of life had been based on probabilities, mortality tables appeared 
and elements of population statistics and statistics itself had emerged. 
 
    Key words: games of chance, theory of probability, mortality, population 
statistics, expectation  
 
    2.1. Stochastic Ideas in Science and Society 
    2.1.1. Games of Chance. They fostered the understanding of the part of 
chance in life whereas mathematicians discovered that such games provided 
formulations of essentially new problems. Pascal (1654b/1998, p. 172) 
suggested a remarkable term for the nascent theory, – Aleae geometria, La 
Géométrie du hazard. Later Huygens (1657/1920, pp. 57 – 58) prophetically 
remarked that it was not a simple jeu d’esprit and that it laid the foundation 
d’une spéculation fort intéressante et profonde. Leibniz (1704/1996, p. 506) 
noted that he had repeatedly advocated the creation of a new type of logic so 
as to study the degrees of probability and recommended, e. g., in 1703, in a 
letter to Jakob Bernoulli, to examine in this connection all kinds of games of 
chance. Actually, Bernoulli began studying them in 1675 (Biermann 1955).  
    Even in antiquity games of chance provided examples of stochastic 
considerations (Aristotle, De caelo 292a30 and 289b22): 
 
    Ten thousand Coan throws [whatever that meant] in succession with the 
dice are impossible; it is difficult to conceive that the pace of each star 
should be exactly proportioned to the size of its circle, –  
 
their invariable mutual arrangement cannot be random. 
    The theory of probability had originated in the mid-17th century rather 
than earlier. Exactly then influential scientific societies came into being, 
scientific correspondence became usual and games of chance provided 
models for posing natural and properly formulated stochastic problems. In 
addition, they were in the social order of the day. Previously, they had not 
been sufficiently conducive to the development of stochastic ideas because 
of the absence of combinatorial ideas and of the notion of chance events, of 
superstition and moral or religious barriers (M. G. Kendall 1956/1970, p. 
30).  
    Montmort (1708/1713, p. 6) had testified to the superstition of gamblers; 
Laplace (1814/1995, pp. 92 – 93) and Poisson (1837a, pp. 69 – 70) repeated 
his statement (and adduced new examples). Illusions exist even in our time 
although Bertrand (1888a, p. XXII) had remarked that the roulette wheel 
had ni conscience ni mémoire. Even a just game (with a zero expectation of 
loss for each participant) is ruinous and is therefore based on superstition. 
Petty (1662/1899, p. 64) stated that lotteries were properly a Tax upon 
unfortunate self-conceited fools and Arnauld & Nicole (1662/1992, p. 332) 
indicated that large winnings in a lottery were illusory. They came out 
against hoping for unlikely favourable events. On the contrary, it is 
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reasonable to be guarded against unlikely unfavourable events which is the 
rationale behind the institution of insurance. 
    On the other hand, gamblers had been noticing interesting regularities. 
Apparently during 1613 – 1623 Galileo (ca. 1613 – 1623, publ. 1718/1962) 
wrote a note about the game of dice. He calculated the number of all the 
possible outcomes of a throw of three dice and testified that gamblers were 
believing that 10 or 11 points turned out more often than 9 or 12. If only 
these events are considered (call them A and B respectively), then the 
difference between their probabilities 
 
    P(A) = 27/52, P(B) = 25/52, ∆P = 1/26 = 0.038 
 
can be revealed thus strengthening the trust in mean values (§ 1.4). 
    Galileo had predecessors, Fournival, the probable author of the De Vetula 
(Bellhouse 2000), and Cardano, De Vetula, written in the mid-13th century, 
considered the throws of three dice. Bellhouse concluded that it had led to 
elementary probability calculations being established and known in Europe 
from about 1250. He also provided an English translation of its 
mathematical lines. At the time and even earlier elements of combinatorial 
mathematics had been certainly known outside Europe; a recent source 
about ancient India is Raju (2010).  
    Bellhouse (2005) believes that Cardano had based his stochastic 
reasoning on De Vetula. Cardano (Ore 1953; Hald 1990, pp. 36 – 41) 
compiled a book on games of chance (dicing, including playing with 
imagined dice having 3 – 5 sides, and card games) only published in 1663. 
He enumerated the possible outcomes of throws of three dice and effectively 
applied the classical definition of probability; true, he worked with odds 
rather than probabilities.  
    At the end of his life Cardano (1575) compiled his biography which 
contained a chapter called Things of worth which I have achieved (pp. 215 – 
219 of the English edition of 1962) where he only mentioned a particular 
stochastic problem but formulated it incomprehensively. Nevertheless, his 
was the first discussion of stochastic methods and he (see my § 3.2.3) 
applied, as other scientists then did, the simplest formula pertaining to the 
prehistory of the LLN. 
    2.1.2. Jurisprudence. One of the first tests for separating chance from 
necessity was provided for the administration of justice (§ 1.3). It seems, 
however, that the importance of civil suits and stochastic ideas in law courts 
increased exactly in the mid-17th century. A comparison of the attitudes of 
Kepler (1610/1941, p. 238) and Jakob Bernoulli (1713, pt. 4, Chapt. 2) is 
instructive. Kepler refused to answer someone whether his absentee friend 
was alive or not. Bernoulli, however, was quite prepared to weigh the 
probabilities of such facts against each other (which was just what Nikolaus 
Bernoulli did, see § 3.3.2). Descartes (1644/1978, pt. 4, § 205, p. 323) put 
moral certainty into scientific circulation, apparently bearing in mind 
jurisprudence. See § 3.2.2 on Jakob Bernoulli’s statements about that notion.  
    Niklaus Bernoulli (§ 3.3.2), in the beginning of the 18th century, devoted 
his dissertation to the application of the art of conjecturing to jurisprudence. 
Leibniz (1704/1996, pp. 504 – 505) mentioned degrees of proofs and doubts 
in law and in medicine and indicated that  
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our peasants have since long ago been assuming that the value of a plot is 
the arithmetic mean of its estimates made by three groups of appraisers.  
 
That mean was considered as an approximation to the expected value of the 
plot, cf. § 1.4.  
    2.1.3. Insurance of Property and Life Insurance. Marine insurance was 
the first essential type of insurance of property but it lacked stochastic ideas 
or methods. There existed an immoral and repeatedly prohibited practice of 
betting on the safe arrivals of ships. Anyway, marine insurance had been 
apparently based on rude and subjective estimates. Publicke Acte No. 12 of 
1601 (Statutes of the Realm, vol. 4, pt. 2, pp. 978 – 979) mentioned policies 
of assurance in marine insurance:  
 
    It hathe bene tyme out of mynde […] in this realme and in forraine 
nacyons to have assurance of goodes, merchandizes, ships and things 
adventured. 
 
    Life insurance exists in two main forms. Either the insurer pays the 
policy-holder or his heirs the stipulated sum on the occurrence of an event 
dependent on human life; or, the latter enjoys a life annuity. Annuities were 
known in Europe from the 13th century onward although later they were 
prohibited for about a century until 1423 when a Papal bull officially 
allowed them (Du Pasquier 1910, pp. 484 – 485). Either in the mid-17th 
century (Hendriks 1853, p. 112), or even, in England, during the reign of 
William III [1689 – 1702] (K. Pearson 1978, p. 134), the annuitant’s age 
was not usually taken into consideration. Otherwise they had been allowed 
for only in a generalized way (Kohli & van der Waerden 1975, pp. 515 – 
517; Hald 1990, p. 119). The situation began to change at the end of the 17th 
century. 
    However, in the 18th, and even in the mid-19th century, life insurance 
hardly essentially depended on stochastic considerations; moreover, the 
statistical data collected by the insurance societies as well as their methods 
of calculations remained secret and honest business based on statistics of 
mortality barely superseded cheating before the second half of the 19th 
century. Nevertheless, beginning at least from the 18th century, life 
insurance strongly influenced the theory of probability, see §§ 4.2 and 6.1.1-
3.  
    De Witt (1671) distinguished four age groups and without proof assumed 
that the chances of death increased in a definite way from one group to the 
next one but remained constant within each of them. According to his 
calculations, the cost of an annuity for young men should have been 16 
times higher than the yearly premium (not 14, as it was thought). Eneström 
(1896/1897, p. 66) noted that De Witt’s proposed chances of death were 
contrary to what was calculated and that his risk of dying concerned an 
infant and was explained misleadingly. But still, a likely corollary of De 
Witt’s work was that the price of annuities sold in Holland in 1672 – 1673 
depended on the age of the annuitants (Commelin 1693, p. 1205). De Witt’s 
appendix to the main text (Hendriks 1853, pp. 117 – 118) contained an 
interesting observation belonging to the prehistory of the LLN. Examining 
considerably more than a hundred different classes, each class consisting of 
about one hundred persons, he found that a purchaser of ten or more life 
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annuities will certainly gain profit. Several authors mentioned the practice, 
possibly justified by intuitive stochastic reasoning, of insuring a number of 
healthy infants cf. § 3.2.3.  
    In the same year, De Witt (Hendriks 1853, p. 109) calculated the cost of 
annuity on several lives (an annuity that should be paid out until the death of 
the last person of the group, usually, of a married couple) and thus 
determined the distribution of the maximal term of a series of observations 
[obeying a uniform law]. Kohli & van der Waerden (1975) described the 
history of life insurance including the work of De Witt and Huygens (§ 
2.2.2).  
    The first estimation of the present worth of life annuities, based on a table 
of expectations of life, was made by the Praetorian Prefect Ulpianus (170 – 
228), see Hendriks (1852) and Greenwood (1940 and 1941 – 1943). His 
sources are not known, neither is it clear whether his expectation coincided 
with our present notion, but at least methodologically his table constituted 
the highest achievement of demographic statistics until the 17th century. 
    Leibniz (MS 1680?/1872) described his considerations about state 
insurance, see Sofonea (1957a). He had not studied insurance as such, but 
maintained that the princes should care about the poor, that the society 
ought to be anxious for each individual etc. Much later Süssmilch (§ 6.2.2) 
formulated similar ideas. 
    Tontines constituted a special form of mutual insurance. Named after the 
Italian banker Laurens Tonti, 1630 – 1695 (Hendriks 1863), they, acting as a 
single body of participants, distributed the total sums of annuities among 
their members still alive, so that those, who lived longer, received 
considerable moneys. Tontines were neither socially accepted nor 
widespread on the assumed rationale that they are too selfish and 
speculative (Hendriks 1853, p. 116). Nevertheless, they did exist in the 17th 
century. Euler (1776) proposed flexible tontines with variable ages of their 
members as well as their initial contributions. Such tontines would then 
become perpetual bodies rather than remaining only for a few decades in 
existence. Apparently for the same reason his proposal had not been 
adopted. 
    2.1.4. Population Statistics. The Old Testament (Numbers, Chapter 1) 
reports on a census of those able to bear arms and, accordingly, the Talmud 
estimated the population of towns only by the number of soldiers brought 
forth [when needed]. In China, in 2238 BC or thereabouts, an estimation of 
the population was attempted and the first census of the warrior caste in 
Egypt occurred not later than in the 16th century BC (Fedorovitch 1894, pp. 
7 – 21). In Europe, even in 15th century Italy, for all its achievements in 
accountancy and mathematics (M. G. Kendall 1960),  
 
counting was by complete enumeration and still tended to be a record of a 
situation rather than a basis for estimation or prediction in an expanding 
economy. 
 
    Only Graunt (1662) and, to a lesser extent, Petty (1690) can be called the 
fathers of population statistics. They studied population, economics, and 
commerce and discussed the appropriate causes and connections by means 
of elementary stochastic considerations. Petty called the new discipline 
political arithmetic and its aims were to study from a socio-economic point 
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of view states and separate cities (or regions) by means of (rather unreliable) 
statistical data on population, industry, agriculture, commerce etc. However, 
neither Petty, nor his followers ever introduced any definition of political 
arithmetic. Petty (1690/1899, p. 244) plainly formulated his denial of 
comparative and superlative Words and attempted to express himself in 
Terms of Number, Weight, or Measure…; Graunt undoubtedly did, if not 
said the same.  
    Petty (1927, vol. 1, pp. 171 – 172) even proposed to establish a register 
generall of people, plantations & trade of England, to collect the accounts 
of all the Births, Mariages, Burialls […] of the Herths, and Houses […] as 
also of the People, by their Age, Sex, Trade, Titles, and Office. The scope of 
that Register was to be wider than that of our existing Register office 
(Greenwood 1941 – 1943/1970, p. 61). 
    At least 30 Petty’s manuscripts (1927) pertained to political arithmetic. 
This source shows him as a philosopher of science congenial in some 
respects with Leibniz (pp. 39 – 40): 
 
    What is a common measure of Time, Space, Weight, & motion? What 
number of Elementall sounds or letters, will […] make a speech or 
language? How to give names to names, and how to adde and subtract 
sensata, & to ballance the weight and power of words; which is Logick & 
reason. 
 
    Graunt (1662) studied the weekly bills of mortality in London which 
began to appear in the 16th century and had been regularly published since 
the beginning of the 17th century. His contribution had been (but is 
apparently not anymore) attributed to Petty who perhaps qualifies as co-
author. For my part, I quote his Discourse (1674): I have also (like the 
author of those Observations [like Graunt!]) Dedicated this Discourse ... 
Graunt used the fragmentary statistical data to estimate the population of 
London and England as well as the influence of various diseases on 
mortality and he attempted to allow for systematic corruptions of the data. 
Thus, he reasonably supposed that the number of deaths from syphilis was 
essentially understated out of ethical considerations. His main merit 
consisted in that he attempted to find definite regularities in the movement 
of the population. Thus, he established that both sexes were approximately 
equally numerous (which contradicted the then established views) and that 
out of 27 newly born about 14 were boys. When dealing with large numbers, 
Graunt did not doubt that his conclusions reflected objective reality which 
might be seen as a fact belonging to the prehistory of the LLN; the ratio 
14:13 was, in his opinion, an estimate of the ratio of the respective 
probabilities. 
    Nevertheless, he had uncritically made conclusions based on a small 
number of observations as well and thought that the population increased in 
an arithmetical progression since replaced by the geometrical progression 
definitely introduced by Süssmilch and Euler (§ 6.2.2). 
    In spite of the meagre and sometimes wrong information, Graunt was able 
to compile the first mortality table (common for both sexes). He somehow 
calculated the relative number of people dying within the first six years and 
within each next decade up to age 86. According to his table, only one 
person out of a hundred survived until that age. The very invention of the 
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mortality table was the main point here. The indicated causes of death were 
also incomplete and doubtful, but Graunt formulated some important 
conclusions as well (although not without serious errors). His general 
methodological (but not factual) mistake consisted in that he assumed, 
without due justification, that statistical ratios during usual years (for 
example, the per cent of yearly deaths) were stable. Graunt had influenced 
later scholars (Huygens, letter of 1662/1888 – 1950, 1891, p. 149; Hald 
1990, p. 86): 
 
    1. Grant’s [!] discourse really deserves to be considered and I like it very 
much. He reasons sensibly and clearly and I admire how he was able to 
elicit all his conclusions from these simple observations which formerly 
seemed useless. 
    2. Graunt reduced the data from several great confused Volumes into a 
few perspicuous Tables and analysed them in a few succinct Paragraphs 
which is exactly the aim of statistics.  
    Huygens (§ 2.2.2) made use of Graunt’s mortality table and so did, 
indirectly, Jakob Bernoulli (§ 3.2.2). 
    Halley (1694a; 1694b), a versatile scholar and an astronomer in the first 
place, compiled the next mortality table. He made use of statistical data 
collected in Breslau, a city with a closed population. Halley applied his table 
for elementary stochastic calculations and thus laid a mathematical 
foundation of actuarial science. He was also able to find out the general 
relative population of the city. Thus, for each thousand infants aged less 
than a year, there were 855 children from one to two years of age, …, and, 
finally, 107 persons aged 84 – 100. After summing up all these numbers, 
Halley obtained 34 thousand (exactly) so that the ratio of the population to 
the newly born occurred to be 34. Until 1750 his table remained the best one 
(K. Pearson 1978, p. 206). 
    The yearly rate of mortality in Breslau was 1/30, the same as in London, 
and yet Halley considered that city as a statistical standard. If such a notion 
is appropriate, standards of several levels ought to be introduced. Again, 
Halley thought that the irregularities in his data would rectify themselves, 
were the number of years [of observation] much more considerable. Such 
irregularities could have been produced by systematic influences, but 
Halley’s opinion shows the apparently wide-spread belief in an embryo of 
the LLN. Halley’s second note is interesting as a reasoning on the welfare of 
the population. Thus, he emphasized the need to help the poor, especially by 
finding them jobs. 
    Success came immediately. K. Pearson (1978, p. 78) indicated that Halley 
had made all the use that a modern actuary could of his data and that he had 
computed his life-table as we should do it today. Sofonea (1957b, p. 31*) 
called Halley’s contribution the beginning of the entire development of 
modern methods of life insurance, and Hald (1990, p. 141) stated that it 
became of great importance to actuarial science. Drawing on Halley, De 
Moivre (1725/1756) introduced the uniform law of mortality for ages 
beginning at 12 years. 
    In 1701 Halley (Chapman 1941, p. 5) compiled a chart of Northern 
Atlantic showing the lines of equal magnetic declinations so that he (and of 
course Graunt) might be called the founders of exploratory data analysis, see 
§ 0.2. 
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    In 1680 – 1683 Leibniz wrote several manuscripts mostly pertaining to 
statecraft (§ 6.2.1) and published in 1866 (Leibniz 1986, pp. 340 – 349, 370 
– 381, and 487 – 491). He recommended the compilation of state tables 
(numerical or not?) of remarkable facts and their comparison, year with 
year, or state with state, by a special recording office. He thought it 
advisable to collect information about scientific achievements, clever ideas 
and medical and meteorological observations, and to establish sanitary 
boards for compiling data on a wide range of subjects (meteorology, 
medicine, agriculture). One of Leibniz’ manuscripts (Leibniz 1986, pp. 456 
– 467, or, with a German translation, 2000, pp. 428 – 445) was devoted to 
political arithmetic. There, he introduced the moyenne longueur de la vie 
humaine, necessary, as he remarked, for calculating the cost of annuities; 
assumed without substantiation several regularities, for example, that the 
ratio of mortality to population was equal to 1:40; and wrongly stated that 
the mortality law for each age group including infants was uniform. 
Following Arnauld & Nicole (1662/1992, pp. 331 and 332), he discussed 
apparence or degré de la probabilité and apparence moyenne [expectation]. 
When discussing the game of dice, Leibniz made two elementary mistakes. 
Much worse, he argued that the birth-rate could be nine or ten times higher 
than it actually was. 
    Population statistics owed its later development to the general problem of 
isolating randomness from Divine design. Kepler and Newton achieved this 
aim with regard to inanimate nature, and scientists were quick to begin 
searching for the laws governing the movement of population. 
 
    2.2. Mathematical Investigations 
    2.2.1. Pascal and Fermat. In 1654 Pascal and Fermat exchanged several 
letters (Pascal 1654a) which heralded the beginning of the formal history of 
probability. They discussed several problems; here is the most important of 
them which was known even at the end of the 14th century. Two or three 
gamblers agree to continue playing until one of them scores n points; for 
some reason the game is interrupted and it is required to divide the stakes in 
a reasonable way. Both scholars solved this problem of points, see Takácz 
(1994), by issuing from one and the same rule: the winnings of the gamblers 
should be in the same ratio(s) as existed between the expectations of their 
scoring the n points. The actual introduction of that notion, expectation, was 
their main achievement. They also effectively applied the addition and the 
multiplication theorems. About 1400 an anonymous Italian author (Franklin 
2001, pp. 294 – 296) correctly solved a particular case of the same problem, 
but did not introduce expectation. 
    The methods used by Pascal and Fermat differed from each other. In 
particular, Pascal solved the above problem by means of the arithmetic 
triangle (Edwards 1987) composed, as is well known, of binomial 
coefficients of the development (1 + 1)n for increasing values of n. Pascal’s 
relevant contribution (1665) was published posthumously, but Fermat was at 
least partly familiar with it. Both there, and in his letters to Fermat, Pascal 
made use of partial difference equations (Hald 1990, pp. 49 and 57).  
    The celebrated Pascal wager (1669/2000, pp. 676 – 681), also published 
posthumously, was a discussion about choosing a hypothesis. Does God 
exist, rhetorically asked the devoutly religious author and answered: you 
should bet. If He does not exist, you may live calmly [and sin]; otherwise, 
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however, you can lose eternity. In the mathematical sense, Pascal’s 
reasoning is vague; perhaps he had no time to edit his fragment. Its meaning 
is, however, clear: if God exists with a fixed and however low probability, 
the expectation of the benefit accrued by believing in Him is infinite. Pascal 
died in 1662 and the same year Arnauld & Nicole (1662/1992, p. 334) 
published a similar statement: 
 
    Infinite things, like eternity and salvation, can not be equated to any 
temporal advantage. […] We should never balance them with anything 
wordly. […] The least degree of possibility of saving oneself is more 
valuable than all the earthly blessings taken together, and the least peril of 
losing that possibility is more considerable than all the temporal evils […]. 
 
    2.2.2. Huygens. Huygens was the author of the first treatise on 
probability (1657). Being acquainted only with the general contents of the 
Pascal – Fermat correspondence, he independently introduced the notion of 
expected random winning and, like those scholars, selected it as the test for 
solving stochastic problems. He went on to prove that the value of 
expectation of a gambler who gets a in p cases and b in q cases was 
 

    
pa qb

p q

+

+
.                                                                                                               

(1)  
 
    Jakob Bernoulli (1713/1999, p. 9) justified the expression (1) much 
simpler than Huygens did: if each of the p gamblers gets a, and each of the q 
others receives b, and the gains of all of them are the same, then the 
expectation of each is equal to (1). After Bernoulli, however, expectation 
began to be introduced formally: expressions of the type of (1) followed by 
definition. 
    Huygens solved the problem of points under various initial conditions and 
listed five additional problems two of which were due to Fermat, and one, to 
Pascal. He solved them later, either in his correspondence, or in manuscripts 
published posthumously. They demanded the use of the addition and 
multiplication theorems, the introduction of conditional probabilities and the 
formula (in modern notation) 
 
    P(B) = ΣP(Ai)P(B/Ai), i = 1, 2, …, n. 
 
    Problem No. 4 was about sampling without replacement. An urn 
contained 8 black balls and 4 white ones and it was required to determine 
the ratio of chances that in a sample of 7 balls 3 were, or were not white. 
Huygens determined the expectation of the former event by means of a 
partial difference equation (Hald 1990, p. 76). Nowadays such problems 
leading to the hypergeometric distribution (J. Bernoulli 1713/1999, pp. 167 
– 168; De Moivre 1712/1984, Problem 14 and 1718/1756, Problem 20) 
appear in connection with statistical inspection of mass production. 
    Pascal’s Problem No. 5 was the first to discuss the gambler’s ruin. 
Gamblers A and B undertake to score 14 and 11 points respectively in a 
throw of 3 dice. They have 12 counters each and it is required to determine 
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the ratio of the chances that they be ruined. The stipulated numbers of points 
occur in 15 and 27 cases and the ratio sought is therefore (5/9)12.  
    In 1669, in a correspondence with his brother, Huygens (1895), see Kohli 
& van der Waerden (1975), discussed stochastic problems connected with 
mortality and life insurance. Issuing from Graunt’s mortality table (§ 2.1.4), 
Huygens (pp. 531 – 532) introduced the probable duration of life (but not 
the term itself). On p. 537 he specified that expected life ought to be used in 
calculations of annuities and the former for betting on human lives. Huygens 
also showed that the probable duration of life could be determined by means 
of the graph (plate between pp. 530 and 531) of the function y = 1 – F(x), 
where, in modern notation, F(x) was a remaining unknown integral 
distribution function with admissible values of the argument being 0 ≤ x ≤ 
100. 
    In the same correspondence Huygens (p. 528) examined the expected 
period of time during which 40 persons aged 46 will die out; and 2 persons 
aged 16 will both die. The first problem proved too difficult, but Huygens 
might have remarked that the period sought was 40 years (according to 
Graunt, 86 years was the highest possible age). He mistakenly solved a 
similar problem by assuming that the law of mortality was uniform and that 
the number of deaths will decrease with time, but for a distribution, 
continuous and uniform in some interval, n order statistics will divide it into 
(n + 1) approximately equal parts and the annual deaths will remain about 
constant. In the second problem Huygens applied conditional expectation. 
When solving problems on games of chance, Huygens issued from 
expectations which varied from set to set rather than from constant 
probabilities and was compelled to compose and solve difference equations. 
See also Shoesmith (1986). 
    2.2.3. Newton. Newton left interesting ideas and findings pertaining to 
probability, but more important were his philosophical views (K. Pearson 
1926): 
 
    Newton’s idea of an omnipresent activating deity, who maintains mean 
statistical values, formed the foundation of statistical development through 
Derham, Süssmilch, Niewentyt, Price to Quetelet and Florence Nightingale 
[…]. De Moivre expanded the Newtonian theology and directed statistics 
into the new channel down which it flowed for nearly a century. The cause 
which led De Moivre to his Approximatio [1733] or Bayes to his theorem 
were more theological and sociological than purely mathematical, and until 
one recognizes that the post-Newtonian English mathematicians were more 
influenced by Newton’s theology than by his mathematics, the history of 
science in the 18th century – in particular that of the scientists who were 
members of the Royal Society – must remain obscure. 
 
    On De Moivre see Chapt. 4 and Bayes theorem is a misnomer (§ 5.1). 
Then, Newton never mentioned mean values. In 1971, answering my 
question on this point, the Editor of his book (1978), E. S. Pearson, stated: 
 
    From reading [the manuscript of that book] I think I understand what K. 
P. meant. […] He had stepped ahead of where Newton had to go, by stating 
that the laws which give evidence of Design, appear in the stability of the 
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mean values of observations. i. e., [he] supposed Newton was perhaps 
unconsciously thinking what De Moivre put into words.  
 
    Indeed, I have since found that K. Pearson (1978, pp. 161 and 653) had 
attributed to De Moivre (1733/1756, pp. 251 – 252) the Divine stability of 
statistical ratios, that is, the original determination of original design and 
referred to Laplace who (1814/1995, p. 37) had formulated a related idea: 
 
    In an infinitely continued sequence of events, the action of regular and 
constant causes ought, in the long run, to outweigh that of irregular causes. 
 
However, cf. also my § 7.1-3, Laplace never mentioned Divine design. And 
here is Newton’s most interesting pronouncement (1704/1782, Query 31): 
 
    Blind fate could never make all the planets move one and the same way in 
orbs concentrick, some inconsiderable irregularities excepted, which may 
have risen from the mutual actions of comets and planets upon one another, 
and which will be apt to increase, till this system wants a reformation. Such 
a wonderful uniformity in the planetary system must be allowed the effect of 
choice. And so must the uniformity in the bodies of animals. 
 
    Newton’s idea of a divine reformation of the system of the world was 
later abandoned, but his recognition of the existence and role of its random 
disturbances is very important. At the same time Newton (1958, pp. 316 – 
318) denied randomness and explained it by ignorance of causes. The future 
theologian Bentley, in 1693, expressed his thoughts after discussing them 
with Newton. The texts of two of his sermons, of Newton’s letters to him, 
and an article on Newton and Bentley are in Newton (1958).  
    Newton (MS 1664 – 1666/1967, pp. 58 – 61) generalized the notion of 
expectation and was the first to mention geometric probability: If the 
Proportion of the chances […] bee irrational, the interest may bee found 
after ye same manner. Newton then considered a throw of an irregular die. 
He remarked that [nevertheless] it may bee found how much one cast is 
more easily gotten than another. He likely bore in mind statistical 
probabilities. Newton (1728) also applied simple stochastic reasoning for 
correcting the chronology of ancient kingdoms:  
 
    The Greek Chronologers […] have made the kings of their several Cities 
[…] to reign about 35 or 40 years a-piece, one with another; which is a 
length so much beyond the course of nature, as is not to be credited. For by 
the ordinary course of nature Kings Reign, one with another, about 18 or 20 
years a-piece; and if in some instances they Reign, one with another, five or 
six years longer, in others they reign as much shorter: 18 or 20 years is a 
medium. 
 
    Newton derived his own estimate from other chronological data and his 
rejection of the twice longer period was reasonable. Nevertheless, a 
formalized reconstruction of his decision is difficult: within one and the 
same dynasty the period of reign of a given king directly depends on that of 
his predecessor. Furthermore, it is impossible to determine the probability of 
a large deviation of the value of a random variable from its expectation 
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without knowing the appropriate variance (which Newton estimated only 
indirectly and in a generalized way). K. Pearson (1928) described Newton’s 
later indication of the sources of his estimate and dwelt on Voltaire’s 
adjoining remarks, and, especially, on the relevant work of Condorcet. 
    And here is the opinion of Whiteside (private communication, 1972) 
about his thoughts concerning errors of observation: 
 
    Newton in fact (but not in explicit statement) had a precise understanding 
of the difference between random and structurally ‘inbuilt’ errors. He was 
certainly, himself, absorbed by the second type of ‘inbuilt’ error, and many 
theoretical models of differing types of physical, optical and astronomical 
phenomena were all consciously contrived so that these structural errors 
should be minimized. At the same time, he did, in his astronomical practice, 
also make suitable adjustment for ‘random’ errors in observation … 
 
    Most important were the optical experiments; the main sources are 
Newton’s Lectures (1669 – 1671) and his Papers and Letters (1958). 
    2.2.4. Arbuthnot. He (1712) assembled the existing data on baptisms in 
London during 1629 – 1710. He noted that during those 82 years more boys 
(m) were invariably born than girls (f) and declared that that fact was not the 
Effect of Chance but Divine Providence, working for a good End. Boys and 
men, as he added, were subject to greater dangers and their mortality was 
higher than that of the females. Even disregarding both that unsubstantiated 
statement and such [hardly exhibited] regularities as the constant Proportion 
m:f and fix’d limits of the difference (m – f), the Value of Expectation of a 
random occurrence of the observed inequality was less than (1/2)82, he 
stated.  
    Arbuthnot could have concluded that the births of both sexes obeyed the 
binomial distribution, which, rather than the inequality m > f, manifested 
Divine design; and could have attempted to estimate its parameter. Then, 
baptisms were not identical with births. Graunt (1662, end of Chapt. 3) 
stated that during 1650 – 1660 less than half of the general [Christian] 
population had believed that baptism was necessary; Christians perhaps 
somehow differed from other people, London was perhaps an exception.  
    One more point. Denote a year by m or f if more boys or girls were 
respectively born. Any combination of the m’s and f’s in a given order has 
the same probability (2−82 in Arbuthnot’s case). However, if the order is of 
no consequence, then those probabilities will greatly differ. Indeed, in a 
throw of two dice the outcome “1 and 2” in any order is twice as probable as 
“1 and 1”. It is this second case which Arbuthnot likely had in mind.  
    I note Laplace’s inference (1776/1891, p. 152; 1814/1995, p. 9) in a 
similar case: a sensible word would have hardly be composed by chance 
from separate letters. Poisson (1837a, p. 114) provided an equivalent 
example and made a similar conclusion. However, a definition of a random 
sequence (and especially of a finite sequence) is still a subject of subtle 
investigations.  
     Freudenthal (1961, p. xi) called Arbuthnot the author of the first 
publication on mathematical statistics, see also Shoesmith (1987) and H. A. 
David & Edwards (2001, pp. 9 – 11). Arbuthnot was also the first to publish 
a trick equivalent to the application of a generating function of the binomial 
distribution although only for its particular case. Jakob Bernoulli (§ 3.1.2) 
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actually applied a generating function before Arbuthnot did, but his book 
only appeared in 1713. 
    Bellhouse (1989) described Arbuthnot’s manuscript written in 1694. 
There, the author examined the game of dice, attempted to study chronology 
and to a certain extent anticipated his published note of 1712.  
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3. Jakob Bernoulli and the Law of Large Numbers 

    I consider Bernoulli’s main work, the Ars conjectandi (AC), which blazed 
a new trail by proving that statistical probability can be considered on a par 
with the theoretical probability. Also described is the work of his 
contemporaries. 
 
    Key words: law of large numbers, statistical probability, moral certainty, 
stochastic arguments 
  
    3.1. Bernoulli’s Works 
    3.1.1. The Diary (Meditationes). There, Bernoulli studied games of 
chance and the stochastic side of civil law. He (1975, p. 47) noted that the 
probability of a visitation of a plague in a given year was equal to the ratio 
of the number of these visitations during a long period of time to the number 
of years in that period. He thus applied the definition of probability of an 
event (of statistical probability!) rather than making use of chances. On p. 
46, in a marginal note, he wrote out the imprint of a review of Graunt’s book 
(§ 2.1.4) which Bernoulli possibly had not seen. But the most important in 
the Meditationes is a (fragmentary) proof of the LLN which means that 
Bernoulli proved it not later than in 1690.  
    3.1.2. The Art of Conjecturing (1713). Its Contents. Niklaus Bernoulli 
compiled a Preface (J. Bernoulli 1975, p. 108) where, for the first time ever, 
the term calculus of probability (in Latin) had appeared. The book itself 
contained four parts. Interesting problems are solved in parts 1 and 3 of the 
AC (the study of random sums for the uniform and the binomial 
distributions, a similar investigation of the sum of a random number of 
terms for a particular discrete distribution, a derivation of the distribution of 
the first order statistic for the discrete uniform distribution and the 
calculation of probabilities appearing in sampling without replacement). The 
author’s analytical methods included combinatorial analysis and calculation 
of expectations of winning in each set of finite and infinite games and their 
subsequent summing. 
    Part 1 is a reprint of Huygens’ tract (§ 2.2.2). Bernoulli also compiled a 
table which enabled him to calculate the coefficients of xm  in the 
development of (x + x2 + … + x6)n  for small values of n. That polynomial to 
the power of n was the generating function of the binomial (p + qx) with p = 
q. 
    Part 2 dealt with combinatorial analysis and introduced the Bernoulli 
numbers. 
    Part 4 contained the LLN. There also is an informal classical definition of 
probability (which Bernoulli had not applied when formulating that law), a 
reasoning on the aims of the art of conjecturing (determination of 
probabilities for choosing the best solutions of problems, apparently in civil 
life) and elements of stochastic logic.  
    Bernoulli likely considered the art of conjecturing as a mathematical 
discipline based on probability as a measure of certainty and on expectation 
and including (the not yet formally introduced) addition and multiplication 
theorems and crowned by the LLN.  
    In a letter of 3 Oct. 1703 Bernoulli (Kohli 1975b, p. 509) informed 
Leibniz about the progress in his work. He had been compiling it for many 



 28 

years with repeated interruptions caused by his innate laziness and 
worsening of health; the book still lacked its most important part, the 
application of the art of conjecturing to civil life; nevertheless, he, J. B., had 
already shown his brother [Johann] the solution of a difficult problem, 
special in its own way [§ 3.2.3], that justified the applications of the art of 
conjecturing.  
    Leibniz, in his own letters to Bernoulli, never agreed that observations 
could secure moral certainty but his arguments were hardly convincing. 
Thus, he in essence repeated Arnauld & Nicole (1662/1992, pp. 304 and 
317) in that the finite (the mind; therefore, observations) can not always 
grasp the infinite (God, but also, as Leibniz stated, any phenomenon 
depending on innumerable circumstances).  
    He understood randomness as something whose complete proof exceeds 
any human mind (Leibniz 1686/1960, p. 288) which does not contradict a 
modern approach to randomness founded on complexity and he was also 
right in the sense that statistical determinations can not definitively 
corroborate a hypothesis. Cf. Cicero (1991, Buch 2, § 17, p. 149): Nothing is 
more opposed to calculation and regularity than chance. Leibniz had also 
maintained that the allowance for the circumstances was more important 
than subtle calculations. 
    Gauss (§§ 9.1.3 and 9.1.5) stated that the knowledge of the essence of the 
matter was extremely important. Later Mill (1843/1886, p. 353) contrasted 
the consideration of circumstances with elaborate application of probability, 
but why contrasting rather than supplementing? Anyway, more than a half 
of Chapter 4 of Part 4 of the AC in essence coincided with passages from 
Bernoulli’s letters to Leibniz. 
    In 1714, in a letter to one of his correspondents, Leibniz (Kohli 1975b, p. 
512) softened his doubts about the application of statistical probabilities. For 
some reason he added that the late Jakob Bernoulli had cultivated the theory 
of probability in accordance with his, Leibniz’ exhortations. 
 
    3.2. The Art of Conjecturing, Part 4 
    3.2.1. Stochastic Assumptions and Arguments. Bernoulli used the 
addition and the multiplication theorems for combining various arguments. 
Unusual was the non-additivity of the probabilities. Thus, something 
possesses 2/3 of certainty but its opposite has 3/4 of certainty; both 
possibilities are probable and their probabilities are as 8:9. See Shafer 
(1978) and Halperin (1988). Shafer also studied non-additive probabilities in 
Lambert’s Architectonic (1771). Koopman (1940) resumed the study of such 
probabilities whose sources can be found in the medieval doctrine of 
probabilism that considered the opinion of each theologian as probable. 
Franklin (2001, p. 83) dated the origin of probabilism as 1611 or (p. 74) 
even as 1577. Similar pronouncements on probabilities of opinion go back 
to John of Salisbury (the 12th century) and even to Cicero (Garber & Zabell 
1979, p. 46).  
    Bernoulli (1713/1999, p. 233) wrote ars conjectandi sive stochastice, and 
Bortkiewicz (1917, p. x) put that Greek word into circulation. Prevost & 
Lhuillier (1799, p. 3) anticipated him, but apparently their attempt was 
forgotten. The Oxford English Dictionary included it with a reference to a 
source published in 1662.  
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    3.2.2. Statistical Probability and Moral Certainty. Bernoulli explained 
that the theoretical number of cases was often unknown, but what was 
impossible to obtain beforehand, might be determined by observations. In 
his Diary, he indirectly cited Graunt and reasoned how much more probable 
was it that a youth will outlive an old man than vice versa. Bernoulli 
maintained that moral certainty ought to be admitted on a par with absolute 
certainty. His theorem will show, he declared, that statistical probability was 
a morally certain (a consistent) estimator of the theoretical probability. He 
also maintained that in ordinary life people ought to choose what is more 
probable. This idea goes back to Cicero (1997, Book 1, § 12, p. 7): Many 
things are probable and […] though these are not demonstrably true, they 
guide the life of the wise man […]. A similar statement was formulated in 
China in the 4th century BC (Burov et al 1972, p. 203):  
 
    Who even before battle gains victory by military estimation, has many 
chances. […] Who has many chances gains victory, who has few chances 
does not gain victory. All the less he who has no chances at all. 
 
    3.2.3. The Law of Large Numbers. Bernoulli proved a proposition that, 
beginning with Poisson, is called the LLN. Let r and s be natural numbers, t 
= r + s, n, a large natural number, ν = nt, the number of independent trials in 
each of which the studied event occurs with theoretical probability r/t, µ – 
the number of the occurrences of the event (of the successes). Then 
Bernoulli proved without applying mathematical analysis that 
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and estimated the value of ν necessary for achieving a given c > 0. In a 
weaker form Bernoulli’s finding meant that 
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where, as also in (1), µ/ν was the statistical probability. 
    Markov (Treatise, 1924, pp. 44 – 52) improved Bernoulli’s estimate 
mainly by specifying his intermediate inequalities and K. Pearson (1925), by 
applying the Stirling formula, achieved a practically complete coincidence 
of the Bernoulli result with the estimate that makes use of the normal 
distribution as the limiting case of the binomial law. Pearson (p. 202) 
considered Bernoulli’s estimate of the necessary number of trials in formula 
(1) crude and leading to the ruin of those who would have applied it. He 
also inadmissibly compared Bernoulli’s law with the wrong Ptolemaic 
system of the world (and De Moivre with Kepler and Newton): 
 
    Bernoulli saw the importance of a certain problem; so did Ptolemy, but it 
would be rather absurd to call Kepler’s or Newton’s solution of planetary 
motion by Ptolemy’s name! 
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    The very fact described by formulas (1) and (2) was, however, extremely 
important for the development of probability and statistics; and, anyway, 
should we deny the importance of existence theorems? Bernoulli’s result 
proved that, given a large number of observations, statistical probability 
provided moral certainty and was therefore not worse than the theoretical 
probability. His main aim was to discover whether the limit (2) existed and 
whether it was indeed unity rather than a lesser positive number. The latter 
would have meant that induction (from the ν trials) was inferior to 
deduction.  
    Stochastic reasoning was now justified beyond the province of games of 
chance, at least for the Bernoulli trials. Strangely enough, statisticians for a 
long time had not recognized this fact. Haushofer (1872, pp. 107 – 108) 
declared that statistics, since it was based on induction, had no intrinsic 
connections with mathematics based on deduction. And Maciejewski (1911, 
p. 96) introduced a statistical law of large numbers instead of the Bernoulli 
proposition that allegedly impeded the development of statistics. His own 
law qualitatively asserted that statistical indicators exhibited ever lesser 
fluctuations as the number of observations increased and his opinion likely 
represented the prevailing attitude of statisticians. Bortkiewicz (1917, pp. 56 
– 57) thought that the LLN ought to denote a quite general fact, 
unconnected with any stochastic pattern, of a degree of stability of statistical 
indicators under constant or slightly changing conditions and a large number 
of trials. Even Romanovsky (1912, p. 22; 1924, pt 1, p. 15; 1961, p. 127) 
kept to a similar view.  
    That elementary understanding of the LLN has its prehistory, see the 
statements of De Witt (§ 2.1.3) and Halley (§ 2.1.4). Again, it was thought 
that the number of successes in n Bernoulli trials with probability p was 
approximately equal to np. Cardano applied this formula in calculations 
connected with games of dice (Ore 1953/1963, pp. 152 – 154 and 196).  
    In astronomy, the arithmetic mean became the universal estimator of the 
constant sought (§ 1.7). Recall also (§ 2.1.3) the practice of buying annuities 
upon several young lives. Boscovich (1758, § 481) had somewhat vaguely 
maintained that the sum (not the mean!) of random magnitudes decreased 
with an increase in the number of terms (Gower 1993, p. 272). My 
correction also applies to the other statements above to which I am now 
adding Kepler (Sheynin 1973c, p. 120). He remarked that the total weight of 
a large number of metal money of the same coinage did not depend on the 
inaccuracy in the weight of the separate coins. Even Helmert (1905/1993, p. 
200) had to refute that mistake. 
    3.2.4. Randomness and Necessity. Apparently not wishing to encroach 
upon theology, Bernoulli (beginning of Chapter 1) refused to discuss the 
notion of randomness and subjectively described the contingent but at the 
beginning of Chapter 4 explained randomness by the action of numerous 
complicated causes, cf. § 11.3. The last lines of his book stated that some 
kind of necessity was present even in random things. He referred to Plato 
who had indeed taught that after a countless number of centuries everything 
will return to its initial state at the moment of creation. In accordance with 
that archaic notion of the Great Year, Bernoulli thus unjustifiably 
generalized the boundaries of his law. 
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    It is noteworthy that Kepler (1596) believed that the end of the world was 
unlikely but his reasoning is difficult to understand. In 1621, in the second 
edition of that book, he substantiated his conclusion by stating, in essence 
like Oresme (1966, p. 247) did before him, that two randomly chosen 
numbers were probably incommensurable. Without mentioning the end of 
the world, Levi ben Gerson (1999, p. 166) stated that the heavenly bodies 
will be unable to return to their initial position if their velocities were 
incommensurable. However, I do not see any connection between 
astronomical distances or velocities and that notion. 
 
    3.3. Bernoulli’s Contemporaries 
    3.3.1. Arnauld. Arnauld & Nicole anonymously put out the Art of 
Reasoning (1662). Arnauld, who was the main author, had applied the term 
probabilité, although without a formal definition, and expressed ideas later 
repeated by Bernoulli (who cited him). 
    3.3.2. Niklaus Bernoulli. He published a dissertation on the application 
of the art of conjecturing to jurisprudence (1709/1975). It contained the 
calculation of the mean duration of life and recommended to use it for 
ascertaining the value of annuities and estimating the probability of death of 
absentees about whom nothing is known; methodical calculations of 
expected losses in marine insurance; calculation of expected losses in the 
celebrated Genoese lottery and of the probability of truth of testimonies; the 
determination of the life expectancy of the last survivor of a group of men 
(pp. 296 – 297), see Todhunter(1865, pp. 195 – 196). Assuming a 
continuous uniform law of mortality (the first continuous law in probability 
theory), he calculated the expectation of the appropriate order statistic and 
was the first to use, in a published work, both this distribution and an order 
statistic. 
    Bernoulli’s work undoubtedly fostered the spread of stochastic notions in 
society (cf. § 2.1.2), but he borrowed separate passages from the Ars and 
even from the Meditationes (Kohli 1975c, p. 541), never intended for 
publication. His general references to Jakob do not excuse his plagiarism. 
    3.3.3. Montmort. He published an anonymous book (1708), important in 
itself and because of its influence upon De Moivre (Chapter 4) as well as on 
Niklaus Bernoulli, the correspondence with whom Montmort included in 
1713 in the second edition of his work. In the Introduction he noted that, 
being unable to formulate appropriate hypotheses, he was not studying the 
applications of [stochastic] methods to civil life. 
    Henny (1975) and Hald (1990) examined Montmort’s findings. The latter 
listed Montmort’s main methods: combinatorial analysis, recurrent formulas 
and infinite series; and the method (the formula) of inclusion and exclusion  
 
    P(ΣAi) = ΣP(Ai) – ΣP(Ai·Aj) + ΣP(Ai· Aj· Ak ) – …                                             
(3) 
 
where A1, A2, …, An were events and i < j < k < …This formula is a 
stochastic corollary of a proposition about arbitrarily arranged sets. Here are 
some problems solved by Montmort: 
    1) The problem of points. Montmort arrived at the negative binomial 
distribution and returned to this problem in his correspondence with Niklaus 
Bernoulli. 
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    2) A study of throwing s points with n dice, each having f faces. 
Montmort applied the combinatorial method and formula (3). 
    3) A study of arrangements and, again, of a game of dice. Montmort 
arrived at the multivariate hypergeometric, and the multinomial 
distributions.  
    4) A study of occupancies. Tickets numbered 1, 2, …, n, are extracted 
from an urn one by one without replacement. Determine the probability that 
at least one ticket with number k, 1 ≤ k ≤ n, will occur at the k-th extraction. 
Montmort derived the appropriate formulas 
 
    Pn = 1 – 1/2! + 1/3! – … + (–1)n – 1/n!, limPn  = 1 – 1/e, n → ∞. 
 
Niklaus Bernoulli and De Moivre returned to this problem, see H. A. David 
& Edwards (2001, pp. 19 – 29). 
    3.3.4. Montmort and Niklaus Bernoulli: Their Correspondence. I 
outline their correspondence of 1710 – 1713 (Montmort 1708/1713, pp. 283 
– 414). 
    1) The strategic game Her (Hald 1990, pp. 314 – 322) depending both on 
chance and decisions made. The modern theory of games studies it by 
means of the minimax principle. For his part, Bernoulli indicated that the 
gamblers ought to keep to [mixed strategies]. 
    2) The gambler’s ruin. Montmort wrote out the results of his calculations 
for some definite initial conditions whereas Bernoulli indicated, without 
derivation, the appropriate formula (an infinite series). Hald believes that he 
obtained it by means of formula (3). On this point and on the appropriate 
findings of Montmort and De Moivre see also Thatcher (1957), Takácz 
(1969) and Kohli (1975a). 
    3) The sex ratio at birth. I only dwell on Bernoulli’s indirect derivation of 
the normal distribution. Let the sex ratio be m/f, n, the total yearly number of 
births, and µ and (n – µ), the numbers of male and female births in a year. 
Denote 
 
    n/(m + f) = r, m/(m + f) = p, f/(m + f) = q, p + q = 1, 
 
and let s = 0(√n). Then Bernoulli’s formula (Montmort 1708/1980, pp. 388 – 
394) can be presented as  
 
    P(|µ– rm| ≤ s) ≈ (t – 1)/t,  
    t ≈ [1 + s(m + f)/mfr]s/2 ≈ exp[s2(m + f)2/2mfn], 
    P (|µ – rm| ≤ s) ≈ 1 – exp(s2/2pqn),  
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    It is not an integral theorem since s is restricted (see above) and neither is 

it a local theorem; for one thing, it lacks the factor 2 / π .  A. P. Youshkevich 
(1986) reported that at his request three mathematicians had examined that 
reasoning and concluded that Bernoulli came close to the local theorem but 
they did not mention the missing factor. The very fact that it took three 
mathematicians to deal with that subject is noteworthy. 
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    4) The Petersburg game. In a letter to Montmort, Bernoulli (Ibidem, p. 
402) described his invented game. B throws a die; if a six arrives at once, he 
receives an écu from A, and he obtains 2, 4, 8, … écus if a six only occurs at 
the second, the third, the fourth, … throw. Determine the expectation of B’s 
gain. Gabriel Cramer insignificantly changed the conditions of the game; a 
coin appeared instead of the die, and the occurrence of heads (or tails) has 
been discussed ever since. The expectation of gain became 
 
    Eξ = 1·1/2 + 2·1/4 + 4·1/8 + … = ∞,                                                                     
(4) 
 
although a reasonable man will never pay any considerable sum in exchange 
for it. 
    Additional conditions were being introduced; for example, suggestions 
were made to neglect unlikely gains, i.e., to truncate the series (4); to restrict 
beforehand the possible payoff; and to replace expectation by moral 
expectation (§ 6.1.1). Daniel Bernoulli published his memoir in Petersburg, 
hence the name of the invented game. In addition, Condorcet (1784, p. 714) 
noted that the possibly infinite game provided only one trial and that only 
many such games can lead to an expedient solution. Indeed, Freudenthal 
(1951) proposed to consider a number of games with the role of the 
gamblers in each of them to be decided by lot. Finally, the Petersburg game 
caused Buffon (1777, § 18) to carry out the apparently first statistical 
experiment. He conducted a series of 2048 games; the mean payoff was 4.9 
units, and the longest duration of play (in six cases), nine throws. The game 
introduced a random variable with an infinite expectation. 
    Spieß (1975) dwelt on the early history of the Petersburg game and Dutka 
(1988) described later developments and adduced the results of its 
examination by statistical simulation. However, I especially mention Jorland 
(1987) who provided a vast relevant picture.  
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4. De Moivre and the De Moivre – Laplace Limit Theorem 

 
    De Moivre contributed to insurance of life by introducing the uniform law 
of mortality, discussed the initial concepts of probability theory and solved 
several important stochastic problems. His main achievement was the proof 
of the first version of the central limit theorem.  
 
    Key words: central limit theorem, chance and design, gambler’s ruin 
 
    4.1. The Measurement of Chance (1712)  
    In his first probability-theoretic work, a preliminary version of his later 
contributions, De Moivre (1712/1984) justified the notion of expected 
random gain by common sense rather than defining it formally as has been 
done later, cf. § 2.2.2; introduced the classical definition of probability 
usually attributed to Laplace and the multiplication theorem for chances 
(mentioning independence of the events) and applied the addition theorem, 
again for chances; and, in solving one of his problems (No. 26), applied the 
formula (3.3) of inclusion and exclusion. I describe some of his problems; I 
have mentioned Problem 14 (repeated in De Moivre’s Doctrine of chances) 
in § 2.2.2. 
    1) Problem No. 2. Determine the chances of winning in a series of games 
for two gamblers if the number of remaining games is not larger than n, and 
the odds of winning each game are a/b. De Moivre notes that the chances of 
winning are as the sums of the respective terms of the development of (a 
+b)n.  
    2) Problem No. 5. The occurrence of an event has a chances out of (a + 
b). Calculate the number of trials (x) after which it will happen, or not 
happen, with equal probabilities. After determining x from the equation 
 
    (a + b)x – bx = bx, 
  
De Moivre assumed that a/b = 1/q, q → ∞, and obtained 
 
    1 + x/q + x2/2q2 + x3/6q3 + … = 2, x = qln2,                                                          
(1) 
 
which resembles the Poisson distribution.  
    3) A lemma. Determine the number of chances for the occurrence of k 
points in a throw of f dice each having n faces. Later De Moivre (1730, pp. 
191 – 197; 1718, Problem No. 3, Lemma) solved this problem by means of a 
generating function of a sequence of possible outcomes of a throw of one 
die. 
    4) Problem No. 9 (cf. Pascal’s problem from § 2.2.2). Gamblers A and B 
have p and q counters, and their chances of winning each game are a and b, 
respectively. Determine the odds of their ruining. By a clever trick that can 
be connected with the notion of martingale (Seneta 1983, pp. 78 – 79) De 
Moivre obtained the sought ratio: 
 
    PA/PB = aq (ap – bp) ÷ bp(aq – bq).                                                                         
(2) 



 35 

 
He left aside the elementary case of a = b.  
    5) Problem No. 25. Ruining of a gambler during a finite number of games 
played against a person with an infinite capital. De Moivre described the 
solution in a generalized way; its reconstruction is due to Takacz (1967, pp. 
2 – 3) and Hald (1990, pp. 358 – 360). 
 
    4.2. Life Insurance 
    De Moivre first examined life insurance in the beginning of the 1720s. 
Issuing from Halley’s table (§ 2.1.4), he (1725/1756, pp. 262 – 263) 
assumed a continuous uniform law of mortality for all ages beginning with 
12 years and a maximal duration of life equal to 86 years and he solved a 
number of pertinent problems by applying the integral calculus.  
    Here is an example (p. 324). Determine the probability of one person 
outliving another one if the complements of their lives are n and p, n > p. 
Let the random durations of the lives of A and B be ξ and η. Then, since at 
some moment x the complement of A’s life is (n – x), 
 

    P(ξ ≥ x, η = x) = 
( )

,
n z dz

pn

−
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Probabilities of the type of P(ξ > x) easily lead to integral distribution 
functions. 
    Hald (1990, pp. 515 – 546) described in detail the work of De Moivre and 
of his main rival, Simpson (1775), in life insurance. Simpson improved on, 
and in a few cases corrected De Moivre. Hald (p. 546) concluded that 
Simpson’s relevant results represented an essential step forward.  
 
    4.3. The Doctrine of Chances (1718, 1738, 1756)  
    This work published in three editions, in 1718, 1738, and, posthumously, 
in 1756, was De Moivre’s main achievement. He developed it from his 
previous memoir (§ 4.1) and intended it for gamblers so that many results 
were provided there without proof. Then, following the post-Newtonian 
tradition, De Moivre did not use the symbol of integration; Todhunter 
inadequately described De Moivre’s main finding (§ 4.4) and Laplace 
(1814/1995, p. 119) did not sufficiently explain it. All this caused his book, 
whose translation into French contemplated both Lagrange and Laplace, see 
Lagrange (1776b), to remain barely known for many decades. I refer to its 
last edition.  
    In his Introduction, De Moivre listed his main methods: combinatorial 
analysis, recurrent sequences (whose theory he himself developed) and 
infinite series; in particular, he applied appropriately truncated divergent 
series. Also in the Introduction, on pp. 1 – 2, he once more provided the 
classical definition of probability but kept to the previous reasoning on 
expectation (§ 4.1) and even introduced the value of expectation (p. 3), 
formulated the multiplication theorem for probabilities (not for chances, as 
previously) and, in this connection, once more mentioned independence. 
Two events, A and B, were independent, if, as he stated, 
 
    P(B) = P(B/A), P(A) = P(A/B)  
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(modern notation here and below). For dependent events (p. 6), three in 
number (say), 
 
    P(A·B·C) = P(A) P(B/A)P(C/A·B).                                                                      
(3) 
 
    I list now some of the problems from the Doctrine mentioned by Hald 
(1990, pp. 409 – 413) without repeating those described in § 4.1 and, for the 
time being, leaving aside the normal distribution. 
    1) The Huygens additional Problem No. 4 (§ 2.2.2) including the 
multivariate case. The appearance of the hypergeometric distribution: 
Problems NNo. 20 and 26.  
    2) Runs of successes in n Bernoulli trials including the case of n → ∞: 
Problems NNo. 34 and 74. 
    3) Coincidences. A generalization of Montmort’s findings (§ 3.3.3) by the 
method of inclusion and exclusion: Problems 35 and 36. 
    4) The gambler’s ruin: Problems 58 – 71. 
    5) Duration of game: Problems 58 – 64, 68 – 71. 
    For the general reader the main merit of the Doctrine was the study of 
many widely known games whereas De Moivre himself, in dedicating its 
first edition to Newton (reprinted in 1756 on p. 329), perceived his main 
goal, i. e., the aim of the theory of probability, in working out 
 
    A Method of calculating the Effects of Chance […] and thereby fixing 
certain rules, for estimating how far some sort of Events may rather be 
owing to Design than Chance […] [so as to learn] from your Philosophy 
how to collect, by a just Calculation, the Evidences of exquisite Wisdom and 
Design, which appear in the Phenomena of Nature throughout the Universe. 
 
    4.4. The De Moivre – Laplace Theorem  
    In 1730 De Moivre published his Miscellanea analytica and later 
appended two supplements. He printed the second one (1733) in a small 
number of copies and sent it out to his colleagues. I only call it a supplement 
for the sake of tradition; its extant copies in large libraries are bound to that 
book. In 1738 De Moivre translated it into English and included in the 
second, and then, in an extended form, in the third edition of the Doctrine. 
Its title includes the words binomial (a + b)n so that, although studying the 
symmetric binomial, De Moivre thus thought about the general case. He also 
stated that the transition to the general case was not difficult. On the first 
page of the Latin original De Moivre noted that he had concluded (at least 
its mathematical part) about 12 years earlier. 
    1) In Book 5 of the Misc. anal. De Moivre determined the ratio of the 
middle term of the symmetric binomial to the sum of all of its terms, and in 
the first supplement to that work he derived, independently from, and 
simultaneously with Stirling, the so-called Stirling formula. Only the value 

of the constant, 2π , the latter communicated to him.  
    In the same supplement De Moivre included a table of lg n! for n = 10 
(10) 900 with 14 decimals; reprinted: (1718/1756, p. 333). Eleven or twelve 
decimals were correct; a misprint occurred in the value of lg 380!. 
    2) In the same Book, De Moivre calculated the logarithm of the ratio of 
the middle term of the binomial (1 + 1)n  to the term removed by l from it, 
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but only in the second supplement he calculated the ratio of the sum of the 
terms between the middlemost and the one removed from it by l to the sum 
of all the terms. It was equal to 
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( ...).
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l l
l

n nn
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    He calculated this sum either by numerical integration, or, for l < √n/2, by 
leaving only a few of its first terms. For n → ∞ his main result can be 
written as 
 

    
2µ 1
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b

a
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P a b dz

npq

−
≤ ≤ = −∫                                                         

(4) 
 
Here µ was the number of successes, np = Eµ and npq = varµ. 
    This is the integral De Moivre – Laplace theorem (see § 7.1-3), as 

Markov (1900/1924, p. 53) called it, – a particular case of the CLT, a term 
introduced by Polya (1920). Neither De Moivre, nor Laplace knew about 
uniform convergence with respect to a and b that takes place here.  
    In 1812, Laplace (§ 7.1-3) proved (4) simpler and provided a correction 
term allowing for the finitiness of n. De Morgan (1864) was the first to 
notice the normal distribution in (4). However, he made unbelievably wrong 
statements about the appearance of negative probabilities and those 
exceeding unity. More: in a letter of 1842 he (Sophia De Morgan 1882, p. 

147) declared that tan ∞ = cot ∞ = m 1− . 
    De Moivre (1718/1756, p. 252) mentioned the study of the sex ratio at 
birth (§ 2.2.4) and illustrated it by imagined throws of dice. His reasoning 
(and his general considerations) meant that, for him, the binomial 
distribution was a divine law of nature, stochastic only because of possible 
deviations from it. De Moivre thus recognized the mutual action of necessity 
and randomness, cf. § 1.1.  
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5. Bayes 

 
    Bayes proved the inverse law of large numbers by assuming that an 
unknown constant was a random variable with an unknown law of 
distribution. His result completed the first version of the theory of 
probability. 
 
    Key words: law of large numbers, inverse law of large numbers, first 
version of probability theory 
 
    5.1. The Bayes Formula and Induction  
    I dwell on the posthumous memoir (Bayes 1764 – 1765) complete with 
the commentaries by Price. In its first part Bayes introduced his main 
definitions and proved a few theorems; note that he defined probability 
through expectation. There was no hint of the so-called Bayes theorem 
 

    P(Ai /B) = 
( / ) ( )

( / ) ( )
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∑
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and it were I. W. Lubbok & J. E. Drinkwater-Bethune who first applied that 
term, as noted by David & Edwards (2001, p. 215), and Cournot (1843, § 
88) followed suit. Bayes had in essence introduced induction into 
probability and his approach that assumed the existence of prior 
probabilities or distributions greatly influenced the development of 
mathematical statistics.  
    A modern encyclopaedia (Prokhorov 1999) contains 14 items mentioning 
him, for example, Bayesian estimator, Bayesian approach. There also, on p. 
37, the author of the appropriate entry mistakenly attributes formula (1) to 
Bayes.  
    Bayes studied an imaginary experiment, a ball falling on point r situated 
in a unit square ABCD, to the left or to the right of some straight line MN 
parallel to, and situated between AB and CD. If, after (p + q) trials, the point 
r occurred p times to the right of MN and q times, to the left of it, then 
  

    P(b ≤  r ≤  c) = 
1

0
(1 ) (1 )

c
p q p q

b
u u du v v dv÷− −∫ ∫                                                   

(2) 
 
where bc is a segment within AD. Bayes derived the denominator of (2) 
obtaining the value of the [beta-function] B(p + 1; q + 1) and spared no 
effort in estimating its numerator, a problem that remained difficult until the 
1930s. The right side of (2) is now known to be equal to the difference of 
two values of the incomplete beta-function 
 
    Ic(p + 1, q + 1) – Ib(p + 1, q + 1). 
 
    Thus, given the results of the experiment, and assuming a uniform prior 
distribution of the location of MN and r, which represented ignorance, he 
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determined the appropriate theoretical probability. Nevertheless, it would be 
wrong to apply formula (2) for determining, say, the probability that some 
far digit in the development of π equals 4 (Neyman 1938/1967, p. 337). A 
constant is not a random variable.  
    Bayes himself had not stated that his distribution was uniform, but this 
assumption is necessary (K. Pearson 1978, p. 364). Without providing any 
explanation, Mises (1919, § 9.2) remarked that Bayes had considered the 
general case as well. Following Czuber, Mises proved that the influence of 
non-uniformity weakened with the increase in the number of observations.  
    In his covering letter to the Bayes memoir, Price provided purely 
methodical illustrations; one of them required the probability of the next 
sunrise observed 106 times in succession. Formula (2) indirectly answers his 
question if b = 1/2 and c = 1 are chosen; it also provides the probability of 
the contrary event if b = 0 and c = 1/2. Price (Bayes 1764/1970, pp. 149 and 
150 – 151) also solved the same question for p = 1 and q = 0 and obtained P 
= 3/4 which is doubtful: knowing nothing about the essence of a 
phenomenon we should have got P = 1/2 (cf. Poisson’s reasoning in § 
8.1.4). In this case, formula (2) is wrong. The actual probability of the next 
sunrise is 
 

    P = 
1 1
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and Polyá (1954, p. 135) remarked that each consecutive success (sunrise) 
provided ever less justification for the next one. 
    Cournot (1843, § 93) considered a similar problem: A woman gave birth 
to a boy; determine the probability that her next child will also be a boy. 
Without justification, he stated that perhaps the odds were 2:1 but that it 
was impossible to solve that problem. See the opinions of Laplace (§§ 7.1-1) 
and Chebyshev (§ 12.2-5) about the Bayesian approach. Another point 
concerned the Bayesian treatment of an unknown constant r in formula (2) 
as a random variable, see above. 
    Beginning with the 1930s and perhaps for three decades English and 
American statisticians had been denying Bayes. The first and the main critic 
of the Bayes theorem or formula was Fisher (1922, pp. 311 and 326). It 
seems that he disagreed with the introduction of hardly known prior 
probabilities and/or with the assumption that they were equal to one another, 
cf., however, Laplace’s general statement about rectifying hypotheses (§ 
7.2-1). The inverse probability defined by formula (1) is tantamount to 
conditional probability given that the stipulated condition has indeed been 
fulfilled. 
 
    5.2. The Limit Theorem  
    Bayes had not expressly discussed the case of n = (p + q) → ∞. Price, 
however, remarked that, for a finite n, De Moivre’s results were not precise. 
In another posthumous note published in 1764, Bayes warned 
mathematicians about the danger of applying divergent series. He had not 
named De Moivre, but apparently had in mind the derivation of the De 
Moivre – Laplace theorem (4.4) as well. De Moivre and his contemporaries 
had indeed employed convergent parts of divergent series for approximate 
calculations, and about a century later Poisson (1837a, p. 175) stated that 
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that trick was possible. De Moivre considered the series included in the 
Stirling formula.  
    Timerding, the Editor of the German translation of the Bayes memoir, 
nevertheless went on to consider the limiting case. He issued from Bayes’ 
calculations made for large but finite values of p and q. Applying a clever 
trick, he proved that, as n → ∞, the probability α of the ball falling to the 
right of MN obeyed the proposition  

    limP{
3/2

| α |

/

a

pq n

−
≤ z} = 

1

2π 0

z

∫ exp(–w2/2)dw,                                                 

(3) 
 
where (not indicated by Timerding) a = p/n = Eα, pq/n3/2 = varα. 
    The functions in the left sides of formulas (4.4) and (3) are random 
variables, centred and normed in the same way; Bayes, without knowing the 
notion of variance, apparently understood that (4.4) was not sufficiently 
precise for describing the problem inverse to that studied by De Moivre. 
Anyway, Price (Bayes 1764/1970, p. 135) stated that he knew 
 
of no person who has shewn how to deduce the solution of the converse 
problem […]. What Mr De Moivre has done therefore cannot be thought 
sufficient … 
 
    Jakob Bernoulli maintained that his formulas were also fit for solving the 
inverse problem – but how precisely? De Moivre (1718/1756, p. 251) also 
stated that he had proved the inverse problem as well: 
 
    Conversely, if from numberless observations we find the Ratio of the 
Events to converge to a determinate quantity […], then we conclude that 
this ratio expresses the determinate Law according to which the Event is to 
happen. 
 
    This insufficiently known problem due to Bayes is very important. 
Together with the integral De Moivre – Laplace theorem it completed the 
creation of the first version of the theory of probability and could have 
stimulated Mises (who did not notice that possibility). 
 
    5.3. Additional Remark  
    In 1983, Stigler quoted a curious statement (Hartley 1749, pp. 338 – 339) 
and interpreted it as a testimony against Bayes’ priority. After referring to 
De Moivre, Hartley wrote, in part:  
 
    An ingenious friend has communicated to me a solution of the inverse 
problem of determining the probability of an event given the number of 
times it happened and failed. 
 
    Later Stigler (1986, pp. 98, 132) recalled Hartley and his own earlier 
paper of 1983, but did not definitively repeat his previous inference. Then, 
however, he (1999, pp. 291 – 301) reprinted that paper and added a tiny 
footnote brushing aside all the criticism published by that time. 
    Stigler inferred that the author of the Bayes’ theorem was Saunderson 
(1682 – 1739), and by applying formula (1), he even found that his 
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conclusion was three times more probable than the former opinion. 
However, he assumed that the prior probabilities of the authorship of Bayes 
and Saunderson were the same. This means that the extra-mathematical 
arguments (for example, the evidence of Price, a close friend of Bayes) were 
not considered at all. In addition, not only a honest personality as 
Saunderson, but almost any pretender will be able to claim equal prior rights 
with an established author (or a politician) of the past. For my part, I think 
that it was Bayes himself who communicated to Hartley the solution of the 
inverse problem. 
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6. Other Investigations before Laplace 

    I consider the work of several scientists (Daniel Bernoulli in the first 
place), geometric statistics and applications of statistics. Together with De 
Moivre, Bernoulli was the main predecessor of Laplace. 
 
    Key words: the Buffon needle, the Ehrenfests’ model, moral expectation, 
inoculation of smallpox  

 

    6.1. Stochastic Investigations 
    6.1.1. Daniel Bernoulli. He published a number of memoirs pertaining to 
probability and statistics, and, before that, he (1735) provided a simple 
stochastic reasoning on the structure of the Solar system. I consider some of 
Bernoulli’s memoirs and postpone the study of his other work until §§ 6.2.3 
and 6.3.1. 
    In a letter of 1742 he left a curious but unclear statement (Fuss 
1843/1968, t. 2, p. 496):  
 
    I believe that mathematics can also be rightfully applied in politics. […] 
An entirely new science will emerge provided that as many observations are 
made in politics as in physics. 
 
Mathematics here likely meant probability theory to which I am turning 
now. 
    1) Moral expectation. While attempting to explain the paradoxical nature 
of the Petersburg game (§ 3.3.4), Bernoulli (1738) suggested that the gain y 
of a gambler was determined by his winnings x in accord with the 
differential equation (the first such equation in probability) 
 
    dy = cdx/x, c > 0, so that y = f(x) = cln(x/a) 
 
where a was the gambler’s initial capital. The logarithmic function also 
appears in the celebrated Weber – Fechner psychophysical law and is 
applied in the theory of information.  
    Bernoulli also proposed that the expected winnings Σpixi/Σpi where pi 

were the appropriate probabilities be replaced by their moral expectation Σpi 

f(xi)/Σpi. He indicated but had not proved (see § 7.1-9) that even a just game 
with a zero expected loss for each participant became disadvantageous 
because the moral expectation of winnings, again for each, was negative, 
and that the paradoxical infinite expected gain in the Petersburg game (3.4) 
can be replaced by a finite moral expectation. Applying his innovation to a 
study of marine shipping of freight, he maintained (again, without proof, see 
same subsection) that the freight should be evenly distributed among several 
vessels. 
    Bernoulli appended the text of a letter of 1732 from Gabriel Cramer to 
Nikolaus Bernoulli which contained his (not Daniel’s) term moral 
expectation. Cramer also indirectly suggested to select 
 
    f(x) = min (x; 224) or f(x) = √x. 
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    Moral expectation had become popular and Laplace (1812/1886, p. 189) 
therefore proposed a new term for the previous usual expectation calling it 
mathematical; his expression regrettably persists at least in the French and 
Russian literature. At the end of the 19th century, issuing from Bernoulli’s 
idea, economists began to develop the theory of marginal utility thus 
refuting Bertrand’s opinion (1888a, p. 66) that moral expectation was 
useless: 
 
    The theory of moral expectation became classical, and never was a word 
applied more exactly. It was studied and taught; it was developed in books 
really celebrated. With that, the success came to a stop; no application was 
made, or could be made, of it. 
 
    2) A limit theorem. While studying the same problem concerning the sex 
ratio at birth (§§ 2.2.4, 3.3.4, 4.4), Bernoulli (1770 – 1771) first assumed 
that male and female births were equally probable. It followed that the 
probability that the former constituted a half of 2N births will be 
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    He calculated this fraction not by the Wallis formula but by means of 
differential equations. After deriving q(N – 1) and q(N + 1) and the two 
appropriate values of ∆q, he arrived at 
 
    dq/dN = – q/(2N + 2), dq/dN = – q/(2N – 1) 
 
and, in the mean, dq/dN = – q/(2N + 1/2). Assuming that the solution of this 
equation passed through point N = 12 and q(12) as defined above, he 
obtained 
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Application of differential equations was Bernoulli’s usual method in 
probability, also see item 1. 
    Bernoulli also determined the probability of the birth of approximately m 
boys (see below): 
 
    P(m = N ± µ) = qexp(– µ2/N) with µ of the order of √N.                                       
(1) 
 
    In the second part of his memoir Bernoulli assumed that the probabilities 
of the birth of both sexes were in the ratio of a:b. Equating the probabilities 
of m and (m + 1) boys being born, again being given 2N births, he thus 
obtained the [expected] number of male births 
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which was of course evident. More interesting was Bernoulli’s subsequent 
reasoning for determining the probability of an arbitrary m (for µ of the 
order of √N): 
 

    P(m = M + µ + 1) – P(m = M + µ) ≡ dπ = π – (a/b) π
2 µ
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− −

+ +
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    The subsequent transformations included the expansion of ln[(M + 1 + 
µ)/(M + 1)] into a power series. Bernoulli’s answer was 
 

    P(m = M ±  µ) = π = P(m = M) exp [–
2( )µ
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hence (1). Note that Bernoulli had not applied the local De Moivre (– 

Laplace) theorem. 
    Issuing from some statistical data, he compared two possible pertinent 
ratios a/b but had not made a final choice in favour of either of them. He 
also determined such a value of µ that the sum of probabilities (1), 
beginning from µ = 0, equalled one half. Applying summation rather than 
integration, he had not therefore arrived at an integral limit theorem and 
(also see above) he did not refer to, and apparently had not known about De 
Moivre’s findings. This shows, once again (cf. § 4.4), that they had for a 
long time been forgotten. 
    3) Urn problems. I consider two of these. An urn contains n pairs of white 
and black stripes. Determine the number (here and below, actually, the 
expected number) of paired stripes left after (2n – r) extractions without 
replacement. By the combinatorial method Bernoulli (1768a) obtained 
 
    x = r(r – 1)/(4n – 2); and x = r2/4n if n = ∞. 
 
    He derived the same result otherwise: when r decreases by dr the 
corresponding dx is either zero [(r – 2x) cases] or dr (2x cases) so that 
 
    dx = [(r – 2x)·0 + 2x·dr]/r, x = r2/4n since r = 2n if x = n. 
 
    Bernoulli then considered unequal probabilities of extracting the stripes of 
different colours and (1768b) applied his findings to study the duration of 
marriages, a subject which was directly linked with insurance of joint lives. 
    Suppose now that each of two urns contains an equal number n of balls, 
white and black, respectively. Determine the number of white balls in the 
first urn after r cyclic interchanges of one ball. Bernoulli (1770) solved this 
problem by the same two methods. Thus, the differential approach led him 
to  
 
    dx = – xdr/n + [(n – x)/n]dr so that x ≈ (1/2)n [1 + e– 2r/n]. 
 
    Bernoulli then combinatorially considered the case of three urns with 
balls of three different colours. He noted that the number of white balls in 
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the first urn was equal to the sum of the first, the fourth, the seventh, … 
terms of the development of [(n – 1) + 1]r divided by nr–1. For the other urns 
he calculated, respectively, the sums of the second, the fifth, the eighth, …, 
and the third, the sixth, the ninth, … terms. For the first urn he obtained 
 

    A =
1

1rn −
[(n – 1)r  + 3

rC (n – 1)r–3 + 6Cr (n – 1)r–6 + ...] ≈ ne– r/n S.                       

(2)  
 
    The expression designated by S obeyed the differential equation 
 
    Sdr3/n3 = d3S 
 
and was therefore equal to 
 
    S = aer/n + be– r/2n sin(r√3/2n) + ce– r/2n cos(r√3/2n)  
 
where, on the strength of the initial conditions, a = 1/3, b = 0, c = 2/3. 
    Bernoulli derived similar expressions for the other urns, calculated the 
number of extractions leading to the maximal number of white balls in the 
first urn, and noted the existence of a limiting state, of an equal number of 
balls of each colour in each urn. This can be easily verified by referring to 
the theorem on the limiting transition matrix in homogeneous Markov 
chains and his problem anticipated the celebrated Ehrenfests’ model (1907), 
the beginning of the history of stochastic processes.  
    Bernoulli obtained formula (2) by issuing also from differential equations 
 
    dx = – xdr/n + [n – (x + y)]dr/n, dy = – ydr/n + xdr/n 
 
where x, y, and [n – (x + y)] were the numbers of white balls in the urns 
after r interchanges. I return to this problem in §7.1-3; here, I note that 
Todhunter (1865, pp. 231 – 234) simplified Bernoulli’s solution and made it 
more elegant. He wrote the differential equations as 
 
    dx = (dr/n)(z – x), dy = (dr/n)(x – y), dz = (dr/n)(y – z)  
 
and noted that the sum S was equal to 
 
    S = (1/3)[eαr/n + eβr/n + eγr/n] 
 

with α, β, γ being the values of 31 . 
    Bernoulli’s x in his first problem, and his S and A from (1) depend on 
discrete time r/n, which is characteristic of stochastic processes with non-
homogeneous time. 
    Lagrange (1777) solved such and other stochastic problems by means of 
partial difference equations. 
    6.1.2. D’Alembert. In the theory of probability, he is mostly known as 
the author of patently wrong statements. Thus, he (1754) maintained that the 
probability of heads appearing twice in succession was equal to 1/3 rather 
than to 1/4. Then, he (1768a) reasoned on the difference between 
mathematical and physical probabilities, stating without justification that, 
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for example, after one of two contrary events had occurred several times in 
succession, the appearance of the other one becomes physically more 
probable. He was thus ridden by prejudices which Montmort had already 
mentioned and which Bertrand later refuted by a few words (§ 2.1.1). At the 
same time, D’Alembert recommended to determine probabilities 
experimentally but had not followed his own advice (which saved him from 
revealing his mistakes). Finally, he (1768b) denied the difference (perfectly 
well understood by Huygens, § 2.2.2) between the mean, and the probable 
durations of life and even considered its existence as an (additional) 
argument against the theory of probability itself. 
    It is opportune to recall Euler’s opinion as formulated in one of his private 
letters of 1763 (Juskevic et al 1959, p. 221): D’Alembert tries most 
shamelessly to defend all his mistakes. Anyway, D’Alembert (1768d, pp. 
309 – 310) did not ascribe the theory of probability to a precise and true 
calculus with respect either to its principles or results. 
    On the other hand, D’Alembert thought that, in a single trial, rare events 
should be considered unrealizable (Todhunter 1865, § 473) and that absolute 
certainty was qualitatively different from the highest probability. It followed 
from the latter statement that, given a large number of observations, an 
unlikely event might happen (cf. the strong law of large numbers), and, 
taken together, his considerations meant that the theory of probability ought 
to be applied cautiously. D’Alembert also reasonably objected to Daniel 
Bernoulli’s work on prevention of smallpox and formulated his own 
pertinent ideas (§ 6.2.3). I ought to add that D’Alembert was indeed 
praiseworthy for his work in other branches of mathematics (and in 
mechanics); note also that Euler had not elaborated his likely correct 
remark.  
    On D’Alembert’s work see also Yamazaki (1971). He published many 
contributions on probability and its applications and it is difficult to organize 
them bibliographically; on this point see Paty (1988). 
    6.1.3. Lambert. He was the first follower of Leibniz in attempting to 
create a doctrine of probability as a component of a general teaching of 
logic. Like D’Alembert, Lambert explained randomness by ignorance of 
causes, but he also stated that all digits in infinite decimal developments of 
irrational numbers were equally probable, which was an heuristic approach 
to the notion of normal numbers, and he formulated a modern-sounding idea 
about the connection of randomness and disorder (Lambert 1771, § 324; 
1772 – 1775). His thoughts were forgotten until Cournot (1851/1975, § 33, 
Note) noted them, and only Chuprov (1909/1959, p. 188) mentioned them 
afterwards.  
    Lambert did not go out of the confines of uniform randomness. The 
philosophical treatises of the 18th century testify to the great difficulties 
experienced in generalizing the notion of randomness, also see § 2.2.4. Even 
in the 19th century, many scientists, imagining that randomness was only 
uniform, refused to recognize the evolution of species. 
    6.1.4. Buffon. He (1777) is mostly remembered for his definitive 
introduction of geometric probabilities (§ 6.1.6). He experimentally studied 
the Petersburg game (§ 3.3.4), proposed the value 1/10,000 as a (non-
existing) universally negligible probability, wrongly solved the problem of 
the probability of the next sunrise (§ 5.1) and compiled tables of mortality 
which became popular.  



 47 

    Negligible, as he thought, was the probability of death of a healthy man 
aged 56 during the next 24 hours, but his figure was apparently too low; K. 
Pearson (1978, p. 193) thought that 1/1,000 would have been more 
appropriate. In addition, negligibility ought to be only chosen for a 
particular event rather than assigned universally. All the above is contained 
in Buffon’s main work (1777). There also (§ 8, Note) he published the text 
of his letter of 1762 to Daniel Bernoulli which contained an embryo of 
Quelelet’s celebrated Average man (see my § 10.5):  
 
    Mortality tables are always concerned with the average man, that is, with 
people in general, feeling themselves quite well or ill, healthy or infirm, 
robust or feeble. 
 
    6.1.5. Condorcet. He attempted to apply the theory of probability to 
jurisprudence in the ideal and tacitly assumed case of independent 
judgements made by jurors or judges. He also estimated the trustworthiness 
of testimonies and critically considered electoral problems.  
His main method was the application of difference equations. Todhunter 
(1865, pp. 351 – 410) described the work of Condorcet in detail and 
concluded (p. 352) that in many cases it was almost impossible to discover 
what he had meant: The obscurity and self contradiction are without any 
parallel […] He, Todhunter, will provide some illustrations, but no amount 
of examples can convey an adequate impression of the extent of the evils. At 
the very least, however, Laplace and Poisson continued to apply probability 
to jurisprudence and certainly profited to some extent from the work of 
Condorcet. Poisson (1837a, p. 2) mentioned his ideas quite favourably.  
    I note however that, while discussing games of chance, Condorcet 
(1785/1847, p. 561) expressed himself rather unfortunately, and stated on 
the next page without any justification that Daniel Bernoulli had not 
removed all the objections to the rule of expectation which was allegedly 
achieved by D’Alembert. In 1772, in a letter to Turgot, he (Henry 
1883/1970, pp. 97 – 98) told his correspondent that he was amusing himself 
by calculating probabilities, had compiled a booklet [which remains 
unknown] on that subject and was keeping to the opinions of D’Alembert. 
On Condorcet see also Yamazaki (1971). 
    6.1.6. Geometric Probabilities. These were decisively introduced in the 
18th century although the definition of the notion itself, and, for that matter, 
only on a heuristic level, occurred in the mid-19th century (§ 10.3). Newton 
(§ 2.2.3) was the first to think about geometric probability; Daniel Bernoulli 
(§ 6.1.1) tacitly applied it in 1735 as did somewhat later De Moivre 
(1725/1756, p. 323), T. Simpson (1757) (§ 6.3.1) and Bayes (§ 5.1). Dealing 
with the continuous uniform distribution, De Moivre assumed, for example, 
that if 0 < ξ < b and 0 < a < b, then P (0 < ξ < a) = [0; a] ÷ [0; b].  
    The Michell problem (1767) became classical: Determine the probability 
that two stars from all of them, uniformly distributed over the celestial 
sphere, were situated not farther than 1° from each other. Choose an 
arbitrary point (A) on a sphere with centre O and imagine a circle 
perpendicular to OA having distance 1° from A. The probability sought is 
the ratio of the surface of the spherical segment thus obtained to that of the 
sphere. 
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    Newcomb and Fisher calculated the expected number of closely situated 
stars (§ 10.8-4) and general issues were also debated by others. Thus, 
Proctor (1874, p. 99) wished to determine what peculiarities of distribution 
might be expected to appear among a number of points spread over a plane 
surface at random. His was a question now belonging to mathematical 
statistics and concerning the deviations of an empirical density curve from 
its theoretical counterpart. Bertrand (1888a, pp. 170 – 171) remarked that 
without studying other features of the sidereal system it was impossible to 
decide whether stars were arranged randomly.  
    Buffon (§ 6.1.4) expressly studied geometric probability; the first report 
on his work likely written by him himself was Anonymous (1735). Here is 
his main problem: A needle of length 2r falls randomly on a set of parallel 
lines. Determine the probability P that it intersects one of them. It is seen 
that 
 
    P = 4r/πa                                                                                                      
(3) 
 
where a > 2r is the distance between adjacent lines. Buffon himself had, 
however, only determined the ratio r/a for P = 1/2. His main aim was 
(Buffon 1777/1954, p. 471) to put geometry in possession of its rights in the 
science of the accidental. Many commentators described and generalized the 
problem above. The first of them was Laplace (TAP, p. 366) who noted that 
formula (3) enabled to determine [with a low precision] the number π.  
 
    6.2. Statistical Investigations 
    6.2.1. Staatswissenschaft (Statecraft, University Statistics). In mid-18th 
century Achenwall created the Göttingen school of Staatswissenschaft 
which described the climate, geographical situation, political structure and 
economics of separate states and estimated their population by issuing from 
data on births and mortality but did not study relations between quantitative 
variables. Achenwall advised state measures fostering the multiplication of 
the population and recommended censuses without which (1763/1779, p. 
187) a probable estimate of the population could be still got, see above. He 
(1752/1756, Intro.) also left an indirect definition of statistics: 
 
    In any case, statistics is not a subject that can be understood at once by 
an empty pate. It belongs to a well digested philosophy, it demands a 
thorough knowledge of European state and natural history taken together 
with a multitude of concepts and principles, and an ability to comprehend 
fairly well very different articles of the constitutions of present-day 
kingdoms [Reiche]. 
 
    Achenwall’s student Schlözer (1804, p. 86) figuratively stated that 
History is statistics flowing, and statistics is history standing still. For those 
keeping to Staatswissenschaft this pithy saying became the definition of 
statistics which was thus not compelled to study causal connections in 
society or discuss possible consequences of innovations. Then, only political 
arithmetic was mostly interested in studying population; finally, wordy 
descriptions rather than numbers lay at the heart of the works of the 
Göttingen school. 
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    Knies (1850, p. 24) quoted unnamed German authors who had believed, 
in 1806 and 1807, that the issues of statistics ought to be the national spirit, 
love of freedom, the talent and the characteristics of the great and ordinary 
people of a given state. This critic has to do with the limitations of 
mathematics in general.  
    Moses (Numbers 13: 17 – 20), who sent out spies to the land of Canaan, 
wished to find out Whether the people who dwell in it are strong or weak, 
whether they are few or many, – wished to know both numbers (roughly) 
and moral strength. And In a multitude of people is the glory of a king, but 
without people a prince is ruined (Proverbs 14:28). 
    Tabular statistics which had originated with Anchersen (1741) could have 
served as an intermediate link between words and numbers, but Achenwall 
(1752, Intro.) had experienced a public attack against the first edition of that 
book (published in 1749 under a previous title) by Anchersen. Tabular 
statisticians continued to be scorned, they were called Tabellenfabrikanten 
and Tabellenknechte (slaves of tables) (Knies 1850, p. 23). 
    By the end of the 19th century the scope of Staatswissenschaft narrowed, 
although it still exists, at least in Germany, in a new form: it includes 
numerical data and studies causes and effects and it is the application of the 
statistical method to various disciplines and a given state, but statistics, in its 
modern sense, owed its origin to political arithmetic.  
    6.2.2. Population Statistics. Süssmilch (1741) adhered to the tradition of 
political arithmetic. He collected data on the movement of population and 
attempted to reveal pertinent divine providence but he treated his materials 
loosely. Thus, when taking the mean of the data pertaining to towns and 
rural districts, he tacitly assumed that their populations were equally 
numerous; in his studies of mortality, he had not attempted to allow for the 
differences in the age structure of the populations of the various regions etc. 
Nevertheless, his works paved the way for Quetelet (§ 10.5); in particular, 
he studied issues which later came under the province of moral statistics 
(e.g., illegitimate births, crime, suicides) and his tables of mortality had been 
in use even in the beginning of the 19th century, see Birg (1986) and 
Pfanzagl & Sheynin (1997). After A. M. Guerry and Quetelet the domain of 
moral statistics essentially broadened and includes now, for example, 
philanthropy and professional and geographical mobility of the population. 
    Like Graunt, Süssmilch discussed pertinent causes and offered 
conclusions. Thus, he (1758) thought of examining the dependence of 
mortality on climate and geographical position and he knew that poverty and 
ignorance were conducive to the spread of epidemics.  
    Süssmilch’s main contribution, the Göttliche Ordnung, marked the origin 
of demography. Its second edition of 1765 included a chapter On the rate of 
increase and the period of doubling [of the population]; it was written 
jointly with Euler and served as the basis of one of Euler’s memoirs (Euler 
1767). Süssmilch thought that the multiplication of mankind was a divine 
commandment and that rulers must take care of their subjects. He 
condemned wars and luxury and indicated that the welfare of the poor was 
to the advantage of both the state, and the rich. His pertinent appeals brought 
him into continual strife with municipal (Berlin) authorities and ministers of 
the state (Prussia). He would have likely agreed with a much later author 
(Budd 1849, p. 27) who discussed cholera epidemics: 
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    By reason of our common humanity, we are all the more nearly related 
here than we are apt to think. […] And he that was never yet connected with 
his poorer neighbour by deeds of Charity or Love, may one day find, when it 
is too late, that he is connected with him by a bond which may bring them 
both, at once, to a common grave. 
 
    Süssmilch’s collaboration with Euler and frequent references to him in his 
book certainly mean that Euler had shared his general social views. Malthus 

(1798) picked up one of the conclusions in the Göttliche Ordnung, viz., that 
the population increased in a geometric progression (still a more or less 
received statement). Euler compiled three tables showing the increase of 
population during 900 years beginning with Adam and Eve. His third table 
based on arbitrary restrictions meant that each 24 years the number of living 
increased approximately threefold. Gumbel (1917) proved that the numbers 
of births, deaths and of the living in that table were approaching a geometric 
progression and noted that several authors since 1600 had proposed that 
proportion as the appropriate law.  
    Euler left no serious contribution to the theory of probability, but he 
published a few memoirs on population statistics. He did not introduce any 
stochastic laws, but such concepts as increase in population and the period 
of its doubling are due to him, and his reasoning was elegant and 
methodically interesting, in particular for life insurance (Paevsky 1935).  
    Lambert published a methodical study in population statistics (1772). 
Without due justification he proposed there several laws of mortality 
belonging to types IX and X of the Pearson curves (§ 14.2). Then, he 
formulated the problem about the duration of marriages, studied children’s 
mortality from smallpox and the number of children in families (§ 108). See 
Sheynin (1971b) and Daw (1980) who also appended a translation of the 
smallpox issue. When considering the last-mentioned subject, Lambert 
issued from data on 612 families having up to 14 children, and, once more 
without substantiation, somehow adjusted his materials. He arbitrarily 
increased the total number of children by one half likely attempting to allow 
for stillbirths and the death of children. Elsewhere he (§ 68) indicated that 
statistical inquiries should reveal irregularities.  
    6.2.3. Medical Statistics. It originated in the 19th century, partly because 
of the need to combat the devastating visitations of cholera. At the end of 
the 18th century Condorcet (1795/1988, p. 542) advocated collection of 
medical observations and Black (1788, pp. 65 – 68) even compiled a 
Medical catalogue of all the principal diseases and casualties by which the 
Human Species are destroyed or annoyed that reminded of Leibniz’ 
thoughts (§ 2.1.4). He also appended to his book a Chart of all the fatal 
diseases and casualties in London during […] 1701 – 1776. By means of 
such charts, he (p. 56) stated, we shall […] be warned to make the best 
disposition and preparation for defence. In an earlier publication Black 
(1782), however, expressed contradictory views.  
    D’Alembert (1759/1821, pp. 163 and 167) arrogantly declared that  
 
    Systematic medicine is a real scourge of mankind. Multiple and detailed 
observations, conforming to each other, this […] is what the reasoning in 
medicine ought to be reduced. 
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    A physician is a blind man armed with a club. He lifts it without knowing 
who will he hit. If he hits the disease, he kills it; if he hits Nature, he kills 
Nature.  
    The physician most deserving to be consulted, is that who least believes in 
medicine. 
 
All this is contained in the second edition of his book, but was written not 
later than in 1783, the year of his death.  
    Especially important was the study of prevention of smallpox 
(Condamine 1759, 1763, 1773; Karn 1931). Condamine (1759) listed the 
objections against inoculation, both medical and religious. Indeed, an 
approval from theologians was really needed. White (1896/1898) described 
the warfare of science with theology and included (vol. 2, pp. 55 – 59) 
examples of fierce opposition to inoculation (and, up to 1803, to vaccination 
of smallpox). Many thousands of Canadians perished in the mid-19th century 
only because, stating their religious belief, they had refused to be inoculated. 
White distinguished between theology, the opposing force, and practical 
religion. Condamine (1773) included his correspondence, in particular with 
Daniel Bernoulli, to whom he had given the data on smallpox epidemics 
which the latter used in his research. 
    Karn began her article by stating that 
 
    The method used in this paper for determining the influence of the death-
rates from some particular diseases on the duration of life is based on 
suggestions which were made in the first place by Daniel Bernoulli. 
 
    Daniel Bernoulli (1766) justified inoculation. That procedure, however, 
spread infection, was therefore somewhat dangerous for the neighbourhood 
and prohibited for some time, first in England, then in France. Referring to 
statistical data, but not publishing it, Bernoulli introduced necessarily crude 
parameters of smallpox epidemics and assumed that the inoculation itself 
proved fatal in 0.5% of cases. He formed and solved the appropriate 
differential equation and thus showed the relation between the age, the 
number of people of the same age, and of those of them who had not 
contacted smallpox. Also by means of a differential equation he derived a 
similar formula for a population undergoing inoculation. It occurred that 
inoculation lengthened the mean duration of life by 3 years and 2 months 
and was therefore extremely useful. Vaccination, the inestimable discovery 
by Jenner, who had thereby become one of the greatest benefactors of 
mankind (Laplace 1814/1995, p. 83), 
was introduced at the end of the 18th century. Its magnificent final success 
had not however ruled out statistical studies. Simon (1887, vol. 1, p. 230) 
concluded that only comprehensive national statistics could duly compare it 
with inoculation. 
    D’Alembert (1761; 1768c) criticized Daniel Bernoulli, see Todhunter 
(1865, pp. 265 – 271, 277 – 278 and 282 – 286). Not everyone will agree, he 
argued, to lengthen his mean duration of life at the expense of even a low 
risk of dying at once of inoculation; then, moral considerations were also 
involved, as when inoculating children. Without denying the benefits of that 
procedure, D’Alembert concluded that statistical data on smallpox should be 
collected, additional studies made and that the families of those dying of 
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inoculation should be indemnified or given memorial medals. He also 
expressed his own thoughts applicable to studies of even unpreventable 
diseases. Dietz et al (2000; 2002) described Bernoulli’s and D’Alembert’s 
investigations on the level of modern mathematical epidemiology and 
mentioned sources on the history of inoculation. For his part, K. Pearson 

(1978, p. 543) stated that inoculation was said to have been a custom in 
Greece in the 17th century and was advocated […] in the Philosophical 
Transactions of the Royal Society in 1713. Also see Sheynin (1972/1977, 
pp. 114 – 116; 1982, pp. 270 – 272). 
    6.2.4. Meteorology. Leibniz (§ 2.1.4) recommended regular 
meteorological observations. Indeed (Wolf 1935/1950, p. 312), 
 
    Observations of barometric pressure and weather conditions were made 
at Hanover, in 1678, and at Kiel, from 1679 to 1714, at the instigation of 
Leibniz. 
 
    The Societas meteorologica Palatina in Pfalz (a principality in Germany) 
was established in 1780, and, for the first time in the history of experimental 
science, it organized cooperation on an international scale. At about the 
same time the Société Royale de Médecine (Paris) conducted observations in 
several European countries (Kington 1974) and even in the 1730s – 1740s 
they were carried out in several towns in Siberia in accordance with 
directions drawn up by Daniel Bernoulli in 1733 (Tikhomirov 1932). In the 
second half of the 18th century several scholars (the meteorologist Cotte, 
Lambert and Condorcet) proposed plans for comprehensive international 
meteorological studies. 
    Lambert (1773) studied the influence of the Moon on the air pressure and 
Daniel Bernoulli encouraged him (Radelet de Grave et al 1979, p. 62): if the 
influence of the Moon on the air is similar to its influence on the seas, it 
should be observable, because the Moon’s distance varies, but the elasticity 
of air and its weak inertia should be allowed for. And, further:  
 
    Your considerations […] are quite justified; publish them without 
hesitating […] whatever are the results […]. Only try to establish them 
properly. 
 
    Toaldo (1775; 1777) statistically studied the connections between 
phenomena concerning meteorology and stated that the weather depended 
on the configurations of the Moon. His opinion was not abandoned until the 
mid-19th century (Muncke 1837, pp. 2052 – 2076). 
 
    6.3. Treatment of Observations  
    It became necessary after regular astronomical observations had begun 
(since Tycho Brahe). A problem of determining the Earth’s figure presented 
itself in the second half of the 18th century. Newton proved that the Earth 
was an ellipsoid of revolution with its equatorial radius (a) larger than its 
polar radius (b), and attempts were being made to prove or disprove this 
conclusion by meridian arc measurements. Their lengths were indirectly 
calculated by triangulation. Two such measurements are needed for 
calculating the parameters of the ellipsoid (although local deviations of the 
figure of the Earth corrupt the results) whereas redundant measurements 
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lead to systems of linear equations in these unknowns which can then be 
derived more precisely. Nowadays, according to the Krasovsky ellipsoid of 
1940 (Sakatov 1950, p. 364), it is held that a = 6356.8 km and b =6356.8 
km, so that 2πa is approximately equal to 40,000 km corresponding to the 
initial definition of the metre. However, in 1960 the metre was defined in 
terms of the wavelength of light. Not a and b were actually derived, but 
rather a and the flattening (a – b)/a. That parameter had also been 
determined by pendulum observations, cf. § 10.9.1.  
    The introduction of the metric system, and the demands of cartography, 
physics and chemistry led to the advancement of the treatment of 
observations. Scientists recognized the common character of adjusting direct 
and indirect observations: in both cases the unknowns were called Mittel 
(Lambert 1765b, § 6) or milieu (Maire & Boscovich 1770, pp. 484 and 501). 
    6.3.1. Direct Measurements. The first to touch on this case was Cotes 
(1722), see Gowing (1983, p. 107).Without any justification he advised to 
regard the weighted arithmetic mean, which he compared with the centre of 
gravity of the system of points, – of the observations,– as the most probable 
estimator of the constant sought: 
 
    Let p be the place of some object defined by observation, q, r, s the places 
of the same object from subsequent observations. Let there also be weights 
P, Q, R, S reciprocally proportional to the displacements arising from the 
errors in the single observations, and which are given by the limits of the 
given errors; and the weights P, Q, R, S are conceived as being placed at p, 
q, r, s, and their centre of gravity Z is found; I say the point Z is the most 
probable place of the object. 
 
Cotes appended a figure (perhaps representing a three-dimensional picture) 
showing nothing except these four points. He had not explained what he 
meant by most probable, nor did he describe his statement clearly enough. 
Nevertheless, his authority gave support to the existing common feeling (§ 
2.1.1). Without mentioning Cotes Condamine (1751, p. 223) recommended 
to apply that estimator. Then, Laplace (1814/1995, p. 121) stated that all 
calculators followed the Cotes rule. Even before Cotes Picard (1693/1729, 
pp. 330, 335, 343) called the arithmetic mean véritable. 
    T. Simpson (1756), see also Shoesmith (1985b), applied, for the first time 
ever, stochastic considerations to the adjustment of measurements by 
assuming that observational errors obeyed some density law and thus 
extended probability to a new domain and effectively introduced random 
observational errors. He aimed to refute some unnamed authors who had 
maintained that one good observation was as plausible as the mean of many 
of them, cf. end of § 1.7. Simpson assumed that the chances of observational 
errors  
 
    – v, – v + 1, …, – 2, – 1, 0, 1, 2, …, v – 1, v 
 
were equal [proportional] either to 
 
    r –v, r–v+1, …,  r–2, r–1, 1, r, r2, …, rv–1, rv 

 

or to 
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    r– v, 2r–v+1, …, (v – 1)r–2, vr–1, (v + 1), vr, (v – 1)r2, …, 2rv–1, rv. 
 
    Taking r = 1 he thus introduced the uniform and the triangular discrete 
distributions. Denote the observational errors by εi, and by N, the number of 
some chances. Then, as Simpson noted, 
 
    N(ε1 + ε2 + … + εn = m) was the coefficient of rm in the expansions of 
 
    (r–v + … + r0 + … + rv)n = r–vn(1 – r)–n(1 – r2v+1)n, 
    (r–v + 2r–v+1 + … + (v + 1)r0 + … + 2rv–1 + rv)n = r–vn(1 – r)–2n(1 – rv+1)2n. 
 
The left sides of these two equalities were generating functions with unit 
coefficients in the first case, and coefficients 1, 2, …, v + 1, … 2, 1 in the 
second instance. 
    For both these cases Simpson determined the probability that the absolute 
value of the error of the arithmetic mean of n observations was less than 
some magnitude, or equal to it. Consequently, he decided that the mean was 
always [stochastically] preferable to a separate observation and thus 
arbitrarily and wrongly generalized his proof. Simpson also indicated that 
his first case was identical with the determination of the probability of 
throwing a given number of points with n dice each having (v + 1) faces. He 
himself (1740, Problem No. 22), and earlier Montmort (§ 3.3.3), although 
without introducing generating functions, and De Moivre (1730, pp. 191 – 
197) had studied the game of dice. In the continuous case, Simpson’s 
distributions can be directly compared with each other: their respective 
variances are v2/3 and v2/6. 
    Soon Simpson (1757) reprinted his memoir adding to it an investigation 
of the continuous triangular distribution to which he passed over by 
assuming that |v| → ∞ with (m/n)/v remaining constant. Here, m/n was the 
admissible error of the mean. However, 
his graph showed the density curve of the error of the mean which should 
have been near-normal but which did not possess the distinctive form of the 
normal distribution. 
    Without mentioning Simpson, Lagrange (1776a) studied the error of the 
mean for several other and purely academic distributions, also by applying 
generating functions (even for continuous laws, thus anticipating the 
introduction of characteristic functions). He was the first to use integral 
transformations, and, in Problem 6, he derived the equation of the 
multivariate normal distribution. In his § 18 he introduced the term courbe 
de la facilité des erreurs. A possible though inadequate reason for ignoring 
Simpson was the heated dispute over priority between De Moivre and him: 
Lagrange apparently had not wanted to be even indirectly involved in it. De 
Moivre was a scholar of a much higher calibre (a fact clearly recognized by 
Simpson) and 43 years the senior. At least on several important occasions 
Simpson did not refer to him and, after being accused by De Moivre (1725; 
only in edition of 1743, p. xii) of mak[ing] a Shew of new Rules, and works 
of mine, Simpson (posthumous publication, 1775, p. 144)  
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    appeal[ed] to all mankind, whether in his treatment of me he has [not] 
discovered an air of self-sufficiency, ill-nature, and inveteracy, unbecoming 
a gentleman. 
 
    The term Theory of errors (Theorie der Fehler) is due to Lambert (1765a, 
Vorberichte and § 321) who defined it as the study of the relations between 
errors, their consequences, circumstances of observation and the quality of 
the instruments. He isolated the aim of the Theory of consequences as the 
study of functions of observed (and error-ridden) quantities. In other words, 
he introduced the determinate error theory and devoted to it §§ 340 – 426 of 
his contribution. Neither Gauss, nor Laplace ever used the new terminology, 
but Bessel (1820, p. 166; 1838b, § 9) applied the expression theory of errors 
without mentioning anyone and by the mid-19th century it became generally 
known.  
    Lambert studied the most important aspects of treating observations and 
in this respect he was Gauss’ main predecessor. He (1760, §§ 271 – 306) 
described the properties of usual random errors, classified them in 
accordance with their origin (§ 282), unconvincingly proved that deviating 
observations should be rejected (§§ 287 – 291) and estimated the precision 
of observations (§ 294), again lamely but for the first time ever. He then 
formulated an indefinite problem of determining a [statistic] that with 
maximal probability least deviated from the real value of the constant sought 
(§ 295) and introduced the principle of maximal likelihood, but not the term 
itself, for a continuous density (§ 303), maintaining, however (§ 306), that in 
most cases it will provide estimates little deviating from the arithmetic 
mean. The translator of Lambert’s contribution into German left out all this 
material claiming that it was dated. 
    Lambert introduced the principle of maximum likelihood for an 
unspecified, more or less symmetric and unimodal curve, as shown on his 
figure, call it φ(x – xo), where xo was the sought parameter of location. 
Denote the observations by x1, x2, …, xn, and, somewhat simplifying his 
reasoning, write his likelihood function as  
 
    φ(x1 – xo) φ(x2 – xo) … φ(xn – xo). 
 
When differentiating it, Lambert had not indicated that the argument here 
was the parameter xo, etc. 
    In a few years Lambert (1765a) returned to the treatment of observations. 
He attempted to estimate the precision of the arithmetic mean, but did not 
introduce any density and was unable to formulate a definite conclusion. He 
also partly repeated his previous considerations and offered a derivation of a 
density law of errors occurring in pointing an instrument (§§ 429 – 430) in 
accordance with the principle of insufficient reason: it was a semi-
circumference (with an unknown radius) simply because there were no 
reasons for its angularity.  
    In a letter of 1971 E. S. Pearson informed me that curiously his father’s 
Lectures (1978), – then not yet published, – omitted Lambert. He explained: 
 
    It was not because [Lambert’s] writings were in German of which my 
father was an excellent scholar. I suppose […] that he selected the names of 
the personalities he would study from a limited number of sources, e.g., 
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Todhunter, and that these did not include Lambert’s name. [Todhunter did 
refer to Lambert but had not described his work.] Of course, K. P. was over 
70 by the time his history lectures passed the year 1750, and no doubt his 
exploration was limiting itself to the four Frenchmen, Condorcet, 
D’Alembert, La Grange and Laplace. 
 
    Johann III Bernoulli (1785) published a passage from a manuscript of 
Daniel Bernoulli (1769/1997) which he had received in 1769 but written, as 
its author had told him, much earlier. There, Daniel assumed the density law 
of observational errors as a semi-ellipse or semi-circumference of some 
radius r ascertained by assigning a reasonable maximal error of observation 
and the location parameter equal to the weighted arithmetic mean with 
posterior weights 
 
    pi = r2 – ( x – xi)

2.                                                                          (4) 
 
Here, xi were the observations and x , the usual mean. The first to apply 
weighted, or generalized arithmetic means was Short (1763). This estimator 
demanded a subjective selection of weights and it only provided a correction 
to the ordinary arithmetic mean which tended to vanish for even density 
functions. 
    In his published memoir Daniel Bernoulli (1778) objected to the 
application of the arithmetic mean which (§ 5) only conformed to an equal 
probability of all possible errors and was tantamount to shooting blindly. K. 
Pearson (1978, p. 268), however, reasonably argued that small errors were 
more frequent and had their due weight in the mean. Instead, Bernoulli 
suggested the maximum likelihood estimator of the location parameter. 
Listing reasonable restrictions for the density curve (but adding the 
condition of its cutting the abscissa axis almost perpendicularly), he selected 
a semi-circumference with radius equal to the greatest possible, for the 
given observer, error. He then (§ 11) wrote out the likelihood function as 
 
    {[r2 – (x – x1)

2] [r2 – (x – x2)
2] [r2 – (x – x3)

2] …}1/2, 
 
where x was the unknown abscissa of the centre of the semi-circumference, 
and x1, x2, x3, …, were the observations. Preferring, however, to ease 
calculation, he left the semi-circumference for an arc of a parabola but he 
had not known that the variance of the result obtained will therefore change. 
    For three observations his likelihood equation was of the fifth degree. 
Bernoulli numerically solved it in a few particular instances with some 
values of x1, x2 and x3 chosen arbitrarily (which was admissible for such a 
small number of them). I present his equation as 
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so that the maximum likelihood estimate is 
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with unavoidable use of successive approximations. For some inexplicable 
reason these formulas are lacking in Bernoulli’s memoir although the 
posterior weights (6) were the inverse of the weights (4) from his 
manuscript and heuristically contradicted his own preliminary statement 
about shooting skilfully. It is now known, however, that such weights are 
expedient in case of some densities.  
    Euler (1778, § 6) objected to the principle of maximum likelihood. He 
argued that the result of an adjustment should barely change whether or not 
a deviating observation was adopted, but that the value of the likelihood 
function essentially depended on that decision. His remark should have led 
him to the median. Euler then (§ 7) remarked that there was no need  
 
to have recourse to the principle of the maximum, since the undoubted 
precepts of the theory of probability are quite sufficient to resolve all 
questions of this kind.  
 
Instead of the arithmetic mean Euler recommended the estimate (5) with 
posterior weights (4) and mistakenly assumed that Bernoulli had chosen 
these same weights.  
    Euler denoted the observations by П + a, П + b, П + c, ... and (§11) 
remarked that his estimate can be obtained from the condition  
 
    [r2 – (x0 – a)2]2 + [r2 – (x0 – b)2]2 + [r2 – (x0 – c)2]2  + … = max.                             
(7) 
 
The quantities in parentheses are the deviations of observations from the 
estimate sought and their fourth powers are negligible so that condition (7) 
is equivalent to the requirement 
 
    (x0 – a)2 + (x0 – b)2 + (x0 – c)2 + … = min,                                                               
(8) 
 
whence follows the arithmetic mean. Condition (7) is heuristically similar to 
the principle of least squares (which in case of one unknown leads to the 
arithmetic mean) and resembles the Gaussian principle of maximum weight, 
§ 9.1.3. A small corruption of condition (8) does exist, it is caused by 
inevitable deviations of the observations from the proposed (or assumed) 
symmetrical law. Bernoulli noted this fact, and actually proposed the 
general arithmetic mean. 
    In his last memoir devoted to pendulum observations Daniel Bernoulli 
(1780) separated, for the first time ever, observational errors into random 
(momentanearum) and systematic (chronicarum), although not for 
observations in general. He indicated that these errors acted proportionally 
to the square root of, and to the time itself respectively. Making use of his 
previous findings (§ 6.1.1), Bernoulli justified his investigation by the 
normal distribution which thus first occurred in the theory of errors, 
although only as a limiting law. 
    From 2N daily vibrations of a pendulum, as Bernoulli assumed, (N + µ) 
were slower, and (N – µ) faster than stipulated, with periods of (1 + α) and 
(1 – α) respectively. His pattern meant that the number of positive (say) 
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errors possessed a symmetric binomial distribution and that the error of the 
pendulum accumulated after a large number of vibrations will have a normal 
distribution. 
    Bernoulli had not investigated the more general pattern of an unequal 
number of the slower and the faster vibrations although it corresponded to 
the case of unequal probabilities of male and female births, also studied by 
him (§ 6.1.1). Neither had he said anything about the possible dependence 
between the periods of successive vibrations. 
    In his previous work Bernoulli (1770 – 1771) noted that, for N = 10,000 
and µ = 47.25 
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Now, having N = 43,200, he obtained, for the same probability of 1/2, 
 

    µ = 47.25 4.32  ≈ 100. 
 
    It was this calculation that caused his conclusion (above) about the 
behaviour of random errors. Already in the 19th century, however, it became 
known that such errors can possess other laws of distribution (end of § 
10.5). 
    Note also that Bernoulli came close to introducing the probable error; to 
recall (§ 2.2.2), Huygens discussed the probable duration of life. Bernoulli 
was also the first to introduce elementary errors. I do not, however, set high 
store by this fact; indeed, this notion is not necessary for proving the CLT.  
    6.3.2. Indirect measurements. Here, I consider the adjustment of 
redundant systems  
 
    ai x + bi y + … + si = vi, i = 1, 2, …, n                                                                
(9)  
 
in k unknowns (k < n) and residual free terms vi.  
    1) In case of two unknowns (cf. beginning of § 6.3) astronomers usually 
separated systems (9) into all possible groups of two equations each and 
averaged the solutions of these groups. As discovered in the 19th century, the 
least-squares solution of (9) was some weighted mean of these partial solutions 
(Whittaker & Robinson 1924/1949, p. 251). 
   In 1757 and later Boscovich, see Cubranic (1961, pp. 90 – 91) and Maire 
& Boscovich (1770, pp. 483 – 484), applied this method but it did not 
satisfy him, see below. In the first case he (Cubranic 1961, p. 46) derived 
the arithmetic mean of four latitudinal differences in an unusual way: he 
first calculated the half-sums of all six pairs of differences and then took 
their mean. He apparently attempted to reveal the unavoidable systematic 
errors and to ensure a (qualitative) estimation of the order of random errors.  
    2) For three unknowns that method becomes unwieldy. In an astronomical 
context, Mayer (1750) had to deal with 27 equations in three unknowns. He 
calculated three particular solutions (see below), and averaged them. The 
plausibility of the results thus obtained depended on the expediency of the 
separation and it seems that Mayer had indeed made a reasonable choice. 
Being mostly interested in only one unknown, he included the equations 
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with its greatest and smallest in absolute value coefficients in the first, and 
the second group respectively. Note also that Mayer believed that the 
precision of results increased as the number of observations, but in his time 
this mistake was understandable.  
    Mayer solved each group of equations under an additional condition 
 
    Σvi = 0,  
 
where i indicated the number of an equation; if the first group included the 
first nine of them, then i = 1, 2, …, 9. 
    In a letter of 1850 Gauss (W/Erg-5, Tl. 6, p. 90) remarked that Mayer had 
only calculated by means of primitive combinations. He referred to Mayer’s 
manuscripts, but it is likely that Mayer’s trick was almost the same in both 
cases. And Gauss himself, in an earlier letter of the same year (Ibidem, pp. 
66 – 67), recommended a similar procedure for calibrating an aneroid. 
Anyway, Laplace (1812/1886, pp. 352 – 353) testified that the best 
astronomers had been following Mayer. A bit earlier Biot (1811, pp. 202 – 
203) reported much the same.  
    The condition above determines the method of averages and Lambert’s 

recommendation (1765b, § 20) about fitting an empirical straight line might 
be interpreted as its application. Lambert separated the points (the 
observations) into two groups, with smaller and larger abscissas, and drew 
the line through their centres of gravity, and into several groups when fitting 
curves. 
    3) The Boscovich method. He (Maire & Boscovich 1770, p. 501) adjusted 
systems (9) under additional conditions 
 
    v1 + v2 + … + vn = 0, |v1| + |v2| + ... + |vn| = min,                                   (10; 
11) 
 
the first of which can be allowed for by summing all the equations and 
eliminating one of the unknowns from the expression thus obtained. The 
second condition linked Boscovich’ method with the median. Indeed, he 
adjusted systems (9) by constructing a straight line whose slope was equal to 
the median of some fractions. In 1809, Gauss noted that (11) led exactly to k 
zero residuals vi, which follows from an important theorem in the then not 
yet known theory of linear programming.  
    Galileo (1632), see Hald (1990, § 10.3), and Daniel Bernoulli (1735/1987, 
pp. 321 – 322) applied condition (11) in the case in which the magnitudes 
such as vi were positive by definition. Just the same, W. Herschel (1805) 
determined the movement of the Sun by issuing from the apparent motion of 
the stars. The sum of these motions depends on the former and its minimal 
value, as he assumed, estimated that movement. Herschel’s equations were 
not even algebraic, but, after some necessary successive approximations, 
they might have been considered linear. In those times the motion of a star 
could have been discovered only in the plane perpendicular to the line of 
vision.  
    Here is W. Herschel’s earlier reasoning (1783/1912, p. 120): 
 
    We ought […] to resolve that which is common to all the stars […] into a 
single real motion of the Solar system, as far as that will answer the known 



 60 

facts, and only to attribute to the proper motions of each particular star the 
deviations from the general law the stars seem to follow … 
 
This statement resembles Newton’s Rules of Reasoning in Philosophy 
(1729, Book 3): admit no more causes than such that are both true and 
sufficient. Even Ptolemy (1984, III, 4, p. 153) maintained that a simpler 
hypothesis would seem more reasonable. 
    When treating direct measurements W. Herschel (1806) preferred the 
median rather than the arithmetic mean (Sheynin 1984a, pp. 172 – 173). 
    4) The minimax method. Kepler (§ 1.7) had apparently made use of some 
elements of this method although it did not ensure optimal, in any sense, 
results. Laplace (1789/1895, pp. 493, 496 and 506 and elsewhere) applied it 
for preliminary investigations. This method corresponds, as Gauss (1809, § 
186) remarked, and as it is easy to prove, to the condition 
 
    lim (v1

2k + v2
2k + ... + vn

2k) = min, k → ∞. 
 
    5) Euler (1749, 1755, 1770) had to treat indirect measurements as well. At 
least in the first two instances his goal was much more difficult than that 
outlined in § 1.7 where the underlying theory was supposed to be known. 
Concerning the first of his contributions, Wilson (1980, p. 262n) remarked 
that Euler was  
 
    Stymied by the finding that, for certain of the variables, the equations led 
to wildly different values. 
 
    Euler did not attempt to build a general theory, he wished to achieve 
practical results and turned in some cases to the minimax principle. On the 
last occasion Euler did not keep to any definite method and combined 
equations in a doubtful manner. So as to eliminate one unknown, he 
subtracted each equation from (say) the first one, thus assigning it much 
more weight. 
    Stigler (1986, pp. 27 – 28) called Euler’s memoir (1749) a statistical 
failure and, in his opinion, Euler was a mathematician who distrusted the 
combination of equations. Not understanding the main goal of the method of 
minimax, he mentioned a classic in a free and easy manner, so that his 
statement was absolutely inadmissible, see also item 6 below. In his second 
book Stigler (1999, pp. 317 – 318) unblushingly called Euler a great 
statistician but did not notice his inadequate reasoning concerning deviating 
observations (§ 6.3.1). 
    6) In the 18th century practitioners at least sometimes experienced 
difficulties when deciding how to adjust their observations (Bru 1988, pp. 
225 – 226). Indeed, Maupertuis (1738/1756, p. 160; 1756b, pp. 311 – 319) 
calculated his triangulation 12 times (taking into account differing sets of 
observations), selected two of his results and adopted their mean value.  
    At the turn of that century Laplace and Legendre refused to adjust a 
triangulation chain laid out between two baselines. Likely fearing the 
propagation of large errors, they calculated each half of the chain starting 
from its own baseline. Much later Laplace (ca. 1819/1886, pp. 590 – 591) 
defended their decision by previous ignorance of the vraie théorie of 
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adjustment and added that his (not Gauss’!) justification of the MLSq had 
changed the situation. 
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7. Laplace 

    Laplace devoted a number of memoirs to the theory of probability and 
later combined them in his Théorie analytique des probabilités (TAP) 
(1812). He often issued from the non-rigorously proved CLT by applying 
characteristic functions and the inversion formula, calculated difficult 
integrals, applied Hermite polynomials, introduced the Dirac function and 
(after Daniel Bernoulli) the Ehrenfests’ model, studied sampling, but left 
probability on its previous level. His theory of errors was impractical. 
However, issuing from observations, Laplace proved that the Solar system 
will remain stable for a long time and completed the explanation of the 
movement of its bodies in accordance with the law of universal gravitation. 
Many commentators reasonably stated that his contributions made difficult 
reading. 
 
    Key words: CLT, criminal statistics, theory of errors, absolute 
expectation, stochastic processes  
 
    7.1. Theory of Probability  
    I describe the second Livre of the TAP; in the first one he studied the 
calculus of generating functions with application to the solution of ordinary 
and partial difference equations and the approximate calculation of integrals. 
In many instances he treated the problems involved in his earlier memoirs. 
As indirectly seen in his Essay (1814/1995, pp. 2, 43 – 44), Laplace thought 
that the main aim of probability theory was to discover the laws of nature.  
    1) In Chapter 1 Laplace provided the classical definition of probability 
(introduced by De Moivre, see my § 4.1), formulated the addition and 
multiplication theorems for independent events as well as theorems 
concerning conditional probabilities. Elsewhere, he (1814/1995, p. 10), 
added to this general subject matter the so-called Bayes theorem (5.1), 
calling it a principle.  
    2) In Chapter 2 Laplace solved a number of problems by means of 
difference, and partial difference equations. I consider three other problems 
(§§ 13, 15, 15). 
    a) In an astronomical context Laplace studied sampling with replacement. 
Tickets numbered from 0 to n are extracted from an urn. Determine the 
probability that the sum of k numbers thus extracted will be equal to s. 
While solving this problem, he applied a discontinuous factor (1 – ln+1)m 
with l = 0 or 1 and m = 1, 2, ... 
    Laplace considered the case of s, n → ∞ and his derived formula for the 
distribution of the sum of independent, continuous variables obeying the 
uniform law on interval [0; 1] corresponded with modern literature (Wilks 
1962, § 8.3.1) which does not, however, demand large values of s and n. 
    b) Non-negative random variables t1, t2, …, tk   with differing laws of 
distribution φi(t) are mutually independent and their sum is s. Determine the 
integral  
 
    ∫ψ(t1; t2; …; tk) φ1(t) φ2(t) … φk(t) dt1 dt2 … dtk 
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over all possible values of the variables; ψ was yet to be chosen. Laplace 
then generalized his very general problem still more and derived the 
Dirichlet formula even in a more general setting.  
    c) An interval OA is divided into equal or unequal parts and 
perpendiculars are erected to the intervals at their ends. The number of 
perpendiculars is n, their lengths (moving from O to A) form a non-
increasing sequence and the sum of these lengths is given. Suppose now that 
the sequence is chosen repeatedly; what, Laplace asks, will be the mean 
broken line connecting the ends of the perpendiculars? The mean value of a 
current perpendicular? Or, in the continuous case, the mean curve? Each 
curve might be considered as a realization of a stochastic process and the 
mean curve sought, its expectation. Laplace was able to determine this mean 
curve and to apply this finding for studying expert opinions.  
    Suppose that some event can occur because of n mutually exclusive 
causes. Each expert arranges these in an increasing (or decreasing) order of 
their [subjective] probabilities, which, as it occurs, depend only on n and the 
number of the cause, r, and are proportional to 
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The comparison of the sums of these probabilities for each cause allows to 
show the mean opinion about its importance. To be sure, different experts 
will attribute differing perpendiculars to one and the same cause. 
    3)The third Chapter is devoted to the integral De Moivre – Laplace 
theorem and to several interesting problems connected with the transition to 
the limit. Here is that theorem: 
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p was the probability of success in a single Bernoulli trial, µ, the total 
number of successes in n trials, q = 1 – p, z was unknown but |z| < 1, x = np 
+ z, and x′ = nq – z. 
    In proving it, Laplace applied the Euler – MacLaurin summation formula, 
and his remainder term allowed for the case of large but finite number of 
trials. He indicated that his theorem was applicable for estimating the 
theoretical probability given statistical data, cf. the Bayes theorem in § 5.2, 
but his explanation was not clear. Molina (1930, p. 386) quoted Laplace’s 
memoir (1786/1894, p. 308) where he (not clearly enough) had contrasted 
the appraisals admitted in probability with certainty provided in analysis.  
    Already Daniel Bernoulli (§ 6.1.1) solved one of Laplace’s problem: 
There are two urns, each containing n balls, some white and the rest black; 
on the whole, there are as many white balls as black ones. Determine the 
probability u that the first urn will have x white balls after r cyclic 
interchanges of one ball. The same problem was solved by Lagrange 
(1777/1869, pp. 249 – 251), Malfatti (Todhunter 1865, pp. 434 – 438) and 
Laplace (1811; and in the same way in the TAP). Laplace worked out a 
partial difference equation, mutilated it most unsparingly (Todhunter 1865, 
p. 558) and expressed its solution in terms of functions related to the 
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[Chebyshev –] Hermite polynomials (Molina 1930, p. 385). Hald (1998, p. 
339) showed, however, that Todhunter’s criticism was unfounded. 
    Markov (1915b) generalized this problem by considering the cases of n 
→ ∞ and r/n → ∞ and n → ∞ and r/n = const and Steklov (1915) proved the 
existence and uniqueness of the solution of Laplace’s differential equation 
with appropriate initial conditions added whereas Hald (2002) described the 
history of those polynomials. Hostinský (1932, p. 50) connected Laplace’s 
equation with the Brownian movement and thus with the appearance of a 
random process (Molina 1936). 
    Like Bernoulli, Laplace discovered that in the limit, and even in the case 
of several urns, the expected numbers of white balls became approximately 
equal to one another in each of them irrespective of the initial distribution of 
the balls. Finally, Laplace (1814/1995, p. 42) added that nothing changed 
even if new urns, again with arbitrary distributions of the balls, were placed 
among the original urns. He declared, apparently too optimistically, that  
 
    These results may be extended to all naturally occurring combinations in 
which the constant forces animating their elements establish regular 
patterns of action suitable to disclose, in the very mist of chaos, systems 
governed by these admirable laws. 
  
    The Daniel Bernoulli – Laplace problem coincides with the celebrated 
Ehrenfests’ model (§ 6.1.1). 
    4) I touch on Chapter 4 in § 7.2-3. Laplace devoted Chapter 5 to the 
detection of constant causes (forces) in nature. Thus, he attempted to 
estimate the significance of the daily variation of the atmospheric pressure. 
K. Pearson (1978, p. 723) remarked that nowadays the Student distribution 
could be applied in such cases, that some of Laplace’s assumptions proved 
to be wrong and that Laplace unjustifiably rejected those days during which 
the variation exceeded 4 mm. 
    Laplace solved Buffon’s problem on geometric probability anew. To 
repeat (§ 6.1.6), a needle of length 2r falls from above on a set of parallel 
lines a distance a ≥  2r apart and the probability p that the needle intersects a 
line is 
 
    p = 4r/πa. 
 
Without proof Laplace mistakenly stated that, for a = 1, 2r = π/4 was the 
optimal length of the needle for statistically determining π although he had 
the correct answer, 2r = 1, in the first edition of the TAP. A much easier 
justification than provided by commentators, Todhunter (1865, pp. 590 – 
591) and Gridgeman (1960), is possible: |dπ| = (4r/p2)dp so that p, and 
therefore r, ought to be maximal, and according to the condition of the 
problem, r = a/2 = 1/2. 
    5) In Chapter 6 Laplace solved some problems by means of the Bayes 
approach (see § 5.1) although without referring to him; true, he mentioned 
Bayes elsewhere (1814/1995, p. 120). Here is one of them. Denote the 
unknown probability that a newly born baby is a boy by x and suppose that 
during some time p boys and q girls were born. Then the probability of that 
compound event will be proportional to 
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    y = xp(1 – x)q,                                                                                                           
(1) 
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For large values of p and q Laplace expressed that probability by an integral 
of an exponential function of a negative square.  
    For the curve (1) the point of its maximum 
 
    α = p/(p + q)                                                                                                           
(2) 
 
seems to be chosen by Laplace as a natural estimator of x, but Ex, or, more 
precisely, the expectation of a random variable ξ with distribution 
 

    x p(1 – x)q ÷ ∫
1

0

x p(1 – x)q dx, 

does not coincide with (2): the latter is only an asymptotically unbiased 
estimator of x. This expectation is evidently 
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    After discussing the bivariate case Laplace solved another problem. 
Suppose that the inequality p > q persisted during a number of years. 
Determine the probability that the same will happen for the next hundred 
years (under invariable social and economic conditions!).  
    He also considered the celebrated problem about the probability of the 
next sunrise. Finally, Laplace determined the population of France given 
sampling data, and, for the first time ever, estimated the precision of (his 
version of) sampling. Suppose that N and n are the known numbers of yearly 
births in France as a whole and in some of its regions and m is the 
population of those regions. Laplace naturally assumed that M = (m/n)N. He 
then had to estimate the fraction, see Hald (1998, p. 288), 
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0
∫ xN+n (1 – x)m–n+M–N dx ÷

1

0
∫ xn(1 – x)m–n dx. 

 
    K. Pearson (1928) achieved a reduction of the variance of his result; it 
should have been multiplied by [(N – n) ÷ (N + n)]1/2. Here are his two main 
remarks. First, Laplace considered (m, n) and (M, n) as independent samples 
from the same infinite population whereas they were not independent and 
the very existence of such a population was doubtful. Second, Laplace chose 
for the magnitude sought an absolutely inappropriate uniform prior 
distribution (as is usual when keeping to the Bayesian approach).  
    The first remark had to do with Laplace’s supplementary urn problem. 
Suppose that an urn contains infinitely many white and black balls. After n 
drawings with replacement m white balls were extracted; a second sample of 
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an unknown volume ξ (with expected value nr/m) provided r white balls. 
Laplace derived a limit theorem 
 

    P(|ξ – nr/m| < z) = 3 3 21 2 ( / π ) exp( / ) ,  2 ( )( ).m S m z S dz S nr n m m r− − = − +∫   
 
The limits of integration, as Laplace formally assumed, were z and ∞. 
    6) In Chapter 7 Laplace studied the influence of a possible inequality of 
probabilities assumed equal to each other. For example, when tossing a coin 
the probability of heads can be p = (1 ± a)/2 with an unknown a. Supposing 
that both signs were equally probable, Laplace derived the probability of 
throwing n heads in succession; for n > 1 it was greater than 1/2n . Then he 
considered the general case: the probability was (p + z), |z| ≤ a, with density 
φ(z).  
    Turning to urn problems, Laplace assumed that the probabilities of 
extracting tickets from them were not equal to one another. However, the 
inequalities will be reduced had the tickets been put into the urn according 
to their random extraction from an auxiliary urn, and still more reduced in 
case of additional auxiliary urns. Laplace justified this statement by a 
general principle: randomness diminished when subjected to more 
randomness. This is perhaps too general, but Laplace’s example was 
tantamount to reshuffling a deck of cards (to events connected into a 
Markov chain), and his conclusion was correct (Feller 1950, § 9 of Chapter 
15). 
    7) Chapter 8 was devoted to the mean durations of life and marriages. 
Laplace did not apply there any new ideas or methods. However, he studied 
anew the Daniel Bernoulli model of smallpox (§ 6.2.3), adopted more 
general assumptions and arrived at a more general differential equation 
(Todhunter 1865, pp. 601 – 602). 
    8) In Chapter 9 Laplace considered calculations made in connection with 
annuities and introduced the Poisson generalization of the Jakob Bernoulli 
theorem (Molina 1930, p. 372). Suppose that two contrary events signify a 
gain ν and a loss µ and can occur in each independent trial i with 
probabilities qi and pi respectively, qi + pi = 1, i = 1, 2, …, s. For constant 
probabilities q and p the expected gain after all these trials will be s(qν – 
pµ), as Laplace for some reason concluded in a complicated way. He then 
considered the case of a large s by means of his theorem of § 7.1-3. Then, 
generalizing the result obtained to variable probabilities, he introduced the 
characteristic function of the final gain 
 
    [p1 + q1exp(ν1ωi)] [p2 + q2exp(ν2ωi)] … [ps  + qsexp(νsωi)], 
 
applied the inversion formula and obtained the normal distribution, all this 
similar to the derivation of the law of distribution of a linear function of 
observational errors (§ 7.2-3). 
    9) In Chapter 10 Laplace described moral expectation (§ 6.1.1). If the 
physical capital of a gambler is x, his moral capital will be  
 
    y = klnx + lnh, h, x > 0. 
 
Let ∆x take values a, b, c, … with probabilities p, q, r, … Then 
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    Ey = k[pln(x + a) + qln(x + b) + …] + lnh, 
 
    E∆y < E∆x.  
 
Thus, even a just game of chance (E∆x = 0) was disadvantageous. He then 
considered shipping of freight and proved that it should be evenly 
distributed among several vessels, see my paper (1972/1977, pp. 112 – 113). 
On this occasion Laplace (1814/1995, p. 89) expressed himself in favour of 
insurance of life and compared a nation with an association whose members 
mutually protect their property by proportionally supporting the costs of this 
protection. 
    10) In the eleventh, the last, Chapter, and, in part, in Supplement 1 to 
the TAP, Laplace examined the probability of testimonies. Suppose that an 
urn contains 1,000 numbered tickets. One of them is extracted, and a witness 
states that that was ticket number i, 1 ≤ i ≤ 1,000. He may tell the truth and 
be deceived or not; or lie, again being deceived or not. Laplace calculated 
the probability of the fact testified by the witness given the probabilities of 
all the four alternatives. In accordance with one of his corollaries, the 
witness’s mistake or lie becomes ever more probable the less likely is the 
fact considered by itself. 
    Laplace next introduced the prior probability of a studied event confirmed 
by m witnesses and denied by n others. If it was 1/2 and the probability of 
the truthfulness of each witness was p, then the probability of the event was 
 

    P = 
(1 )

m n

m n m n

p

p p

−

− −
+ −

. 

 
He derived several other pertinent formulas, for example, describing the 
probability of an event reported by a chain of witnesses, and examined 
verdicts brought in by s independent judges (jurors) assuming that each of 
them decides justly with probability p > 1/2.  
    Then, if the probability of a just verdict reached by each judge (juror) was 
unknown, and p judges condemned, and q of them acquitted the defendant, 
the indirect probability of a just final verdict was  
 

    
1

1/2
∫ up(1 – u)q du ÷

1

0
∫ vp(1 – v)qdv.  

 
In passing, Laplace (1816, p. 523) stated that the verdicts were independent.  
 
    7.2. Theory of Errors  
    In the 18th century, Laplace was applying the comparatively new tool, the 
density, and trying out several rules for the selection of estimators for the 
constants sought. His equations proved too complicated and he had to keep 
to the case of three observations. Later Laplace proved (not rigorously) 
several versions of the CLT and was able to drop his restriction, but he had 
to adopt other conditions. Bienaymé (1853/1867, p. 161) remarked that  
 
    For almost 40 years Laplace had been presenting […] memoirs on 
probabilities, but […] did not want to combine them into a general theory, – 
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until the (non-rigorously proved) CLT enabled him to compile his TAP. His 
main achievements in error theory belong to the 19th century. Laplace 
(1774/1891, p. 56) noted the appearance of un nouveau genre de problème 
sur les hazards and even (1781/1893, p. 383) of une nouvelle branche de la 
théorie des probabilités (of mathematical statistics). 
    He (1814/1995, p. 37) provided examples of statistical determinism, – of 
the stability of the number of dead letters and of the profits enjoyed by 
organizers of lotteries. He (1796/1884, p. 504) qualitatively (and wrongly, 
see § 7.3) explained irregularities in the Solar system by the action of 
random causes. Elsewhere he (1812/1886, p. 361) stated that a certain 
magnitude, although having been indicated by [numerous] observation[s], 
was neglected by most astronomers, but that he had proved its high 
probability and then ascertained its reality. Thus, Laplace understood that in 
general, unavoidable ignorance concerning a single random event becomes a 
cognizable regularity. 
    1) In the 18

th
 century, he published two interesting memoirs (1774; 

1781) hardly useful from the practical side. Thus, he introduced, without 
due justification, two academic density curves. Already then, in 1781, 
Laplace offered his main condition for adjusting direct observations: the 
absolute expectation of error should be minimal. In the 19th century, he 
applied the same principle for justifying the MLSq, which was only possible 
for the case of normal distribution (existing on the strength of his non-
rigorous proof of the CLT when the number of observations was large).  
    In 1781, Laplace proposed, as a density curve,  
 
    φ(αx) = 0, x = ∞; φ(αx) = q ≠ 0, x ≠ ∞, α → 0.  
 
His deliberations might be described by the Dirac delta-function which had 
already appeared in Euler’s works (Truesdell 1984, p. 447, Note 4, without an 
exact reference). One of his conclusions was based on considering an integral 
which has no meaning in the language of generalized functions, but his 
finding is extremely interesting on the physical level. 
    Also in 1781 he first discussed the problem 7.1-2c. Some of Laplace’s 
assumptions were not really justified, and he (Laplace 1814/1995, p. 116; 
1798 – 1825/1878 – 1882, t. 3, p. xi) argued that the adopted hypotheses ought 
to be incessantly rectified by new observations until veritable causes or at 
least the laws of the phenomena be discovered. Cf. Double et al (1835, p. 176 
– 177): the main means for revealing the vérité were induction, analogy and 
hypotheses founded on facts and incessantly verified and rectified by new 
observations.  
    2) The Years 1810 – 1811. Laplace (1810a) considered n [independent] 
discrete random magnitudes uniformly distributed on interval [– h; h ]. After 
applying a particular case of characteristic functions and the inversion 
formula, he proved, carelessly and non-rigorously, that, in modern notation, 
as n → ∞,  
 

    lim P (
| ξ |i

n

∑
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x
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where σ2 = h2/3 was the variance of each ξi. He then generalized his 
derivation to identically but arbitrarily distributed variables possessing 
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variance. When proving the CLT he (1810a/1898, p. 304) made use of an 
integral of a complex-valued function, remarked that he hoped to interest 
géomètres in that innovation and thus separated himself from (pure) 
mathematicians, see also similar reservations elsewhere (Laplace 
1774/1891, p. 62; 1812/1886, p. 365).  
    In a supplement to the first-mentioned memoir Laplace (1810b), 
apparently following Gauss, justified the principle of least squares without 
making any assumptions about the arithmetic mean (cf. § 9.1.3), but he had 
to consider the case of a large number of observations and to suppose that 
the means of their separate groups were also normally distributed. Soon 
enough Laplace (1811) returned to least squares. This time he multiplied the 
observational equations in one unknown 
 
    aix + si = εi, i = 1, 2, …, n, 
 
where the right sides were errors rather than residuals, by indefinite 
multipliers qi and summed the obtained expressions: 
 
    [aq]x + [sq] = [εq]. 
 
The estimator sought was 
 
    xo = – [sq]/[aq] + [εq]/[aq] ≡  – [sq]/[aq] + m. 
 
Tacitly assuming that all the multipliers qi were of the same order, Laplace 
non-rigorously proved a version of the local CLT for n → ∞: 
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where ψ(x) was an even density of observational errors possessing variance. 
Then Laplace determined the multipliers qi by demanding minimal absolute 
expectation of error which led him to the principle of least squares (in the 
case of one unknown) so that x = [as]/[aa]. 
    Finally, Laplace generalized his account to the case of two unknowns. 
The derived principle of least squares essentially depended on the existence 
of the normal distribution. No wonder that Laplace’s theory was not 
practically useful.  
    3) Chapter 4 of the TAP. Laplace non-rigorously proved the CLT for 
sums and sums of absolute values of independent, identically distributed 
errors restricted in value as well as for the sums of their squares and for their 
linear functions. All, or almost all of this material had already been 
contained in his previous memoirs although in 1811 he only proved the local 
theorem for linear functions of errors. In § 23 Laplace formulated his aim: to 
study the mean result of observations nombreuses et non faites encore. This 
was apparently the first direct statement about general populations. 
    4) In Supplement 1 to the TAP Laplace (1816) considered observational 
equations in (say) two unknowns 
 
    ai x + bi y + li = vi, i = 1, 2, …, s. 
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Suppose that ∆x and ∆y are the errors of the least-squares estimators of the 
unknowns, denote the even density of the observational errors by φ(u/n) 
with |u| ≤  n, the moments by the letter k with appropriate subscripts, ξ = 
∆x√s, η = ∆y√s, 
 

    β2 = 2
4 22

k

kk k−
, Q2 =

1

s

i
∑
=

(aiξ + biη)2 and t = 
2

22[ ] k n svv

ks
− . 

 
    Laplace calculated 
 
    P(ξ; η) ~ exp{– Q2(2[vv] – 2t√s)}, P(t) ~ exp{– (β2/4n4) [t + (Q2/s√s)]2}. 
 
    He also obtained P(ξ; η; t) which showed that t was independent of ξ; η; 
or, that the sample variance was independent from the estimators of the 
unknowns, cf. § 9.2; to repeat, the observational errors were assumed to 
possess an even distribution, – and a normal distribution in the limit. For a 
proof see Meadowcroft (1920). 
    Finally, Laplace derived a formula for estimating the precision. Without 
explanation (which appeared on p. 571 of his Supplement 2) he 
approximated the squared sum of the real errors by the same sum of the 
residuals and arrived at an estimator of the variance m = ([vv]/s)1/2. 
Interestingly, Laplace (1814/1995, p. 45) stated that the weight of the mean 
result increases like the number of observations divided [divisé] by the 
number of parameters. 
    5) In Supplement 2 to the TAP Laplace (1818) adopted the normal law 
as the distribution of observational errors themselves and not only as the law 
for their means. Indeed, as he noted, the new repeating theodolites 
substantially reduced the influence of the error of reading and thus equated 
its order with that of the second main error of the measurement of angles in 
triangulation, the error of sighting.  
    Laplace studied the precision of triangulation without allowing for two 
conditions corresponding to the existence of two baselines and, possibly, 
two astronomical azimuths. In line with Bayes (§ 5.1), he tacitly assumed 
that the parameter of precision of the normal distribution was a random 
variable. Laplace also discussed the Boscovich method of adjusting 
meridian arc measurements (§ 6.3.2-3) and showed, basing his derivation on 
variances rather than on absolute expectations as before, that the Boscovich 
method was preferable to the MLSq if, and only if, 
 

    4φ2(0) >
1

2k ′′
, k″ = 2

0
φ( )x x dx

∞

∫  

 
where φ(x) was the even density of observational errors. In Supplement 3 
Laplace again applied the variance as the main measure of precision of the 
observations.  
    According to Kolmogorov (1931), the median is preferable to the 
arithmetic mean if for the population median m 
 

    
1

2σφ( )m
 < 1, σ2 = 2k″. 
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    While translating Laplace’s Mécanique Céleste into English, Bowditch 
(Laplace 1798 – 1825/1832, vol. 2, § 40, Note) stated: 
 
    The method of least squares, when applied to a system of observations, in 
which one of the extreme errors is very great, does not generally give so 
correct a result as the method proposed by Boscovich […]; the reason is, 
that in the former method, this extreme error [like any other] affects the 
result in proportion to the second power of the error; but in the other 
method, it is as the first power. 
 
    In other words, the robustness of the Boscovich method is occasioned by 
its connection with the median. 
 
    7.3. Critical Conclusions  
    Laplace (1814/1995, p. 2) stated that, for a mind, able to comprehend all 
the natural forces, and to submit these data to analysis, there would exist no 
randomness and the future, like the past, would be open to it. Nowadays, 
this opinion cannot be upheld because of the recently discovered 
phenomenon of chaos (§ 1.1). Then, such a mind does not exist so that he 
actually recognized randomness, and Maupertuis (1756a, p. 300) and 
Boscovich (1758, §385) had anticipated him. Laplace (1776/1891, pp. 144 – 
145) did not formally recognize randomness and explained it by ignorance 
of the appropriate causes, or by the complexity of the studied phenomenon; 
in such cases, we nevertheless recognize randomness (§ 1.1). Without 
indicating the dialectical link of randomness and necessity, he even declared 
that the theory of probability was indebted for its origin to the weakness of 
the mind. 
    He applied an unsuitable model when calculating the population of 
France and he insisted on his own impractical justification of the MLSq and 
virtually neglected Gauss. He had not even heuristically introduced the 
notion of random variable and was unable to study densities or 
characteristic functions as mathematical objects. His theory of probability 
therefore remained an applied mathematical discipline unyielding to 
development which necessitated its construction anew. Curiously, Laplace 
(1796/1884, p. 504), actually attributed the planetary eccentricities to 
randomness:  
 
    Had the Solar system been formed perfectly orderly, the orbits of the 
bodies composing it would have been circles whose planes coincided with 
the plane of the Solar equator. We can perceive however that the countless 
variations that should have existed in the temperatures and densities of the 
diverse parts of these grand masses gave rise to the eccentricities of their 
orbits and the deviations of their movement from the plane of that equator. 
 
    Curiously, since Newton had proved that the eccentricities were 
determined by the planets’ initial velocities. However, did Newton get rid of 
randomness? No, not at all: those velocities seem to be random. 
    It is opportune to conclude by quoting Fourier (1829, pp. 375 – 376): 
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    We cannot affirm that it was his destiny to create a science entirely new, 
like Galileo and Archimedes; to give to mathematical doctrines principles 
original and of immense extent, like Descartes, Newton and Leibniz; or, like 

Newton, to be the first to transport himself into the heavens, and to extend 
to all the universe the terrestrial dynamics of Galileo: but Laplace was born 
to perfect everything, to exhaust everything, and to drive back every limit, in 
order to solve what might have appeared incapable of solution. He would 
have completed the science of the heavens, if that science could have been 
completed. 
 
Noteworthy in my context was also Fourier’s opinion (p. 379) about Laplace 
(1796): 
 
    If he writes the history of great astronomical discoveries, he becomes a 
model of elegance and precision. No leading fact ever escapes him. […] 
Whatever he omits, does not deserve to be cited. 
 
    So, did Fourier fail to notice Laplace’s mistake, or was he ignorant of 
Newton’s discovery as well?
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8. Poisson  

 
    Poisson introduced the concepts of random variable and distribution 
function. He contributed to limit theorems and brought into use the law 
of large numbers proving it for the case of Poisson trials, studied 
criminal statistics and systematically determined the significance of 
empirical discrepancies which proved essential for the development of 
statistics and stressed the difference between subjective and objective 
probabilities.  

 
    Key words: law of large numbers, criminal statistics, medical 
statistics, null hypothesis 

 

    8.1. Probability and Statistics 
    8.1.1. General Statements. Libri Carruci et al (1834, p. 535) 
advocated the need for basing statistics on the theory of probability: 
 
    The most sublime problems of the arithmétique sociale can only be 
resolved with the help of the theory of probability. 
 
For their part, Double et al (1835, p. 174) noted its connection with 
treating mass phenomena: 
 
    Statistics carried into effect always is, after all, the functioning 
mechanism of the calculus of probability, necessarily concerning infinite [?] 
masses, an unrestricted number of facts; and (p. 176) [with respect to the 
applicability of mathematics] the state of the medical sciences is not worse 
than, not different from the situation with all the physical and natural 
sciences, jurisprudence, moral and political sciences etc. 
 
Social arithmetic denoted demography, medical statistics and actuarial 
science. In both cases Poisson was co-author.  
    He (1837a, pp. 1 and 36) remarked that in the 18th century, 
probability became a main branch of mathematics with respect both to 
the number and utility of its applications and the kind of analysis 
which it engendered. And, too categorically: No other part of 
mathematics is capable of more or more immediately useful 
applications. 
    On pp. 35 – 36 Poisson defined the aims of the theory of probability 
as determining the cause for believing that a thing is true, and for 
comparing those causes for widely differing problems. He added that 
These principles should be regarded as a necessary supplement to 
logic. The connection of probability with logic originated with Leibniz 
and Lambert and was developed in the 19th century by Boole, Jevons 
and Venn.  
    Poisson (1837a) consistently demanded to check the significance of 
empirical discrepancies, for example between results of different series 
of observations; along with Bienaymé, he was therefore the Godfather 
of the Continental direction of statistics (§ 14.1). True, his approach 
was restricted (§ 8.5). 
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    Poisson’s programme (1837c) of probability calculus paid serious 
attention to population and medical statistics and statistics of financial 
institutions. He also participated in reviewing the desirability of 
establishing a tontine (§ 2.1.3) (Fourier et al 1826). The reviewers 
opposed that project.  
    Poisson (1837a, pp. 140 – 141) introduced a discrete random 
variable but called it by a provisional term, chose A, then (p. 254) went 
over to a continuous random variable. There (1837a, p. 274), and 
earlier he (1833, p. 637) corroborated the transition from discrete to 
continuous by a trick that can be described by Dirac’s delta-function. 
When considering density φ(x) equal to zero everywhere excepting a 
finite number of points ci, i = 1, 2, …, n, and such that 
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Poisson had thus introduced that function of the type of φ(x) = Σgi δ(x – ci). 
    He (1829, § 1; 1837b, pp. 63 and 80) also defined the distribution 
function as F(x) = P(ξ < x) and the density as the derivative of F(x). 
Such functions only became widely used in the 20th century although 
Davidov (1885) noted Poisson’s innovation (Ondar 1971). 
    8.1.2. The De Moivre – Laplace Theorem. Poisson (p. 196) derived the 
integral De Moivre – Laplace theorem with a correction term as an 
asymptotic corollary of his own formula (p. 189) for the probability of an 
event occurring not less than m times in µ = m + n Bernoulli trials with 
probability p of its happening in each trial and q = 1 – p  
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    For small values of q Poisson (p. 205) then derived the approximation 
 
    P ≈ e-ω(1 + ω + ω2/2! + … + ωn/n!)  
 
where mq ≈ µq = ω. He had not provided the expression P(ξ = m) = e-

ωωm/m!. 
    His approximation had been all but ignored, for example, by 
Cournot (1843), until Bortkiewicz (1898a) introduced his law of small 
numbers, allegedly a breakthrough. Kolmogorov (1954), however, 
identified it as the Poisson formula, but did not justify his statement, 
and I (2008) proved it. 
    8.1.3. Poisson Trials. Poisson (1837a) generalized the law 
introduced by Jakob Bernoulli (§ 3.2.3) on the case of variable 
probabilities of success in different trials. Suppose that contrary events 
A and B occur in trial j with probabilities pj and qj (pj + qj = 1). 
Poisson (p. 248) determined the probability that in s trials event A 
occurred m times, and event B, n times (m + n = s). He wrote out the 
generating function of the random variable m (or, the bivariate 
generating function of m and n) as 
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    X = (up1 + vq1) (up2 + vq2) … (ups + vqs)  
 
so that the probability sought was the coefficient of umvn in the development 
of X. His further calculations (lacking in Chapter 9 of Laplace’s TAP) 
included transformations 
 
    u = eix, v = e–ix, upj + vqj = cosx + i(pj – qj) sinx = ρi exp(irj), 
    ρj = {cos2x + [(pj – qj)sinx]2}1/2, rj = arctan[(pj – qj)tanx]. 
 
    Excluding the case of pj or qj decreasing with an increasing s, and without 
estimating the effect of simplifications made, Poisson (pp. 252 – 253) 
derived the appropriate local and integral limit theorems. They were, 
however, complicated and their importance apparently consisted in 
extending the class of studied random variables. 
    8.1.4. Subjective Probabilities. In connection with a generally 
known game Poisson (1825 – 1826) studied sampling without 
replacement. Cards were extracted one by one from six decks shuffled 
together as a single whole until the sum of the points in the sample 
obtained was in the interval [31; 40]. The sample was not returned and 
a second sample of the same kind was made. It was required to 
determine the probability that the sums of the points were equal. 
Poisson was able to solve this difficult analytical problem; from the 
statistical angle, it was interesting in that the probabilities involved 
were assumed the same for both samples which is characteristic for the 
subjective viewpoint, cf. § 1.2. Another problem (Poisson 1837a, p. 
47) concerned an urn containing a finite number of white and black 
balls in an unknown proportion. The subjective probability of 
extracting a white ball occurred to be equal to 1/2. In the theory of 
information, it would have meant least possible information. Just the 
same, the unknown probability of each outcome of a coin toss can be 
proved to be 1/2. 
    8.1.5. The Law of Large Numbers. Here is how he (1837a, p. 7) defined 
this law in his Préambule: 
 
    Things of every kind obey a universal law that we may call the law of 
large numbers. Its essence is that if we observe a very large number of 
events of the same nature, which depend on constant causes and on causes 
that vary irregularly, sometimes in one manner sometimes in another, i.e., 
not progressively in any determined sense, then almost constant proportions 
will be found among these numbers. 
 
    He went on to state qualitatively that the deviations from his law became 
ever smaller as the number of observations increased. Bortkiewicz (1904, p. 
826, Note 13) remarked that the Préambule was largely contained in 
Poisson’s previous work (1835). Poisson (1837a, pp. 8 – 11) illustrated his 
vague definition by various examples, which, however, did not adequately 
explain the essence of the law but were interesting indeed. Thus (pp. 9 and 
10), the LLN explains the stability of the mean sea level and the existence of 
a mean interval between molecules. Beginning with 1829, Poisson’s 
contributions had been containing many direct or indirect pronouncements 
on molecular conditions of substance, local parameters of molecular 
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interactions, etc. sometimes connected with the LLN (Sheynin 1978b, p. 
271, note 25). 
    Poisson then (pp. 138 – 142) formulated but did not prove three 
propositions characterizing the LLN. These were based on the standard 
formula (which Poisson had not written out) 
 
    P(B) = ΣP(Ai) P(B/Ai). 
 
In actual fact, he studied the stability of statistical indicators by means of the 
CLT, see Hald (1998, pp. 576 – 582). Poisson described his law in a very 
complicated way; no wonder that Bortkiewicz (1894 – 1896, Bd. 8, p. 654) 
declared that There hardly exists such a theorem that had met with so many 
objections as the law of large numbers. Here, in addition, is a passage from 
Bortkiewicz’ letter to Chuprov of 1897 (Sheynin 1990a/2011, p. 60): 
 
    Or take […] my last three-hour talk with Markov about the law of sm. 
[small] numbers [§ 14.1.2]. It caused me nothing but irritation. He again 
demanded that I change the title. With respect to this topic we got into 
conversation about the law of l. nn. It happens that Markov (like Chebyshev) 
attributes this term to the case when all the probabilities following one 
another in n trials are known beforehand. […] In concluding, Markov 
admitted that perhaps there did exist ‘some kind of ambiguity’ in Poisson’s 
reasoning, but he believed that it was necessary to take into account the 
later authors’ understanding of the term ‘law of l. nn.’  
 
    It is indeed difficult to examine Poisson’s considerations on that point, 
but at least one of his examples (p. 148ff) is clear. It deals with a throw of 
many coins of the same denomination and mode de fabrication. And, 
although Poisson (p. 147) argued that the probability of (say) heads could be 
established statistically, it seems that his example had to do with unknown 
probabilities. Other examples mentioned above (sea level and interval 
between molecules) can only be understood to include unknown 
probabilities. 
    The LLN was not recognized for a long time. In 1855 Bienaymé declared 
that it contained nothing new (§ 10.2-2) which apparently compelled 
Cournot (1843) to pass it over in silence; Bienaymé came to this view even 
in 1842 (Heyde & Seneta 1977, pp. 46 – 47). Even much later Bertrand 
(1888a, pp. XXXII and 94) considered it unimportant and lacking in rigour 
and precision. However, already Bessel (1838b, especially § 9) guardedly 
called the LLN a principle of large numbers, Buniakovsky (1846, p. 35) 
mentioned it and Davidov (1854?; 1857, p. 11) thought it important.  
    There is a lesser known aspect of the LLN (§ 5.2). Bernoulli, De 
Moivre and Poisson (the Poisson form of the LLN) alleged that their 
findings were just as applicable for the inverse case, in which the 
probability p (or probabilities pi) was (were) unknown and had to be 
estimated by the observed frequency. Even more: Bernoulli and 
Poisson (1836; 1837a) thought that even the existence of p (or pi) was 
(were) not necessary. The former provided an example of an 
individual being taken ill by an infectious disease, Poisson mentioned 
several such cases as stability of the mean sea level, of the mean 
interval between molecules of a body, and (1837a, § 59) of the sex 
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ratio at birth. Nevertheless, it was Bayes (§ 5.2) who investigated the 
inverse case.  
    Poisson proved his LLN by issuing from the CLT which he (1837a, 
pp. 254 – 271) was yet unable to justify rigorously; he had not even 
stated the imposed conditions clearly enough. He also applied the CLT 
for estimating the significance of discrepancies between indicators 
obtained from different series of observations and Cournot (1843, 
Chapters 7 and 8) borrowed his findings without mentioning him. 
Poisson proved the CLT even earlier (1824; 1829). In the first instance 
he introduced the Cauchy distribution and found out (1824, §§ 4 and 
6) that it was stable.  
    Statisticians only recognized the LLN for the case of Bernoulli 
trials, and only when the probability of the studied event existed, 
otherwise they refused to turn to the theory of probability at all (§ 
3.2.3). Even worse, as a rule, they only understood the LLN in a loose 
sense (Ibidem). 
 
    8.2. Theory of Errors  
    In the theory of errors Poisson offered his proof of the CLT and a 
distribution-free test for the evenness of the density of observational errors 
(1829, § 10). When discussing the precision of firing, Poisson (1837b, p. 73) 
stated that the less was the scatter (the appropriate variance) of hit-points, 
the better was the gun. He thus made a step towards recognizing Gauss’ 
choice of least variance as the criterion for adjusting observations (§ 9.1.3), 
but he followed Laplace and never mentioned the Gauss theory of errors 
partly since French mathematicians had been reasonably angered by Gauss’ 
attitude towards Legendre (§ 9.1.1). One of his problems (1837b, § 7) 
consisted in determining the distribution of the square of the distance of 
some point from the origin given the normal distributions of the point’s 
distances from the two coordinate axes. He thus was perhaps the first to treat 
clearly the densities as purely mathematical objects. 
 
    8.3. Criminal Statistics 
    Unlike Laplace, Poisson introduced the prior probability of the 
defendant’s guilt, not to be applied in individual cases. One of 
Poisson’s statements (1837a, pp. 375 – 376) is debatable: he thought 
that the rate of conviction should increase with crime. At the same 
time he (p. 21) recognized that criminality represented l’état moral de 
notre pays. 
    The application of probability theory to jurisprudence had been 
criticized time and time again. Poinsot (Poisson 1836, p. 380) called it 
une fausse application de la science mathématique and unwisely 
quoted Laplace (1814/1886, p. XI) who had remarked that the theory 
of probability was very delicate. Unwisely, because the same Essai 
contained a page (p. LXXVIII) entitled Application du calcul des 
probabilités aux sciences morales where Laplace declared that such 
applications were the effets inévitables du progrès des lumières. The 
same Essai also contained three chapters devoted to such applications 
to say nothing of Laplace’s own work on criminal statistics. 
    Then, Mill (1843/1886, p. 353) had called the application of 
probability to jurisprudence an opprobrium [disgrace] of mathematics. 
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In 1899, Poincaré (Sheynin 1991a, p. 167) approvingly cited him in 
connection with the notorious Dreyfus case and later (1896/1912, p. 
20) stated that people act like the moutons de Panurge. 
    Leibniz, in his letters to Jakob Bernoulli in the very beginning of the 
18th century, Mill, and several modern authors, rather stressed the 
importance of the pertinent circumstances. Nevertheless, Heyde & 
Seneta (1977, pp. 28 – 34) discussed criminal statistics and noticed, on 
p. 31, that there was a surge of activity stimulated by Poisson. Gelfand 
& Solomon (1973) reviewed Poisson’s study and included information 
about the French legal system of his time.  
 
    8.4. Statistical Physics  
    Poisson qualitatively connected his LLN with the existence of a 
stable mean interval between molecules (Gillispie 1963, p. 438). The 
creators of the kinetic theory of gases could have well mentioned this 
opinion as also his important related considerations, but nothing of the 
sort actually happened.  
 
    8.5. Medical Statistics  
    Double et al (1835, p. 173, 174 and 176) with Poisson as co-author 
stated that the application of statistics to medicine was quite possible. 
Anyway, the statistical method did gnaw its way into that science. 
First, population statistics was closely connected with medical 
problems. Leibniz (§ 2.1.4) advocated the compilation of various 
pertinent data. Halley (Ibidem) compiled the first (after Graunt’s not 
really reliable finding) mortality table for a closed population and 
estimated populations from data on births and deaths. Daniel Bernoulli 
(§6.2.3) and Lambert (§ 6.2.2) studied mortality, birth rates and 
sicknesses and their work belongs to the history of probability and of 
medicine. 
    Second, the range of application of the statistical method greatly 
widened after the emergence, in the mid-19th century, of public 
hygiene (largely a forerunner of ecology) and epidemiology. Third, 
about the same time surgery and obstetrics, branches of medicine 
proper, yielded to the statistical method (§ 10.8.1). Fourth and last, in 
1825 a French physician Louis (§ 10.8) introduced the so-called 
numerical method (actually applied much earlier in various branches 
of science) of studying symptoms of various diseases. His proposal 
amounted to the use of the statistical method without involving 
stochastic considerations. Discussions about the work of Louis lasted 
at least a few decades. Gavarret (1840) noted the shortcomings of the 
numerical method, popularized the formulas of probability theory and 
advised to check the null hypothesis. Before taking to medicine, 
Gavarret had graduated from the Ecole Polytechnique. There, he 
studied under Poisson whose influence he (1840, p. XIII) sincerely 
acknowledged. Many authors repeated his recommendations but he 
was not mentioned in the literature pertaining to the breakthrough in 
surgery that took place in the mid-century, the introduction of 
anaesthesia and antiseptic measures (Sheynin 1982, § 6.1). Indeed, 
numerous observations, advocated by Poisson and him, were needed in 
other branches of medicine (epidemiology). 
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    Thus, Liebermeister (ca. 1877, pp. 935 – 940) argued that in 
therapeutics large numbers of observations were lacking and that, 
anyway, recommendations based on several (reliable) observations 
should be adopted as well: 
 
    Theoreticians rather often categorically tell us, practical physicians, that 
all our inferences about the advantages or shortcomings of some methods of 
treatment, so far as they are based on results which have really taken place, 
simply remain up in the air if only we do not apply rigorous rules of the 
theory of probability. […] Physicians have until now applied that theory so 
seldom not so much because they sometimes did not attach proper 
significance to it, but mainly since its analytical arsenal was too imperfect 
and awkward. […] Mathematicians say: If you, physicians, wish to arrive at 
plausible conclusions, you must invariably work with large numbers; you 
ought to collect thousands and hundred thousands observations. […] This, 
however, is impossible for statistics of a general practitioner. And, 
nevertheless, if this condition is fulfilled, it will often be doubtful whether 
the theory of probability is necessary in the same pressing manner. […] 
Gavarret somewhat arbitrarily presumed, as Poisson also did in several 
problems, that 0.9953 or 212:213 […] is a sufficient measure of probability. 
[…] Suppose that the successes of two methods of treatment are only as 
10:1, would not that be sufficient for preferring the first one? 
 
    Liebermeister’s criticism is still valid. Then, beginning with 1863 
and even earlier astronomers and geodesists had begun to offer tests 
for rejecting outliers quite in vein with his reasoning. Previous 
practitioners had also made plausible inferences on the strength of 
scarce data (Bull 1959) whereas Niklaus Bernoulli (1709/1975, p. 302) 
thought that an absentee ought to be declared dead once his death 
becomes only twice as probable as his remaining alive. 
    Liebermeister studied the possibility of distinguishing between equality 
and inequality of success probabilities in two small series of binomial trials. 
Starting from a Laplacean formula based on the existence of uniform prior 
distribution, and assuming that the two probabilities coincided, he 
considered the size of the tail probability (of the hypergeometric 
distribution). His main formula had hardly ever reappeared. See Seneta 
(1994).  
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9. Gauss, Helmert, Bessel 

 
    Gauss introduced the MLSq and Helmert completed its development 
whereas Bessel made important discoveries in astronomy and geodesy but 
was often extremely inattentive. Gauss’ final condition of least variance led 
to effective estimators of the unknowns sought, to jointly effective in case of 
the normal distribution of the observational errors. 
 
    Key words: principle and method of least squares, sample variance, 
adjustment of triangulation, personal equation, deviation from normality 
 
    9.1. Gauss  
    His correspondence and scientific legacy include a study of the mortality 
of newly-born and of the members of tontines, but his main achievement 
was the development of the MLSq. 
    9.1.1. Adjustment of Observations. Denote the observations of a 
constant sought by 
 
    x1, x2, …, xn, x1 ≤ x2 ≤ … ≤ xn.                                                                             
(1) 
 
It is required to determine its value, optimal in some sense, and estimate the 
residual error, its deviation from the real value of the unknown constant, i. 
e., to adjust direct observations. The classical theory of errors considers 
independent observations and, without loss of generality, they might be 
regarded as of equal weight.  
    Suppose now that k unknown magnitudes x, y, z, … are connected by a 
redundant system of n equations (k < n) 
 
    ai x + bi y + ci z + … + si = 0                                                                                  
(2) 
 
whose coefficients are given by the appropriate theory and the free terms are 
measured. The approximate values of x, y, z, … were usually known, hence 
the linearity of (2). The equations are linearly independent (a later notion), 
so that such systems are inconsistent and were solved by allowing small 
enough residual free terms (denote them by vi). This procedure is called 
adjustment of indirect observations. 
    Since the early 19th century the usual condition for solving (2) was that of 
least squares 
 
    W = [vv] = v1

2 + v2
2 + … + vn

2 = min                                                                      
(3) 
 
among all possible values, so that 
 
    ∂ W/ ∂ x = ∂ W/ ∂ y = … = 0.                                                                          
(4) 
 
Equations (4) easily lead to a system of normal equations 
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    [aa] x̂  + [ab] ŷ  + … + [as] = 0, [ab] x̂  + [bb] ŷ  + … + [bs] = 0, …,                 
(5) 
 
having a positive definite and symmetric matrix. For direct measurements 
the same condition (3) leads to the arithmetic mean. Gauss (1828) devised 
another no less important and barely known to statisticians pattern of 
adjusting indirect observations. 
    9.1.2. The Priority Strife. Legendre (1805, pp. 72 – 73) was the first to 
state publicly the condition of least squares. Declaring that the extreme 
errors without regard to sign should be contained within as narrow limits as 
possible (which is achieved by the minimax principle rather than by least 
squares!), he, as translated by Hald (1998, p. 119), continued: 
 
    Among all the principles [of adjusting observations] I think there is no 
one more general, more exact and more easy to apply than that which we 
have made use of in the preceding researches [in the same contribution], 
and which consists in making the sum of the squares of the errors a 
minimum. In this way there is established a sort of equilibrium among the 
errors, which prevents the extremes to prevail and is well suited to make us 
know the state of the system most near the truth. 
 
    Here, Legendre made a mistake: he should have mentioned not errors, but 
residuals. Those shortcomings did not deter Stigler (1986, p. 13) who called 
Legendre’s exposition One of the clearest and the most elegant introduction 
of a new statistical method in the history of statistics. And on p. 146 Stigler 
wrongly praised Legendre as opposed to Gauss. 
Gauss publicly derived the principle of least squares in 1809, but stated 
(1809, § 186) that he had applied the condition of least squares from 1794 or 
1795 and called it his own. His statement offended Legendre (letter to Gauss 
of 31 May 1809, see Gauss, W-9, p. 309) as well as other French 
mathematicians although not Laplace. 
    Gauss (letter of 17.10.1824 to H. C. Schumacher), see W/Erg-5, Tl. 1, p. 
413) bitterly lamented over Legendre’s fate:  
 
    With indignation and distress I have […] read that the pension of the 
elderly Legendre, an ornament to his country and his epoch, was cancelled. 
 
    May (1972, p. 309) formulated a likely opinion about the problem of 
priority as approached by Gauss: 
 
    Gauss cared a great deal for priority. […] But to him this meant being 
first to discover, not first to publish; and he was satisfied to establish his 
dates by private records, correspondence, cryptic remarks in publications. 
[…] Whether he intended it so or not, in this way he maintained the 
advantage of secrecy without losing his priority in the eyes of later 
generations. 
 
    Here is another comment (Biermann 1966, p. 18): What is forbidden for 
usual authors, ought to be allowed for Gausses and in any case we must 
respect his [Gauss’] initial considerations. 
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And of course Legendre’s qualitative statement (and, at that, not quite 
correct) was not comparable to Gauss’ deliberations.  
    Robert Adrain was an American scientist who also derived the normal 
distribution of observational errors, see Coolidge (1926). His not at all 
rigorous work was published in an obscure periodical in 1809 (Hogan 1977) 
rather than in 1808 as stated there.  
    9.1.3. The Two Justifications of Least Squares (Gauss 1809; 1823b). 
In 1809 Gauss (§ 177) assumed as an axiom that the arithmetic mean of 
many observations was the most probable value of the measured constant if 
not absolutely precisely, then very close to it. Together with the principle of 
maximal likelihood (§ 6.3.1), his axiom or postulate (Bertrand 1888a, p. 
176) led to the normal distribution of the observational errors as the only 
possible law. He was hardly satisfied with his derivation. His axiom 
contained qualification remarks, other laws of error were possible and 
maximum likelihood was worse than an integral criterion. It is somewhat 
strange that Gauss himself only mentioned the last item. In his letter to 
Bessel of 1839 (Plackett 1972/1977, p. 287) he stated that the largest 
probability of the value of an unknown parameter was still infinitely small 
so that he preferred to rely on the least disadvantageous game, on minimal 
variance. 
    In 1823 Gauss provided his final justification of the principle of least 
squares by the principle of maximum weight [of minimal variance]  
 

    m2 = 2φ( ) minx x dx
∞

=∫
−∞

 

 
where φ(x) was an even unimodal function. He (§§ 18 and 19) also 
introduced independence of linear functions: they should not contain 
common observations. Then Gauss (§§ 37 – 38) proved that, for n 
observations and k unknowns, the unbiassed sample variance and its 
estimator were, respectively, 
 
    m2 = E[vv]/(n – k), 2

0m  = [vv]/(n – k).                                     (6a, b) 

 
Instead of the mean value, the sum of squares [vv] itself has to be applied. 
Coupled with the principle of maximal weight, formulas (6) provide 
effective estimators, as they are now called. Without mentioning Laplace (§ 
7.2-4), Gauss (1823b, §§ 37 – 38) noted that the previously known formula 
was not good enough. Elsewhere, he (1823a/1887, p. 199) stated that the 
change was also necessary for the dignity of science.  
    Gauss (§ 40) calculated the boundaries of the var 2

0m  by means of the 

fourth moment of the errors but made a mistake, see § 9.2. I note that the 
derivation of (6a) does not depend on the principle of least squares which 
now follows immediately.  
    The unavoidable presence of systematic errors meant that formula (6b) 
should only be applied after completing all the necessary work. For a 
triangulation chain closures of the triangles as well as the discrepancies 
between the baselines situated at the ends of the chain and between its 
astronomically fixed end lines are computed and provide the vi’s thus 
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revealing the influence of systematic errors as much as possible. In 
particular, during observations at a given station, formula (6b) should not be 
relied upon; indeed, Gauss observed each angle at each triangulation station 
until being satisfied that further work was useless. The rejection of outliers 
remains a most delicate problem; at best, statistical criteria are only 
marginally helpful.  
    Gauss’ opinion notwithstanding, his first justification of the principle of 
least squares became generally accepted, in particular because the 
observational errors were (and are) approximately normal and the work of 
Quetelet (§ 10.5) and Maxwell (§ 10.8.5) did much to spread the idea of 
normality whereas his mature contribution (1823b) was extremely 
uninviting. However, the proof of formula (6a), from which the condition of 
least squares immediately follows, is not difficult; Gauss himself provided 
it; it demands linearity and independence of the initial equations (2) and 
unbiassedness of the sought estimators of the unknowns. Therefore, it is 
methodically possible to disregard Gauss’ main extremely difficult 
justification of that condition, to rest content with the actual second 
substantiation. Then, it will not be practically necessary to restrict the 
description of least squares by his initial reasoning of 1809. 
    Why then did not Gauss himself change his description accordingly? At 
least he could have additionally mentioned the alternative. May (1972/1977, 
p. 309) provided a general comment which likely answers my question: In 
particular, by careful and conscious removal from his writings of all trace of 
his heuristic methods [Gauss] maintained an advantage that materially 
contributed to his reputation. Much earlier, Kronecker (1901, p. 42) voiced 
the first part of May’s pronouncement. 
     Examples of deviation from the normal law were accumulating both in 
astronomy and in other branches of natural sciences as well as in statistics, 
see the same § 10.5 (and the missed opportunity mentioned in § 9.3), which 
supported the rejection of the first substantiation of the principle of least 
squares.  
    Tsinger (1862, p. 1) wrongly compared the importance of the Gaussian 
and the Laplacean approaches: 
 
    Laplace provided a rigorous [?] and impartial investigation […]; it can 
be seen from his analysis that the results of the method of least squares 
receive a more or less significant probability only on the condition of a 
large number of observations; […] Gauss endeavoured, on the basis of 
extraneous considerations, to attach to this method an absolute significance 
[…]. With a restricted number of observations we have no possibility at all 
to expect a mutual cancellation of errors and […] any combination of 
observations can […] equally lead to an increase of errors as to their 
diminution.  
 
    Tsinger lumped together both justifications of the principle of least 
squares due to Gauss. Then, practice demanded the treatment of a finite (and 
sometimes a small) number of observations rather than limit theorems. 
Tsinger’s high-handed attitude towards Gauss (and his blind respect for 
Laplace) was not an isolated occurrence, see § 12.2-5. Even a recent author 
(Eisenhart 1964, p. 24) noted that the existence of the second Gaussian 
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approach seems to be virtually unknown to almost all American users of 
least squares except students of advanced mathematical statistics. 
    Gauss (1823b) called his estimators most plausible. In mathematical 
statistics, they are called consistent and effective, meaning that they 
converge in probability to the respective unknowns and that, among such 
estimators, their variance is minimal. In case of the normal distribution, they 
are jointly effective (Petrov 1954) which means that the joint distribution of 
two (say) estimators has the least variance among such distributions of any 
other two estimators (Cramér 1946, § 32.6). All this is in spite of Markov 
(1899a/1951, p. 246) who defended Gauss’ second justification of the 
principle of least squares but declared that the MLSq was not optimal in any 
sense (hence, did not need any justification!). 
    9.1.4. The True Value of a Measured Constant. Astronomers, 
geodesists, metrologists and other specialists making measurements have 
always been using this expression. Mathematical statistics has done away 
with true values and introduced instead parameters of densities (or 
distribution functions), and this was a step in the right direction: the more 
abstract was mathematics becoming, the more useful it proved to be.  
    Fisher was mainly responsible for that change; indeed, he (1922, pp. 309 
– 310) defined the notions of consistency, efficiency and sufficiency of 
statistical estimators without any reference to true values. But then, on p. 
311, he accused the Biometric school of applying the same names to the true 
value which we should like to know […] and to the particular value at which 
we happen to arrive… So the true value was then still alive and even 
applied, as in the lines above, to objects having no existence in the real 
world.  
    Incidentally, the same can be said about Gauss (1816, §§ 3 and 4) who 
repeatedly considered the true value of a measure of precision of 
observations. And Hald (1998) mentioned true value many times in 
Chapters 5 and 6; on p. 91 he said: the estimation of the true value, the 
location parameter… 
    So what is a true value? Markov (1900/1924, p. 323) was the only 
mathematician who cautiously, as was his wont, remarked: It is necessary in 
the first place to presume the existence of the numbers whose approximate 
values are provided by observations. This phrase first appeared in the 1908 
edition of his Treatise (and perhaps in its first edition of 1900). He had not 
attempted to define true value, but this is exactly what Fourier (1826/1890, 
p. 534) had done more than a century before him. He determined the 
véritable objet de la recherche (the constant sought, or its real value) as the 
limit of the arithmetic mean of n appropriate observations as n → ∞. 
Incidentally, he thus provided the Gauss postulate with a new dimension. 
    Many authors, beginning perhaps with Timerding (1915, p. 83) [and 
including Mises (1919/1964a, pp. 40 and 46)], without mentioning Fourier 
and independently from each other, introduced the same definition. One of 
them (Eisenhart 1963/1969, p. 31) formulated the unavoidable corollary: the 
mean residual systematic error had to be included in that real value:  
 
    The mass of a mass standard is […] specified […] to be the mass of the 
metallic substance of the standard plus the mass of the average volume of 
air adsorbed upon its surface under standard conditions. 
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    However, even leaving systematic influences aside, the precision of 
observations is always restricted so that the term limit in the Fourier 
definition (which is in harmony with the Mises definition of probability) 
must not be understood literally.  
    9.1.5. Did Gauss Really Apply Least Squares before 1805? I (Sheynin 
1999b; 1999d) described the possible cases and named many of his 
colleagues and friends to whom he had communicated his discovery. 
Among them were Olbers, Bessel (1832/1848, p. 27), and Wolfgang Bolyai 
(father of the better known Janos Bolyai, a cofounder of the non-Euclidean 
geometry).  
    Unexpectedly, it occurred that von Zach, who allegedly refused to testify 
to Gauss’ priority, had not until 1805 known the formulation of the principle 
of least squares, and, furthermore, that he (1813, p. 98n) indirectly agreed 
with the latter’s statements by repeating them without any qualification 
remark: 
 
    The celebrated Dr Gauss was in possession of that method since 1795 
and he advantageously applied it when determining the elements of the 
elliptical orbits of the four new [minor] planets as it can be seen in his 
excellent work [Theoria motus]. 
 
Regrettably, it is not seen there. This passage is even more important than 
Zach’s editorial acceptance of Gauss’ priority (Dutka 1996, p. 357): in 1809, 
Zach’s periodical, Monatliche Correspondenz, carried an anonymous review 
of Gauss’ Theoria motus, and there, on p. 191, Gauss’ pertinent claim was 
repeated. 
    The case of Olbers is special. 4 Oct. 1809 Gauss asked him: Do you still 
remember […] that […] in 1803 I talked with you about the principle … 
Olbers apparently did not answer (or answered through a third party). Then, 
on 24 Jan. 1812 Gauss asked Olbers whether he will publicly attest to the 
same fact. Yes, with pleasure, answered Olbers 10 March 1812 and, indeed, 
fulfilled his promise in 1816. All this is documented by Plackett (1972/1977, 
pp. 283 – 285).  
    However, Stigler (1986, p. 145), for the first time ever, questioned Gauss’ 
integrity: Gauss solicited reluctant testimony from friends that he had told 
them of the method before 1805. And in 1999, on p. 322, repeating his 
earlier (of 1981) statement of the same ilk: Olbers did support Gauss’s 
claim […] but only after seven years of repeated prodding by Gauss. 
Grasping at straws, Stigler adds an irrelevant reference to Plackett (1972). 
But why did Olbers wait several years (1812 – 1816)? Because, during that 
time he had not published anything suitable, see the appropriate volume of 
the Royal Society’s Catalogue of Scientific Literature. 
    Much later, 3 Dec. 1831, in a letter to H. C. Schumacher (W/Erg-5, Tl. 1, 
p. 292) Gauss remarked that, had he known (better: recalled) Olbers’ 
intention, he would have objected to it. He apparently became sick and tired 
with the entire business. Still later Encke (1851, p. 2) stated that Gauss had 
applied the condition of least squares when determining the orbit of the first-
discovered minor planet (in 1802). Gauss did not comment.  
    Stigler made many other unwarranted and absolutely inadmissible 
remarks humiliating Gauss (and Euler). Here is one of them (Stigler, 1986, 
p. 146), appropriate with respect to a suspected rapist, but not to Gauss: 
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    Although Gauss may well have been telling the truth about his prior use 
of the method, he was unsuccessful in whatever attempts he made to 
communicate it before 1805.  
 
    Gauss’ claim about his early use of least squares is not generally 
accepted, see for example Marsden (1995, p. 185), who nevertheless had not 
mentioned the opposite opinion of Brendel (1924) and Galle (1924, p. 9) or 
of Gauss’ contemporaries. Gerardy (1977), drawing on archival sources, 
discovered that Gauss, in 1802 – 1807, had participated in land surveying 
(in part, for his own satisfaction) and concluded, on p. 19 (note 16) that 
Gauss started using the method not later than in 1803. Regrettably, Gerardy 
concentrated on describing Gauss’ simple calculations and his statement 
mentioned just above was not quite definite. Concerning these testimonies, 
it is not amiss to recall Gauss’ opinion (W-14, pp. 201 – 204) about the 
application of the theory of probability as discussed in a letter of 1841 by W. 
E. Weber: An approach only based on numbers could be greatly mistaken, 
the nature of the studied subject also ought to be taken into account.  
    There are many other instances including that mentioned by von Zach 
(above) in which Gauss could have well applied his invention at least for 
preliminary, trial calculations, or short cuts. For him (Gauss 1809, § 185), 
least squares were not a cut and dry procedure; he allowed himself 
approximate calculations. Then, possible mistakes in calculations and 
weighing the observations could have made justification impossible.  
 
    9.2 Helmert  
    He mainly completed the development of the classical Gaussian theory of 
errors and some of his findings were interesting for mathematical statistics. 
Until the 1930s, Helmert’s treatise (1872) remained the best source for 
studying the error theory and the adjustment of triangulation. When 
adjusting a complicated geodetic net, Helmert (1886, pp. 1 and 86) 
temporarily replaced chains of triangulation by geodetic lines. His 
innovation had been applied in the Soviet Union. The chains of the national 
primary triangulation were situated between baselines and astronomically 
determined azimuths. Before the general adjustment of the entire system, 
each chain was replaced by the appropriate geodetic line; only they were 
adjusted, then the chains were finally dealt with independently one from 
another.  
    Elsewhere Helmert (1868) studied various configurations of geodetic 
systems. In accordance with the not yet existing linear programming, he 
investigated how to achieve necessary precision with least possible effort, 
or, to achieve highest possible precision with a given amount of work. Some 
equations originating in the adjustment of geodetic networks are not linear, 
not even algebraic; true, they can be linearized, and perhaps some elements 
of linear programming could have emerged then, in 1868, but this had not 
happened. Nevertheless, Helmert noted that it was expedient to leave some 
angles of particular geodetic systems unmeasured, but his remark was purely 
academic: all angles ought to be measured at least for checking the work as 
a whole.  
    Abbe (1863) derived the chi-square distribution, see also Sheynin (1966) 
and M. G. Kendall (1971), as the frequency of the sum of the squares of n 



 87 

normally distributed errors. Helmert (1875; 1876) derived the same 
distribution by induction beginning with n = 1 and 2 and Hald (1952/1960, 
pp. 258 – 261) provided a modernized derivation. Much later Helmert 
(1905) offered a few tests for revealing systematic influences in a series of 
errors. Among other results, I note that he (1876) derived a formula that 
showed that, for the normal distribution, [vv], – and, therefore, the variance 
as well,– and the arithmetic mean were independent. He had thus proved the 
important Student – Fisher theorem although without paying any attention to 
it. 
    Czuber (1891, p. 460) testified that Helmert had thought that var 2

0m / 2
0m  

was more important than var 2
0m  by itself and Eddington (1933, p. 280) 

expressed the same opinion. Czuber also proved that, for the normal 
distribution, that relative error was minimal for the estimator (6b). 
    In addition, Helmert noted that for small values of n the var 2

0m  did not 

estimate the precision of formula (6b) good enough. His considerations led 
him to the so-called Helmert transformations. 
    Finally, Helmert (1904) corrected the boundaries of the estimator (6b). 
Kolmogorov et al (1947) independently repeated his finding and wrote the 
correct formula more properly whereas Maltzev (1947) proved that the 
lower bound was attainable.  
 
    9.3. Bessel  
    His achievements in astronomy and geodesy include the determination of 
astronomical constants; the first determination of a star’s parallax; the 
discovery of the personal equation; the development of a method of 
adjusting triangulation; and the derivation of the parameters of the Earth’s 
ellipsoid of revolution. He (1838a) also proved the CLT, but its rigorous 
proof became possible, with a doubtful exception of one of Cauchy’s 
memoirs (§ 10.1), only much later (§ 12.1-3). Incidentally, Gauss was 
familiar with the pertinent problem. In the same letter to Bessel of 1839 
(§9.1.3), he stated that he had read that proof with great interest, but that  
 
this interest was less concerned with the thing itself than with your 
exposition. For the former has been familiar to me for many years, though I 
myself have never arrived at carrying out the development completely. 
 
    The personal equation is the systematic difference of the moments of the 
passage of a star through cross-hairs of the eyepiece of an astronomical 
instrument as recorded by two observers. When studying this phenomenon, 
it is necessary to compare the moments fixed by the astronomers at different 
times and, consequently, to take into account the correction of the clock. 
Bessel (1823) had indeed acted appropriately, but in one case he failed to do 
so, and his pertinent observations proved useless; he made no such 
comment. When studying Bradley’s observations, Bessel (1818) failed to 
note the deviation of their errors from normality. And I (Sheynin 2000) 
discovered 33 mistakes in arithmetical and simple algebraic operations in 
Bessel’s contributions collected in his Abhandlungen (1876). Not being 
essential, they testify to his inattention and undermine the trust in the 
reliability of his more involved calculations. 
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    That Gauss had been familiar with the derivation of the CLT could have 
angered Bessel. Anyway, in 1844, in a letter to Humboldt he (Sheynin 
2001b, p. 168) stressed Legendre’s priority in his dispute. Moreover, in 
1825 Bessel met Gauss and quarrelled with him, although no details are 
known (Ibidem) and even in 1822 Olbers in a letter to Bessel (Erman 1852, 
Bd. 2, p. 69) regretted that the relations between the two scholars were bad.  
 

10. The Second Half of the 19th Century 
 
    Many scientists participated in developing the treatment of observations 
and statistics whose scope had greatly widened. New scientific disciplines 
inseparably connected with it had originated and some discoveries 
concerning the theory of probability were also made although its general 
level did not change.  
 
    Key words: new chapters of statistics, new scientific disciplines, theory 
of evolution, kinetic theory of gases 
 
    Here, I consider the work of several scholars, statistics, and its application 
to various branches of natural sciences. The findings of some natural 
scientists are discussed separately since it proved difficult to describe them 
elsewhere but I included Helmert in Chapter 9. 
 
    10.1. Cauchy 
    He published not less than 10 memoirs devoted to the treatment of 
observations and the theory of probability. In particular, he studied the 
solution of systems of equations by the principle of minimax (§ 1.7), proved 
the theorem in linear programming known to Gauss (§ 6.3.2-3) and applied 
the method of averages (§ 6.3.2-2). Linnik (1958/1961, § 14.5) found out 
that the pertinent estimators were unbiased and calculated their effectiveness 
for the cases of one and two unknown(s).  
    Cauchy (1853b) derived the even density of observational errors 
demanding that the probability for the error of one of the unknowns, 
included in equations of the type of (6.9), to remain within a given interval, 
was maximal. Or, rather, he derived the appropriate characteristic function 
 
    φ(θ) = exp(– cθµ+1), c, θ > 0  
 
and noted that the cases µ = 1 and 0 led to the normal law and to the Cauchy 
distribution, cf. § 8.1.  
    In two memoirs Cauchy (1853c; 1853d) proved the CLT for the linear 
function A = [mε] of independent errors εi having an even density on a finite 
interval. In both cases he introduced characteristic functions of the errors 
and of the function A, obtained for the latter 
 
    Ф(θ) = exp(– sθ2) 
 
where 2s was close to σ2, the variance of A, and arrived at 
 

    P(|А| ≤ α) ≈ 
2

σ π

2α

2
0

exp( ) .
2σ

x
dx−∫  
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    He had also estimated the errors due to assumptions made and 
Freudenthal (1971, p. 142) declared that his proof was rigorous; see, 
however, Heyde & Seneta (1977, pp. 95 – 96).  
    Cauchy devoted much thought to interpolation of functions, and, in this 
connection, to the MLSq, but, like Poisson, he never cited Gauss. In one 
case he (1853a/1900, pp. 78 – 79) even indicated that the MLSq provided 
most probable results only in accordance with the Laplacean approach [that 
is, only for the normal distribution] and apparently considered this fact as an 
essential shortcoming of the method. 
 
    10.2. Bienaymé  
    Heyde & Seneta (1977) described his main findings; I abbreviate their 
work as HS. Bru et al (1997) published two of Bienaymé’s manuscripts and 
relevant archival sources. 
    1) The Liapunov inequalities (Bienaymé 1840b; HS, pp. 111 – 112). 
Without proof, Bienaymé indicated that the absolute initial moments of a 
discrete random variable obeyed inequalities which could be written as 
 
    (E|ξ|m)1/m ≤ (E|ξ|n)1/n, 0 ≤ m ≤ n. 
 
Much later Liapunov (1901a, § 1) proved that 
 
    (E|ξ|m)s–n < (E|ξ|n)s–m < E(|ξ|s)m–n, s > m > n ≥ 0. 
 
He applied these inequalities when proving the CLT. 
    2) The law of large numbers. Bienaymé (1839) noted that the fluctuation 
of the mean statistical indicators was often greater than it should have been 
in accordance with the Bernoulli law, and suggested a possible reason: some 
causes acting on the studied events, as he thought, remained constant within 
a given series of trials but essentially changed from one series to the next 
one. Lexis and other Continental statisticians took up this idea without 
citing Bienaymé (Chapter 14) but it was also known in the theory of errors 
where systematic errors can behave in a similar way. Bienaymé, in addition, 
somehow interpreted the Bernoulli theorem as an attempt to study suchlike 
patterns of the action of causes. He (1855/1876) repeated this statement and, 
on p. 202, he mistakenly reduced the Poisson LLN to the case of variable 
probabilities whose mean value simply replaced the constant probability of 
the Bernoulli trials, also see HS, § 3.3. 
    3) The Bienaymé – Chebyshev inequality (Bienaymé 1853; HS, pp. 121 – 
124; Gnedenko & Sheynin 1978/2001, pp. 258 – 262). This is the name of 
the celebrated inequality 
 
    P(|ξ – Eξ| < β) > 1 – varξ/β2, β > 0.  
 
    Differing opinions were pronounced with regard to its name and to the 
related method of moments. Markov touched on this issue four times. In 
1912, in the Introduction to the German edition of his Treatise (1900a), he 
mentioned the remarkable Bienaymé – Chebyshev method. At about the 
same time he (1912b, p. 218) argued that  
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    Nekrasov’s statement [that Bienaymé’s idea was exhausted in 
Chebyshev’s 
works] is refuted by indicating a number of my papers which contain the 
extension of Bienaymé’s method [to the study of dependent random 
variables]. 
 
    Then, Markov (1914/1981, p. 162) added that the starting point of 
Chebyshev’s second proof of Poisson’s LLN had been […] indicated by 
[…] Bienaymé and that in 1874 Chebyshev himself called this proof a 
consequence of the new method that Bienaymé gave. Nevertheless, Markov 
considered it more correct to call the method of moments after both 
Bienaymé and Chebyshev, and sometimes only after the latter, since it only 
acquires significance through Chebyshev’s work [especially through his 
work on the CLT]. Finally, Markov (Treatise, 1924, p. 92) stated that 
Bienaymé had indicated the main idea of the proof of the inequality, 
although restricted by some conditions, whereas Chebyshev was the first to 
formulate it clearly and to justify it. 
    Bienaymé (1853/1867, pp. 171 – 172) considered a random sum, 
apparently (conforming to the text of his memoir as a whole) consisting of 
identically distributed terms, rather than an arbitrary magnitude ξ, as in the 
formula above. This is what Markov possibly thought of when he mentioned 
some conditions. HS, pp. 122 – 123, regarded his proof, unlike Chebyshev’s 
substantiation [§ 12.1-2], short, simple, and […] frequently used in modern 
courses … Yes, Hald (1998, p. 510) repeated it in a few lines and then got 
rid of the sum by assuming that it contained only one term. Gnedenko 
(1954/1973, p. 198) offered roughly the same proof but without citing 
Bienaymé. 
    Bienaymé hardly thought that his inequality was important (Gnedenko & 
Sheynin 1978/2001, p. 262; Seneta 1998, p. 296). His main goal was to 
prove that only the variance was an acceptable estimator of precision in the 
theory of errors and, accordingly, he compared it with the fourth moment of 
the sums of random [and independent] errors. Consequently, and the more 
so since he never used integrals directly, I believe that Chebyshev (1874); 
see also Gnedenko & Sheynin (1978/2001, p. 262) overestimated the part of 
his predecessor in the creation of the method of moments. Here are his 
words:  
 
    The celebrated scientist presented a method that deserves special 
attention. It consists in determining the limiting value of the integral […] 
given the values of the integrals…  
 
The integrand in the first integral mentioned by Chebyshev was f (x) and the 
limits of integration were [0; a]; in the other integrals, xf (x), x2f (x), … with 
the same limits of integration, f (x) > 0 and A > a. 
    4) Runs up and down (Bienaymé 1874; 1875; HS, pp. 124 – 128). 
Suppose that n observations of a continuous random variable are given. 
Without proof Bienaymé indicated that the number of intervals between the 
points of extremum (almost equal to the number of these points) is 
distributed approximately normally with parameters 
 
    mean …(2n – 1)/3, variance ... (16n – 29)/90.  
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    5) The MLSq (Bienaymé 1852; HS, pp. 66 – 71). Bienaymé correctly 
remarked that least variance for each estimator separately was not as 
important as the minimal simultaneous confidence interval for all the 
estimators (as joint efficiency!). He assumed that the distribution of the 
observational errors was known, made use of its first moments and even 
introduced the first four cumulants and the multivariate Gram – Charlier 
series (Bru 1991, p. 13; Hald 2002, pp. 8 – 9). He determined that 
confidence interval by applying the principle of maximum likelihood, 
introducing the characteristic function of the vector of the errors and making 
use of the inversion formula. True, he restricted his choice of the confidence 
region, but derived here the χ2 distribution. 
    6) A branching process (Bienaymé 1845; HS, pp. 117 – 120). Bienaymé 
had formulated the properties of criticality of a branching process while 
examining the problem of the extinction of noble families that became 
attributed to Galton. D. G. Kendall (1975) reconstructed Bienaymé’s proof 
and reprinted his note.  
    7) When investigating the stability of statistical frequencies (see also item 
2 above), Bienaymé (1840a; HS, pp. 108 – 110) expressed ideas that 
underlie the notion of sufficient estimators. 
 
    10.3. Cournot  
    He intended his main contribution (1843) for a broader circle of readers. 
However, almost completely declining the use of formulas, he hardly 
achieved his goal. Recall also (§ 8.1) that Cournot passed over in silence the 
LLN. I describe his work as a whole; when referring to his main book, I 
mention only the appropriate sections. Chuprov (1925a/1926, p. 227) called 
Cournot the real founder of the modern philosophy of statistics. This seems 
to be exaggerated. He did not substantiate and canonically prove the LLN 
(Chuprov 1905/1960, p. 60; 1909/1959, pp. 166 – 168), did not even 
formulate that law. 
    1) The aim of the theory of probability. It was The creation of methods for 
assigning quantitative values to probabilities (p. 181). He thus moved away 
from Laplace (§ 7.1) who had seen the theory as a means for revealing the 
laws of nature.  
    2) The probability of an event. Cournot’s definition (§ 18) included 
geometric probability, which had been lacking any formula, and combined it 
with the classical case. He (§ 113) also introduced probabilities unyielding 
to measurement and (§§ 233 and 240.8) called them philosophical. They 
might be related to expert estimates whose treatment is now included in the 
province of mathematical statistics. 
    3) The term médiane. This is due to Cournot (§ 34). 
    4) The notion of randomness. Cournot (§ 40) repeated its ancient 
connection with the intersection of chains of events (my § 1.1), and, in § 43, 
indirectly connected randomness with unstable equilibrium by remarking 
that a right circular cone, when stood on its vertex, fell in a random 
direction. Cournot (1851, § 33, Note 38; 1861, § 61, pp. 65 – 66) also 
recalled Lambert’s attempt to study randomness (see my § 6.1.3), and 
(1875/1979, pp. 177 – 179) applied Bienaymé’s test (§ 10.2-4) for 
investigating whether the digits of the number π were random but 
reasonably abstained from a final conclusion. 
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    5) Dependence between the decisions of judges and/or jurors. Cournot 
(1838; 1843, §§ 193 – 196 and 206 – 225) gave thought to this issue but his 
study was hardly successful in the practical sense. 
    6) A critical attitude towards statistics; a description of its aims and 
applications (Chapters 7 and 8 and §§ 103 – 120). Statistics (§ 105) should 
have its theory, rules, and principles, it ought to be most widely applied; its 
main goal was to ascertain the knowledge of the essence of things, to study 
the causes of phenomena (§ 120) and the principe de Bernoulli was its only 
pertinent sound foundation (§ 115). Statistics had blossomed exuberantly 
and [the society] should be on guard against its premature and wrong 
applications which might discredit it for some time (§ 103). 
    7) Explanation of known notions and issues (§§ 64 – 65, 73 – 74). 
 
    10.4. Buniakovsky  
    His treatise (1846) was the first comprehensive Russian contribution so 
that Struve (1918) called him a Russian student of the French mathematical 
school. A list of his contributions is in Materialy (1917).  
    1) The theory of probability. Buniakovsky (1846, p. I) correctly 
attributed it to applied mathematics.  
    2) Moral expectation (see § 6.1.1). Buniakovsky (1846, pp. 103 – 
122) independently proved Daniel Bernoulli’s conclusion that an equal 
distribution of the cargo on two ships increased the moral expectation 
of the freightowner’s capital as compared with transportation on a 
single ship. Later he (1880) considered the case of unequal 
probabilities of the loss of the ships. 
    3) Geometric probabilities (§ 6.1.6). Buniakovsky (1846, pp. 137 – 
143) generalized the Buffon problem by considering the fall of the 
needle on a system of congruent equilateral triangles. His geometric 
reasoning was, however, complicated and his final answer, as Markov 
(Treatise, 1900/1924, p. 270) maintained, was wrong. Earlier 
Buniakovsky (1836 – 1837) remarked that the solution of such 
problems might help to determine the values of special transcendental 
functions.  
    4) Statistical control of quality. Buniakovsky (1846, Adendum) 
proposed to estimate military losses by sample data but his study was 
hardly useful. He (1846, pp. 468 – 469) also indicated that his findings 
might facilitate the acceptance of a very large number of articles and 
supplies only a fraction of which was actually examined. 
    5) The history of the theory of probability. Buniakovsky was one of 
the first after Laplace to consider this subject and made a few of 
factual mistakes. 
    6) Population statistics. Buniakovsky (1846, pp. 173 – 213) 
described various methods of compiling mortality tables, studied the 
statistical effect of a weakening or disappearance of some cause of 
death (cf. § 6.2.3), calculated the mean and the probable durations of 
marriages and associations and, following Laplace, solved several 
other problems. 
    After 1846, Buniakovsky continued these investigations. He 
compiled mortality tables for Russia’s Orthodox believers and tables 
of their distribution by age (1866a; 1866b; 1874) and estimated the 
number of Russian conscripts ten years in advance (1875b). No one 
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ever verified his forecast and the comments upon his tables 
considerably varied. Bortkiewicz (1898b) sharply criticized them. 
Finally, Novoselsky (1916, pp. 54 – 55) indicated that Buniakovsy’s 
data were inaccurate and incomplete (as Buniakovsky himself had 
repeatedly stressed) but called his tables a great step forward. 
    7) Buniakovsky’s urn problem (1875a) was connected with partition of 
numbers. An urn contains n balls numbered from 1 through n. All at once, m 
balls (m < n) are extracted; determine the probability that the sum of the 
numbers drawn was equal to s. This problem is due to Laplace (TAP, 
Chapter 2) and Laurent (1873) who referred to Euler (1748, Chapter 16). 
    Markov (1914/1981, p. 162) considered Buniakovsky’s treatise (1846) a 
beautiful work and Steklov (1924, p. 177) believed that it was complete and 
outstanding. Buniakovsky did not, however, pay attention to the work of 
Chebyshev; after 1846, he actually left probability for statistics. 
 
    10.5. Quetelet  
    At the beginning of his scientific career Quetelet visited Paris and I think 
that Fourier (1821 – 1829) had inspired him. Quetelet tirelessly treated 
statistical data and attempted to standardize statistics on an international 
scale. He was co-author of the first statistical reference book (Quetelet & 
Heuschling 1865) on the population of Europe (including Russia) and the 
USA that contained a critical study of the initial data; in 1853, he (1974, pp. 
56 – 57) served as chairman of the Conférence maritime pour l’adoption 
d’un système uniforme d’observation météorologiques à la mer and the 
same year he organized the first International Statistical Congress. K. 
Pearson (1914 – 1930, 1924, vol. 2, p. 420) praised Quetelet for organizing 
official statistics in Belgium and […] unifying international statistics. About 
1831 – 1833 Quetelet had suggested the formation of a Statistical Society in 
London, now called the Royal Statistical Society. 
    Quetelet’s writings (1869; 1871) contain many dozen of pages devoted to 
various measurements of the human body, of pulse and respiration, to 
comparisons of weight and stature with age, etc. and he extended the 
applicability of the normal law to this field. Following Humboldt’s advice 
(Quetelet 1870), he introduced the term anthropometry and thus curtailed 
the boundaries of anthropology. He was influenced by Babbage (1857), an 
avid collector of biological data. In turn, Quetelet impressed Galton (1869, 
p. 26) who called him the greatest authority on vital and social statistics. 
    Quetelet (1846) recommended the compilation of questionnaires and the 
preliminary checking of the data; maintained (p. 278) that too many 
subdivisions of the data was a charlatanisme scientifique, and, what was 
then understandable, opposed sampling (p. 293). Darwin (1887, vol. 1, p. 
341) approvingly cited that contribution whereas Quetelet never mentioned 
Darwin and (1846, p. 259) declared that the plants and the animals have 
remained as they were when they left the hands of the Creator. He collected 
and systematized meteorological observations and described the tendency of 
the weather to persist by elements of the theory of runs, cf. § 10.8.3. Köppen 

(1875, p. 256), an eminent meteorologist, noted that ever since the early 
1840s the Belgian meteorological observations proved to be the most lasting 
[in Europe] and extremely valuable. 
    Quetelet discussed the level of postal charges (1869, t. 1, pp. 173 and 
422) and rail fares (1846, p. 353) and recommended to study statistically the 
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changes brought about by the construction of telegraph lines and railways 
(1869, t. 1, p. 419). He (1836, t. 2, p. 313) quantitatively described the 
monotone changes in the probabilities of conviction of the defendants 
depending on their personality (sex, age, education) and Yule (1900/1971, 
pp. 30 – 32) called it the first attempt to measure association. 
    Quetelet is best remembered for the introduction of the Average man 
(1832a, p. 4; 1832b, p. 1; 1848b, p. 38), inclinations to crime (1832b, p. 17; 
1836, t. 2, p. 171 and elsewhere) and marriage (1848a, p. 77; 1848b, p. 38), 
– actually, the appropriate probabilities, – and for mistaken (Rehnisch 1876) 
statements about the constancy of crime (1829, pp. 28 and 35 and many 
other sources) whose level he (1836, t. 1, p. 10) connected with the general 
organization of the society. The two last-mentioned items characterized 
Quetelet as the follower of Süssmilch (§ 6.2.2) in originating moral 
statistics. Quetelet (1848a, p. 82; 1869, t. 2, p. 327) indicated that the 
inclination to crime of a given person might differ considerably from the 
apparent mean tendency and (1848a, pp. 91 – 92) related these inclinations 
to the Average man, but statisticians did not notice that reservation and 
denied inclinations and even probability theory. True, many of them, e. g., 
Haushofer (1882) or Block (1886), only applied arithmetic.  
    The Average man, as he thought, was the type of the nation and even of 
entire mankind. Reasonable objections were levelled against this concept. 
Thus, he (1846, p. 216) only mentioned the Poisson LLN in connection with 
the mean human stature. The Average man was physiologically impossible 
(the averages of the various parts of the human body were inconsistent one 
with another), and Bertrand (1888a, p. XLIII) ridiculed Quetelet:  
 
    In the body of the average man, the Belgian author placed an average 
soul. He has no passions or vices [wrong, see above], he is neither insane, 
nor wise, neither ignorant nor learned. […] [He is] mediocre in every sense. 
After having eaten for thirty-eight years an average ration of a healthy 
soldier, he has to die not of old age, but of an average disease that statistics 
discovers in him. 
 
    However, that concept is useful at least as an average producer and 
consumer; Fréchet (1949) replaced him by a closely related typical man. 
    Quetelet (1848a, p. 80; 1869, t. 2, pp. 304 and 347) noticed that the 
curves of the inclinations to crime and to marriage plotted against ages were 
exceedingly asymmetric. He (1846, pp. 168 and 412 – 424) also knew that 
asymmetric densities occurred in meteorology and he (1848a, p. viii) 
introduced a mysterious loi des causes accidentelles whose curve could be 
asymmetric (1853, p. 57)! No wonder Knapp (1872, p. 124) called him rich 
in ideas, but unmethodical and therefore unphilosophical. Nevertheless, 
Quetelet had been the central figure of statistics in the mid-19th century. 
 
    10.6. Galton  
    Being influenced by his cousin, Darwin, Galton began to study the 
heredity of talent (1869). In a letter of 1861 Darwin (1903, p. 181) 
favourably mentioned it. Darwin (1876/1878, p. 15) also asked Galton to 
examine his investigation of the advantages of cross-fertilization as 
compared with spontaneous pollination. Galton solved that problem by 
applying rank correlation. Then, he (1863) devised an expedient system of 
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symbols for weather charts and immediately discovered the existence of 
previously unknown anticyclones. He (K. Pearson 1914 – 1930, vol. 2, 
Chapter 12) also invented composite photographs of people of a certain 
nationality or occupation, or criminals, all of them taken on the same film 
with an appropriately shorter exposure. 
    Galton, in 1892, became the main inventor of fingerprinting. Another of 
Galton’s invention (1877) was the so-called quincunx, a device for 
demonstrating the appearance of the normal distribution as the limiting case 
of the binomial law which also showed that the normal law was stable. 
Galton’s main statistical merit consisted, however, in the introduction of the 
notions of regression and correlation. The development of correlation theory 
became one of the aims of the Biometric school (§ 14.2), and Galton’s close 
relations with Pearson were an important cause of its successes. 
 
    10.7. Statistics  
    Delambre (1819, p. LXVII) argued that statistics was hardly ever engaged 
in discussions or conjectures and did not aim at perfecting theories, and that 
political arithmetic ought to be distinguished from it. Under statistics he 
understood geodetic, meteorological and medical data, mineralogical 
descriptions and even art expositions.  
    The London Statistical Society declared that statistics does not discuss 
causes, nor reason upon probable effects (Anonymous 1839, p. 1). True, 
they denied that the statist [!] rejects all deductions, or that statistics 
consists merely of columns of figures and stated that all conclusions shall be 
drawn from well-attested data and shall admit of mathematical 
demonstration. This announcement was thus ambiguous; the Society 
attempted to adhere to its former statement, but in vain. Woolhouse (1873, 
p. 39) testified that These absurd restrictions have been necessarily 
disregarded. Indeed, that statistics should explain the present state of a 
nation by considering its previous states was declared a century before 
(Gatterer 1775, p. 15). And the very title of Dufau (1840) called statistics 
The theory of studying the laws according to which the social events are 
developing. 
    During the 19th century the importance of statistics had been considerably 
increasing. Graunt (1662/1939, p. 79) was not sure whether his work would 
be necessary to many, or fit for others, than the Sovereign, and his chief 
Ministers […] and the investigations of the sex ratio at birth (§§ 2.2.4, 3.3.4, 
4.4, 6.1.1) had not found direct applications. However, by the mid-19th 
century it became important to foresee how various transformations will 
influence society and Quetelet (§ 10.5) repeatedly stressed this point. Then, 
at the end of the 19th century censuses of population, answering an ever 
widening range of questions, began to be carried out in various countries. 
However,  
    1) Public opinion was not yet studied, nor was the quality of mass 
production checked by statistical methods.    
    2) Sampling had been considered doubtful. Cournot (1843) passed it over 
in silence and Laplace’s sample determination of the population of France (§ 
7.1-5) was largely forgotten. Quetelet (§ 10.5) opposed sampling. Much 
later Bortkiewicz (1904, p. 825) and Czuber (1921, p. 13) called sampling 
conjectural calculation although already the beginning of the century 
witnessed legions of new data (Lueder 1812, p. 9) and the tendency to amass 



 96 

sometimes useless or unreliable data revealed itself in various branches of 
natural sciences (§ 10.8).  
    3) The development of the correlation theory began at the end of the 19th 
century (§§ 10.6, 14.2), but even much later Kaufman (1922, p. 152) 
declared that the so-called method of correlation adds nothing essential to 
the results of elementary analysis. See, however, § 13.2-4. 
    4) Variance began to be applied in statistics only after Lexis (§ 14.1.1), 
but even later Bortkiewicz (1894 – 1896, Bd. 10, pp. 353 – 354) stated that 
the study of precision was a luxury, and that the statistical flair was much 
more important. This opinion had perhaps been caused by the presence of 
large systematic corruptions in the initial materials.  
    5) Preliminary data analysis (generally recognized only a few decades 
ago) is necessary, and should be the beginning of the statistician’s work. 
Halley, in 1701, see § 2.1.4, drew lines of equal magnetic declinations over 
North Atlantic, also see § 10.8.3, which was a splendid example of such 
analysis. 
    6) Econometrics originated only in the 1930s. 
    I list now the difficulties, real and imaginary, of applying the theory of 
probability to statistics. 
    7) The absence of equally possible cases whose existence is necessary for 
understanding the classical notion of probability. Statisticians repeatedly 
mentioned this cause, also see § 3.2.3. Lexis (1874/1903, pp. 241 – 242; 
1886, pp. 436 – 437; 1913, p. 2091) wavered; he had no integral viewpoint. 
    8) Disturbance of the constancy of the probability of the studied event 
and/or of the independence of trials. Before Lexis statisticians had only 
recognized the Bernoulli trials; and even much later, again Kaufman (1922, 
pp. 103 – 104), declared that the theory of probability was applicable only to 
these trials, and, for that matter, only in the presence of equally possible 
cases.  
    9) The abstract nature of the (not yet axiomatized) theory of probability. 
The history of mathematics testifies that the more abstract it became, the 
wider had been the range of its applicability. Nevertheless, statisticians had 
not expected any help from the theory of probability. Block (1878/1886, p. 
134) thought that it was too abstract and should not be applied too often, and 
Knapp (1872, p. 115) called it difficult and hardly useful beyond the sphere 
of games of chance and insurance. In 1911, G. von Mayr declared that 
mathematical formulas were not needed in statistics and privately told 
Bortkiewicz that he was unable to bear mathematics (Bortkevich & Chuprov 
2005, Letter 109 of 1911).  
    Statisticians did not trust mathematics; see § 3.2 concerning the LLN. 
They never mentioned Daniel Bernoulli who published important statistical 
memoirs, see Bibliography, almost forgot insurance, barely understood the 
treatment of observations (see § 9.1), did not notice Quetelet’s mistakes or 
his inclinations to crime and to marriage (see § 10.5).  
    Two circumstances explained the situation. First, mathematicians often 
did not show how to apply their findings in practice. Poisson (1837a) is a 
good example; his student Gavarret (1840) simplified his formulas, but still 
insisted that conclusions should be based on a large number of observations 
which was often impossible (see § 8.5). Second, student-statisticians barely 
studied mathematics and, after graduation, did not trust it; see § 3.2 re the 
LLN. 
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    It is not amiss to mention here the pioneer attempt to create mathematical 
statistics (Wittstein 1867). He compared the situation in statistics with the 
childhood of astronomy and stressed that statistics (and especially 
population statistics) needed a Tycho and a Kepler to proceed from reliable 
observations to regularities. Specifically, he noted that statisticians did not 
understand the essence of probability theory and never estimated the 
precision of the results obtained. The term mathematical statistics is 
apparently due to him.  
 
    10.8. Statistics and Natural Sciences  
    The statistical method gave rise to stellar statistics, epidemiology, public 
hygiene (the forerunner of ecology), climatology, medical statistics, 
geography of plants, zoogeography, biometry, and kinetic theory of gases. 
Opposition to it can be explained by attachment of mean indicators to 
individuals (Comte 1830 – 1842, t. 3/1893, No. 40, p. 329). Then, Louis 
(1825) introduced the so-called numerical method by calculating the 
frequencies of the symptoms of various diseases so as to facilitate 
diagnosing. He (pp. xvii – xviii) even thought that, given observations, any 
physician ought to make the same conclusion. Bouillaud (1836) favourably 
described the numerical method. D’Alembert (§ 6.2.3) offered astounding 
and patently wrong statements on this subject and Greenwood (1936, p. 139) 
excessively praised it: 
 
    Some heart-breaking therapeutic disappointments in the history of 
tuberculosis and cancer would have been avoided if the method of Louis had 
been not merely praised, but generally used during the last fifty years. 
 
    Compilation of data does not contradict statistics; the numerical method 
has its place in science. True, as Gavarret (1840, p. x) remarked, it was not 
in itself scientific and was not based on general philosophy. D’Amador 
(1837, p. 12) wrongly attributed the numerical method to probability theory. 
The numerical method can be traced back to the 18th century (see below) 
and my description (§§ 10.8. 1 – 10.8.4) shows that it continued in existence 
for many decades. Furthermore, empiricism had been a feature of the 
Biometric school (§ 14.2). It originated with Anchersen (1741) when 
statisticians have begun to describe states in a tabular form (and thus 
facilitated the use of numbers), see § 6.2.1. Recall (§ 2.1.4), moreover, that 
Leibniz recommended compilation of Staatstafeln. 
    In statistics proper, Fourier’s Recherches (1821 – 1829) concerning Paris 
and the Département de la Seine almost exclusively consisted of statistical 
tables with data on demography, industry, commerce, agriculture and 
meteorology. True, empiricism was not sufficient even for compiling tables. 
Then, the abundance of materials led to the wrong idea that a mass of 
heterogeneous data was better than a small amount of reliable observations 
(§ 10.8.1).  
    10.8.1. Medicine. In 1835, Double et al (§ 8.5) indicated that statistics 
might be applied in medicine. Surgery occurred to be the first branch of 
medicine to justify their opinion. Already in 1839 there appeared a (not 
convincing) statistical study of the amputation of limbs. J. Y. Simpson 
(1847 – 1848/1871, p. 102) mistakenly attempted to obtain reliable results 
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by issuing from materials pertaining to several English hospitals during 
1794 – 1839: 
 
    The data I have adduced […] have been objected to on the ground that 
they are collected from too many different hospitals, and too many sources. 
But, […] I believe all our highest statistical authorities will hold that this 
very circumstance renders them more, instead of less, trustworthy. 
 
    I ought to add, however, that Simpson (Ibidem, p. 93) stated that only a 
statistical investigation could estimate the ensuing danger. Soon afterwards 
physicians learned that the new procedure, anaesthesia, could cause 
complications, and began to compare statistically the results of amputations 
made with and without using it. 
    Simpson (1869 – 1870/1871, title of contribution) also coined the term 
Hospitalism which is still in vogue. He compared mortality from 
amputations made in various hospitals and reasonably concluded, on the 
strength of its monotonous behaviour, that mortality increases with the 
number of beds; actually (p. 399), because of worsening of ventilation and 
decrease of air space per patient. Suchlike justification of conclusions was 
not restricted to medicine, cf. Quetelet’s study of probabilities of conviction 
of defendants in § 10.5. 
    At about the same time Pirogov began to compare the merits of the 
conservative treatment of the wounded versus amputation. Much later he 
(1864, p. 690) called his time transitional: 
 
    Statistics shook the sacred principles of the old school, whose views had 
prevailed during the first decades of this century, – and we ought to 
recognize it, – but it had not established its own principles. 
 
    Pirogov (1849, p. 6) reasonably believed that the application of statistics 
in surgery was in complete agreement with the latter because surgical 
diseases depended incomparably less on individual influences but he 
indicated that medical statistics was unreliable, that (1864/1865 – 1866, p. 
20) a general impression based on sensible observation of cases was better. 
He (1879/1882, p. 40) singled out extremely different circumstances and 
stressed (1871, pp. 48 – 49) the importance of efficient administration. 
Pirogov participated in the Crimean war, in which Florence Nightingale, on 
the other side, showed her worth both as a medical nurse and a statistician. 
She would have approved of Pirogov’s conclusion above.  
    Pirogov was convinced in the existence of regularities in mass 
phenomena. Thus (1850 – 1855/1961, p. 382), each epidemic disease as well 
as each considerable operation had a constant mortality rate, whereas war 
was a traumatic epidemic (1879/1882, p. 295). This latter statement 
apparently meant that under war conditions the sickness rate and mortality 
from wounds obeyed statistical laws. Then (1854, p. 2), the skill of the 
physicians [but not of witch doctors] hardly influenced the total result of the 
treatment of many patients. 
    Farr’s study of cattle plague of 1866 (Brownlee 1915) methodically 
belonged to epidemiology. Here is his reasoning. Denote the number of 
attacks of the plague during a period of four weeks by s and time by t. He 
noted that the third differences of lns were constant, so that 
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    s = Cexp{δt[t + m)2+ n]}, C > 0, δ < 0.  
 
    It was Brownlee who supplied this formula because Farr was unable to 
insert it in his newspaper letter. Farr’s calculated values of s did not agree 
with actual figures, but at least he correctly predicted a rapid decline of the 
epidemic. Enko (1889) provided the first mathematical model (of measles) 
in epidemiology proper (Dietz 1988). 
    Epidemiology was properly born when cholera epidemics had been 
ravaging Europe. Snow (1855) compared mortality from cholera for two 
groups of the population of London, whose drinking water was either 
purified or not, ascertained that purification decreased mortality by eight 
times, and thus discovered how did cholera epidemics spread. Pettenkofer 
(1886 – 1887) published a monstrous collection of statistical materials 
pertaining to cholera, but was unable to process them. He (1865, p. 329) 
stressed that cholera epidemics were impossible at a certain moment without 
a local disposition to it which does not contradict modern ideas about 
necessary threshold values. However, he did not believe in contemporary 
bacteriological studies.  
    Seidel (1865 – 1866) investigated the dependence of the monthly cases of 
typhoid fever on the level of subsoil water, and then on both that level and 
the rainfall and quantitatively (although indirectly and with loss of 
information) estimated the significance of the studied connections. 
    Already Leibniz (§ 2.1.4) recommended to collect and apply information 
concerning a wide range of issues, which pertained to public hygiene. 
Condorcet (1795/1988, pp. 316 and 320) described the aims of 
mathématique sociale [political arithmetic] and mentioned the study of the 
influence of temperature, climate, properties of soil, food and general habits 
on the ratio of men and women, birth-rate, mortality and number of 
marriages. M. Lévy (1844) attempted to consider these causes. 
    Public hygiene began statistically studying problems connected with the 
Industrial Revolution in England and, in particular, by the great infant 
mortality (Chadwick 1842/1965, p. 228). Also, witness Farr (ca. 1857/1885, 
p. 148): Any deaths in a people exceeding 17 in a 1,000 annually are 
unnatural deaths. Unnatural, but common! 
Pettenkofer (1873) estimated the financial loss of the population of Munich 
ensuing from such diseases as typhoid fever and his booklet can be 
attributed to this discipline. 
    10.8.2. Biology. The attempts to connect the appearance of leaves, 
flowers and fruits on plants of a given species with the sums of mean daily 
temperatures began in the 18th century (Réaumur 1738) and Quetelet (1846, 
p. 242) proposed to replace those sums by the sums of squares, but he was 
still unable to compare both procedures quantitatively. Also in the 19th 
century, vast statistical materials describing the life of plants were published 
(DeCandolle 1832), and Babbage (1857) compiled a statistical questionnaire 
for the class of mammalia. In Russia, Baer (1860 – 1875) with associates 
conducted a large-scale statistical investigation of fishing. 
    Humboldt created the geography of plants (Humboldt & Bonpland 1815; 
Humboldt 1816) which was based on collecting and estimating statistical 
data. Darwin had to study various statistical problems, for example on cross-
fertilization of plants (§ 10.6), the life of earthworms (§ 11.2) and on the 



 100 

inheritance of a rare deformity in humans (1868/1885, vol. 1, p. 449). 
Statistical tables and summaries with qualitative commentaries occur in a 
number of Darwin’s writings and he also collected statistical data.  
    The stochastic essence of the evolution hypothesis was evident both for 
its partisans and the opponents; Boltzmann, however, was an exception (§ 
10.8.5). I reconstruct now Darwin’s model of evolution. Introduce an n-
dimensional (possibly with n = ∞) system of coordinates, the body 
parameters of individuals belonging to a given species (males and females 
should be treated separately), and the appropriate Euclidean space with the 
usual definition of distances between its points. At moment tm each 
individual is some point of that space and the same takes place at moment 
tm+1 for the individuals of the next generation. Because of the vertical 
variation, these, however, will occupy somewhat different positions. 
Introduce in addition point (or subspace) V, corresponding to the optimal 
conditions for the existence of the species, then its evolution will be 
represented by a discrete stochastic process of the approximation of the 
individuals to V (which, however, moves in accordance with the changes in 
the external world) and the set of individuals of a given generation 
constitutes the appropriate realization of the process. Probabilities 
describing it (as well as estimates of the influence of habits, instincts, etc) 
are required for the sake of definiteness, but they are of course lacking. 
    Darwin (1859/1958, p. 77) vividly described the difficulties of his 
hypothesis (and at the same time offered one of his differing explanations of 
randomness as the effect of complicated causes):  
 
    Throw up a handful of feathers and all fall to the ground according to 
definite laws; but how simple is the problem where each shall fall compared 
with problems in the evolution of species. 
 
    The main mathematical argument against Darwin’s hypothesis was that a 
purposeful evolution under uniform randomness was impossible or at least 
demanded enormous time. Only Mendel’s contributions (1866; letters of 
1866 – 1873, published in 1905), forgotten until the beginning of the 20th 
century, and then the study of mutation allowed to answer such criticisms. 
Many objections and problems still remain, but Darwin had transformed 
biology as a science. In addition, his work was responsible for the 
appearance of the Biometric school (§ 14.2). 
    Mendel only applied the binomial distribution in an elementary way, but 
his memoir marked the origin of genetics and provided an example of a 
fundamental finding achieved by elementary means. His experiments 
became the object of discussions with regard to his subjective and objective 
honesty. Fisher (1936) and van der Waerden (1968) participated in the 
debates, and all doubts have possibly blown over the more so since 
Mendel’s life and his meteorological observations and investigations testify 
in his favour. According to a communication from Prof. Walter Mann, a 
grandson of Mendel’s nephew Alois Schindler, and the latter’s report of 
1902, Mendel was German. In 1945 – 1946 the descendants of his relatives 
were driven out of the then Czechoslovakia.  
    10.8.3. Meteorology. Humboldt (1818, p. 190) stressed the importance of 
studying the mean state of the atmosphere: 
 



 101 

    To discover the laws of nature [in meteorology] we ought to determine 
the mean state of the atmosphere and the constant type of its variations 
before examining the causes of the local perturbations. 
 
    In general, he (1845 – 1862, Bd. 1, pp. 18 and 72; Bd. 3, p. 288) 
conditioned the investigation of natural phenomena by examination of mean 
states. In the latter case he mentioned the sole decisive method [in natural 
sciences], that of the mean numbers. He himself (1817, p. 466) introduced 
isotherms and climatic belts (§ 1.3) and thus separated climatology from 
meteorology; he (1845 – 1862, Bd. 4, p. 59) had borrowed the idea of 
contour lines from Halley (§ 2.1.4). When defining climate, he (1831, p. 
404) nevertheless had not directly linked it with mean states as later scholars 
did (Körber 1959, p. 296). 
    Köppen (1874, p. 3) believed that the introduction of the arithmetic mean 
in meteorology was the most important step, but that it was not sufficient all 
by itself. Indeed, Dove (1839, p. 285) formulated the aims of meteorology 
as the determination of mean values [of temperature], derivation of the laws 
of [its] periodic changes and indication of rules for [determining its] 
irregular changes. Later he (1850, p. 198) introduced monthly isotherms. 
Buys Ballot (1850, p. 629) stated that the study of deviations from mean 
values (mean states) constituted the second stage in the development of 
meteorology. He (1847, p. 108) noted that a similar process was going on in 
astronomy and in all sciences that did not admit experimentation.  
    Meteorological observations multiplied, and they had been published 
almost uselessly. Biot (1855, pp. 1179 – 1180) had opposed that practice 
and Mendeleev (1876/1946, p. 267) remarked that the prevailing collecting 
school of meteorologists needed nothing but numbers and numbers. Later he 
(1885/1952, p. 527) decided that a new meteorology was being born and 
that little by little it had begun, [still] basing its work on statistical data, to 
master, synthesize, forecast. 
    Lamont (1867, p. 247) maintained that the irregular temporal changes of 
the atmosphere were not random in the sense of the calculus of probability 
and (p. 245) recommended, instead, simultaneous observations made at 
different localities. Quetelet (1849, t. 1, Chapt. 4, p. 53) remarked that the 
differences of such observations conformed to accidental errors. 
    Lamarck occupied himself with physics, chemistry and meteorology. In 
meteorology, he is remembered for his pioneer work in the study of weather 
(Shaw & Austin 1926/1942, p. 130). He applied the term météorologie 
statistique (e.g., 1800 – 1811, t. 4, p. 1) whose aim (Ibidem, t. 11, p. 9 – 10) 
was the study of climate, or (Ibidem, t. 4, pp. 153 – 154) the study of the 
climate, of regularities in the changes of the weather and of the influence of 
various meteorological phenomena on animals, plants and soil. Quetelet 
(1846, p. 275) contended that meteorology was alien to statistics and cited 
other alien sciences, such as physical geography, mineralogy, botany. His 
statement was correct insofar as statistical meteorology, stellar statistics etc. 
belong to the appropriate sciences. 
    The study of densities of the distributions of meteorological elements 
began in the mid-19th century; Meyer (1891, p. 32), when mentioning that 
fact, stated that the theory of errors was not applicable to meteorology. 
However, K. Pearson (1898) made use of Meyer’s material for illustrating 
his theory of asymmetric curves. 
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    Lamarck (1800 – 1811) was one of the first scholars to note the 
dependence of the weather on its previous state, see for example t. 5, pp. 5 
and 8 and t. 11, p. 143 of that source.  
    Quetelet (1852; 1853, p. 68; 1849 – 1857, 1857, pt 5, pp. 29 and 83) 
analysed lasting periods of fair or foul weather by applying elementary 
stochastic considerations and concluded that the chances of the weather 
persisting (or changing) were not independent. Köppen’s analysis (1872) 
was more mathematically oriented. Quetelet also compiled and systematized 
meteorological observations. In many letters of 1841 – 1860 Faraday (1991 
– 2008), see for example vol. 3, No. 1367 and vol. 4, No. 2263, praised 
Quetelet’s observations of atmospheric electricity. In the first instance he 
wrote:  
 
    You are indeed a worthy example in activity & power to all workers in 
science and, if I cannot imitate your example, I can at least appreciate & 
value it. 
 
    10.8.4. Astronomy. Already Daniel Bernoulli (§ 6.1.1) and Laplace (§ 
7.1-2) stochastically studied regularities in the Solar system. They actually 
considered planets as elements of a single population, and this approach was 
vividly revealed in the later investigations of the asteroids. Newcomb 

(1861a and elsewhere) compared the theoretical (calculated in accordance 
with the uniform distribution) and the actual parameters of the orbits of 
asteroids but was yet unable to appraise quantitatively his results. 
Concerning their distribution, he (1862; 1881) seems to have intuitively 
arrived at the following proposition: a large number of independent points 
A1 = (B1 + b1t), A2 = (B2 + b2t), … where t denoted time, and the other 
magnitudes were constant, will become almost uniformly distributed over a 
circumference.  
    In 1881 Newcomb remarked that the first pages of logarithmic tables 
wore out much faster than the last ones and set out to derive the probability 
that the first significant digits of empirically obtained numbers will be n1, n2, 
… Without any proof he indicated that, if numbers s1, s2, …, sn were 
selected at random, the positive fractional parts of the differences (s1 – s2), 
(s2 – s3), … will tend, as n → ∞, to a uniform distribution over a 
circumference, and that the empirical magnitudes, to which these differences 
conform, will have equally probable mantissas of their logarithms. 
Newcomb’s reasoning heuristically resembled the Weyl celebrated theorem 
that states that the terms of the sequence {nx}, where x is irrational, n  = 1, 
2, …, and the braces mean drop the integral part, are uniformly distributed 
on a unit interval. In the sense of the information theory, Newcomb’s 
statement means that each empirical number tends to provide one and the 
same information. Several authors independently one from another proved 
that Newcomb was right. One of them called his statement an inspired guess 
but reasonably noted that it was not universally valid (Raimi 1976, p. 536). 
    By the mid-century, after processing observations made over about a 
century, a rough periodicity of the number of sunspots was established. 
Newcomb (1901), who studied their observations from 1610 onward, 
arrived at T = 11.13 years which did not, however, essentially differ from 
the previous results. The present-day figure is T ≈ 11 years but a strict 
periodicity is denied. In any case, it might be thought that the numbers of 



 103 

sunspots constitute a time series, an object for stochastic studies. I note that 
Newcomb considered the maxima and the minima of that phenomenon as 
well as half the sums of the numbers of the sunspots corresponding to the 
year of minimum and the following maximum, or vice versa (p. 4). He 
determined the four appropriate values of T and their mean without 
commenting on the possible dependence between them. 
    Variation of the terrestrial latitudes is known to be caused by the 
movement of the pole about some point along a curve resembling a 
circumference with period 1.2 years. Newcomb (1892) checked the then 
proposed hypothesis that the movement was periodic with T = 1.17 years. 
He assumed that the pole moved uniformly along a circumference. Some of 
his calculations are doubtful and in any case not sufficiently detailed (a 
feature peculiar to many of his works) but he correctly concluded that the 
hypothesis was [apparently] valid.  
    In 1767 Michell (§ 6.1.6) determined the probability that two stars were 
close to each other. By applying the Poisson distribution, Newcomb (1859 – 
1861, vol. 2, pp. 137 – 138) calculated the probability that some surface 
with a diameter of 1° contained s stars out of N scattered at random over the 
celestial sphere and much later Fisher (Hald 1998, pp. 73 – 74) turned his 
attention to that problem. Boole (1851/1952, p. 256) reasoned on the 
distinction between a uniform and any other random distribution: 
 
    A ‘random distribution’ meaning thereby a distribution according to 
some law or manner, of the consequences of which we should be totally 
ignorant; so that it would appear to us as likely that a star should occupy 
one spot of the sky as another. Let us term any other principle of distribution 
an indicative one. 
 
    His terminology is now unsatisfactory, but his statement shows that 
Michell’s problem had indeed led to deliberations of a general kind. See also 
Newcomb (1904a). He (1861b) also determined the probability of the 
distance between the poles of two great circles randomly situated on a 
sphere. Issuing from other initial considerations, Laplace (1812/1886, p. 
261) and Cournot (1843, § 148) earlier provided solutions differing both 
from each other and from Newcomb’s answer (Sheynin 1984a, pp. 166 – 
167). 
    About 1784 William Herschel started counting the number of stars 
situated in different regions of the sky. He thought that his telescope was 
able to penetrate right up to the boundaries of the (finite) universe and hoped 
to determine its configuration. In one section of the Milky Way he 
(1784/1912, p. 158) counted the stars in six fields selected promiscuously 
and assumed the mean number of them as an estimate for the entire section. 
Later Herschel (1817) proposed a model of a uniform spatial distribution of 
the stars. He fixed the boundaries for the distances of the stars of each 
magnitude but allowed the stars to be randomly distributed within these 
boundaries and thus provided an example of randomness appearing 
alongside necessity, cf. Poincaré’s statement in § 1.1. 
    When estimating the precision of his model for the stars of the first seven 
magnitudes, Herschel calculated the sum of the deviations of his model from 
reality. For the first four magnitudes the sum was small although the 
separate deviations were large. Recall (§ 6.3.2-3) that, when adjusting 
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observations, Boscovich applied a similar test with respect to absolute 
deviations and that Herschel independently (1805) made use of it when 
determining the Sun’s movement (again § 6.3.2-3).  
    Herschel (1817/1912, p. 579) wrongly indicated that any star 
promiscuously chosen […] out of [14,000 stars of the first seven 
magnitudes] is not likely to differ much from a certain mean size of them all. 
With regard to size, the stars are incredibly different; that mean value is a 
worthless quantity, and, in general, stochastic statements, made in the 
absence of data, are hardly useful. However, it occurred that the stars, even 
earlier than the asteroids, had been considered as elements of a single 
population (in the last-mentioned instance, wrongly). 
    Stellar statistics really originated in the mid-19th century with the study of 
the proper motions of hundreds of stars (until 1842, when astronomers 
started to use the Doppler’s invention, only in the directions perpendicular 
to the appropriate lines of sight). The calculated mean proper motions for 
stars of a given magnitude proved, however, almost meaningless since 
magnitudes depended on distances. Beginning with W. Herschel, 
astronomers thought that the proper motions were random, but they 
understood randomness in different ways. Newcomb (1902) assumed that 
their projections on an arbitrary axis were normally distributed. He derived, 
although without providing any calculations, the density laws of their 
projections on an arbitrary plane and their own distribution. Both were 
connected with the χ2 distribution.  
    The general statistical study of the starry heaven became more important 
than a precise determination of the parameters of some star (Hill & Elkin 
1884, p. 191): 
 
    The great Cosmical questions to be answered are not so much what is the 
precise parallax of this or that particular star, but – What are the average 
parallaxes of those of the first, second, third and fourth magnitude 
respectively, compared with those of lesser magnitude? [And] What 
connection does there subsist between the parallax of a star and the amount 
and direction of its proper motion or can it be proved that there is no such 
connection or relation? 

 
    Then, Kapteyn (1906b; 1909) described a stochastic picture of the stellar 
universe by the laws of distribution of the (random!) parameters, parallaxes 
and peculiar motions, of the stars. He (1906a) also initiated the study of the 
starry heaven by [stratified] sampling; here is a passage from a letter that he 
received in 1904 on this subject from one of his colleagues and inserted on 
his p. 67: 

 
    As in making a contour map, we might take the height of points at the 
corners of squares a hundred meters on a side, but we should also take the 
top of each hill, the bottom of each lake, […], and other distinctive points. 

 
In statistics, sampling became recognized at about the same time, although 
not without serious resistance (You Poh Seng 1951) and its most active 
partisan was Kiaer, also see § 10.7-2.  
    The compilation of vast numerical materials (catalogues, yearbooks) was 
also of a statistical nature. Sometimes this direction of work had been 
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contrasted to theoretical constructions. Thus, Proctor (1872) plotted 324 
thousand stars on his charts attempting to leave aside any theories on the 
structure of the stellar system, but the development of astronomy proved 
him wrong. 
    Calculation and adjustment of observations, their reasonable comparison 
has always been important for astronomy. Here, I again ought to mention, in 
the first place, Newcomb. Benjamin (1910) and many other commentators 
stated that he had to process more than 62 thousand observations of the Sun 
and the planets and that his work included a complete revision of the 
constants of astronomy. I add that he discussed and compared observations 
obtained at the main observatories of the world and that he hardly had any 
aids except for logarithmic tables. In addition, he published some pertinent 
theoretical studies. He was of course unable to avoid the perennial problem 
of the deviating observations. At first he regarded them with suspicion, then 
(1895, p.186), however, became more tolerant. If a series of observations 
did not obey the normal law, Newcomb (1896, p. 43) preferred to assign a 
smaller weight to the remote observations, or, in case of asymmetric series, 
to choose the median instead of the arithmetic mean. He had not mentioned 
Cournot (§ 10.3-3), and, in two memoirs published at the same time, he 
(1897a; 1897b) called the median by two (!) other, nowadays forgotten, 
terms.  
    Mendeleev (§ 10.9.3) objected to combining different summaries of 
observations; Newcomb, however, had to do it repeatedly, and in such cases 
he (1872), hardly managing without subjective considerations, assigned 
weights to individual astronomical catalogues depending on their systematic 
errors. Interestingly enough, he then repeated such adjustments with 
weights, depending on random errors. 
    After determining that the normal law cannot describe some astronomical 
observations made under unfavourable conditions, Newcomb (1886) 
proposed for them (and, mistakenly, for all astronomical observations 
altogether) a generalized law, a mixture of normal laws with differing 
measures of precision occurring with certain probabilities. The measure of 
precision thus became a discrete random variable, and the parameters of the 
proposed density had to be selected subjectively. He noted that his density 
led to the choice of a generalized arithmetic mean with weights decreasing 
towards the tails of the variational series which was hardly better than the 
ordinary arithmetic mean (§ 6.3.1). 
    He had also introduced some simplifications, and later authors noted that 
they led to the choice of the location parameter by the principle of maximum 
likelihood. Newcomb hardly knew that his mixture of normal laws was not 
normal (Eddington 1933, p. 277). In turn, two authors generalized 
Newcomb’s law, but their work was of little practical importance. 
    Like Mendeleev (§ 10.9.3), Newcomb (1897b, p. 165) thought that the 
discrepancy between two empirical magnitudes was essential if it exceeded 
the sum of the two appropriate probable errors, and it seems that this rigid 
test had been widely accepted in natural sciences. Here is Markov’s relevant 
pronouncement from a rare source (Sheynin 1990b, pp. 453 – 454): he 
 
    Like[d] very much Bredikhin’s rule according to which ‘in order to admit 
the reality of a computed quantity, it should at least twice numerically 
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exceed its probable error’. I do [he does] not know, however, who 
established this rule or whether all experienced calculators recognized it. 
 
    In other words, the difference between zero and a real non-zero quantity 
must twice exceed its probable error, a statement that conformed to 
Mendeleev’s and Newcomb’s opinion. But still, Newcomb several times 
indicated that some quantity a determined by him had mean square error b 
even when the latter much exceeded the former including the case (1901, p. 
9) of a = 0.05 and b = 0.92! 
    Repeatedly applying the MLSq, Newcomb sometimes deviated from strict 
rules; cf. my comment in § 9.1.5. In another case he (1895, p. 52) thought 
that small coefficients in a system of normal equations might be neglected, 
but he had not provided any quantitative test. Newcomb realized that, when 
forming normal equations, the propagation of round-off errors could result 
in their interdependence, and he reasonably concluded that in such cases the 
calculations should be made with twice as many significant digits. This is 
what he (1867) did when studying the calculations of the Kazan astronomer 
Kowalski, who had noted that, out of the four normal equations which he 
formed, only two were independent. It is now known that ill-conditioned 
observational equations should rather be processed without forming normal 
equations, – for example, by successive approximations. 
    Newcomb’s calculation (1874, p. 167) presents a special case. Having 89 
observational equations in five unknowns, he formed and solved the normal 
equations. Then, however, he calculated the residual free terms of the initial 
equations and somehow solved them anew (providing only the results of 
both solutions). He apparently wished to exclude systematic influences as 
much as possible, but how? 
    Newcomb (1895, p. 82; 1897b, p. 161) mistakenly stated, although 
mentioning earlier the definitive Gaussian justification of the MLSq, that the 
method was inseparable from the normal law. I note also his unfortunate 
reasoning (Newcomb & Holden 1874, p. 270) similar to the one made by 
Clausius (§ 10.8.5): for systematic error s and random errors r1 and r2, as he 
went on to prove, and only for the normal law, by considering the 
appropriate double integral, that 
 
    E[(s + r1) (s + r2)] = s2. 
 
    Newcomb necessarily remained more or less within the boundaries of the 
classical theory of errors and simple stochastic patterns but the extant 
correspondence between him and K. Pearson during 1903 – 1907 (Sheynin 
2002b, § 7.1) testifies that he wished to master the then originating 
mathematical statistics. Here is a passage from his letter of 1903 to Pearson: 
 
    You are the one living author whose production I nearly always read 
when I have time and can get at them, and with whom I hold imaginary 
interviews while I am reading. 
 
    I mention finally Newcomb’s statistical contribution (1904b) in which he 
examined the classical problem of the sex ratio at birth (see §§ 2.2.4, 3.3.4, 
4.4 and 6.1.1). He assumed that there existed three kinds of families 
numbered, say, m, n, and n, for whom the probabilities of the birth of a boy 
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were p, p + α and p – α respectively and he studied, in the first place, the 
births of twins. The sex of the embryo, as he thought, became established 
only after the action of a number of successive causes made it ever more 
probable in either sense.  
    10.8.5. Physics. 1) The kinetic theory of gases originated in mid-19th 
century as the result of the penetration of the statistical method into physics. 
Truesdell (1975) discussed its early history; thus (p. 28), it was Waterson 
who, in 1843, introduced the mean free path of a molecule, but his 
innovation was not published. Clausius likely published the first memoir 
(1849) belonging to physics (but did not deal with the molecular hypothesis) 
and contained ideas and methods of the theory of probability. 
    After Poisson’s death that theory sank into oblivion. No wonder that 
Clausius (1889 – 1891, p. 71) made a point to prove the equality E(ξ/Eξ) = 1 
for the velocity ξ of a molecule and Boltzmann (1896/1909, p. 570) stated 
that the normal law followed from equal probabilities of positive and 
negative elementary errors of the same absolute value. His was of course an 
unworthy formulation of the CLT.  
    I ought to add that Boltzmann respected the theory of probability. Thus 
(1872/1909, p. 317), 
 
    An incompletely proved theorem whose correctness is questionable 
should not be confused with completely proved propositions of the theory of 
probability. Like the results of any other calculus, the latter show necessary 
inferences made from some premises. 
 
And again (1895/1909, p. 540): the theory of probability is as exact as any 
other mathematical theory if, however, the concept of equal probabilities, 
which cannot be determined from the other fundamental notions, is 
assumed. 
    Maxwell twice mentioned Laplace (Sheynin 1985, pp. 364 and 366n), 
although without providing any definite references, whereas Boltzmann, 
who cited many scholars and philosophers in his popular writings, never 
recalled him. Khinchin (1943/1949, p. 2) maintained that Maxwell and 
Boltzmann applied fairly vague and somewhat timid probabilistic 
arguments, that in their work  
 
    The notions of the theory of probability do not appear in a precise form 
and are not free from a certain amount of confusion which often discredits 
the mathematical arguments by making them either void of any content or 
even definitely incorrect. The limit theorems […] do not find any 
applications […]. 
 
    His statement seems too harsh. First, I believe that it was partly 
occasioned by Boltzmann’s verbose style of writing. Second, physicists 
certainly applied the LLN indirectly. Third, Khinchin said nothing about 
positive results achieved in physics (formulation of the ergodic hypothesis, 
use of infinite general populations, Maxwell’s indirect reasoning about 
randomness). My first remark is indeed essential; here is an extract from 
Maxwell’s letter of 1873 (Knott 1911, p. 114):  
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    By the study of Boltzmann I have been unable to understand him. He 
could not understand me on account of my shortness, and his length was 
and is an equal stumbling block to me. 
 
And Boltzmann (1868/1909, p. 49) indeed owned that it was difficult to 
understand Maxwell’s Deduktion (1867) because of its extreme brevity. 
    2) Clausius. He (1857/1867, pp. 238 and 248) asserted that molecules 
moved with essentially differing velocities. Even Boscovich (1758, § 481) 
stated something similar but perhaps presumed that the differences between 
these velocities were not large: The points [atoms] of a particle [of light, as 
in § 477, or of any body, as in § 478] move together with practically the 
same velocity, and the entire particle will move as a whole with the single 
motion that is induced by the sum [the mean] of the inequalities pertaining 
to all its points. Clausius used a single mean velocity such as to make the 
entire kinetic energy of a gas equal to its actual value. Later he (1862/1867, 
p. 320) maintained that the velocities of molecules randomly differed one 
from another.  
    And he (1858/1867, p. 268) studied the length of the free path of a 
molecule. Denote the probability of a unit free path by a, then  
 
    W = ax = (e–x)α, α > 0 
 
will be the probability of its being equal to x; here, α is derived from the 
molecular constants of the substance. Similar considerations are in other 
works of Clausius (1862/1867, § 29; 1889 – 1891, pp. 70 – 71 and 119). He 
(1889 – 1891, pp. 70 – 71) also calculated the mean free path of a molecule. 
Actually, without writing it out, he considered free paths of random length ξ 
and calculated the expected free path as an integral over all of its possible 
values from 0 to ∞.  
    Suppose now that 
 
    ξ = ξ1 + ξ2 + … + ξm 
 
where m is an arbitrary natural number. Then, according to Clausius’ 
assumptions, ξk, k = 1, 2, …, m, will not depend on (ξ1 + ξ2 + … + ξk–1) and 
the characteristic function for ξk will be equal to the product of these 
functions for the previous ξ’s. In this instance, all these functions are 
identical, and F(s), the integral distribution function of ξ, is therefore 
infinitely divisible. Clausius’ achievements were interesting, but he did not 
attempt to construct the kinetic theory of gases on a stochastic basis. 
    3) Maxwell (1860) established his celebrated distribution of the velocities 
of monatomic molecules  
 

    φ(x) = 2 21
exp( / α ).

α π
x−   

 
He tacitly assumed that the components of the velocity were independent; 
later this restriction was weakened (Kac 1939; Linnik 1952). He then 
maintained that the average number of particles with velocities within the 
interval [v; v + dv] was proportional to 
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α π
v v dv−  

 
    This can be justified by noting that the probability of such velocities can 
also be represented as 
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+
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It is presumed here that the components of the velocity in each of the three 
dimensions have the same distribution.  
    Maxwell left interesting statements about the statistical method in 
general, and here is one of them (1873b/1890, p. 374): 
 
    We meet with a new kind of regularity, the regularity of averages, which 
we can depend upon quite sufficiently for all practical purposes, but which 
can make no claim to that character of absolute precision which belongs to 
the laws of abstract dynamics. 
 
    The drafts of the source just mentioned (Maxwell 1990 – 2002, 1995, pp. 
922 – 933) include a previously unpublished and very interesting statement 
(p. 930): abandoning the strict dynamical method and adopting instead the 
statistical method is a step the philosophical importance of which cannot be 
overestimated. 
And here is his definition (not quite formal) of the statistical method which 
heuristically resembles the formulation provided by Kolmogorov & 
Prokhorov (§ 0.2): it consisted in estimating the average condition of a 
group of atoms (1871/1890, p. 253), in studying the probable [not the 
average!] number of bodies in each group under investigation (1877, p. 
242). 
    Maxwell gave indirect thought to randomness. Here is his first 
pronouncement (Maxwell 1859/1890, pp. 295 – 296) which was contained 
in his manuscript of 1856 (1990 – 2002, 1990, p. 445), and certainly 
describes his opinion about that phenomenon: 
 
    There is a very general and very important problem in Dynamics […]. It 
is this – Having found a particular solution of the equations of motion of 
any material system, to determine whether a slight disturbance of the motion 
indicated by the solution would cause a small periodic variation, or a 
derangement of the motion […]. 
 
Maxwell (1873a, p. 13) later noted that in some cases a small initial 
variation may produce a very great change […]. Elsewhere he (report read 
1873, see Campbell & Garnett 1882/1969, p. 440) explained that in such 
instances the condition of the system was unstable and prediction of future 
events becomes impossible. He (Ibidem, p. 442) provided an example of 
instability of a ray within a biaxial crystal and prophetically stated (p. 444) 
that in future physicists will study singularities and instabilities. I note that 
in 1873 – 1882 Engels (1925/1971, p. 213) urged scientists to study both 
necessity and chance. 
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    In a manuscript of the same year (1873) Maxwell (Campbell & Garnett, 
p. 360), remarked that 
 
    The form and dimensions of the orbits of the planets […] are not 
determined by any law of nature, but depend upon a particular collocation 
of matter. The same is the case with respect to the size of the earth. 
 
This was an example illustrating Poincaré’s statement concerning 
randomness and necessity (§ 1.1), but it was not sufficiently specific; the 
eccentricities of planetary orbits depend on the velocities of the planets, cf. 
end of § 7.3. 
    And here is Maxwell’s position (1875/1890, p. 436) concerning 
randomness in the atomic world: 
 
    The peculiarity of the motion of heat is that it is perfectly irregular; […] 
the direction and magnitude of the velocity of a molecule at a given time 
cannot be expressed as depending on the present position of the molecule 
and the time. 
 
    At the very end of his life Maxwell (1879/1890, pp. 715 and 721) 
introduced a definition for the probability of a certain state of a system of 
material particles:  
 
    I have found it convenient, instead of considering one system of […] 
particles, to consider a large number of systems similar to each other […]. 
In the statistical investigation of the motion, we confine our attention to the 
number of these systems which at a given time are in a phase such that the 
variables which define it lie within given limits. 
    Boltzmann (1868, § 3) defines the probability of the system being in a 
phase […] as the ratio of the aggregate time during which it is in that phase 
to the whole time of the motion. 
 
    4) If the classical definition of probability is included here, we can say 
that Boltzmann used three formulations. Maxwell (item 2 above) mentioned 
one of them, and another reference can be added: Boltzmann (1895 – 1899, 
1895, Bd. 1, p. 50). Yet another one was that applied by Maxwell (see same 
subsection) although sometimes Boltzmann (1878/1909, p. 252) did not 
indicate which one he was employing. He (1872/1909, p. 317) apparently 
thought that these posterior probabilities were equivalent. 
    In other words, with respect to separate molecules Boltzmann introduced 
the time average probability, – and maintained that it was equivalent to the 
usual phase average probability. When studying polyatomic gases, 
Boltzmann (1871) defined the probability of its state as a product such as 
fdω where f was some function, varying in time, of the coordinates and 
velocities of the separate molecules and dω, the product of the differentials 
of those parameters. For stochastic processes, such functions determine the 
distribution of a system of random variables at the appropriate moment. 
Zermelo (1900, p. 318) and then Langevin (1913/1914, p. 3) independently 
stressed the demand to provide a definition correcte et claire de la 
probabilité (Langevin). Like Maxwell, Boltzmann (1887/1909, p. 264; 1895 
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– 1899, 1899, Bd. 2, p. 144) used the concepts of fictitious physical systems 
and infinite general population. 
    From 1871 onward Boltzmann had been connecting the proof of the 
second law of thermodynamics with stochastic considerations; however, he 
(1886/1905, p. 28) then indicated that the 19th century will be the age of 
mechanical perception of nature, the age of Darwin, and (1904a/1905, p. 
368) that the theory of evolution was understandable in mechanical terms, 
that (1904b, p. 136) it will perhaps become possible to describe electricity 
and heat mechanically. The possible reason for his viewpoint was that he did 
not recognize objective randomness. Another reason valid for any scholar 
was of course the wish to keep to abstract dynamics, see Maxwell’s 
statement on the new kind of regularity (item 3 above) and the opinion of 
Hertz (1894, Vorwort): Physicists are unanimous in that the aim of physics 
is to reduce the phenomena of nature to the simple laws of mechanics. And 
here is a lucid description of this point as far as Boltzmann was considered 
(Rubanovsky 1934, p. 6): in his works 
 
    Randomness […] struggles with mechanics. Mechanical philosophy is 
still able […] to overcome randomness and wins a Pyrrhic victory over it 
but recedes undergoing a complete ideological retreat. 
 
    10.9. Natural scientists 
    10.9.1. Ivory. In 1825 – 1830 Ivory published 11 papers devoted to the 
derivation of the flattening of the Earth’s ellipsoid of rotation by means of 
pendulum observations. In a letter of 1827 to Olbers, Gauss (W/Erg-4, Tl. 2, 
pp. 475 – 476) called Ivory an acute mathematician, but indicated that the 
spirit of the MLSq was alien to him.  
    Ivory was ignorant of the MLSq, called it not good enough but applied it, 
perhaps not even realizing it at once and had not applied the variance. Then, 
having at his disposal 5 – 7 observations, only one of which was made at a 
southern station, he (1826a, p. 9) combined it with each of the others (to 
have pairs with a large latitudinal difference) and calculated the flattening 
from the thus obtained pairs. The weight of the equatorial observation 
became absurdly great and its error corrupted all the pairs in the same way. 
Then, before an adjustment, stations having almost the same latitude can be 
combined to form a single mean station, which Ivory did not do.  
    Because of local anomalies of gravity Ivory (1826b, p. 242) rejected up to 
31% of the available observations. His final result (1828, p. 242) was, 
however, sufficiently close to the flattening of the Krasovsky ellipsoid (§ 
6.3). Ivory actually wished to solve two problems at once: to find out 
whether the observations were consistent with an ellipsoidal Earth, and to 
adjust them. The minimax method (§ 6.3.2-4) is best for solving the first 
problem.  
    10.9.2. Fechner. He (1860) was the founder of psychophysics and 
became one of the first to introduce the statistical method, although not in 
the crucial direction, into physics. He (1860, Bd. 1, p. 8, see also 1877, p. 
213) defined that discipline as an exact doctrine on the functional 
correspondence or interdependence of body and soul. According to modern 
understanding, it is a study of quantitative relations between sensations and 
the stimuli that produce them. 
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    Fechner (1855 and 1864) did not comment on the developing kinetic 
theory of gases. His mathematical tools and approach were primitive and 
almost everything he achieved had to be repeated at a higher level. 
Ebbinghaus (1908, p. 11) called Fechner a philosopher full of fantasies but a 
most strict physicist who had put […] together psychophysics as a new 
branch of knowledge. Being the co-author of the logarithmic Weber – 
Fechner law connecting stimuli with sensations, Fechner extended the range 
of its application by experiments (1860; 1887). He studied the methods of 
experimentation and the modern method of paired comparisons (H. A. 
David 1963) owes much to him.  
    In the theory of errors Fechner attempted, sometimes unsuccessfully, to 
introduce innovations, or to repeat unknown to him previous findings and he 
somewhat furthered that theory. His main innovation was the collective, – 
the set of observed values of a random variable. He (1897) proposed to 
study them by applying several mean values, their mutual arrangement, and 
their deviations (including absolute and normed deviations) from the 
observations. He paid attention to asymmetric collectives and attempted to 
discover a universal asymmetric distribution for errors in natural sciences. 
    Fechner (1897, pp. 365 – 366) also studied the interdependence of the 
successive daily air temperatures by comparing their course with the 
arrangement of winning (numbered) tickets of a reputed lottery and 
achieved an interesting result pertaining to the runs up and down (cf. § 10.2-
4). He even introduced a measure of dependence varying from 0 to 1, but 
describing only positive dependences. His contribution appeared 
posthumously, after the Galton correlation theory had emerged. 
    Mises (1928/1972, pp. 26 and 99) highly appraised Fechner’s efforts and 
stated (p. 99) that Fechner’s constructions prompted, at least me [Mises], to 
adopt a new viewpoint. K. Pearson (1905, p. 189) called him a leading 
statistician and Freud (1925/1963, p. 86) followed that thinker upon many 
important points.  
    10.9.3. Mendeleev. From 1893 to 1907 Mendeleev was Director of 
Russia’s Main Board of Measures and Weights and processed observations 
both as a chemist and a metrologist. He (1872b/1951, p. 101) distrusted data 
obtained under differing conditions, by different methods and observers as 
compared with those achieved by precise methods and experienced persons. 
Then (1887/1934, p. 82), disadvantageous data ought to be rejected, 
otherwise a realistic result is impossible to get.  
    No wonder that he (1872a/1939, p. 144) preferred to make a few but 
precise and repeated measurements and objected to amassing observations; 
true, this attitude was partly due to his wish to avoid calculations, cf. 
Boyle’s statement in § 1.7. Mendeleev (1875b/1950, p. 209) thought that an 
observational series should be harmonious so that its median should 
coincide with its arithmetic mean, or that the mean of its middlemost third 
should coincide with the mean of the means of its extreme thirds. In the first 
case, he mistakenly added that the coincidence meant that the appropriate 
distribution was normal. He had not said how to treat observations which 
did not obey his wish. 
    The deviation of the arithmetic mean from the median, normed in a 
certain way, is nowadays recognized as a measure of asymmetry of the 
appropriate distribution (Yule & Kendall 1937/1958, p. 161). Mendeleev 
had not mentioned the second Gaussian justification of the MLSq and made 
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a few mistakes in his theoretical considerations. One of them was an 
excessive belief in the arithmetic mean (1856/1937, p. 181; 1877/1949, p. 
156; 1895/1950, p. 159). 
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11. Bertrand and Poincaré 

    Bertrand criticized everything, often mistakenly, but he turned attention to 
probability, and especially to the concept of uniform randomness. Poincaré 
achieved interesting results in geometric probability and in interpreting 
randomness. He referred almost exclusively to Bertrand, never to 
Chebyshev or Markov, and expressed strange ideas about the MLSq. 
 
    Key words: random chord, randomness in nature, geometric probability, 
justification of the MLSq 
 
    11.1. Bertrand: General Information  
    In 1855 Bertrand had translated Gauss’ works on the MLSq into French, 
but his own work on probability began in essence in 1887 – 1888 when he 
published 25 notes and his treatise (1888a), written in great haste and 
carelessly and lacking a systematic description of its subject but in a very 
good literary style. Gauss died the same year (1855) and was only able to 
send observations about details (Bertrand, C. r. Acad. Sci. Paris, t. 40, 1855, 
p. 1190). Gauss is known to have refused to publish in French, – but 
apparently did not object to being translated into that language.  
    1) Statistical probability and the Bayesian approach. Heads appeared m = 
500,391 times in n = 106  tosses of a coin (p. 276; here and below I only 
provide the page number of the treatise). Nonsense followed: the unreliable 
statistical probability of that event is p = 0.500391, not a single of its digits 
merits confidence. After making this astonishing declaration, Bertrand 
compared the probabilities of two hypotheses, namely, that the probability 
was either p1 = 0.500391, or p2 = 0.499609. However, instead of calculating 
[p1

mp2
n] ÷ [p2

mp1
n], he applied the De Moivre – Laplace theorem and only 

indicated that the first probability was 3.4 times higher than the second one. 
So what should have the reader thought? 
    As I understand him, Bertrand (p. 161) condemned the Bayes principle 
only because the probability of the repetition of the occurrence of an event 
after it had happened once was too high (cf. the problem about the sunrise in 
§ 5.1). This conclusion was too hasty, and the reader was again left in 
suspense: what might be proposed instead? Note that Bertrand (p. 151) 
mistakenly thought that the De Moivre – Laplace theorem precisely 
described the inverse problem, the estimation of the theoretical probability 
given the statistical data, cf. § 5.2. 
    2) Statistics of population. Bertrand indicated that there existed a 
dependence between trials (or their series) and that the probabilities of the 
studied events could change. He referred only to Dormoy (§ 14.1.1) and had 
not provided any concrete examples, but he (p. 312) noted that, when 
studying the sex ratio at birth, both Laplace and Poisson had assumed 
without justification that the probability of a male birth was constant in time 
and space. Yes, but their mistake was only methodological since they could 
not have failed to understand this circumstance, cf. § 7.1-5. 
    3) Bertrand paid much attention to the mathematical treatment of 
observations, but his reasoning was amateurish and sometimes wrong. Thus, 
he (pp. 281 – 282) attempted to prove that the sample variance (9.6b) might 
be replaced by another estimator of precision having a smaller variance but 
failed to notice that, unlike the Gauss statistic, his new estimator was 
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biassed. He (p. 248) expressed a favourable opinion about the second Gauss 
justification of the MLSq but indicated (p. 267) that, for small errors, the 
even distribution φ(x) = a + bx2 can be approximately represented by an 
exponential function of a negative square, – that the first substantiation of 
the method was approximately valid.  
    4) Several interesting problems dwelt on a random composition of balls in 
an urn; on sampling without replacement; on the ballot problem; and on the 
gambler’s ruin. 
    a) He derived the most probable composition of the urn (pp. 152 – 153) 
filled with balls of two colours given a sample of extracted balls. 
    b) An urn has sp white balls and sq black ones, p + q = 1. Determine the 
probability that after n drawings without replacement the sample will 
contain (np – k) white balls (p. 94). For large values of s and n Bertrand 
obtained an elegant formula 
 

    P = 
1

2πpqn
 exp[–

2

2 ( )

k s

pqn s n−
]

s

s n−
. 

 
He (1887) published this formula earlier without justification and noted that 
that variable probability was en quelque sorte un régulateur. 
    c) An urn contains m balls favourable for candidate A, and n balls 
favouring B (m > n). The balls are extracted one by one without 
replacement. Then, the probability P that A was always ahead of B (p. 18) 
was equal to P = (m – n)/(m + n). This ballot problem has many 
applications. Takácz (1967, pp. 2 – 3; 1982/2006) traced its history back to 
De Moivre (§ 4.1-5); he himself, in 1960, had generalized it. 
    d) I select one out of the few problems on the gambler’s ruin (pp. 122 – 
123). Gambler A has m counters and plays with an infinitely rich partner. 
His probability of winning any given game is p. Determine the probability 
that he will be ruined in exactly n games (n > m). Bertrand solved this 
problem by applying his previous result. Calculate the probability that A 
loses (n + m)/2 games and wins (n – m)/2 times; then multiply it by the 
probability that during that time A will never have more than m counters, 
that is, by m/n.  
    5) In a brief chapter Bertrand largely denied everything done in the moral 
applications of probability by Condorcet (and did not refer to Laplace or 
Poisson). 
    6) In two of his notes he (1888b; 1888c) came close to proving that for a 
sample from a normal population the mean and the variance were 
independent.  
    Bertrand’s treatise is impregnated with its non-constructive negative (and 
often unjustified) attitude towards the theory of probability and treatment of 
observations and wrong statements. Thus, he pp. (325 – 326) alleged that 
Cournot (cf. § 10.3-5) had supposed that judges decided their cases 
independently one from another. Nevertheless, he exerted a strong influence 
upon Poincaré (a too strong influence!), and, its spirit and inattention to 
Laplace and Bienaymé notwithstanding, on the revival of the interest of 
French scientists in probability (Bru & Jongmans 2001). 
 
    11.2. Bertrand: The Random Chord  
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    By several examples Bertrand proved that the expression at random, or 
even uniformly random, was not definite enough. Thus, he maintained that 
the Michell problem (§ 6.1.6) should have been generalized: remarkable was 
not only a small distance between stars, but some other features of their 
mutual arrangement as well. One of his examples (p. 4) became classical. 
Determine the probability, Bertrand asked, that a randomly drawn chord of a 
given circle was longer than the side of an equilateral triangle inscribed in 
the circle. He listed three possible answers: 
    a) One endpoint of the chord is fixed; p = 1/3. 
    b) The chord’s direction is fixed; p = 1/2. 
    c)The location of the centre of the chord in any point of the circle is 
equally probable; p = 1/4. 
    A curious statement about this problem is due to Darboux (1902/1912, p. 
50): 
 
    In accord with considerations which seem equally plausible, he 
[Bertrand] derived two different values for the probability sought, 1/2 and 
1/3. He investigated this question and found its solution, but left its 
discovery to the readers. 
 
In failing to mention the third solution he possibly followed Poincaré, see 
below.  
    Poincaré (1896, p. 97; 1912, p. 118) considered the Bertrand problem. 
Choosing two differing pairs of parameters (call them ω, α and ρ, θ), each 
defining the random chord, he noted that the integrals of dωdα and dρdθ 
over the given circle were not equal to each other, which as Poincaré stated, 
explained the paradoxical nature of the problem. 
    Czuber (1903/1968, pp. 107 – 108) discovered three more natural 
solutions of the Bertrand problem, one of them coinciding with Bertrand’s 
first version. The other two were 
p = 1/3 + √3/2π ≈ 0.609 and 1/3 + 3√3/4π ≈ 0.746. 
    The Bertrand problem has an uncountable set of answers (De Montessus 
1903). Suppose that a certain diameter of the given unit circumference with 
centre O is the x-axis and mark points D and C on its positive half,– its 
intersections with concentric circumferences with common centre in point O 
and radii OD = 1/2 and OC = 1. Each point from D to infinity can indeed 
belong to a chord (or its extension defining the chord) satisfying the 
condition of the problem. De Montessus also noted that the mean value of 
the probability was 1/2.  
    Schmidt (1926) issued from Poincaré’s considerations and indicated in 
addition that the probability sought should persist under translation and 
rotation of the coordinate system (invariance under change of scale is also 
needed). Accordingly, he proved that this condition is only satisfied for a 
certain polar coordinate system and when transforming it into another one 
(with the appropriate Jacobian certainly allowed for).  
    He also showed that the proper solution corresponded to choosing that 
system of coordinates with origin at the centre of the circle and fixing the 
chord by the coordinates of its centre. The probability was then p = 1/2, cf. 
De Montessus’ study, a value gradually accepted by later commentators, 
which can be understood as complete ignorance (§ 8.1.4)! See Poisson’s 
calculation of the probability of the unknown composition of an urn and 
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especially my example concerning the unknown probability of the outcomes 
of a coin toss in the same subsection.  
    I add a few words about geometric probability in the 19th century before 
Bertrand. Cournot (1843, § 74) applied it for deriving the distribution of a 
function of several random arguments. Here is one of his examples. The 
arguments of the function u = |x – y| are uniformly distributed on segment 
[0; 1]. After calculating the areas of the appropriate figures, he concluded 
that 
 
    P(u ≥ a) = (1 – a2), 0 ≤ a ≤ 1. 
 
    The determination of the probability of the contrary event would have led 
him to the once popular encounter problem (Laurent 1873, pp. 67 – 69): two 
persons are to meet at a definite spot during a specified time interval, their 
arrivals are independent and occur at random. The first one to arrive waits 
for a certain time and then leaves. Determine the probability of the 
encounter. 
    Most eminent natural scientists of the 19th century tacitly applied 
geometric probability, for example Boltzmann (§ 10.8.5) and Darwin 
(1881/1945, pp. 52 – 55) who found out that earthworms did not seize by 
chance any point of the perimeter of paper triangles when carrying them off 
to their burrows.  
    Seneta et al (2001) described the investigations of geometric probability 
by Sylvester, Crofton and Barbier which led to the appearance of integral 
geometry. I mention Sylvester’s remarkable problem: To determine the 
probability that four points taken at random within a finite convex domain 
will form a convex quadrilateral. See Czuber (1903/1968, pp. 99 – 102) for 
a few particular cases of that problem.  
    For a modern viewpoint on geometric probability see M. G. Kendall & 
Moran (1963). Then, Ambartzumian (1999) indicated that geometric 
probability and integral geometry were connected with stochastic geometry. 
 
    11.3. Poincaré  
    Poincaré (1896/1912) had passed over in silence not only the Russian 
mathematicians, but even Laplace and Poisson, and his exposition was 
imperfect. Following Bertrand, Poincaré (p. 62) called the expectation of a 
random variable its probable value; denoted the measure of precision of the 
normal law either by h or by √h; made use of loose expressions such as z 
lies between z and z + dz (p. 252). Also see § 11.2 (Poincaré’s contribution 
to the celebrated Bertrand problem). 
    Commenting on the first edition of his treatise, Bortkiewicz (Bortkevich 
& Chuprov 2005, Letter 19 of 1897) noted:  
 
    The excessively respectful attitude towards […] Bertrand is surprising. 
No traces of a special acquaintance with the literature on probability are 
seen. The course is written in such a way as though Laplace and Poisson, 
especially the latter, never lived. 
 
    Several times Poincaré applied the formula 
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where Ф(x) was a restricted positive function, x0, the only point of its 
maximum, and the limits of integration could have been infinite (although 
only as the result of a formal application of the Bayesian approach). 
Poincaré (p. 178) only traced its proof and some restrictions should perhaps 
be added. To place Poincaré’s trick in the proper perspective, see Erdélyi 
(1956, pp. 56 – 57). I discuss now some issues mostly from Poincaré’s 
treatise.  
    1) The theory of probability. Poincaré (p. 24) reasonably stated that a 
satisfactory definition of prior probability was impossible. Strangely 
enough, he (1902/1923, p. 217) declared that all the sciences were but an 
unconscious application of the calculus of probability, that the theory of 
errors and the kinetic theory of gases were based on the LLN and that the 
calculus of probability will evidently ruin them (les entrainerait évidemment 
dans sa ruine). He concluded that the calculus was only of practical 
importance. Then he (1896/1912, p. 34) apparently maintained that a 
mathematician was unable to understand why forecasts concerning mortality 
come true.  
    In a letter of ca. 1899 connected with the notorious Dreyfus case (Le 
procès 1900, t. 3, p. 325; Sheynin 1991a, pp. 166 – 167) Poincaré followed 
Mill (§ 8.3) and even generalized him to include moral sciences and 
declared that the appropriate findings made by Condorcet and Laplace were 
senseless. And he objected to a stochastic study of handwriting for 
identifying its author. 
    2) Poincaré (1892a) had published a treatise on thermodynamics which 
Tait (1892) criticized for his failure to indicate the statistical nature of this 
discipline. A discussion followed in which Poincaré (1892b) stated that the 
statistical basis of thermodynamics did not satisfy him since he wished to 
remain entirely beyond all the molecular hypotheses however ingenious they 
might be; in particular, he therefore passed the kinetic theory of gases over 
in silence. Soon he (1894/1954, p. 246) made known his doubts: he was not 
sure that that theory could account for all the known facts. Later Poincaré 
(1905/1970, pp. 210 and 251) softened his attitude: physical laws will 
acquire an entirely new aspect and differential equations will become 
statistical laws; laws, however, will be shown to be imperfect and 
provisional. 
    3) The binomial distribution. Suppose that m Bernoulli trials with 
probability of success p are made and the number of successes is α. Poincaré 
(pp. 79 – 84), in a roundabout and difficult way, derived (in modern 
notation) E(α – mp)2 and E|α – mp|. In the first case he could have calculated 
Eα2; in the second instance he obtained 
 
    E|α – mp| ≈ 2mpq mp

mC p mpq mq, q = 1 – p. 

 
    4) The Bayesian approach: estimating the total number (N) of the 
asteroids. Poincaré (pp. 163 – 168) assumed that only M of them were 
known and that, during a certain year, n minor planets were observed, m of 
which were known before. Introducing a constant probability p = n/N of 
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observing an asteroid during a year and applying the Bayesian approach, he 
obtained EN ≈ n/p. He was not satisfied with this pseudo-answer and 
assumed now that p was unknown. Again applying the Bayesian approach 
and supposing that p took with equal probability all values within the 
interval [0; 1], he derived instead EN = (M/m)n. 
    He could have written this formula at once; in addition, it was possible to 
recall the Laplace problem of estimating the population of France by sample 
data (§ 7.1-5). It is nevertheless interesting that Poincaré considered the 
unknown number of the minor planets as a random variable. 
    5) Without mentioning Gauss (1816, § 5), he (pp. 192 – 194) derived the 
moments of the normal distribution and proved that the density function 
whose moments coincided with the respective moments of the normal law 
was normal. This proposition was due to Chebyshev (1887a), see also 
Bernstein (1945/1964, p. 420). 
    Poincaré applied his investigation to the theory of errors and non-
rigorously proved the CLT: for errors of sensiblement the same order and 
constituting une faible part of the total error, the resulting error followed 
sensiblement the Gauss law (p. 206). 
    Also for proving the normality of the sum of errors Poincaré (pp. 206 – 
208, only in 1912) introduced characteristic functions which did not 
conform to their modern definition. Nevertheless, he was able to apply the 
Fourier formulas for passing from them to densities and back. These 
functions were 
 
    f(α) = Σpx e

αx, f (α) = ∫φ(x)eαxdx. He noted that f(α) = 1 + αEx/1! + 
α2Ex2/2! + … (1; 2) 
 
    6) Homogeneous Markov chains. Poincaré provided interesting examples 
that might be interpreted in the language of these chains and their ergodic 
properties. 
    a) He (p. 150) assumed that all the asteroids moved along one and the 
same circular orbit, the ecliptic, and explained why they were uniformly 
scattered across it. Denote the longitude of a certain minor planet by l = at + 
b where a and b are random and t is the time, and, by φ(a; b), the continuous 
joint density function of a and b. Issuing from the expectation 
 
    Eeiml = ∫∫ φ(a; b)eim(at + b)da db 
 
(which is the appropriate characteristic function in the modern sense), 
Poincaré not very clearly proved his proposition that resembled the 
celebrated Weyl theorem (beginning of § 10.8.4). The place of a planet in 
space is only known with a certain error, and the number of all possible 
arrangements of the asteroids on the ecliptic might therefore be assumed 
finite whereas the probabilities of the changes of these arrangements during 
time period [t; t + 1] do not depend on t. The uniform distribution of the 
asteroids might therefore be justified by the ergodic property of 
homogeneous Markov chains having a finite number of possible states. 
    b) The game of roulette. A circle is alternately divided into a large 
number of congruent red and black sectors. A needle is whirled with force 
along the circumference of the circle, and, after having made a great number 
of revolutions, stops in one of the sectors. Experience proves that the 
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probabilities of red and black coincide and Poincaré (p. 148) attempted to 
justify that fact. Suppose that the needle stops after travelling a distance s 
(2π < s < A). Denote the corresponding density by φ(x), a function 
continuous on [2π; A] and having a bounded derivative on the same interval. 
Then, as Poincaré demonstrated, the difference between the probabilities of 
red and black tended to zero as the length of each red (and black) arc 
became infinitesimal (or, which is the same, as s became infinitely large). 
He based his substantiation on the method of arbitrary functions (Khinchin 
1961/2004, pp. 421 – 422; von Plato 1983) and himself sketched its essence. 
    c) Shuffling a deck of cards (p. 301). In an extremely involved manner, 
by applying hypercomplex numbers, Poincaré proved that after many 
shuffling all the possible arrangements of the cards tended to become 
equally probable. See § 7.1-6. 
    7) Mathematical treatment of observations. In a posthumously published 
Résumé of his work, Poincaré (1921/1983, p. 343) indicated that the theory 
of errors naturally was his main aim in the theory of probability. In his 
treatise he (pp. 169 – 173) derived the normal distribution of observational 
errors mainly following Gauss; then, like Bertrand, changed the derivation 
by assuming that not the most probable value of the estimator of the location 
parameter coincided with the arithmetic mean, but its mean value. He (pp. 
186 – 187) also noted that, for small absolute errors x1, x2, …, xn, the 
equality of f (z) to the mean value of f(xi), led to z, the estimate of the real 
value of the constant sought, being equal to the arithmetic mean of xi. It 
seemed to him that he thus corroborated the Gauss postulate. 
    Finally, Poincaré (p. 188) indicated that the variance of the arithmetic 
mean tended to zero with the increase in the number of observations and 
referred to Gauss (who nevertheless had not stated anything at all about the 
case of n → ∞). Nothing, however, followed since other linear means had 
the same property, as Markov (1899a/1951, p. 250) stated on another 
occasion. Poincaré himself (1896/1912, pp. 196 – 201 and 217) twice 
proved the consistency of the arithmetic mean. In the second case he issued 
from a characteristic function of the type of (1) and (2) and passed on to the 
characteristic function of the arithmetic mean. He noted that, if that function 
could not be represented as (2), the consistency of the arithmetic mean was 
questionable, and he illustrated that fact by the Cauchy distribution. Perhaps 
because of all this reasoning on the mean Poincaré (p. 188) declared that 
Gauss’ rejection of his first substantiation of the MLSq was assez étrange 
and corroborated this conclusion by remarking that the choice of the 
parameter of location should not be made independently from the 
distribution (which directly contradicted Gauss’ mature approach). In the 
same context Poincaré (p. 171) argued that everyone believed that the 
normal law was universal: experimentalists thought that that was a 
mathematical fact and mathematicians believed that it was experimental. 
    8) Randomness. Poincaré discussed randomness both in his treatise and in 
his scientific-popular booklets. In § 1.1 I noted his statement about the link 
between randomness and necessity. There also, is a description of chaotic 
processes, and two of his explanations of chance. Maxwell (§ 10.8.5-3) 
anticipated one of these, but did not mention chance. 
    I would argue that Poincaré initiated modern studies of randomness. For 
him, the theory of probability remained an accessory subject, and his almost 
total failure to refer to his predecessors except Bertrand testifies that he was 
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not duly acquainted with their work. However, his treatise had for about 20 
years remained the main writing on probability in Europe. Le Cam’s 
declaration (1986, p. 81) that neither Bertrand, nor Poincaré appeared to 
know the theory was unjust: at the time, Markov was apparently the only 
one who did master probability. 
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12. Chebyshev 

 
    Chebyshev proved his version of the LLN, almost rigorously justified the 
CLT and greatly influenced Russian scholars. His failure to recognize 
contemporary Western developments hampered Russian mathematicians.  
 
    Key words: LLN, CLT 
 
    12.1. His Contributions  
    1) The Poisson LLN (Chebyshev 1846); see Prokhorov (1986) for a 
detailed exposition. Chebyshev solved the following problem. In n 
[independent] trials the probability of success was p1, p2, …, pn. Determine 
the probability that the total number of successes was not less than µ. By 
clever reasoning he obtained the formula 
 

    P(µ ≥ m) ≤ 
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where m > ns +1 and s was the mean probability of success. 
    His proof was rigorous (although he had not indicated that the trials were 
independent) and he (p. 259) had the right to reproach Poisson whose 
method of derivation did not provide the limits of the error of his 
approximate analysis. Later Chebyshev (1879 – 1880/1936, pp. 162 – 163) 
explicated one of his intermediate transformations more clearly, also see 
Bernstein (1945/1964, p. 412). Chebyshev also became able to prove the 
Poisson LLN, cf. § 8.1.5, in the form 
 
    lim P(|(µ/n) – s| < ε) = 1, n → ∞. 
 
    Then Chebyshev (1867) generalized this formula and proved the 
Chebyshev form of the LLN: for random variables ξi having Eξi ≤ C1 and 

2
2Eξ Ci ≤  

 
    lim P[(1/n)|∑(ξi – E∑ξi| < ε] = 1, n → ∞. 
 
    2) The Bienaymé – Chebyshev inequality (cf. § 10.2-4). In his lectures 
Chebyshev (1879 – 1880/1936, pp. 166 – 167) specified it for coinciding 
random variables and obtained a most important and very simple corollary: 
the arithmetic mean was a consistent estimator of the expectation of a 
random variable. He again assumed that the expectations and variances of 
the appropriate variables were uniformly restricted. 
    Unlike Heyde & Seneta (§ 10.2-4), I believe that Chebyshev derived this 
inequality in about the same way as Bienaymé did, only in much more 
detail. True, he restricted his attention to discrete variables whereas 
Bienaymé, without elaborating, apparently had in mind the continuous case; 
his memoir was devoted to the mathematical treatment of observations. 
Modern authors, whom I mentioned in § 10.2-4, repeat the derivation for the 
latter instance; actually, already Sleshinsky (1893) had done it.  
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    3) The CLT. Chebyshev (1887b) noted that that theorem led to the MLSq 
(in accordance with the Laplacean approach). He issued from his 
inequalities (1874) published without proof for an integral of a non-negative 
function whose moments up to some order coincided with the same 
moments of the appropriate, in a definite sense, normal distribution. Markov 
(1884) and then Stieltjes substantiated them but later he (1885) expressed 
his regrets at having missed Markov’s contribution. Chebyshev justified his 
inequalities afterwards but without mentioning his predecessors, see Krein 
(1951). 
    Chebyshev considered random variables u1, u2, …, un having densities 
φi(x) and uniformly bounded moments. He had not expressly assumed 
independence and did not indicate the restriction 
 
    lim [uu]/n ≠ 0, i = 1, 2, …, n, n → ∞.                                                                     
(1) 
 
It was not necessary for the moments to be uniformly bounded, but 
Liapunov (1901b, p. 57) explained that demand by Chebyshev’s peculiar 
turn of speech. 
    Chebyshev noted that the density f (x) of the fraction 
 
    x = Σui /√n                                                                                                          
(2) 
 
can be determined by means of the multiple integral 
 

    f(x)dx = ∫ ∫ ∫ φ1(u1)φ2(u2) … φn (un)du1du2 … dun                                      

(3) 
 
extended over the values of the variables at which the fraction above is 
situated within the interval [x; x + dx]. He multiplied both parts of (3) by esx 
where s was some constant and integrated them over (– ∞; + ∞) so that the 
right side became separated into a product of n integrals with the same limits 
of integration. Chebyshev then developed both parts in powers of s (the right 
side, after taking its logarithm) and equated the coefficients of the same 
powers of that magnitude to each other. Thus the integrals  
 

    ( )f x dx∫ , ( )xf x dx∫ , 2 ( ) , ...x f x dx∫   

 
or the moments of magnitude (2), were determined up to some order (2m – 
1). It occurred that, as n → ∞, again with the same limits of integration, 
 

    ( )sxe f x dx∫ = exp(s2/2q2)                                                                                 

(4) 
 
where 1/q2 was the arithmetic mean of the second moments of ui  and it is 
here that the condition (1) was needed. Applying his previously mentioned 
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estimates of the integral of a non-negative function, Chebyshev now 
completed his proof: 
 

    lim P(α ≤ 
2 E[ ]

ui

uu

∑

∑
≤ β) = 

1

π

β

α
∫ exp(– x2)dx, n → ∞.                                

(5) 
 
For finite values of n the same probability, as Chebyshev indicated without a 
rigorous demonstration, was determined by a development in polynomials 
now called after Chebyshev and Hermite. 
    Markov (1898/1951, p. 268), when proving the Chebyshev theorem anew, 
without explaining the situation had eliminated a defect by introducing 
instead of (1) additional restrictions 
 
    Eui = 0, E ,m

iu < ∞  lim E[uu] ≠ 0, n → ∞.                                      (6a, b, c) 

 
    Sleshinsky (1892) issued from Cauchy’s findings (§ 10.1) and apparently 
proved the CLT rigorously even before Markov did, although only for a 
linear function of observational errors having an even density. 
 
    12.2. His Lectures  
    From 1860 to 1882 Chebyshev delivered lectures on the theory of 
probability at Petersburg University. In 1936, A. N. Krylov published those 
read in 1879/1880 as recorded by Liapunov and I refer to his publication by 
mentioning only the page numbers of this source. I translated this book 
correcting perhaps a hundred (I repeat: a hundred) mathematical misprints. 
Ermolaeva (1987) briefly described a more detailed record of Chebyshev’s 
lectures read during September 1876 – March 1878, discovered by herself 
but still unpublished. She had not indicated whether the newly found text 
essentially differed from the published version. 
    The lectures were devoted to definite integrals, the theory of finite 
differences and the theory of probability. Chebyshev attempted to apply the 
simplest methods; for example, he used summing, and, if necessary, went on 
to integration only at the last moment; he introduced characteristic functions 
only in the discrete case; he did not specify that he considered independent 
events or variables; he was not interested in the philosophical aspect of 
probability (Prudnikov 1964, p. 91); and, among the applications of the 
theory of probability, he almost exclusively discussed (not quite properly) 
the mathematical treatment of observations. 
    1) The main notions. Chebyshev (p. 148) declared that the aim of the 
theory of probability was  
 
to determine the chances of the occurrence of a certain event, and that the 
word ‘event’ means anything whose probability is being determined, and 
probability serves to denote some magnitude that is to be measured.  
 
    Boole (1851/1952, p. 251) expressed similar ideas: 
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    The object of the theory of probabilities may be thus stated: Given the 
separate probabilities of any propositions to find the probability of another 
proposition. 
 
According to Prokhorov & Sevastianov (1999, p. 77), the theory of 
probability studies mathematical models of random events and,  
 
    Given the probabilities of some random events, makes it possible to 
determine the probabilities of other random events somehow connected with 
the first ones. 
 
    Tacitly following Laplace (§ 7.1-3), Chebyshev (p. 165) indicated that the 
concept of limit in probability theory differed from that in analysis, but I am 
still unable to understand such equalities (or are they misprints?) as on pp. 
167, 183, 204/156, 171, 190  
 
    lim m/n = p.                                                                                                            
(7) 
 
    2) The limit theorem for Poisson trials (pp. 167 and 201ff). Determine the 
probability  
Pn, m that in n trials an event having probabilities pi, i = 1, 2, …, n, 
respectively, occurred m times. Applying a little known formula from the 
first section of his Lectures Chebyshev obtained 
 

    Pn, m = 
1

2π

π

π
∫

−
[p1e

φi+ q1] [p2e
φi + q2] … [pne

φi + qn]e
–mφidφ, qi = 1 – pi. 

 
After some transformations and considering only small values of φ it 
occurred that  
 

    Pn, m = 
1

π

π

0
∫ exp(– nQφ2/2)cos [(np – m)φ]dφ 

 
where p was the mean probability of success and Q = [pq]/n. Assuming for 
large values of n an infinite upper limit in the obtained integral, Chebyshev 
finally got 
 

    P[|m/n – p| < t 2 /Q n ] = 
2

π 0

t

∫ exp (– z2)dz 

 
(without the sign of limit!) and noted that formula (7), or, as he concluded, 
the Poisson LLN, followed from it. He naturally did not here admonish his 
predecessor. 
    3) The CLT (pp. 219 – 224). At the time, Chebyshev had not yet known 
its rigorous proof. I only note his pronouncement (p. 224): the formula that 
he obtained was not derived  
 
in a rigorous way […]. We have made various assumptions but did not 
determine the boundary of the ensuing error. In its present state, 
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mathematical analysis cannot derive this boundary in any satisfactory 
fashion. 
 
    4) Statistical inferences. Chebyshev solved two problems which, 
however, were considered before him. In the first of these he (pp. 187 – 192) 
derived the Bayes limit theorem (§ 5.2) but did not cite anyone, and in the 
second he (pp. 193 – 201) studied the probability of a subsequent result in 
Bernoulli trials. An event occurred m times in n trials; determine the 
probability that it will happen r times in k new trials. Guiding himself 
mostly by the Stirling theorem, Chebyshev non-rigorously derived an 
integral limit theorem similar to that obtained by Laplace (§ 7.1-5).  
    5) Mathematical treatment of observations (pp. 224 – 252). Chebyshev (p. 
227) proved that the arithmetic mean was a consistent estimator of the 
unknown constant. Unlike Poincaré (§ 11.3-7), he (pp. 228 – 231) justified 
its optimality by noting that, among linear estimators, the mean ensured the 
shortest probable interval for the ensuing error. The variance of the 
arithmetic mean was also minimal (Ibidem); although Chebyshev had not 
paid special attention to that estimator of precision, it occurred that he, in 
principle, based his reasoning on the definitive Gaussian substantiation of 
the MLSq (§ 9.1.3). 
    At the same time Chebyshev (pp. 231 – 236) derived the normal 
distribution as the universal law of error in about the same way as Gauss did 
in 1809. The Gauss method, Chebyshev (p. 250) maintained, bearing in 
mind exactly that attempt later abandoned by Gauss, was based on the 
doubtful law of hypotheses, – on the Bayes theorem with equal prior 
probabilities. Chebyshev several times censured that law when discussing 
the Bayesian approach in his lectures and he (p. 249) wrongly thought that 
the Gauss formula (9.6b) had only appeared recently and that it assumed a 
large number of observations. He did not mention that the Gauss formula 
provided an unbiassed estimation. It might be concluded that the treatment 
of observations hardly interested him. 
    6) Cancellation of a fraction (pp. 152 – 154). Determine the probability P 
that a random fraction A/B cannot be cancelled. Markov remarked that 
Kronecker (1894, Lecture 24) had solved the same problem and indicated 
Dirichlet’s priority. Kronecker had not supplied an exact reference and I was 
unable to check his statement; he added that Dirichlet had determined the 
probability sought if it existed at all. Anyway, Bernstein (1928/1964, p. 219) 
refuted Chebyshev’s solution and indicated (p. 220), that the theory of 
numbers dealt with regular number sequences whose limiting or asymptotic 
frequencies of numbers of some class, unlike probabilities, which we will 
never determine experimentally, might be studied. See Postnikov (1974) on 
the same problem and on the stochastic theory of numbers.  
 
    12.3. Some General Considerations  
    And so, Chebyshev argued that the propositions of the theory of 
probability ought to be rigorously demonstrated and its limit theorems 
should be supplemented by estimation of the errors of pre-limiting relations 
(Kolmogorov 1947, p. 56). He himself essentially developed the LLN and, 
somewhat imperfectly, proved for the first time the CLT; on the study of 
these two issues depended the destiny of the theory of probability (Bernstein 
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1945/1964, p. 411). His students also contributed to the theory (§§ 13.1, 
13.2, 13.4). 
    Kolmogorov continued: Chebyshev was the first to appreciate clearly and 
use the full power of the concepts of random variable and [its] expectation. 
However, Chebyshev had not made use of Poisson’s heuristic definition of 
random variable (§ 8.1), had not applied this term and did not study 
densities or generating functions as mathematical objects. Then, the entire 
development of the theory of probability from Chebyshev onward might be 
described as an ever fuller use of the power of the abovementioned 
concepts; thus, it had since begun to study dependent random variables, their 
systems and chains. 
    Here also is Bernstein’s conclusion (1945/1964, p. 432):  
 
    The genius of Chebyshev and his associates, who, in this field [theory of 
probability], have left mathematicians of Western Europe far behind, have 
surmounted the crisis of the theory of probability that had brought its 
development to a stop a hundred years ago. 
 
    However, Novikov (2002, p. 330) stated that in spite of his splendid 
analytical talent, Chebyshev was a pathological conservative. He 
corroborated it by referring to V. F. Kagan (1869 – 1953), an eminent 
geometrician. The latter, when being a young Privat-Docent, had listened to 
Chebyshev’s scornful statement on the trendy disciplines like the Riemann 
geometry and complex-variable analysis. Even Liapunov (1895/1946, pp. 19 
– 20) called Riemann’s ideas extremely abstract; his investigations, pseudo-
geometric and sometimes, again, too abstract and having nothing in 
common with Lobachevsky’s deep geometric studies. Liapunov did not 
recall Klein, who had in 1871 presented a unified picture of the non-
Euclidean geometry in which the findings of Lobachevsky and Riemann 
appeared as particular cases. On the other hand, Tikhomandritsky (1898, p. 
IV) testified that in 1887 Chebyshev had stated that […] it is necessary to 
transform the entire theory of probability. It is difficult to say what exactly 
did he mean.
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13. Markov, Liapunov, Nekrasov 

 
    I consider here the work of three outstanding scholars. Markov completed 
the proof of the CLT and opened up a new direction in probability. 
Liapunov proved the CLT by following latest mathematical developments. 
Nekrasov attacked the CLT purely analytically and was the first to consider 
the CLT in case of large deviations but got entangled. Then, he hopelessly 
linked probability with religion and shallow philosophy. 
 
    Key words: CLT, case of large deviations, Markov chains 
  
    13.1. Markov: Personal Traits  
    For his biography see Markov Jr (1951), a noted mathematician in his 
own right, and Grodzensky (1987). They describe his principled stand on 
burning social and political issues whereas Grodzensky also published many 
of his pertinent newspaper letters, some of them for the first time; 
apparently, the newspapers did not always accept them. Markov struggled 
against anti-Semitism and denounced the Russian Orthodox Church, see 
also Sheynin (1989, pp. 340 – 341; 2007b). The Press used to call him 
Militant academician (Nekrasov 1916, p. 9) and Andrew the Furious 
(Neyman 1978). 
    In 1901 Tolstoy was excommunicated from the Church. During his last 
days, the Most Holy Synod discussed whether he should be admitted to the 
bosom of the Church and decided against it (Anonymous 1910), so that in 
1912 Tolstoy’s excommunication was likely well remembered. Then, in 
1912 Markov submitted a request to the Synod for excommunication 
mentioning his doubts about events allegedly having occurred in bygone 
times and adding that he did not sympathise with religions which, like 
Orthodoxy, are supported by, and in turn lend their support to fire and 
sword. The Synod resolved that Markov had seceded from God’s church 
(Emeliakh 1954, pp. 400 – 401 and 408). In a 
letter of 1915 (Sheynin 1993a, p. 200) Markov maintained that graduates of 
Russian Orthodox seminaries  
 
are getting accustomed […] to a special kind of reasoning. They must 
subordinate their minds to the indications of the Holy fathers and replace 
their minds by the texts from the Scripture. 
 
    In 1921 (Grodzensky 1987, p. 137) 15 professors of the Petrograd 
University declared that applicants ought to be chosen according to their 
knowledge rather than to class or political considerations; Markov was the 
first to sign their unsuccessful statement. 
    Markov’s attitude towards other scholars had often been wrong. Just one 
example,  
Andreev’s letter of 1915 to Nekrasov, see Sheynin (1994e, p. 132): Markov  
 
    Remains to this day an old and hardened sinner in provoking debate. I 
had understood this long ago, and I believe that the only way to save myself 
from the trouble of swallowing the provocateur’s bait is a refusal to respond 
to any of his attacks… 
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In his own scientific work, Markov had been too rigid, see §§ 13.2 – 13.3, 
which negatively influenced his work. During his last years, in spite of 
extremely difficult conditions of life in Russia and his worsened health, he 
completed the last posthumous edition of his Treatise but insufficiently 
described there the findings of the Biometric school; such scholars as Yule 
and Student (Gosset) were not mentioned and he even formulated an 
absolutely wrong statement (end of § 13.2.5). To some extent, he became a 
victim of his own rigidity; he failed, or did not wish to notice the new tide of 
opinion in statistics (or even probability theory).  
 
    13.2. Markov: General Scientific Issues  
    1) History of the theory of probability. Markov investigated the Bernoulli 
LLN (§ 3.2.3); in 1913 he initiated a jubilee meeting of the Petersburg 
Academy of Sciences celebrating the bicentenary of that law, commented on 
the history of the Bienaymé – Chebyshev inequality and the method of 
moments (§ 10.2-2) and stressed De Moivre’s part in establishing the 
Stirling formula. The last edition of his Treatise includes many interesting 
historical remarks. 
    2) Insurance of life. Markov collaborated with pension funds (Sheynin 
1997c) and in 1906 he destructively criticized a proposed scheme for 
insuring children (reprinted in same article). 
    3) Calculations. I mention his table of the normal distribution (1888) 
which gave it to 11 digits for the argument x = 0 (0.001) 3 (0.01) 4.8. Two 
such tables, one of them Markov’s, and the other, published ten years later, 
remained beyond compare up to the 1940s (Fletcher et al 1962). Markov 
(1899b, p. 30) indirectly expressed his attitude toward calculations: 
 
    Many mathematicians apparently believe that going beyond the field of 
abstract reasoning into the sphere of effective calculations would be 
humiliating. 
 
    4) Correlation theory. In a letter of 1912 to him Slutsky (Sheynin 
1990a/2011, p. 64) stated that the shortcomings of Pearson’s exposition are 
temporary and will be overcome. Markov, however, continued largely to 
ignore him. Thus, he (1916/1951, p. 533) reasonably criticized the 
correlation theory, actually since it was still imperfect, but did not mention 
its possible worth: 
 
    Its positive side is not significant enough and consists in a simple usage of 
the method of least squares to discover linear dependences. However, not 
being satisfied with approximately determining various coefficients, the 
theory also indicates their probable errors and enters here the region of 
fantasy, hypnosis and faith in such mathematical formulas that, in actual 
fact, have no sound scientific justification. 
 
    Now, discovering dependences, even if only linear, is indeed important; 
and the estimation of plausibility of the results obtained is an essential part 
of any investigation. 
    5) Principles of the theory of probability. Markov (1911c/1981, pp. 149 – 
150) thought that their discussion was meaningless and even declared 
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(1900/1924, c. 2) that various concepts are defined not by words […] but 
rather by [our] attitude towards them ascertained little by little. The 
axiomatic approach had been necessary, but Markov, like a student of 
Chebyshev, underrated both it and the complex analysis (A. A. Youshkevich 
1974, p. 125). He (1900/1924, pp. 10, 13 – 19 and 24) even claimed to have 
proved the addition and multiplication theorems and thus to transfer the 
calculus of probability to the realm of pure mathematics, – in spite of its 
failure to study densities or characteristic functions as mathematical objects, 
cf. § 7.3. P. Lévi (1925) was apparently the first to take this step. 
    Markov did not define probability anew either, but this seems to be 
impossible (and axiomatization did not help practitioners). In geometry, the 
situation is better since such notions as area of figure are indirectly defined 
by the appropriate integrals; on the other hand, the straight line remained 
undefined which prompted the appearance of the non-Euclidean geometry. 
    6) Mathematical statistics. By the end of his life Markov, mostly under 
the influence of Chuprov (Sheynin 1990a/2011, p. 76, his letter of ca. 1924 
to another statistician), somewhat softened his attitude to Pearson:  
 
    Markov regarded Pearson, I may say, with contempt. Markov’s temper 
was no better than Pearson’s, he could not stand even slightest 
contradictions either. You can imagine how he took my persistent 
indications to the considerable scientific importance of Pearson’s works. 
My efforts thus directed were not to no avail as proved by [Markov 1924]. 
After all, something [Pearsonian] was included in the field of Markov’s 
scientific interests. 
 
    Chuprov (1925b) also published a review of the mentioned edition of 
Markov’s Treatise. Here, I only cite his reasonable criticism of Markov’s 
treatment of correlation theory: 
 
    The choice of questions on which attention is concentrated is fortuitous, 
their treatment within the bounds of the chapter on the method of least 
squares is incomplete, the connection made between the theory of 
correlation and the theory of probability is inadequate… 
 
Yes, Markov included some innovations in the last edition of his Treatise: a 
study of statistical series, linear correlation. He determined the parameters 
of lines of regression, discussed random variables possessing certain 
densities and included a reference to Slutsky (1912), but paid no attention 
either to the chi-squared test (§ 13.3-1) or to the Pearsonian curves. 
    7) Teaching probability theory in school. In 1914 Nekrasov made an 
attempt to introduce probability into the school curriculum. Markov (1915a) 
protested against the proposed school programme, but did not object to the 
very principle. He became a member of an ad hoc academic Commission 
which voiced an extremely negative opinion (Report 1916) about 
Nekrasov’s programme and his understanding of the main concepts of 
mathematical analysis, see § 13.5. 
    8) Methodological issues. Many authors praised the methodological value 
of Markov’s contributions, see however § 13.3-1 (in particular, his own 
letter) and Idelson (1947, p. 101) who voiced a negative opinion. Then, 
Markov refused to apply the term random magnitude (as it has been called 
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in Russia) and the expressions normal law and coefficient of correlation 
were likewise absent in his works. And, not wishing to leave his field 
(§13.3-1, letter to Chuprov), he never mentioned applications of his chains 
to natural sciences. The structure of his Treatise became ever more 
complicated with each new edition. 
 
    13.3. Markov: Main Investigations  
    1) Mathematical treatment of observations. In spite of several 
commentators, I deny Markov’s accomplishments here. Neyman (1934, p. 
595) invented a non-existing Gauss – Markov theorem and F. N. David & 
Neyman (1938) repeated this mistake but finally Neyman (1938/1952, p. 
228) admitted it. 
    In his Treatise (1900) Markov combined the treatment of observations 
with the study of correlation, statistical series and interpolation, but his 
innovation was methodically doubtful. While discussing statistical series, 
Markov did not mention Chuprov’s relevant papers (1916; 1918 – 1919). 
When considering Weldon’s experiment with 26,306 throws of 12 dice (K. 
Pearson 1900), Markov (Treatise 1924, pp. 349 – 353) decided, after 
applying the CLT and the Bayes theorem with transition to the normal law, 
that the probability of a 5 or a 6 was higher than 1/3. Unlike Pearson, he had 
not used the chi-squared test and apparently left an impression that 
(although suitable for a small number of trials as well) it was not needed at 
all. Markov possibly followed here his own rigid principle (Ondar 
1977/1981, Letter 44 to Chuprov of 1910): I shall not go a step out of that 
region where my competence is beyond any doubt. 
    The explication of the MLSq proper was involved; in a letter of 1910 to 

Chuprov Markov (Ondar 1977/1981, p. 21) wrote: I have often heard that 
my presentation is not sufficiently clear. In 1893, his former student, 
Koialovitch (Sheynin 2006a, pp. 81 and 85), writing to Markov, formulated 
some puzzling questions about his university lectures. 
    2) The LLN. Markov (1906/1951, p. 341) noted that the condition 
 
    limE{[E∑ξi – ∑Eξi)]

2/n2} = 0, n → ∞                                                                 
(1) 
 
was sufficient for the sequence ξ1, ξ2, …, ξn, … of random variables to obey 
the LLN; or to comply with the condition 
 
    limP{(1/n)|(∑ξi – ∑Eξi)| < ε} = 1, n → ∞. 
 
    Then Markov (Ibidem, pp. 342 – 344; Treatise, 1913, pp. 116 – 129) 
derived a few sufficient conditions for sequences of independent, and, 
especially, dependent random variables (1906/1951, p. 351; Treatise 1913, 
p. 119; 1924, p. 174), provided examples of sequences not obeying the law, 
and (Treatise, 1913, p. 129), proved that independent variables obeyed the 
LLN if, for every i, there existed the moments 
 
    Eξi = ai, E|ξi – ai|

1+δ < C, 0 < δ < 1. 
 
    Again, Markov (Treatise, 1900; p. 86 in the edition of 1924) had proved 
that, for a positive random variable ξ, 
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    P (ξ ≤ t2Eξ) > 1 – 1/t2 
 
and Bortkiewicz (1917, p. 36) and Romanovsky (1925a; 1925b) called this 
inequality after Markov. 
    3) The CLT. As I mentioned at the end of § 12.1-3, Markov specified the 
conditions of theorem (12.2) proved by Chebyshev. He (1898/1951, p. 268) 
considered independent random variables ui with zero expectations and 
introduced conditions (12.3) but he returned several times to the CLT. 
    a) He (1899a/1951, p. 240) additionally introduced two restrictions: as n 
→ ∞, 
 
    limE[(u1 + u2 + … + un)

2] = ∞, lim[E(u1 + u2 + … + un)
2/n] ≠ ε.   (2; 3) 

 
    b) Markov (1907, p. 708) again proved the CLT. Referring to his papers 
(1898; 1899a), he now introduced conditions (12.3b) for finite values of i 
and (3) but did not restrict the values of ui. On his next page Markov 
abandoned condition (3) if only 
 
    lim Eun

2 = ∞, n → ∞                                                                        (4) 
 
and the values of ui remained finite. Restrictions (2) and (4) certainly 
coincided. 
    c) Markov (1908a) essentially extended the applicability of the method of 
moments by replacing his conditions by Liapunov’s single restriction 
(1901a/1954, p. 159) 
 

    lim 
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2 δ

1 δ/2
2

E| |

var 

i
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u

u
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+

∑

∑

 = 0, δ > 0, n → ∞.  

 
In 1913 Markov included a modified version of his last-mentioned study in 
his Treatise; it is also reprinted (Markov 1900/1924; 1951, pp. 319 – 338). 
    Markov (1899b, p. 42) mentioned the example provided by Poisson 
(1824, § 10) who proved that the limiting distribution of the linear form 
 
    L = ε1 + 1/3ε2 + 1/5ε3 + … 
 
of random variables εi with density e–2|х| was 
 
    lim P(|L| ≤ с) = 1 – (4/π)arc tan e–2c, n → ∞. 
 
In this example lim var [εn/(2n – 1)] = 0, n → ∞. 
 
    Markov himself (1899a/1951, pp. 242 – 246) also provided an example in 
which the condition (2) did not hold and the CLT did not take place. 
    The appearance of condition (3) remains, however, unclear. Nekrasov 
(1900 – 1902, 1902, pp. 292 and 293) introduced it for independent 
variables instead of restriction (4). Liapunov (1901a/1954, p. 175) 
maintained that it was not sufficient. Seneta (1984, p. 39) indicated, 
however, that Markov’s published papers had not contained such examples 
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and that condition (4) was necessary and sufficient for the CLT in the case 
of uniformly restricted variables. 
    4) Markov chains. This term is due to Bernstein (1926, §16); Markov 
himself (1906/1951, p. 354) called them simply chains. He issued from a 
paper by Bruns of the same year, but the prehistory of Markov chains is 
much richer. Here are the main relevant issues. 
    a) The Daniel Bernoulli – Laplace urn problem, the predecessor of the 

Ehrenfests’ model (§ 7.1-3);  
    b) The study of the Brownian movement (Brush 1968);  
    c) The problem of the extinction of families (§ 10.2-4); 
    d) The problem of random walks (Dutka 1985);  
    e) Some of Poincaré’s findings;  
    f) The work of Bachelier (1900) on financial speculations, also see 
Courtault et al (2000) and Taqqi (2001). 
    Markov (1906/1951, pp. 345 and 354) considered simple homogeneous 
chains of random events and discrete random variables and proved that the 
LLN was applicable both to the number of successes and to the sequences of 
these variables. Later he (1910/1951, p. 476) extended the first of these 
findings to simple non-homogeneous chains. 
    Markov proved the CLT for his chains. He considered simple 
homogeneous chains of events (1906) and of random variables (1908b); and 
complex homogeneous (1911a; 1911b) chains of random variables; simple 
homogeneous chains of indirectly observed events (1912a). While studying 
the chains, Markov established important ergodic theorems but had not paid 
them any special attention; in this connection, I mentioned one of his solved 
problems in § 7.1-3. 
    Markov widely applied the method of moments, and only he who repeats 
some of his investigations will be able to appreciate the obstacles which he 
overcame. Bernstein (1945/1964, p. 427), however, contrasted Markov and 
Liapunov. The latter had applied the classical transcendental analysis as 
developed by that time whereas the method of moments, Bernstein 
maintained, did not facilitate the problem [of proving the CLT] but rather 
transferred all its difficulties elsewhere. 
 
    13.4 Liapunov  
    The theory of probability remained an episode in his scientific work. He 
(1900; 1901a) proved the CLT assuming a single condition (5). I briefly 
repeat (Bernstein 1945/1964, pp. 427ff) that a characteristic function 
determines the sought law of distribution independently from the existence 
of the relevant moments. Liapunov proved that under his condition the 
characteristic function of a centred and normed sum of random variables 
tended to the characteristic function of a normed normal law. I also mention 
Lindeberg (1922b, p. 211) whose proof of the CLT was simpler and became 
better known. He referred to his previous paper (1922a) and continued:  
 
    I see now that already Liapunov had explicated general findings which 
not only surpass the results achieved by Mises […] but which make it 
possible to derive most of what I have established. […] The study of 
Liapunov’s work prompted me to check anew the method that I have 
applied. 
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    Chebyshev thought that the limits of integration, α and β, in formula 
(12.2) describing that theorem, were any. Nekrasov (1911, p. 449) arbitrarily 
interpreted that expression as variable. I discuss Nekrasov in § 13.5; he 
could have well indicated that, on the contrary, he had generalized the 
Chebyshev theorem. In his previous polemic paper Liapunov (1901b, p. 61) 
declared that he had assumed that these limits were given beforehand and 
that otherwise the probability, written down in the left side of formula of the 
CLT, could have no limit at all, – but nevertheless be asymptotically 
expressed by the normal law of distribution.  
 
    13.5. Nekrasov  
    His life and work (Sheynin 2003a) are separated into two stages. From 
1885 and until about 1900 he had time to publish remarkable memoirs not 
connected with probability both in Russia and Germany and to become 
Professor and Rector of Moscow University. In 1898 he sketched the proof 
of the CLT for sums of lattice random variables. Then, however, his 
personality changed. His writings became unimaginably verbose, sometimes 
obscure and confusing, and inseparably linked with ethical, political and 
religious considerations. Here is a comparatively mild example (1906, p. 9): 
mathematics accumulated 
 
psychological discipline as well as political and social arithmetic or the 
mathematical law of the political and social development of forces 
depending on mental and physiological principles.  
 
    Furthermore, Nekrasov’s work began to abound with elementary 
mathematical mistakes and senseless statements. For example (1901, p. 
237): it is possible to assume roughly, that xn, n > 0, is the limit of sin x as |x| 
→ 0, and the conclusions made by [Chebyshev, Markov and Liapunov] 
never differ much from such an understanding of limit. And here is his 
astounding declaration (Archive, Russian Academy of Sciences, fond 173, 
inventory 1, 55, No. 5) from his letter of 1913 to Markov: 
 
    I distinguish the viewpoints of Gauss and Laplace [on the MLSq] by the 
moment with regard to the experiment. The first one is posterior and the 
second one is prior. It is more opportune to judge à posteriori because more 
data are available, but this approach is delaying, it lags behind, drags after 
the event. 
 
    At least the attendant reasons for such a change were Nekrasov’s religious 
upbringing (before entering Moscow University he graduated from a 
Russian Orthodox seminary), his work from 1898 onward as a high official 
at the Ministry of People’s Education, and his reactionary views. In his letter 
of 1916 to the religious philosopher P. A. Florensky (Sheynin 1993a, p. 196) 
Nekrasov stated that the German – Jewish culture and literature pushed us 
to the crossroads. World War I was then going on which only partly 
exonerates Nekrasov. I shall now dwell on some concrete issues. 
    1) Teaching the theory of probability. In § 13.2-7 I mentioned Nekrasov’s 
proposal for teaching probability in school and the rejection of the 
curriculum drawn up by him. 
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    2) The MLSq. Nekrasov (1912 – 1914) mistakenly attributed to Legendre 
an interpolation-like application of the method and (1914) acknowledged his 
failure to notice, in 1912, the relevant work of Yarochenko (1893a; 1893b).  
    3) The CLT. It was Nekrasov who had considered the CLT for large 
deviations, – for the case that began to be studied only 50 years later. He 
(1898) formulated six theorems and proved them later (1900 – 1902). 
Neither Markov, nor Liapunov had sufficiently studied them; indeed, it was 
hardly possible to understand him and Soloviev (1997/2008, p. 359) 
reasonably stated: 
 
    I am firmly convinced that no contemporary mathematician or later 
historian of mathematic had (has) ever studied it [the memoir (1900 – 
1902)] in any detail. 
 
He himself only suggested that Nekrasov had indeed proved his theorems 
and he reminded his readers that Markov had indicated some mistakes made 
by Nekrasov. Furthermore, Soloviev (pp. 356 – 357) remarked that 
Nekrasov had wrongly understood the notion of lattice variables. He (p. 
362) also stated that it was generally impossible to check some of 
Nekrasov’s restrictions. Both he and Seneta (1984, §6), agree in that 
Nekrasov’s findings had not influenced the development of the theory of 
probability which was certainly caused both by Nekrasov’s inability to 
express himself intelligibly and by the unwieldiness of his purely analytical 
rather than stochastic approach (Soloviev, p. 363). 
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14. The Birth of Mathematical Statistics 

 
    By the end of the 19th century, Lexis and his followers began to study the 
behaviour of the probability of the studied event in observational series. 
Their work led to general achievements, but it was overshadowed by the less 
rigorous tireless efforts of K. Pearson and his school. Fisher, who originated 
mathematical statistics, indirectly owed much to Pearson. 
 
    Key words: Continental direction of statistics, Biometric school, 
biometry 
 
    14.1. The Stability of Statistical Series  
    By the end of the 19th, and in the beginning of the 20th century, statistical 
investigations on the Continent were mostly restricted to the study of 
population whereas in England scientific statistics was mostly applied to 
biology. The so-called Continental direction of statistics originated as the 
result of the work of Lexis whose predecessors had been Poisson, 
Bienaymé, Cournot and Quetelet. Poisson and Cournot (§ 8.1) examined the 
significance of statistical discrepancies for a large number of observations 
without providing examples. Cournot (§ 10.3-5) also attempted to reveal 
dependence between the decisions reached by judges (or jurors). Bienaymé 
(1839) was interested in the change in statistical indicators from one series 
of trials to the next one and Quetelet (§ 10.5) investigated the connections 
between causes and effects in society, attempted to standardize statistical 
data worldwide and, following Süssmilch, created moral statistics.  
    At the same time statisticians held that the theory of probability was only 
applicable to statistics if equally possible cases were in existence, and the 
appropriate probability remained constant (§§ 10.7-7, 10.7-8). 
    14.1.1. Lexis. He (1879) proposed a distribution-free test for the equality 
of probabilities in different series of observations; or, a test for the stability 
of statistical series. Suppose that there are m series of ni observations, i = 1, 
2, …, m, and that the probability of success p was constant throughout. If 
the number of successes in series i was ai, the variance of these magnitudes 
could be calculated by two independent formulas (Lexis 1879, § 6) 
 
    σ1

2 = pqn, σ2
2 = [vv]/(m – 1)                                                                         

(1; 2) 
 
where n was the mean of ni, vi, the deviations of ai from their mean, and q = 
1 – p. Formula (2) was due to Gauss, see (9.6b); he also knew formula (1), 
see W-8, p. 133. The  frequencies of success could also be calculated twice. 
Note however that Lexis applied the probable error rather than the variance 
and mistakenly believed that the relation between the mean square error and 
the probable error was distribution-free. Lexis (§ 11) called the ratio 
 
    Q = σ2/σ1  
 
the coefficient of dispersion. For him, the case Q = 1 corresponded to normal 
dispersion (with random deviations from unity considered admissible); he 
called the dispersion supernormal, and the stability of the observations 
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subnormal if Q > 1 (and indicated that the probability p was not then 
constant); finally, Lexis explained the case Q < 1 by dependence between 
the observations, called the appropriate variance subnormal, and the 
stability, supernormal. He did not, however, pay attention to this possibility. 
    But how could the probability vary? Lexis (1876, pp. 220 – 221 and 238) 
thought that the variations followed a normal law, but then he (1877, § 23) 
admitted less restrictive conditions (evenness of the appropriate density 
function) and noted that more specific restrictions were impossible. I am not 
sure that Lexis had broken off with previous traditions, see § 10.7-7. He 
(1879) discussed this issue once more, and even mentioned irregular waves 
(§ 22), but it is difficult to follow him. He interrupted himself by providing 
statistical examples and never gave precise formulations. 
    Lexis had not calculated either the expectation, or the variance of his 
coefficient (which was difficult). His main achievement was perhaps an 
attempt to check statistically some stochastic model. He (1879, § 1) also 
qualitatively separated statistical series into several types and made a 
forgotten attempt to define stationarity and trend. 
    A French actuary Dormoy (1874; 1878) preceded Lexis, but even French 
statisticians (who barely participated in the contemporary development of 
statistics) had not noticed his theory. It was Lexis who first discovered 
Dormoy (Chuprov 1909/1959, p. 236) and Chuprov (1926, p. 198/1960, p. 
228) argued that the Lexian theory of dispersion ought to be called after 
Dormoy and Lexis. Bortkiewicz (1930), however, later ranked Dormoy far 
below Lexis and, be that as it may, later statisticians had only paid attention 
to Lexis. 
    14.1.2. Bortkiewicz. See also § 10.7-4. Of Polish descent, Vladislav 
Iosifovich Bortkevich was a lawyer by education. He was born and studied 
in Petersburg, but at the end of the 19th century continued his education in 
Germany (he was Lexis’ student). In 1901 he secured a professorship in 
Berlin and remained there all his life as Ladislaus von Bortkiewicz. For 
further detail see Sheynin (1990a/2011, § 7.3). 
    He (1903) sharply criticized Nekrasov (1902) for the latter’s statements 
that the theory of probability can soften the cruel relations between capital 
and labour (p. 215) and for attempts (p. 219) to exonerate the principles of 
firm rule and autocracy, for Nekrasov’s sickening oily tone (p. 215) and 
reactionary longings (p. 216). Although Bortkiewicz was not initially 
acquainted with mathematics, he achieved interesting findings. Woytinsky 
(1961, pp. 452 – 453) stated that he was called the statistical Pope whereas 
Schumacher (1931, p. 573) explained Bortkiewicz’ attitude towards science 
by a quotation from Exodus 20:3: You shall have no other gods before me.  
    Chuprov’s student and the last representative of the Continental direction, 
Anderson (1932, p. 243/1963, Bd. 2, p. 531), described Bortkiewicz’ 
achievements: 
 
    Our (younger) generation of statisticians is hardly able to imagine that 
mire in which the statistical theory had got into after the collapse of the 
Queteletian system, or the way out of it which only Lexis and Bortkiewicz 
[later, Anderson added Chuprov] have managed to discover. 
 
    Bortkiewicz’ work is insufficiently known mostly because of his 
pedestrian style and excessive attention to details, but also since German 
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statisticians and economists of the time (Bortkiewicz was also a celebrated 
economist) had been avoiding mathematics. He did not pay attention to 
improving his style and refused to mend his ways. Winkler (1931, p. 1030) 
quoted a letter from Bortkiewicz (date not given) who was glad to find in 
him one of the five expected readers of his work! Here is Anderson’s 
appraisal (1932, p. 245/1963, Bd. 2, p. 533): 
 
    Bortkiewicz did not write for a wide circle of readers […] and was not at 
all a good exponent of his own ideas. In addition, he made very high 
demands on the readers’ schooling and intellect. With stubbornness partly 
caused by his reclusive life, […] he refused to follow the advice of […] 
Chuprov… 
 
    Bortkiewicz had determined EQ and EQ2 and Markov (1911c/1981, p. 
153), see also Ondar (1977/1981, Letter 47 of 1912), positively mentioned 
his work. Then, Bortkiewicz introduced his ill-fated law of small numbers (§ 
8.1.2) for studying the stability of statistical series and did not listen to 
Chuprov’s mild criticism. However, he was the main author who picked up 
Poisson’s law and for a long time his contribution (1898a) had remained the 
talk of the town. 
    14.1.3. Markov and Chuprov. In his letters of 1910 to Chuprov, Markov 
(Ondar 1977) proved that Lexis’ considerations were wrong. It occurred that 
the dispersion could also be normal when the observations were dependent. 
Also in 1910, Chuprov, in a letter to Markov, provided examples of 
dependences leading to super- and sub-normality of dispersion; in 1914 he 
decided that the coefficient of dispersion should be shelved to which 

Bortkiewicz strongly objected (Sheynin 1990a/2011, p. 140). Then, in 1916 
both Markov and Chuprov proved that EQ2 = 1 (p. 141). Finally, Chuprov 
(Ibidem, p. 142), definitively refuted the applicability of the coefficient of 
dispersion, but his conclusion is hardly known even now. 
    Chuprov (1918 – 1919, p. 205) proved, in an elementary way, a general 
formula 
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Included here were n random variables ξi anyhow dependent on each other 
and the results of a single observation xi of each of them.  
    While studying the stability of statistical series, Chuprov achieved really 
interesting results, see Seneta (1987), but, since he considered problems of 
the most general nature, he inevitably derived awkward formulas. 
Romanovsky (1930, p. 216) noted that Chuprov’s formulas, although being 
of considerable theoretical interest, were almost useless due to complicated 
calculations involved. 
 
    14.2. The Biometric School  
    The first issue of Biometrika appeared in 1902. Its editors were Weldon (a 
biologist who died in 1906), Pearson and Davenport in consultation with 
Galton. The editorial there contained the following passage: 
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    The problem of evolution is a problem in statistics […] [Darwin 
established] the theory of descent without mathematical conceptions […] 
[but] every idea of Darwin – variation, natural selection […] – seems at 
once to fit itself to mathematical definition and to demand statistical 
analysis. […] The biologist, the mathematician and the statistician have 
hitherto had widely differentiated fields of work. […] The day will come […] 
when we shall find mathematicians who are competent biologists, and 
biologists who are competent mathematicians … 
 
    In 1920, Pearson (E. S. Pearson 1936 – 1937, vol. 29, p. 164) defined the 
aim of the Biometric school as making statistics a branch of applied 
mathematics and providing various disciplines applying it with a new and 
stronger technique. The success of the new school was partly caused by the 
efforts of Edgeworth who was excessively original, had an odd style and 
was unable to influence strongly his contemporaries. 
    Pearson’s Grammar of science (1892) earned him the brand of a 
conscientious and honest enemy of materialism and one of the most 
consistent and lucid Machians (Lenin in 1909, in his Materialism and 
Empiriocriticism); the latter term is tantamount to Mach’s philosophy and 
Mach (1897, Introduction) had most positively mentioned Pearson’s 
Grammar. Newcomb had highly regarded Pearson (§ 10.8.4). 
    After Todhunter (1865), Pearson (1978) was apparently the first 
considerable work in its field but it is more important to mention Pearson’s 
fundamental biography of Galton (1914 – 1930), perhaps the most immense 
book from among all works of such kind, wherever and whenever published. 
Many of his contributions are reprinted in Pearson (1948); see the 
bibliography of his works in Morant et al (1939) and Merrington et al 
(1983).  
    The work of Fisher began in 1911 but he was only able to publish a single 
paper in Biometrika (in 1915). However, at the end of the day he surpassed 
Pearson. It was he rather than his predecessor with whom the birth of the 
real mathematical statistics is much more closely connected. 
    Pearson’s main merits include the compilation of numerous statistical 
tables, development of the principles of the correlation theory and 
contingency, the introduction of the Pearsonian curves for describing 
empirical distributions (1896 with additions in 1901 and 1916), rather than 
for replacing the normal law by another universal density, and the χ2 test 
(1900) which he had been applying for checking the goodness of fit; 
independence in contingency tables; and homogeneity. Pearson constructed 
the system of those curves in accordance with practical considerations and 
defined it as the solution of the differential equation with four parameters. 
He attempted, often successfully, to apply the statistical method, and 
especially correlation theory, in many other branches of science (1907, p. 
613):  
 
    I have learnt from experience with biologists, craniologists, 
meteorologists, and medical men (who now occasionally visit the 
biometricians by night!) that the first introduction of modern statistical 
method into an old science by the layman is met with characteristic scorn; 
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but I have lived to see many of them tacitly adopting the very processes they 
began by condemning. 
 
    It was difficult to correlate Mendelism and biometry: the former studied 
discrete magnitudes while the latter investigated continuous quantitative 
variations. Later developments threw a different light on this subject 
(Johannsen 1922). 
    I (2010) collected pronouncements of celebrated scientists about Pearson, 
both positive (Kolmogorov, Bernstein, Mahalanobis, Newcomb) and 
negative (Fisher). Here, I only quote two authors.  
    Fisher (1937, p. 306) objected to Pearson’s view of maximum likelihood, 
stating that his 
 
    Plea of comparability [between the methods of moments and maximum 
likelihood] is […] only an excuse for falsifying the comparison […]. 
 
    Hald (1998, p. 651) offered a reasonable general description of one aspect 
of the Biometric school:  
 
    Between 1892 and 1911 he [Pearson] created his own kingdom of 
mathematical statistics and biometry in which he reigned supremely, 
defending its ever expanding frontiers against attacks. 
 
    Of special interest is the testimony of Camp (1933) who worked under 
Pearson at the Galton laboratory. Although patently prettifying Pearson, he 
put forward facts and impressions hardly available elsewhere. 
    It is also necessary to mention W. S. Gosset (pen-name Student). Not a 
member of the Biometric school, he was one of the pioneers in the 
development of modern statistical method and its application to the design 
and analysis of experiments (Irwin 1978, p. 409). Specifically, best known is 
his work on treating small samples and the t-test. Fisher aptly called him the 
Faraday of statistics (Ibidem, p. 410) since, in a sense, his intuitive feeling 
was better than his mathematics. It was perhaps this circumstance that Karl 
Pearson had in mind when, in a letter of ca. 1914 to Chuprov’s follower, 
Anderson, he called Student kein Fachmann (Sheynin 1990a/2011, p. 153). 
    E. S. Pearson & Wishart (1943) published Student’s collected papers and 
E. S. Pearson (1990) is a most informative source about Student and his 
contemporaries. It does not, however, include the bibliography of his works 
nor contain a concise description of his findings. 
  
    14.3. The Merging of the Two Streams?  
    I (§ 14.1-4) noted that the Continental statisticians were not recognizing 
Pearson. Many of his colleagues, Chuprov wrote, like Markov, shelve the 
English investigations without reading them. The cause of that attitude was 
the empiricism of the Biometric school (Chuprov 1918 – 1919, t. 2, pp. 132 
– 133): 
 
    The reluctance, characteristic of English researchers, to deal with the 
notions of probability and expectation led to much trouble. It greatly 
damaged clearness […] and even directed them to a wrong track. […] 
However, after casting away that clothing […] and supplementing the 
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neglected, [the kinship between Lexis and Pearson] will become obvious. 
[…] Not Lexis against Pearson, but Pearson refined by Lexis, and Lexis 
enriched by Pearson should be the slogan of those who are dissatisfied with 
the heartless empiricism. 
 
    So, did the two statistical streams merge, as Chuprov would have it? In 
1923 he had become Honorary Fellow of the Royal Statistical Society and in 
1926, after his death, the Society passed a resolution of condolence (Sheynin 
1990a/2011, p. 156) which stated that his 
 
    Contributions to science were admired by all […]. They did much to 
harmonise the methods of statistical research developed by continental and 
British workers.  
 
    Bauer (1955, p. 26) reported that he had investigated how both schools 
had been applying analysis of variance and concluded (p. 40) that their work 
was going on side by side but did not tend to unification. More details about 
Bauer`s study are contained in Heyde & Seneta (1977, pp. 57 – 58) where it 
also correctly indicated that, unlike the Biometric school, the Continental 
direction had concentrated on nonparametric statistics. 
    I myself (Gnedenko & Sheynin 1978/2001, p. 275) suggested that 
mathematical statistics properly originated as the coming together of the two 
streams. However, now I correct myself. At least until the 1920s, say, 
British statisticians had continued to work all by themselves. E. S. Pearson 
(1936 – 1937), in his study of the work of his father, had not commented on 
Continental statisticians and the same is true about other such essays 
(Mahalanobis 1936; Eisenhart 1974). I believe that English, and then 
American statisticians for the most part only accidentally discovered the 
findings already made by the Continental school. Furthermore, the same 
seems to happen nowadays as well. Even Hald (1998) called his book 
History of Mathematical Statistics, but barely studied the work of that 
school. 
    In 1919 there appeared in Biometrika an editorial entitled Peccavimus! 
(we were guilty). Its author, Pearson, corrected his mathematical and 
methodological mistakes made during several years and revealed mostly by 
Chuprov (Sheynin 1990a/2011, p. 75) but he had not taken the occasion to 
come closer to the Continental statisticians. In 2001, five essays were 
published in Biometrika, vol. 88, commemorating its centenary. They were 
devoted to important particular issues, but nothing was said in that volume 
about the history of the Biometric school, and certainly nothing about 
Continental statisticians. 
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Supplement: Axiomatization 

    I present a bibliographic survey of some important points. 
    The main essays are Barone & Novikoff (1978) and Hochkirchen (1999) 
and among the lesser known authors is Bernstein (1917). After Hilbert 
(1901), Kolmogorov (1933) made the decisive step and Freudenthal & 
Steiner (1966, p. 190) commented: he came with the Columbus’ egg. As the 
legend goes, Columbus cracked an egg which enabled it to stand firmly on 
his table. Among the new sources I list Hausdorff (2006) who left an 
important unpublished contribution, see Girlich (1996), Shafer & Vovk 
(2001) and Krengel (2011) who stressed the role of Bohlmann. Vovk & 
Shafer (2003, p. 27) characterized their book:  
 
    We show how the classical core of probability theory can be based 
directly on game-theoretic martingales, with no appeal to measure theory. 
Probability again becomes [a] secondary concept but is now defined in 
terms of martingales. 
 
    In concluding, I quote Boole (1854/1952, p. 288):  
 
    The claim to rank among the pure sciences must rest upon the degree in 
which it [the theory of probability] satisfies the following conditions: 1° 
That the principles upon which its methods are founded should be of an 
axiomatic nature. 
 
Boole formulated two more conditions of a general scientific essence. 
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