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Introduction by the compiler 

 

General comments on some items  
    [i] Kohli provided a useful and first ever commentary on N. 
Bernoulli’s dissertation, but still a few of our Notes obliquely or 
otherwise criticize him. Thus, Kohli had not questioned N. B.’s 
statement on the rare birth of twins (Note 24) and indirectly called N. 
B. a cofounder of the theory of probability (Note 26).  
    There exists a translation of N. B.’s dissertation by Richard J. 
Pulskamp and A. Berra available in the Internet. The Latin original 
was slavishly preserved there without any regard for English grammar 
(or common sense). Some phrases are impossible to understand and 
many are unbelievably long, up to 25 or even 40 lines. Kohli (who 
certainly did not know about that, possibly not yet existing translation) 
had quoted (in German) many excerpts from N. B., and, as a rule, we 
followed his own translation. Hald (1990) used an unpublished 
translation made in 1976 by T. Drucker who informed me that he is 
not anymore satisfied with his work but has no time for improving it. 
    It is opportune to add that, although Latin has been generally 
praised and even called indispensable (e. g., for classifying plants and 
animals), Gauss complained that The delicate (spröde) Latin language 
resists expression of thoughts in a simple and natural way (his letter to 
Olbers of 14 April 1819).  
    N. B. devoted his dissertation to his uncle, Johann Bernoulli, rather 
than to the memory of his other uncle, Jakob Bernoulli, whom he 
plagiarized. His letter to Montmort (1708/1713, pp. 388 – 394) of 23 
Jan. 1713 ended by an ambiguous phrase: When the Ars Conjectendi 
appears in print, we will know … As though he did not quote it times 
and times again! 
    [ii] Had Gauss already applied the method of least squares in the 
Theoria motus? I (2009, § 9.1.4) discussed this point and concluded 
that he did (which is not, however, accepted by all commentators). 
What remains completely unknown is whether Gauss changed the 
exposition of that method in the period between 1806 and 1807. 
 
    Sheynin O. (2009), Theory of Probability. Historical Essay. Berlin. S, G, 10. 
    [iv] In my Notes, I have made many critical remarks and can only 
conclude that Bessel had hardly read the Ars Conjectandi and that he 
was apparently satisfied to deliver a kitchen-sink talk.  
    [v] Bessel read his report not earlier than in 1839 (Note 21). 
Bearing in mind both this report and Chapter 1 of his book [No. 
322/135], I stress that he was also a metrologist. Regrettably, 
historians of science did not study his pertinent work. Mikhailov 
(1939, p. 200), however, called his work of 1825 – 1826 classical. 
One circumstance is unclear: how Bessel could have measured very 
small differences of the temperatures of the two bars (§ 16)? 
    [vi] The booklet creates a distressing impression by poorly 
explained descriptions and astonishing mistakes (see my Notes). This 
is all the more regrettable since Anger was Bessel’s student (Bruhns 
1875, p. 562) and worked with him in 1827 – 1831 (Repsold 1920, p. 
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188). Anger himself called himself Doctor and professor in Danzig 
(title page of his booklet), so what did he teach? 
    However, he provided many details lacking in Repsold’s detailed 
account, and, moreover, my translation is a warning for those 
numerous authors who refer almost to any published source without 
bothering to study it. Cf. Gauss (letter to Schumacher, 6 July 1840):  
    I reluctantly express myself in detail about the achievements 
attained by others […] if not being entirely convinced in that I may 
really mention them approvingly. 
    But he also recognized that prior literary studies […] were not 
exactly to his taste.  

Some notation 
    Notation W-i means Gauss, Werke, Bd. i. 
    Notation [No. a] means that Bessel’s paper a was included under 
that number in the list of his contributions compiled by R. Engelmann 
in Bessel’s Abhandlungen, Bd. 3. Leipzig, 1876, pp. 490 – 504. 
Notation [No. a/b] additionally indicates that contribution a was 
reprinted in those Abhandlungen under number b.  
    Notation S, G, i means that an English translation of the appropriate 
paper is available on my cite www.sheynin.de  which is being copied 
by Google, Oscar Sheynin, Home, in Document i.   



5 
 

 

I 

 

K. Kohli 

 

Commentary on Niklaus Bernoulli’s Dissertation  

De usu artis conjectandi in jure (1709) 
 

Kommentar zur Dissertation von Niklaus Bernoulli […].  
In Bernoulli Jakob, Werke, Bd. 3. Basel, 1975, pp. 541 – 556 

 
    Without the dissertation of his nephew Niklaus Bernoulli (N. B.), 
the publication of the works of Jakob Bernoulli (J. B.) would have 
been incomplete1. Its spiritual father was certainly J. B. Whole 
sections (Abschnitten) from his Diary (Meditationes) and the Ars 
Conjectandi (AC) are copied in the Dissertation word for word2. And 
N. B. had also picked up some problems and hints and remade 
problems posed by his uncle although it was often necessary to 
formulate them mathematically.  
    The Dissertation contains splendid investigations and often testifies 
to N. B.’s clear concept of the application of the probability theory3 to 
ordinary life. But still, it is not as ripe as could have been expected 
from him bearing in mind his later letters of the 1720’s to De Moivre 
and Montmort4. 
    In his Introduction N. B. states: 
    I will discuss some theme out of mathematics produced by that 
divine knowledge the study of which I have joined so far with the study 
of law with GOD favouring. From the first years I have continued 
with conspicuous love with my most celebrated Uncles Jakob and 
Johann Bernoulli displaying a light for me in this knowledge. Jakob is 
now indeed enrolled in the heavenly chorus of the blessed, but to his 
own he bequeathed the treatise on the Art of Conjecture (unedited 
thus far but shortly, as we hope, to be brought into light). He has 
prompted me to choose this subject, i. e., the application of the Art of 
Conjecture to the law which I undertake with pleasure. I see that 
many of the most useful investigations, particularly about absent men 
to be considered dead, likewise life annuities &c occurring nearly 
daily in the court of justice, can be decided by this art.  
    The introductory first chapter is perhaps the most unfortunate 
(unglücklichste) of all of them. On three pages N. B. attempts to say 
something general about the art of conjecturing and quotes J. B. 
(1713, pt. 4, beginning of Ch. 2): 
    The art of conjecturing5 is defined as the art of measuring the 
probability of things as exactly as possible, to be able always to 
choose what will be found the best, the more satisfactory, serene and 
reasonable for our judgements and actions. 
    N. B. then continues:  
    As becomes evident from this definition, the object of the art is 
indefinite and doubtful so that that object is unreliable. No full 
certainty is possible, although by assumptions one can determine how 
high the probability of an event is.  
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    However, J. B. (Ibidem, end of Ch. 1) deeper indicates that he 
discusses not things doubtful per se, but those which in accord with 
our knowledge are not completely certain. But what does probability 
mean? Huygens (1657) did not mention it, and J. B. only introduced it 
in the last part of his AC6. The main notion of both these scholars was 
expectation which is indeed sufficient. The probability of an event can 
be understood as a special case of expectation7. A gambler can 
consider his win as a unity, and his loss as a zero and N. B. apparently 
thought exactly so, although did not express himself quite clearly.  
    Indeed, he began his dissertation by a long quote from J. B. (1713, 
pt. 4, Ch. 1), who had defined probability as a part of certainty, and 
went on: 
    The foundation of this entire Art upon which we ought to rely 
perpetually in assessing probability, consists in this general Rule 
which Huygens (1657) demonstrates in his elegant pamphlet, in 
Propositions 1, 2 & 3, and in my uncle in his Notes to these same 
Propositions. 
    [Kohli quotes the definition of expectation. Here is its end:] The 
quotient provides the value of the expectation or the degree of the 
probability. 
    I can only understand these last words, the degree of probability, in 
the sense that N. B., as stated above, considered probability as a 
special case of expectation. Then he quotes the remark of his uncle 
from the commentary on the Proposition 3 about the expectation being 
identical with the rule concerning mixtures when their prices are being 
determined and indicates that the general arithmetic mean and the 
centre of gravity of many weights are calculated the same way.  
    The latter comparison seems especially instructive since, so to say, 
the centre of gravity of all the probabilities8 which leads to an 
equilibrium of weights is also calculated in the same way. For this 
reason jurists, in doubtful and obscure cases, tend to attain such an 
equilibrium. N. B. prefers to prove his statement on the basis of the 
Justinian Corpus Juris Civilis. He ends his first chapter by J. B.’s 
remark (commentary to Proposition 1 of the Huygens treatise): the 
expectation concerns the fear of something worst as well as the hope 
for something better.  
    In his second chapter N. B. estimates the duration of human life 
and thus lays the foundation for subsequent investigations: 
    … although the end of our life be the most uncertain, & the hour of 
death is known to no one except GOD, the highest and best, the 
ultimate giver of our life, who is able to take from us this his own gift  
at whatever time He Himself shall have pleased. Nothing remains for 
us other than that through conjecture to determine how many years up 
to this time a man will probably gain, or how much be the probability 
that he exceeds some given year or not &c. 
    I see however that there are many who will state that by the art of 
conjecturing it is almost impossible to determine the exact number of 
cases for something to occur. No mortal [N. B. continues by quoting J. 
B. (pt. 4, Ch. 4):] will be able to determine, for example, the number 
of diseases, that is, the same number of cases which at each age 
invade the innumerable parts of the human body and can bring about 
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our death; or how much easier one disease (for example, the plague) 
can kill a man than another one (for example, dropsy; or the dropsy 
than fever), so that we will be able to conjecture about the future state 
of life or death. 
    After an intermediate remark about those things that depend on 
causes completely hidden and evading our experience, N. B. once 
more quotes J. B. (Meditationes, § 77; 1975, p. 46): 
    The matter reveals itself in another way in divinations & games 
which fate alone governs since here the expectation can be determined 
precisely and scientifically. Indeed, we accurately and clearly 
perceive the number of chances according to which profit or loss will 
follow infallibly. These chances manage themselves indifferently, and 
they will be equally likely to happen, or at least one shall be somewhat 
more probable than the other, so that we are able to define 
scientifically how much more probable.  
 
    Here, N. B. says, we determine the number of cases in another way. 
He quotes J. B.(from Ch. 4 once more) on the posterior estimation of 
the desired rather than on prior, when issuing from causes, and then 
turns to a marginal remark in the same § 77 of the Meditationes: 
    I can deviate less from the true value of the ratio [of cases] when 
observing oftener than rarer. 
    This excerpt from J. B., which N. B. had not indicated as such, 
supplements Huygens’ statement about the splendid art of 
conjecturing9. Then N. B. goes on to calculate the order of the dying 
out [of a group of men] according to Graunt, which I have also 
discussed elsewhere (Kohli & van der Waerden 1975).  
    Out of a 100 new born babies only 64 are left after 6 years; only 40, 
after 16 years, […]. N. B. reports that he found these data in J. B. 
(1686, p. 283 in 1975) who, in turn, took them from the J. des 
Sçavans, No. 31, 166610. Neither J. B., nor N. B. knew, however, that 
the Graunt table was based on considerations rather than observations. 
    Then N. B. shows in detail how to determine the mean expectation 
of life in years. He writes:  
    If one should be driven to estimate the lifetime of some new born 
baby, he will have to consider the following. This baby is included 
either among those 36 who die within the first six years, or among 
those 24 who die between the sixth and sixteenth year or … […] 
Therefore, there are 36 chances that he will die within the first six 
years, i. e., that he may probably survive up to three years (this half is 
chosen since on account of the lack of observations not extending into 
individual years it must be supposed that anyone is equally likely to 
die in the individual moments of these six years). […] There are 
another 24 chances that he will die between the sixth and sixteenth 
year, i. e. that he will probably live up to 11 years. […] Likewise 
another 15 chances […] By the general rule given in the preceding 
chapter the expectation of our baby is worth  
 

    
36 3 24 11 15 21 9 31 6 41 4 51 3 61 2 71 1 81

100

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
=  
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11

18  .
50

years  

 
    In the same manner the life of a six-years old child will be 

 

    
24 5 15 15 9 25 6 35 4 45 3 55 2 65 1 75

100

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
=  

 
25

20 years.
32

 

 
    Therefore, the expectations of people aged 16, 26, 36, 46, 56, 66 
and 76 are 201/4, 192/5, 171/2, 15, 112/3, 81/3 and 5 years.  
    N. B. notes that these numbers can be calculated easier when 
moving in the opposite direction and applies a formula which in 
modern notation is 
 

ex = 1 1 1

1 1
[ ( ) (1 )].
2 x x x x

x

l l l e
l + + +− + +  

 
    Here lx is the number of those who survived age х, and ex – the 
mean expectation of the duration of life at that age. N. B. clearly 
distinguishes the mean expectation of life (although applies the terms 
expected, mean age, probable or most probable age) and the age at 
which there survive exactly 1/2 of a certain age group. The brothers 
Huygens understood the difference between the two time periods 
(Kohli & van der Waerden 1975)11. N. B. writes:  
    We say that the expectation of a new born baby or of someone who 
is 6, 16, &c years is worth 1811/50, 2025/32, or 192/3 &c years or that it 
is equally probable that they have died within that age span rather 
than beyond, which means that among many men of the same age so 
many will go beyond the specified age as die within it. All this 
concerns the average or mean life.[…] The longest life is 
compensated by the untimely and anticipated death. This is what the 
Germans call ein Jahr in das ander gerechnet, and the French, l’un 
portant l’autre. 
    It would be contrary to say that the most probable age of this man 
& the mean age are, e. g., 20 years. […] Thus, a new born baby 
according to the former finding will expect 1811/50 years. However, it 
must be almost twice more probable that he will not lead his life to 
that age, for out of 100 new-born babies scarcely 37 survive after 
1811/50 years. […] But if we wish to determine that time in which this 
new born baby will most probably die, we will only have to search 
within how many years a half of such babies dies. […]Within 6 years 
36 die out of 100, within the next decade, 24. So within how many 
years 14 die? […] 55/6 will be found. The sought time period is 
evidently 115/6 years.  

    Huygens, De Witt and J. B. (in a letter to Leibniz of 2 Aug. 1704, 
see Kohl (1975)) had considered the next problem discussed by N. B. 
In this letter J. B. wrote:  
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    In the same way you can show by an example what you are thinking 
about annuities for many lives.  
    Huygens, Hudde, De Witt and Halley had studied that problem.  
    N. B. goes on to determine the mean expectation of the life of the 
last survivor from a group of 2, 3 or more people of the same age or of 
different ages. However, before that, he says, we ought to solve the 
following problem. Given, a period of a years during which b people 
die and each dies equally easily at any moment. It is required to 
determine the number of years until which the last survivor will 
probably live. His answer: ba/(b + 1), which is а/2 for one man, 2/3, 
3/4, 4/5, … of а for groups of 2, 3, 4, …men.  
    This result12 is very remarkable and quite new. N. B. proves it by 
dividing the period а into n equal intervals, determining the number of 
the possible distributions of deaths in each and calculates the limit as n 
→ ∞. He does not distinguish the index which runs from 1 to n from 
the number n itself and we have therefore denoted that index by v. As 
was usual in those times, N. B. non-rigorously passed to the limit.  
    Let us follow his solution. Separate а into an uncountable number 
of equal intervals or moments m whose number n is infinite. The last 
man to survive dies at moment v, the other die either at the same 
moment or earlier. Suppose that 0, 1, 2, … people are still living. This 
can happen in cases whose numbers are equal to the number of zeros, 
units, twos, … in v things, i. e., in 1, v, v(v + 1)/2, v(v + 1)(v + 2)/6, … 
cases. Therefore, the product of the number of the cases by the 
number of moments of the life expectation for the last survivor will be  

 
1vm, v2m, [v(v + 1)/2]vm, [v(v + 1)(v + 2)/6]vm, …  
 
    The sum of all the products (with v = 1, 2, …, n) divided by the 

sum of all the cases will provide the expectation sought when the 
death is equally likely to happen at any moment 
 

[ ( 1)/2] [ ( 1)( 2)/6]
,  ,  ,  ,... 

( 1)/2 ( 1)( 2)/6 ( 1)( 2)( 3)/24

vm vvm v v vm v v v vm

n n n n n n n n n n

+ + +

+ + + + + +

∑ ∑ ∑ ∑  

 
or, as n → ∞, 
 

3 4

3 4

( /3) ( /6)
, ,  ,  ,  ... 

/2 /6 /24

vdv vvdv v dv v dv
m m m m

n nn n n
∫ ∫ ∫ ∫  

 
which is equal to 
 
1/2, 2/3, 3/4, 4/5, … times nm = a.  
 

N. B. also provides a very elegant geometrical proof. Construct a 
curve whose abscissa x corresponds to the time interval during which 
a given number of men will die, and the ordinate y, to the number of 
cases in which this happens. Then the distance between the centre of 
gravity of this curve and its apex, 
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xydy ydx÷∫ ∫  

  
will be the number of the years sought.  
    In our case, the ordinate invariably equals the abscissa to the power 
of (b – 1) where b is the number of men in the group. And for y = xb−1 

the most probable age of the last survivor will be   
 

    1b bx dx x dx−÷∫ ∫ , or ba/(b + 1) for x = a. 

 
    The number of cases should naturally not be understood literally; it 
is only essential that the probabilities of the death of (b – 1) men 
during time interval [0, x] be proportional to xb−1.  
    After proving this auxiliary theorem, N. B. is able to determine the 
life expectancy of the last survivor of two new born babies: 
 
    [36·36·4 + 2·36·24·11 + 24·24·122/3 + 2·60·15·21 + 15·15·222/3 + 
    2·75·9·31 + 9·9·322/3 + 2·84·6·41 + 6·6·422/3 + 
    2·90·4·51 + 4·4·522/3 + 2·94·3·61 + 3·3·622/3 + 
    2·97·2·71 + 2·2·722/3 + 2·99·1·81 + 1·1·822/3]: (100·100) =  
 
    274119/5000 years. 
 
    For two people aged 16 and 46 years, that life expectancy is 2523/48 
years. The same problem can also be solved for three or more people 
of any ages.  
    N. B. once more turns to his uncle’s considerations. J. B. (1686) 
stated that a 16-years-old daughter of a 56-years-old man outlives him 
in 101 cases, whereas the opposite happens in 59 cases. N. B. provides 
the lacking calculation. If the father dies during the first decade, the 
daughter can also die during that period in 15 cases and in 25 cases 
will live 10 years longer. The expectation of the opposite case is then 
(the answer here and below is expressed in parts of certainty) 
 
    [15·1/2 +25·0]: 40 = 3/16. 
 
    If the father dies during the second decade, his corresponding 
expectation is 
 
    [15 + 9·1/2 + 16·0]:40 = 39/80. 
 
    Finally, if the father dies during the third decade, his expectation is 
 
    [24 + 6·1/2 + 10·0]:40 = 27/40. 
 
    The father’s total expectation is [the sum of those three terms] 
59/160 of certainty, and 101/160 of certainty is left for the daughter. 
    This calculation with parts of certainty, i. e., with probabilities, is 
unusual for N. B. as well; most often he provides the ratio of the 
expectations or of the number of cases. He ends this chapter by some 
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considerations about the available observations. He is dissatisfied by 
linearly interpolating the numbers in the Graunt table, but a friend 
provided him actual empirical data on [almost] two thousand men 
from a celebrated Swiss city. Regrettably, N. B. did not give these 
data, he only indicated the life expectancies for various age groups 
calculated and rounded off to years. [Kohli provides these 
expectancies.] The expectations derived from the Graunt table 
essentially differed, and N. B. concluded: 
    It is doubtful how to explain this difference. Perhaps the number of 
observations made was insufficient, for if ages of more men, e. g., of 
three, four, ten &c thousand had been observed, I could have deviated 
less from truth. Or (what I rather would have believed) that in our 
Switzerland, because of a more temperate life or a better constitution 
of the air, men are more often reaching a longer lifetime than in 
France, where by chance the observations given in the Chronicle of 
French scholars [J. de Sçavans, wrote Kohli] had been made. Or, 
rather some other thing and for the time being we will nevertheless 
cling in those prior observations to our hypothesis until we obtain 
better ones13.  
    We can only regret that N. B. had hesitated to base his 
investigations on the private data from his friend and applied the 
published Graunt table. The order of the dying out of a group of men 
from that unnamed city can approximately be reconstructed by issuing 
from the rounded off life expectancies according to the formula for the 
number of survivors 
 

    x + 5 = 
5

3
.

2
x

x

e
x

e +

+

−
 

 
The calculated numbers agree well with the Halley data for Breslau. 
    N. B. ends this second chapter by expressing his hope that the 
pastors in each town will record more accurately the ages at death. 
This, he adds, will enable better to estimate life expectancies and 
provide the foundation for applying the Lex Falcidia14 to presume the 
death of a missing person and to determine the cost of life insurance 
and life annuities. 
    It ought to be clearly indicated that N. B. boldly investigated his 
problems and that their solution was mathematically irreproachable. 
His calculation of the life expectancy of the last survivor of a group of 
men especially surpassed the appropriate Dutch works, especially the 
determination of the expectancy of the life of the last survivor of a 
group of men. [See also Note 12. O. S.] In the sequel, N. B. applied 
the results of this second chapter to various legal problems. 
    In his third chapter N. B. discussed the declaration of death of 
missing persons. A man is called missing, he says after citing legal 
sources, if his whereabouts is unknown, so that it is unknown whether 
he is still alive. If, during a long time, there is no news either from him 
himself or from others, he may be declared dead at the request of his 
compatriots.  
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    But how to understand the long time? After quoting many sources, 
N. B. shows that the opinions of jurists essentially differ from each 
other. Some believe that five years is sufficient, others think that a 
century is necessary. Johannes Bunz, in his dissertation which 
appeared in Basel in 1686, groundlessly suggested 30 years as a 
reasonable duration. N. B. himself decided that that duration is best 
determined by the data on deaths. 
    Probable is generally understood as something obviously exceeding 
1/2. When requiring that the probability of death is twice higher than 
the contrary alternative, it will exceed a half of certainty by 1/6 of it 
[2/3 – 1/2 = 1/6]. For example, when is it possible to declare dead a 
missing new born baby? Or, otherwise, when 67 such babies out of a 
hundred will die? 60 die during 16 years, and 15 during the next ten 
years. By the rule of three 7 more will die during the next 42/3 years15. 
The disappeared new born baby can only be declared dead after 202/3 
years.  
    N. B. provides the appropriate durations for people aged 6, 16, …, 
76 years. In other respects he follows Bunz: after those durations the 
missing person is not taken into consideration and his belongings can 
be given to his heirs without requiring any security.  
    J. B. also left some notes about missing persons, see § 77b of his 
Meditationes (Problem 10) and his AC (pt 4, Ch. 2, Item 3). He asks 
whether a person missing for 20 years is more probably living than 
dead, and decides that this question can be answered after discussing 
the causes of the two possibilities. He does not, however, conclude 
which of these two is more probable, and the distance between his 
considerations and the clear conclusions made by N. B. is really 
large16.  
    In his fourth chapter N. B. studies the purchase of hopes 
[expectations], at first in a very general way, then with regard to life 
annuities. Such purchases can also include catches of fish, hunter’s 
bags or legacies. Differing and not studied is here the purchase of 
future things, such as ripening fruit, young cattle or yet an unborn 
baby of a slave woman. Indeed, the appropriate agreement will 
become null and void if the presumed event does not occur. 
    In the case of expectations, on the contrary, their cost should be 
paid even if the buyer is left empty-handed since here it is the 
purchase of a pure expectation independent from the result. 
    The just price is determined not by what will finally occur, but by 
an equilibrium of gain and loss at the conclusion of the agreement. 
    Thus, N. B. assigns such a price for fishing rights.  
    The value of the expectation will be determined if the number of fish 
captured during several previous years in that river is divided by the 
number of those years since the quotient will denote the number of fish 
which will probably be caught in this year. And so, a just price in this 
purchase will be that which otherwise must be paid for so many fish. 
However, the beneficial nature of the law should be accounted for if 
the buyer pays more than double that price or less than half of it. The 
circumstances of an agreement are always decisive.  
    When discussing life annuities, N. B. surveys the appropriate legal 
literature. Some jurists do not recognize at all any agreements about 
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them since, first, they are often declared unjust, and, second, because 
they essentially prompt crimes. Thus, a Florentine was poisoned after 
contracting such an agreement.  
    N. B. refutes the second argument by indicating the laws of 
inheritance. Concerning the first one he refers to many authors who 
nevertheless believe that such agreements are valid. He himself 
upholds the legality of agreements in which the equilibrium of the 
conditions for both buyer and seller is observed. In other words, in 
which they are both running the same danger of loss17. This condition 
is only fulfilled, as he adds, when the cost of the annuity is determined 
in accord with the probable life expectancy. 
    The jurists had not at all been unanimous about the ratio of the 
yearly annuity and its price and their suggestions differed from 1/6 to 
1/12. N. B., however, argued that the price of an annuity should not be 
assigned without allowing for the buyer’s age and health. He referred 
to likeminded jurists, for example, to Ulpian’s reasoning about 
maintenances. Other jurists, on the contrary, did not establish any just 
price but rather left this problem to the discretion of a clever judge. N. 
B. himself had only partly realized his recommendation: he allowed 
for the age, but not for the health of the buyer18.  
    N. B. did not elicit the Dutch investigations from oblivion but 
considered in detail the rule due to Molina who thought that the just 
price of a life annuity is equal to the moneys drawn during half the 
maximal duration of the buyer’s life. N. B. disagreed. First, if, for 
example, a 60-year-old man can only live until 80, the assumption of 
his dying equally easy during each year does not hold. Second, a 
hundred ducats today is more than ten times ten ducats yearly.  
    After rejecting all these unjustified opinions, N. B. says, when 
concluding his survey: 
    We will relate the genuine method of estimating annuities. First, it 
is well known that the annual payments ought to exceed ordinary 
interests since the principal or the paid premium cannot be redeemed. 
Second, so much should be added to the interest that by the time of the 
buyer’s death all the principal be exhausted. 
    Accordingly, N. B. derives a formula for calculating the price of life 
annuities for a man with a given duration n of life. A new born baby 
can expect to live 1811/50 years. At an interest of 5% the just price19 
will be 111897/2433. N. B. also provides the results for men aged 16, 26, 
… years and easily calculates the price of life annuities for two lives 
and continues: 
    Certainly, […] I perceive that the value of these annuities is 
incorrectly estimated by supposing the duration of the return to be so 
many years, as many as someone will probably be presumed to 
survive. Since the premiums do not increase in the same proportion 
with years, the just premium of the annuity bought for one life which 
will certainly expire within the decade, and, moreover, expire equally 
likely during each year of that period20, should not be the same as the 
premium of a usual annuity for five years. It should be equal to the 
arithmetic mean of the prices of the annuities for one, two, &c years 
up to ten21.  
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    However, this reasoning is wrong. If the buyer dies during the first 
decade21, the annuity for the tenth year will not be paid, and only nine 
payments should be accounted for. Similarly, if the buyer dies during 
the second decade, the payments for the 10th, the 11th, …, the 19th year 
are only considered: 
    In order to determine the true premium of the life annuity, it is 
necessary to find the premium in individual years lasting until any 
man is able to survive and to multiply those premiums by the 
appropriate number of cases, and to divide the sum of all these 
products by the number of all the cases. To this end I compiled the 
following table of those premiums up to hundred years. 
    Issuing from this table for an annuity of n years, N. B. now derives 
the price of the life annuity providing 1000 monetary units yearly for 
buyers of different ages: 
  
    Age 0, 6, 16, 26, 36, 46, 56, 66, 76 
    Price of life annuity: 9.420, 10.680, 10.593,  
                                      10.576, 10.164, 9.457, 8.148, 6.545, 4.568 
 
    As an example, he shows in detail the calculation for a 16-year-old 
buyer: 
 
    [15·4.558 + 9·10.519 + 6·14.179 + 4·16.427 + 3·17.806 +  
    2·18.653 + 1·19.173):40 = 423.720/40 = 10.593. 
 
    And now N. B. attempts to confirm his results by comparing them 
with the prices published in Amsterdam in 1672 and 1673 and notes 
that the agreement is very good. I recall that those prices were much 
lower than those indicated by Hudde and De Witt.  
    There also exists another kind of life contracts, N. B. continues, 
which has a great affinity with annuities and is still used today most of 
all by the Italians. The father of a new born baby girl receives from 
someone four or five times more than restores to him if the daughter 
arrives at the marriageable age but he retains the whole if she dies 
before this age.  
    N. B. shows that that insurance provides too little: the father ought 
to get 5.457 times the possibly returned. 
    The fifth chapter is devoted to a problem in the law of inheritance. 
Already in the Roman law the testator was unable to will everything 
quite freely: by the Lex Falcidia, he was obliged to leave a certain part 
of the legacy to his heirs.at-law.  
   Kaser (1955, pp. 630 – 633) indicated that  
    Only the Lex Falcidia (40 BC) safeguarded those heirs since it 
allowed the testator to will not more than 3/4 of the legacy; 1/4 should 
have been left for the heirs. If the testator had also burdened this 
quarter [by obligations], all the legacy was decreased respectively. 
    Calculations are based on the price of the legacy at the moment of 
the testator’s death less the debts. When a part of the legacy is 
claimed, or if there are debts or possible heirs [apart from the heirs-
at-law] the price of the possible rights is estimated or secured by a 
guaranty. 
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    It was this last type of wills which depended on chance that 
interested N. B. How to estimate properly that price? He quotes an 
Aemil. Macer from the Corpus Juris Civilis (Code of Civil Law) who 
knew the Ulpian table (Kohli & van der Waerden 1975). This table 
prompted various interpretations and objections. N. B. partly took 
them into consideration, then submitted his own opinion by providing 
an example. 
    For a 24-year-old man Ulpian established that his duration of life 
was 28 years. According to N. B.’s table (Ch. 4), the price of an 
annuity of 10 [monetary units] for such a duration is 149, so this 
should have been that price. 
    Ulpian had probably regarded his data as a table of life expectancies 
and intended to apply it accordingly, just as N. B. did. But then his 
similar calculations in the previous chapter are wrong. In any case, N. 
B. noted that that table did not agree with reality, i. e., in this case, 
naturally with the Graunt table. He continued almost polemically, 
without imagining how badly his data were justified: 
    It is evident from Chapter 2, where we computed the probability of 
a human life, not according to the opinion of some medical quacks, 
physiognomists, palmists, foretellers, diviners who inspect entrails or 
similar deceivers of this nature, not from anyone about whom Titius 
surmises that the Romans have perhaps accepted the method of 
reckoning which is handed down by this law, but from observations 
made concerning the number of dead at whatever age. 
    Therefore, by this case of the Falcidian law I think that the ratio is 
best entered upon as a calculation if only such legacies should be 
estimated according to the value & premiums of life annuities. 
    Domat (1689 – 1694) refers to the calculs qui ont été faits sur les 
expériences du nombre de personnes qui meurent à chaque àge [to the 
treatment of data on the number of people dying at each age]. In one 
case, however, N. B. acts more properly. He determines the 
expectation of life whereas Domat calculated the number pf people 
living after a certain time.  
    N. B. illustrates the application of the Lex Falcidia by two 
examples. In the first, the deceased man left 3000 of which 800 went 
to Titius, 900, to Sempronius, and 100 annually to a six-year-boy 
Maevius. It followed from the previous chapter that the annuity was 
worth 1060 so that out of the 3000 the testator had distributed 2760. 
For obeying the Lex Falcidia 510 ought to be subtracted from that sum 
which means subtracting 14720/23 and 1667/23 from Titius and 
Sempronius and 1811/23 from the annuity of Maevius. 
    N. B. remarks that such calculations can be made not only with 
regard to the Lex Falcidia but also in other cases in which assumptions 
and conjectures about the duration of human life are made. Most 
jurists believe that in such cases one should follow the Lex Falcidia, 
as for example when discussing the letting of premises or leases made 
for the life of the leaseholder, or, if someone harmed another one or 
killed him, and the harmed one or the heirs of the killed desire a 
valuation of the ceased services. 
    In the sixth chapter N. B. discusses three examples of insurance. 
He took the first one concerning a shipwreck almost word for word 
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from J. B. (Meditationes, § 77b, Problem 6; its solution begins in § 
87). N. B. easily solves this problem by the theorem on the addition of 
expectations22. 
    The second example had to do with the interest in dealings with 
navigation. J. B. (Meditationes, § 77b) had considered this problem as 
well, but he only traced its solution. A merchant wishes to buy a 
commodity in A, to ship it to B and to resell it there. Is it possible to 
lend the necessary money provided that it will not be returned if the 
commodity is lost due to a shipwreck? Such a concession should 
naturally be balanced by a higher interest. The usual monthly interest 
[in such cases] apparently amounted to 1%; was it reasonable?  
    N. B. denotes the cost of the commodity by a, the monthly payment 
to the creditor by x, the time of travelling, by n months, by p, the 
number of successful arrivals of ships, and by q, the number of the 
opposite cases. The expectation of the creditor is then 
 
    [p(a + nx) + q·0]:(p + q)  
 
which should coincide with the increase of his capital in the usual 
case, i. e., with (a + nb). Therefore, 
 
    x = (qa + pnb + qnb):pn 
 
where b is the usual monthly interest. 
    N. B. provides numerical calculations in two examples.  
    The last problem of this chapter concerns life insurance. At present, 
annual premiums are usual, but in those times the premium was paid 
in cash at the conclusion of the agreement. N. B. begins by rejecting 
the objections which stated that humans should not be dealt with on a 
par with commodities. He pointed out that the matter dealt not with 
people, but with the probabilities of human life 
    Concerning games, wagers and lotteries is the title of Chapter 7. 
N. B. begins by stating that games and wagers are allowed as far as 
they are just and deal with worthy matters23. He praises the 
significance of the art of conjecturing, refers to Huygens and J. B. and 
considers in detail two examples: bets about electing five senators for 
managing the more principal offices of Genoa and the Netherland 
lottery.  
    J. B. had discussed the Genoas problem in his Meditationes (§ 89). 
N. B. took it over in a simplified form, although partly word for word, 
and provided numerical calculations. Thus, he was able to establish 
that the prizes were far too small as compared with the stakes so that 
the gamblers were cheated by their 2,094,053/5,019,168th part. 
Consequently, such bets are not allowed anymore, and the merchants 
(?) are demanded to return what they have received over and above 
the just price. Caramuel had established even earlier that the 
conditions of the wagers were unjust. 
    N. B. does not discuss these results in more detail since they are 
mistaken. Already in N. B.’s time lotteries had been adapted for 
drawing money from the public in a merry way. Thus, for a certain 
stake a lot can be extracted from an urn called Jar of Fortune. The 
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prize went to that person who had extracted an inscribed lot rather 
than some of the many uninscribed ones.  
    In the Novelli Bernenses of 15 March 1709 N. B. found information 
about a very special lottery with prizes being life annuities. There 
were 8000 lots priced at 250 florins each.  
 
    2 lots provided life annuities of 3000 florins; 4 lots, of 2000 florins; 
    4 lots, of 1000; 8 lots, of 500, 14, of 250;  
    30, of 150; 30, of 100; 1208, of 30 
 
    Each of the rest 6700 lots provided a life annuity of 15 florins, and 
the buyers of the first, and the last lot got an additional annuity of 150 
florins. Thus, for 2,000,000 florins the public was promised life 
annuities totalling 170,040 florins. It was possible to change the 
annuities into 4% bonds; an annuity of 3000 florins could have been 
changed into bonds worth 35,250 florins, i. e., in the ratio 1:113/4.  
    N. B. concluded that the organizers of that lottery could have only 
expected a surplus of 2030 florins [2,000,000 – 170,040·11.75]. 
However, in chapter 4, when issuing from the Graunt table, N. B. 
established that 1:103/5 was more proper, that his calculations 
envisioned an interest of 5% whereas the usual interest was 3 or 4% 
and that, finally, the gamblers could have profited by the lack of taxes 
on life annuities. 
   In the eighth chapter N. B. once more discussed a problem in the 
law of inheritance. The Romans had established that, if the testator left 
a pregnant wife and a son, the son got 1/4 of the legacy at once. N. B. 
disagreed. Even triplets are so rare that they may be neglected. Then, 
one pregnant woman out of a thousand possibly gives birth to twins24, 
but at least one pregnancy will miscarry. The expected number of 
babies will therefore be 
 
    [1·2 + 998·1 + 1·0]:1000 = 1. 
 
    Basing himself on this dubious, as I believe, argument, N. B. 
defended the opinion that a half of the legacy can without delay be 
awarded to the son. If, however, no living baby will be born, he ought 
to get the entire legacy; if several babies, he will get less respectively. 
    In the ninth chapter N. B. begins by two possibly dubious 
examples of applying the theory of probability to the administration of 
justice. They concern the credibility of the testimonies of witnesses 
and on the conclusiveness of the evidence. He believes that in 
testimonies, the credibility of witnesses must be examined before their 
questioning so that it makes sense to formulate a rule for measuring 
the credibility of a person and thus to determine the probability of his 
telling the truth or not. And here is this rule:  
    Divide the number of chances in which one is observed to speak 
truths, by the sum of these chances and the chances in which he was 
observed to lie, & you will have the degree of credibility. Or, if 
several men having been approved by credibility testify to the truth of 
that man, and others, just as well having been approved, accuse him, 
divide the number of the first group of men by the sum of both.  
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    This rule is literally contained in J. B.’s Meditationes (§ 77, 
Problem 5). However, as he added apparently later, in arts and 
sciences its application is very restricted.  
    In his second example, N. B. issues from the evidence which 
indicates the guilt of an accused in one case out of three. Lack of 
evidence means that he is undoubtedly innocent, that his innocence 
has worth 1. For 1, 2, …, 10 evidences the worth of his innocence 
becomes equal to 2/3, 4/9, 8/27, …, (2/3)10. This last number , N. B. 
says, means that the accused is morally almost certainly guilty. He 
believes that many other similar problems can be investigated the 
same way25. 
    The last example is, on the contrary, unquestionable, but N. B. does 
not go further than J. B. did in his Meditationes, § 81, Problem 4. 
Suppose that a thing being intact is given to someone for temporary 
use and became damaged. Should its cost be compensated? J. B. as 
well as Pufendorf answers affirmatively. This seems harsh but it is 
just. In the same way it is possible to bet 100 talers to one when the 
expectation of winning is a hundred times higher. 
    Here, as also elsewhere, we sense that the founders of probability 
theory26 must have felt pleasure when having been able to investigate 
and impeccably solve everyday problems occurring in the society by 
the doctrine of games (Lehre von den Spielen).  
    N. B. published an abridged account of his dissertation [in 1711] in 
the Acta Eruditorum, Suppl. t. 4, sect. 4, pp. 159 – 170, calling it 
Specimina artis conjectandi ad questiones juris applicatae. 
 

Notes 
    1. N. B.’s dissertation was reprinted in the volume of J. B.’s contributions on the 
theory of probability. 
    2. As a rule, N. B. mentioned the AC when copying its passages, but kept silent 
when turning to the Meditationes never even meant for publication. Its part had 
nevertheless appeared in that same volume of J. B.’s contributions. 
    3. Only elements of the theory of probability had appeared by then. Interestingly 
though, N. B. was the first to apply the term calculi probabilitatum in his Preface to 
the AC, see p. 108 of that same volume. An English translation of the Preface 
(David 1962, pp. 133 – 135) does not apply this term. Kohli mentioned the theory of 
probability once more, when describing chapter 9 of N. B.’s dissertation. 
    4. In 1713, in his correspondence with Montmort (1713), N. B. described his 
invented Petersburg game and, while discussing the sex ratio at birth, actually 
introduced the normal law (Sheynin 2009a, § 3.3). De Moivre (1718/1756, pp. 252 – 
253) criticized N.B.’s reasoning on randomness but called him a very learned and 
good man. I do not dwell on De Moivre’s correspondence with N. B. in general 
since it did not concern probability. 
    5. Actually, The art of conjecturing sive stochastice. Bortkiewicz (1917, p. X) 
referred to J. B. and put this word into scientific circulation. 
    6. N. B. returned to the number of cases when proving his weak law of large 
numbers. 
    7. Bernstein (1946, p. 46) explained this point in detail. Let ξ equal 1 or 0 with 
probabilities p and q. Then Eξ = 1p + 0q = p.  
    8. Or, rather, the centre of gravity of all the possible values of the random variable 
whose expectation is being calculated. K. K. 
    9. This eulogistic statement was contained in Huygens’ introductory letter to van 
Schooten, but the term art of conjecturing had not yet appeared. 
    10. Kohli referred to J. B. (1666) which was an obvious mistake. J. B. mentioned 
the J. des Sçavans on a margin of his book, see p. 46 of its 1975 edition.  
    11. See also Sheynin (1977, § 4.2.3). 
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    12. N. B. was the first to apply a continuous (uniform) law of distribution in a 
published work. What he calculated was the expectation of the appropriate order 
statistics. 
    In 1669, in correspondence with his brother, Huygens (1888 − 1950, t. 6) 
discussed problems in mortality and life insurance and introduced the continuous 
uniform law of distribution. In one of his problems he wrongly assumed that the 
number of dying men from a given group decreases with time. However, under that 
law, order statistics divide a given period of time into approximately equal intervals. 
N. B. had made no such mistake. See Kohli & van der Waerden (1975) and Sheynin 
(1977, § 4.2.3). In that paper, we have also described the determination of the 
expected life of the last survivor of a group of men by Huygens. 
    13. Graunt, whom N. B. mentioned, had known nothing about that Chronicle (or, 
rather, about the J. de Sçavans).  
    14. See explanation in the description of the fifth chapter. 
    15. N. B. applied linear interpolation in his Ch. 2 as well, but then, also in Ch. 2, 
he expressed his dissatisfaction with this method when dealing with numbers in the 
Graunt table. 
    16. J. B. devoted his chapter 2 of pt. 4 to arguments and their significance. It 
should not have included any calculations. 
    17. The same danger of loss is not a sufficient condition, since the same expected 
losses were also needed. 
    18. It was too difficult to consider the health of the buyers. 
    19. Meaning: the just premium should be 111807/2433 times the annuity. 
    20. While criticizing the Molina rule (see somewhat above), N. B. did not agree 
with this assumption. O. S. Possibly presumed (see above): N. B. meant expectation 
of life. K. K. 
    21. Apparently, death during the tenth (the twentieth, see below) year was meant. 
    22. N. B. had not applied any such theorem. For that matter, they had not yet been 
formulated. 
    23. Although repeatedly prohibited, there existed a revolting practice of betting on 
the safe arrival of ships (Sheynin 1977, p. 207).  
    24. Twins are known to be born once in about 80 – 85 births. In any case, N. B. 
did not justify his unbelievable estimate.  
    25. This reasoning is superficial. An evidence proving something with probability 
1/3 is unworthy. Then, summing evidences is hardly justified; for one thing, they are 
possibly interdependent. Cournot (1843, § 225) mentions cases in the context of the 
administration of justice in which fictitious independence between actually solidary 
facts is presumed. And in § 222 he admits the possibility of deriving the 
trustworthiness of testimony in the same way as N. B. did (see above). In other 
words, both N. B. and Cournot issue from a uniform prior distribution, from 
ignorance, which is hardly reasonable.  
    26. N. B. should not be called a cofounder of the theory of probability. 
  

Brief Information about Those Mentioned 
    Domat, Jean, 1625 – 1696, jurist, friend of Pascal 
    Falcidius, first century, a people’s tribune  
    Hudde, Johannes, 1628 – 1704, mathematician 
    Macer, Aemilius, 1535 – 1600, Jesuit  
    Molina, Luis de, 1535 – 1600, a scholastic theologian and jurist 
    Pufendorf, Samuel Freiherr von, 1632 – 1694, jurist 
    Titius, Gottlieb Gerhard, 1661 – 1714, jurist 
    Ulpianus, Domitianus, died in 228, jurist 
    Witt, Jacob de, 1625 – 1672, mathematician, statesman  
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II 

 

C. F. Gauss 

 

A Sketch of the Introduction  

to the German text of the Theoria motus (an Excerpt) 
 

Deutscher Entwurf der Einleitung zur Theoria motus (1807).  
Werke, Bd. 12, 1929, pp. 156 – 162 

 
    During a few weeks after the discovery of Ceres its orbit became 
known only along an arc covering 3° of its geocentric motion, and 
after a year Ceres had to be searched for in a quite another part of the 
sky.  
    I first applied my method in October 1801, and, by using the result 
derived from it, Ceres was found during the first cloudless night 
exactly there, were it was looked for [on 7 Dec. 1801, by von Zach – 
Editor]. In a short while, the second, the third, and the fourth new 
planet provided a further possibility of checking the general 
applicability of my method.  
    Soon after the rediscovery of Ceres many eminent astronomers 
began to ask me insistently to publish my method. However, various 
hindrances, my wish to expound thoroughly this subject, and, finally, 
my hope that a further occupation with these works will bring the 
various parts of my method to a higher degree of perfection, generality 
and handiness, only now allowed me to satisfy the desire of those 
friends of mine. I flatter myself with hope that that delay will not 
cause their discontent.  
    During the passed time I had very much repeatedly changed my 
initial method, added a great deal and in many of its parts followed 
quite another ways. Little in common is left between my initial 
method of calculating the planetary orbits and that which I applied in 
this work. I certainly had not intended to offer a complete account of 
my investigations, but neither had I thought about completely 
excluding many of my previous methods, the less so since they 
concerned the solution of exceptionally interesting problems. On the 
contrary, along with the really easiest and most useful methods of 
solving the intended main problem, I collected everything, which, 
during considerably long calculations, I found remarkable and 
practically tested about the motion of the heavenly bodies. 
Nevertheless, I invariably describe my own (eigentümliche) 
investigations in more detail and touch on the known in so far as it is 
necessary for the completeness of the whole. 
    This work therefore naturally breaks down into two sections. The 
first one is devoted to the study of all the most interesting and most 
useful relations between the various magnitudes which describe the 
motion of the heavenly bodies around the sun according to the 
Keplerian laws. In addition, this study prompts many peculiar 
methods for deriving geocentric phenomena from the elements. Those 
phenomena result from the complicated (künstlich verwickelten) 
combination of the elements and it is therefore necessary first of all to 
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get confidently acquainted with all the separate tangles of that web, 
then dare to hope once more to take successfully apart the individual 
threads and unravel the whole into its initial separate parts.  
    In the second section, it will be so much easier to solve the inverse 
problem, namely, to derive the elements from the phenomena, since 
the greatest part of the necessary individual operations is already 
known from the first section, and the work mostly reduces to 
collecting, ordering and combining them in a common whole. 
    I have accompanied most problems by examples choosing them 
when possible from really occurred cases. Hopefully, they will prove 
the practical usefulness of the solutions and illustrate them. Because 
of the increased handiness, less proficient readers will also be able to 
acquaint themselves with the whole, and the number of the adherents 
of these calculations, which comprise one of the most important and 
most splendid branch of theoretical astronomy, will increase.  
 

Editor’s Remark 
    In the autumn of 1806 Gauss had begun working out his Theoria 
motus, and, approximately in April 1807 its German text was ready 
(see his letters to Olbers of 29 Sept. 1806 and 28 April 1807). He still 
had no publisher, and Olbers turned to the Hamburg bookseller 
Perthes. At first, Perthes declined, then stated that he was prepared to 
publish that work in Latin (see the letters of Olbers to Gauss of 21/22 
April and 6/7 May 1807). Gauss agreed and began the translation at 
once (his letter to Olbers of 26 May 1807). In November 1807 the 
printing began, but the going was slow, and the work only ended in 
June 1809 (letter to Olbers of 27 July 1809). Only the sketch 
published here is left from the initial manuscript written in German. 

    Brendel 
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III 

 

F. W. Bessel 

 

Letter to Professor Airy at Cambridge
1
 

 
Abhandlungen, Bd. 3, 1876, pp. 462 – 465 

 
    Dear Sir, I am very glad to see by your kind letter of Aug. the 6th, 
that you are ready to undertake the solution of what I consider as the 
principal problem of practical Astronomy of the present time, viz., to 
construct most concise Catalogues of places of Planets observed since 
Bradley’s time. I do not doubt but this undertaking duly executed, will 
grant to you the thanks of present and future Astronomers, in what 
measure it appears important to me, you may judge yourself by 
remembering that it was this very problem, which gave rise to my 
Tabulae Regiomontanae.  
    One half of the labour being made by these Tables, I thought proper 
to propose publicly the accomplishment of the remaining half; I am 
particularly obliged to you for having entered upon my proposal, and I 
shall readily comply with your desire to explain my views about this 
subject. It would be useless to enter here into the particularities of the 
computations; but I avail myself of the present opportunity to state my 
opinion respecting a matter of influence on the reduction of 
astronomical observations in general. 
    These Reductions depend upon Elements, the numerical values of 
which are derived from observations and accordingly always are liable 
to some incertainty (!). Such values have a particular claim to the 
attention of Astronomers. Every new inquiry increasing the weight of 
the result, issueing (!) from the combination of this and former 
inquiries, the remaining error probably will diminish continually; but 
this error never vanishing entirely, it will (generally speaking) be 
necessary to exhibit the result of a computation depending upon 
assumed values of certain Elements in a form open to further 
corrections. The true values of the Elements being designed by x, y, z, 
…, the assumed values by α, β, γ, … the general form of a reduced 
observation, accordingly, should be 
 
    O + a(x – α) + b(y − β) + c(z – γ) + …  
 
where O is the computed result, and a, b, c, … are Coefficients, also 
computed.  
    In many cases, results exhibited in this form will be complicated 
with a great number of undetermined quantities. The Rightascension 
(!) of a Planet, for instance, would depend upon twice as many such 
quantities as Fundamental-stars have been compared (viz. the 
corrections of the assumed Rightascension for two Epochs) and upon 
two more for the Constants of Aberration and Nutation. Such a 
complication undoubtedly would not be convenient for use, and 
nothing will remain but either to diminish the number of undetermined 
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quantities by a supposition or else to leave to the future the care to 
compute the Observations a-new.  
    Taking the utility of the present reduction of the Observations of the 
Planets, made between Bradley’s time and ours for granted, the latter 
alternative will be rejected; the former requires to suppose equal the 
corrections of the different Rightascensions contained in every one of 
the two Fundamental-catalogues, whereby only one undetermined 
quantity will be left for each of them. The number of undetermined 
quantities entering into the exhibition of the results, accordingly, will 
be reduced to four. But I am of opinion that even this diminished 
complication would be without real advantage. 
    If indeed general Corrections of the two Fundamental-catalogues 
for 1755 and 1820 will be indicated by future inquiries, their influence 
on every result may then be computed exactly as easily as by the 
present exhibition of Conditions; with respect to the Constants of 
Aberration and Nutation their possible errors will scarcely be of any 
moment if the Result is presented in the most suitable form.  
    If the observations are made at an Observatory furnished with large 
and well established instruments, the Planets will commonly be 
compared with stars culminating at every hour of the day, from the 
morning till after midnight: the Aberration and Rightascension being 
negative if a star culminates between 18h and 6h, positive, if it 
culminates between 6h and 18h, the Correction of the clock derived 
from all the observed stars will be affected in contrary directions by an 
error of the Constant of Aberration; whereby the influence remaining 
in the mean of all stars will be so much diminished that it will not be 
of any consequence in a computation founded already on a 
supposition, viz., that of the egality (!) of Errors of the different stars 
in every-one of the Fundamental-catalogues. 
    I am accordingly of opinion that the correction which may perhaps 
be applied in a future time to the Constant of Aberration deserves no 
notice in the present Reduction; but if thus reduced Observations are 
to be compared with the Tables, it is yet once necessary to know the 
Constant of Aberration, viz., for reducing the apparent place to the 
true, or vice versa. Here the influence of an error may not be omitted 
because it generally acts in one direction. It accordingly will be proper 
to present the mean result of every group of Observations without 
subducing (!) from it a supposed value of the Aberration; for the sake 
of convenience two Logarithms may be exhibited, which, being added 
to the Log. of the Constant of Aberration will give the required 
corrections for Longitude and Latitude. 
    The Influence of the Constant of Nutation on the Rightascension, 
viz., 
 
    − 15”.39537sinΩ + [6”.68299sinαsinΩ – 8”97707cosαcosΩ]tgδ 
 
is composed of two parts, the first of which is common to all the 
heavenly objects; the second depending upon the place of the star or 
planet vanishes in the Aequator (!), and is of small amount if the 
object is near the Aequator. The future correction of this part may be 
omitted for reasons similar to those aledged (!) for the omission of the 
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correction of Aberration. The first part will be nearly without 
influence if the Longitude resulting from every group of Observations 
is reckoned not from the apparent, but from the mean aequinoctial (!) 
point.  
    The reduction of an observed Declination supposes as known, not 
only the Constants of Aberration and Nutation, but also the quantity of 
Refraction, which, though it is undoubtedly an Element of 
considerable difficulty, appears nevertheless to be settled at present 
with an approximation sufficient for the reduction of Observations 
made between Bradley’s time and ours. Two Tables, one scarcely 
different from the other, have been the result of two highly complete 
sets of observations made expressly for the purpose; one about the 
middle of the last century, the other 70 years later; one with a Mural-
quadrant, the other with a Meridian-circle; both affording every 
desirable control; both founded on a theory which leaves no doubt 
respecting the laws of the phaenomenon (!) and of the influence of 
barometrical and thermometrical variations.  
    It is not likely that the remaining error should be so great as to be 
really prejudicious (!) to the reduction of the afforesaid (!) 
Observations. Should it nevertheless appear desirable to represent a 
Result as not depending upon a certain Table of Refractions, it ought 
not to be overlooked that two undetermined quantities have an equal 
claim to our attention, viz. the Constant for the Normal-temperature 
for which the Table has been constructed and the expansion of the air 
produced by heat. The absolute height of the mercurial column of the 
Barometer may also be considered as dubious within the limits of 
nearly the same extent.  
    You know, dear Sir, that I have derived from Bradley’s 
Observations all the Elements necessary for their reduction and that 
every-one of these Elements is in such a connexion with the other that 
it would be wrong to vary one of them without varying the other even 
in case the first variation should be a decided correction. The same 
being the case with my own Observations, both series, in my opinion, 
would be prejudiced by the application of Refractions different from 
mine.  
    Dr. Maskelyne’s Observations require too to be reduced by the 
same Table; not only because they are made at the same place and 
with the same instrument as Bradley’s, but especially because this 
Table has been applied by Mr. Olufsen by whose elaborate inquiry 
into the errors of the Greenwich Quadrant, the observations have 
regained what they lost by the wearing out of the Instrument. − With 
respect to the introduction of Conditions relative to the Constants of 
Aberration and Nutation in the Reduction of Declinations I only 
remark that both will entirely disappear out of the final results 
exhibited in the form recommended above.  
    You will perceive, dear Sir, by what I have said, that, were I to 
superintend the business, I would prefer to exhibit the Results without 
complicating them by the introduction of a single undetermined 
quantity. But permit me to add a few words about the method by 
which a continually increasing approximation to the true values of the 
Elements of Reduction will be obtained. Some of these Elements have 
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been the subject of repeated inquiries, every-one of which has 
afforded a new determination somewhat different from others extant. 
Proceeding in this manner, and rightly combining the results of earlier 
inquiries with those of a later date, we shall undoubtedly arrive, in 
some future time, at every desirable degree of approximation.  
    This combination of different results must always be preceded by 
an impartial and cautious discussion of the weight of each of them; 
which discussion accordingly should be considered as an essential part 
of the inquiry. The want, or rather to [rather the] insufficiency of it, 
may probably have effected that the result of a later inquiry has 
sometimes been looked upon as excluding that of earlier ones while 
the same rightly combined only would have produced a slight 
variation. 
    − In the present state of our knowledge of the Elements of 
Reduction their yet admissible errors are so narrowly limited that 
further corrections can only be expected from long continued 
observations made expressly for the purpose. The nearer the 
approximation is, the more difficult will be a further correction, and 
the less probable will be the supposition that the Result of every new 
inquiry will approximate yet more to the truth; − continual oscillations 
within the limits of unavoidable imperfections are, on the contrary, 
agreeing with the very nature of Results derived from observations3.  
    On the other hand, convenience and uniformity of the astronomical 
calculations are lost by continual changes, while no real advantage 
indemnifies for this loss. – My opinion of this matter is accordingly 
that, as soon as an Element is known with an approximation sufficient 
for the Reduction of Observations then extant, its value should be 
considered as fixed for practical use as long as either the observations 
will have acquired a degree of accuracy high enough to represent as 
desirable a further Correction of the Element, or as subsequent 
inquiries will have increased so much the weight of its determination, 
that a correction appears indubitable.  
    I shall now proceed to the second part of the business. A group of 
observations having been reduced, it is required to deduce from the 
same one mean place of the observed Planet. This will be done by the 
help of the Tables of the Planet and of the Sun; an Ephemeris for 
every day within the limits of the time, filled by the observations, 
being computed by these Tables, the Rightascensions and 
Declinations contained in the same compared to the observed place of 
the Planet will give the error of the Tables, deduced from every single 
observation. The mean of all considered as the error of the Tables for 
the mean Epoch and applied with a contrary sign to the place 
computed for the nearest day will give the required mean place 
representing the whole group of Observations. The Tables by the help 
of which this mean place has been obtained, disappearing entirely out 
of the ultimate result, the choice of these Tables is quite arbitrary; 
previous corrections of one or the other of their Elements will neither 
be necessary nor convenient.  
    − The observed mean place of the Planet may be reduced to 
geocentric Longitude and Latitude and the former related to the mean 
aequinoctial-point by the subtraction of the Nutation taken always 
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from the same Table which constantly has been employed in the 
whole computation.  
    In this manner the business will be brought to the genuine end. By 
the exhibition of the mean result of every group of observations these 
will be reduced to their concisest (!) form which afterwards will 
completely replace the Observations themselves and afford easy and 
sure means continually to correct our knowledge of the motions of the 
Planets. 
    Some trouble will be spared to those who will undertake this 
correction by the exhibition of the heliocentric places of the Planet 
and of the Earth corresponding exactly to the geocentric place of the 
former computed for the time to which every group of Observations 
has been reduced. In case of an Opposition of a superior Planet the 
addition of one step more will also be convenient, viz., the exhibition 
of the time and place of the Opposition together with the dependency 
of both upon the assumed place of the Earth.  
   I have nothing more to add respecting the arduous task you are 
ready to undertake. Believe me dear Sir 
   Königsberg Novb. the 9th 1833.  Your F. W. Bessel  
 

Notes 
    1. This is a reprint rather than a translation. This letter shows (as others could 
have also showed) that Bessel corresponded with foreign astronomers, and it reveals 
the level of his knowledge of English. He (1876, p. XIII) was only able to study this 
language for two or three months. The use of capital letters (Observations, 
Declination etc.) seems to have been outmoded. And he apparently copied such 
expressions as Meridian-circle from German.  
    2. The quantity of refraction can only be settled by a table computed for 
Greenwich, for the same time of day in which Bradley had been observing, and for 
the same meteorological conditions. Olbers, for example, in a letter to Bessel of 2 
Nov. 1817, noted that the anomalies of refraction depended on the location of the 
observatory.  
    3. This conclusion has been shared by many, and perhaps by all observers, see 
Sheynin (1994, pp. 263 – 265). Even Bayes, in a letter of ca. 1756 (Dale 2003, pp. 
263 – 265) , noted that systematic errors (as well as some dependence between 
observations!) prevent absolute precision. Then, Encke, Gerling and Bessel himself 
had applied the term Grenze der Sicherheit (boundaries of reliability) in the same 
sense (Sheynin 1994, p. 266). 
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IV 

 

F. W. Bessel 

 

On the Calculus of Probability 
 

Über Wahrscheinlichkeits-Rechnung. Populäre Vorlesungen.  
Hrsg. H. C. Schumacher. Hamburg, 1848, pp. 387 – 407 

 
    [1] Since I intend to talk to the respected Physical Society1 about 
the calculus of probability, I ought to presume such an interest in this 
subject which will be characteristic of an exception to a rule easily 
derived by experience: neither a calculus, nor even its result is suitable 
for an oral presentation. And this is what I really believe in. 
    If some kind of a mathematical contemplation is often involved in 
the entire extent of our knowledge, of the occurrences in everyday life, 
it is the mathematical study of probability. Evidently, we are not used 
to consider many matters from this viewpoint, but it is not difficult to 
prove that the very laws which govern the games of dice are essential 
in the real world and that we are often pushed over when expecting it 
least of all.  
    Our knowledge is separated in two parts based respectively on 
certainty and probability. Certain is only that which we actually 
observe or is derived from such observations by a sequence of correct, 
mostly mathematical conclusions. On the contrary, probable is that 
which becomes known to us by testimony or consequences from 
observations whose correctness and explicitness cannot be rigorously 
justified.  
    [2] The first part is vast. It includes the entire kingdom of 
mathematical truths, an uncountable quantity of facts offered by 
nature and events occurring before our eyes. The second part is 
however also large. It includes all the forthcoming events in the 
essence of whose laws we are unable to penetrate. Also included here 
are facts indicated by history, the outcomes of a roll of a die and the 
destiny of nations.  
    In everyday life, much of what is only probable is usually called 
certain, although only in cases in which the probability is very high. 
That there was a man called Julius Caesar is called certain since it is 
confirmed by many trustworthy witnesses and by the connection of his 
life with other events. Dubious and even unlikely is that there had 
been seven Roman kings since in this case the witnesses are less 
trustworthy and moreover because the intervention of other events 
casts even more doubts. 
    But still our information about Caesar and those kings are of the 
same kind. Our knowledge only differs in the measure of its strength2. 
It is so precarious concerning the seven kings that we do not dare 
believe in their existence whereas the information about Caesar is so 
robust that any doubts seem unreasonable. Strictly speaking, however, 
his former existence is only much more likely than that of the kings. 
The doubt about him is not more unreasonable than the hope to extract 
at random one single white ball from an urn also containing many 
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millions black balls. That doubt is therefore not really unreasonable 
but only very weak. In ordinary life such doubts are completely 
ignored, but stronger doubts occur oftener.  
    So where is the boundary, the level of probability for two events 
both called certain3? Be it possible to determine this level we will be 
able to assign correct places to each event and numerically establish 
which event is more probable. In history, however, and in all matters 
which cannot be reduced to numerical relations, it is difficult to 
establish the amounts of probability. Historical events can be dated, 
but no other number denoting their probability can be assigned them.  
    On the contrary, there exist very many things whose probability can 
be measured, and I will say something about the means which may be 
applied for this. The entire theory of probability4 rests on what is 
usually called chance. Will a tossed coin fall on one side or on the 
other? The outcome, as we say, is the effect of chance.  
    [3] After some thought we easily realize that the motion of the coin 
is determined by some cause; arbitrariness cannot govern it just like 
chance cannot compel Jupiter to fall on the Sun. However, we also 
notice that a smallest change of the toss suffices for a change of its 
outcome. That change is so tiny that our senses are unable to perceive 
it and the same happens with each following toss. We cannot bring 
about or foresee any definite outcome and for us, then, the fall of a 
coin is subject to chance. This example provides the sense which we 
attach to that word. We always mention chance when unable to assess 
how an effect is connected with a previous cause, when we do not 
understand it, when there are so many causes that we are unable to 
separate them one from another and follow them up to the effect.  
    Who wishes to see an explanatory example of the notion of chance 
need not go too far: each event which we cannot fathom either by 
calculation or other inferences is called a chance event. It loses this 
name as soon as we become able to connect it with its causes. A storm 
that darkens the Sun is called a chance event, but an eclipse of the Sun 
by the Moon is not; we really know the causes of the latter but not of 
the former. Previously, however, eclipses had also been called chance 
events. Many chance events so called today will lose this 
characteristic and it is generally clear that the entire notion of chance 
event is relative.  
    When Newton had begun to illuminate the world, much of the 
incomprehensible left the dark kingdom of chance. A new Newton 
will reveal the causes of other matters and we may imagine a mind for 
which only a little remains for the chance. I do not maintain that that 
mind can be human, but if mankind sheds light on all the darkness, a 
more serious previous study of chance will be very interesting. Only 
thus we will be able to judge about the certainty of the investigated 
events which result from unknown causes but obey, according to 
experience, some definite laws.  
    [4] We are not concerned about the causes of things supposedly 
governed by chance and their essence is of no consequence for us. We 
have therefore looked for means to judge the so-called chance in 
general so as to apply it somehow in each case. Such a means has 
been found in the comparison of chance with games of dice [with 
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games of chance] and Jakob Bernoulli was the first who, in his Ars 
conjectandi, in 1713, paved the way and prompted various later 
mathematical investigations. The great work of Laplace which 
appeared some years ago (vor einigen Jahren) combined all of them5.  
    We can imagine a die with an arbitrary number of faces. Suppose 
that one of them is black, and the other ones white. Then, obviously, 
the larger is the number of faces, the lower will the probability be of 
the appearance of black. For two faces, one of them black, and the 
other one white, the probabilities of both outcomes are apparently the 
same, and we may reckon on the appearance of each to the same 
degree. A gambler who pays 2 talers each time black appears and gets 
only 1 taler for white, will certainly lose after a long game 
    On the contrary, a die with three or more faces oftener rests on 
white than on black and the appearance of white is certainly more 
probable. For two faces the probability of each outcome is 1/2; for 
three faces, the probabilities are 2/3 for white and 1/3 for black etc. 
For a die with 12 faces, 7 of them white and 5, black, those 
probabilities are 7/12 and 5/12. Playing with such a die and gaining 5 
talers in case of white, I ought to lose 7 talers in the opposite case. If I 
pay less, I will probably win; if more, I will probably lose since there 
is no reason (or at least it is thus assumed in the calculus of 
probability) for one face to appear rather than the other6.  
    A larger number of white faces will therefore result in an oftener 
appearance of white. All this determines the measure of probability. 
Probability 1/2 refers to exactly balanced things and can just as well 
result in the appearance of one or of the other event. It is thus possible 
to maintain that a thing having probability 1/2 is probable or 
improbable; those things whose probability is even a bit lower than 
1/2 are called improbable, and those whose probability is a bit higher, 
probable. The larger is the deviation of the probability of a thing from 
1/2 the less or the more probable it is. 
    So here we have the means to judge precisely the probability or 
improbability of an event. However, its application usually leads to 
serious, and often unsurmountable difficulties since we often do not 
have the data on which our judgement is dependent. As stated above, 
the probabilities of white and black for a die with 7 white faces and 5 
black ones are 7/12 and 5/12. Roll such a die many thousand times, 
and then the ratio of the occurrences of these faces will be 7:5, and the 
nearer to it the larger is the number of the rolls. When we do not know 
how many white and black faces the die has [how large is their ratio] 
it can be derived [from the experiment]. The result will be the more 
reliable, the more rolls are made. And so, there are two means for 
discovering the number of faces of a die7: either count them, or 
observe the result of the rolling.  
    [5] I hope that the respected Physical Society will excuse me for 
discussing all this somewhat extensively, since it was indeed 
necessary for stressing the true point of contact of the calculus of 
probability with occurring events. When considering this in a more 
general setting, the unknown numbers of white and black faces 
represent the favourable and unfavourable causes of some event. 
When counting the occurrences of that event we obtain the number of 
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the cases in which it happened and did not happen. The derived ratio 
of the numbers of white and black faces will therefore be the ratio of 
the number of cases in which we ought to expect, and not to expect, an 
occurrence of that event. 
    Suppose that a hundred times the height of the barometer was lower 
by half an inch than in the mean [of very many other observations] 
and that during that time there were 60 storms. The probability of a 
storm in such cases is 6/10; a storm is therefore probable even if its 
connection with the height of the barometer were unknown. And we 
therefore conclude that during 10 such observations a storm should be 
expected 6 times.  
    That such definite indications of probabilities are interesting and 
useful is obvious since most discovered rules are justified not by 
certain success but by higher or lower probabilities. Imagine that you 
are a skipper who knows by experience that a storm leads to some 
damage worth 100 talers, say. Then, when he does not sail today, he 
pays 50 talers for the demurrage. The barometer fell 1/2 inches, so 
should he pay these 50 talers or ignore the danger of a storm? I think 
that a vote will be divided; some will prefer the doubtful danger to a 
sure loss, others will rather pay the 50 talers and prevent the loss of 
the 100 talers in an unfavourable case. 
    The latter opinion is reasonable; the probability of a storm is 6/10 
so that in 10 cases occurring in similar circumstances 6 storms are 
expected which means the loss of 600 talers, or 60 talers in the mean. 
Understandably, it is reasonable to avoid it by paying the 50 talers.  
    There are very many rules which ought to be based on similar 
considerations, but the situation is usually judged by a more or less 
unreliable estimation. This happens partly because the true 
justification of judgements is not developed sufficiently clearly, and 
partly since people do not bother to compile properly, by measure and 
number, the facts which can be provided by experience. True, the 
principle that the probabilities of the connections of two events are 
derivable by counting the observed cases can be applied too 
extensively. Nevertheless, I think that it is necessary to turn the 
attention to the fact that this powerful source of knowledge is too 
often neglected in ordinary life and that therefore the probability or 
improbability of events is doubtful. At the same time, however, 
orderly observations, i. e., actual counts of the favourable and 
unfavourable cases, can show whether there exist adequate grounds 
for deciding one way or the other.  
    [6] Mathematicians8 have made a very significant step forward by 
discovering a means for determining by calculation the reliability with 
which we may reckon on an event found probable by observation. 
This reliability obviously heightens with the number of the observed 
cases. When we roll only a hundred times the abovementioned die 
with 7 white and 5 black faces we will be much less certain about the 
possibility that the ratio of white and black outcomes is very near to 
7:5 than after 1000, 10,000 or 100,000 rolls. However, it is possible to 
calculate how reliable is that ratio as derived from a 100, a 1000, … 
rolls. This reliability heightens so much that the boundaries of the 
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probable error9 will soon become so near to each other that the derived 
ratio will not noticeably differ from the probability anymore. 
    Observations, whose reliability is clearly determined, can only be 
obtained by applying this theory. And only during the last years we 
have learned how to derive much use from it, and I will hardly be 
mistaken when supposing that after a sequence of years the first 
chapter of each textbook on science based upon experience will be 
devoted to the application of the calculus of probability to the art of 
observation10. The data for such applications will surely not be 
available at once since it is easy to show that much which is today 
called observation hardly deserves this name. However, new 
observations require time, often very much time. In medicine, national 
economy and in similar matters in which the general rule is essentially 
corrupted by numerous chance events, it will only later be possible to 
understand reliably what exactly should be obtained for trusting the 
observed result. Unreliable is much of what in usual life is thought to 
follow from experience and judged and justified by everyday 
occurrences but what still is completely wrong. Thus, everyone says 
that a full moon changes the weather and believes that he personally 
had made many suitable observations, but there does not exist 
anything so unjustified than that statement as proved by actual counts 
covering 50 years11.  
    Another example of credulity in believing events allegedly justified 
by observations seems still much more remarkable. In St. Malo, where 
the range of the tides is uncommonly large, it was generally agreed 
that deaths only occurred at the time of ebb. Over the centuries, it was 
possible to check this striking phenomenon whose existence was, 
however, never doubted. Finally, the Paris Academy of Sciences had 
sent a committee to check this remarkable fact on the spot. It occurred 
that people had been dying both at ebb and high tide and that, 
according to church registers, neither ebb nor high tide had during a 
hundred years influenced mortality. 
    I consider these examples quite remarkable. It is not necessary to go 
too far for finding similar and more important matters. Had people 
been led by the calculus of probability and invariably applied 
observations, we would have known that much of the believed was 
groundless. Moreover, in spite of hosts of chance occasions, we would 
have discerned many rules still completely unknown since they are not 
so clearly seen and do not manifest themselves. 
    [7] What I have told here in general, had already found very 
interesting applications to astronomical observations and 
investigations. Suppose, for example, that the zenith distance of a star 
is measured. The result will not be the desired magnitude, but 
invariably its approximate value. The more perfect is the instrument, 
the more attentive and able is the astronomer, the better will that 
approximation be. Still, we never arrive at a true value, since the 
instrument is always somewhat imperfect and since there are other 
imperfections caused by our senses even made more sensitive by most 
powerful magnification of the instruments. Then, the vibration of the 
air, [insufficient] illumination of the graduations [of the circle] and 
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uncountable possible small causes whose influence we are unable to 
calculate.  
    All this is revealed by the observations: repeat today’s work 
tomorrow, and its result will be a bit different, and the day after 
tomorrow, different once more. At the time of the forefathers of 
astronomy such differences amounted to half a degree, at Tycho’s 
time, a few minutes. Now, having such aids12 as those in my 
observatory, it is possible to reckon with considerable reliability that 
observations made today and tomorrow will not differ more than by a 
second.  
    In spite of such precision, I, just as Tycho, cannot maintain that my 
observation provides the truth. I am nevertheless looking for the truth, 
so which of the two observations should I prefer? Obviously, both are 
equally wrong since there is no reason why one of them should be 
chosen. We therefore take the mean of all those made, and this rule 
can be rigorously justified, although the great Lambert had objected to 
it13.  
    What we thus obtain is still not the truth, since it deviates from the 
truth by an unknown magnitude which probably is the smaller the 
larger is the number of observations and the more perfect are the aids. 
It is clearly seen without any calculations that a series of observations 
with larger and oftener deviations from their mean provides a less 
reliable result than another series with narrower boundaries of such 
deviations. Furthermore, the calculus of probability offers a means for 
more definitely determining that reliability. It shows how the worth of 
the observations should be established through those same deviations, 
it provides the boundaries within which an error is as probable as 
beyond them. [The distance between] these boundaries is called the 
probable error of an observation. Only it gives us the means to weigh 
one series of observations, and its result against another one, again 
with its result. According to this viewpoint, we do not anymore 
discuss true astronomical determinations, we only look for the 
probable and find out to which of the various determinations of the 
same thing we may assign the highest probability and which is 
therefore the best one.  
    When following these considerations further, we are led along the 
proper way to much more difficult cases in which, for example, we 
assess not the observations themselves, but the results of their entire 
series. Thus, for example, the path of a heavenly body is determined 
by three complete observations; when a hundred is made, the path of 
that body can be determined by any three of them. Since observations 
only approximate the truth, we obviously only arrive at an 
approximate path, and, furthermore, at a different one each time when 
a new set of three observations is chosen. So which path should we 
choose? 
    [8] The answer to this question is offered by the calculus of 
probability. It teaches us that among the possible uncountable (?) 
paths we ought to discover the one which has the highest probability. 
That calculus leaves no room for arbitrariness. Previously, before that 
theory [that calculus] was developed, the computer had to be satisfied 
to choose, in accord with his prudence and ability, a path more or less 
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conforming to the observations. Nowadays, he has complete power 
over choosing quite methodically the best path derivable from the 
observations. Moreover, he will be criticized if not arriving at the very 
best to which he could have freely approached.  
    In the first case, he thus certainly strengthens his reputation for 
ability, but not when he acts otherwise even if he manages to keep 
very near to observations. The astronomer will thus lose as much as 
astronomy wins, and we should not doubt that, owing to this invention 
(?), observations acquire quite different weights14 and astronomy can 
advance more in one year than formerly in a decade. 
    It can be proved that a derivation of a result which should be 
preferred to any other based on the same observations as well as the 
determination of the uncertainty of its probability is always possible. 
However, it is not sufficient to prove that we have determined the 
most probable result from the available series of observations. Indeed, 
it does not follow that that result is probable per se. It can certainly 
deviate from the truth so that the most probable boundaries of that 
deviation should be provided for us to see clearly the measure of 
reliability. 
    Suppose that someone determined that the orbital period of a comet 
is 100 years with a probable uncertainty of 1/4 of a year, and that 
someone else determined that that period was 102 years with a 
probable error of 1 year. The choice between these determinations is 
not arbitrary anymore: the first one should unquestionably be 
preferred15. For example, among my first applications of such 
reasoning was my conclusion that the Olbers comet will most 
probably next appear on the 9th of February 1887 with a probable error 
of 101 days. The period during which its new occurrence should be 
expected can thus be immediately estimated.  
    Without such considerations the uncertainty of its occurrence would 
have been measured by many years, and anyone was then able to 
recognize openly a new investigation (?). Now, however, it is possible 
to derive a definite result from the available observations and any 
differing one will be worse. It is therefore obvious how reliable and 
stable became astronomy through the application of the calculus of 
probability.  
    [9] What happens with everything new had indeed happened to the 
applications of the calculus of probability. Many of those who had not 
penetrated into its spirit believe that it is unnecessary or even strange. 
Delambre, in his Astronomie16, stated much of ill-considered about it 
and its English reviewers allowed themselves to mock at some 
Continental astronomers who had now been determining cometary 
orbits, the figure of the Earth, the distance of the Sun and whatever 
else according to probability rather than truth.  
    We may easily tolerate all that and would have a good reason to 
thank very much these English reviewers for teaching us how to 
determine the true cometary orbits etc. Indeed, we ought to be only 
satisfied with probability when denied the truth. Nothing else has been 
done nor could have been done. Yes, we have often called true what 
was only probable and even not the most highly probable. But, on the 
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other hand, no one ever thought of proving the Pythagorean 
proposition by probabilities since it can be, and was proved certainly. 
    I have somewhat extensively dealt with the application of that (?) 
reasoning to astronomy but would have rather considered other 
sciences more closely connected with everyday life. However, those 
sciences are not yet completely cultivated17, and, in addition, I myself 
am too little informed about other things and do not venture into any 
such investigation. Nevertheless, any person tending to contemplate 
will have sufficient possibilities to note that what I said about 
astronomy was only an example and that the same, even if in another 
form, is true everywhere else.  
    Each science which passes from experience to theory begins with 
observations and learns from the calculus of probability how to 
observe and apply the observations and, finally, how to construct the 
most probable theory. In astronomy, for example, practice is a 
problem of that calculus, and theory, a problem of higher mechanics18. 
150 years previously it was different, no one thought of either, but 
what science had amounted to in those times as compared with today? 
A chaos of phenomena19, whereas nowadays they comprise a coherent 
whole whose separate parts are most closely connected by the 
mentioned (?) strong ties.  
    It is indeed instructive to consider the course which science had 
taken until our time. It did not at all arrive at knowledge by issuing 
from prior systems as it possibly was attempted in other fields20. On 
the contrary, it had invariably asked the observations for advice and 
was always on guard against admitting something not following from 
them into its propositions. And it certainly had arrived at its aims not 
by leaps but by slowest and surest steps. I wish all experimental 
sciences to proceed by such thoughtful steps, and I hope that the 
calculus of probability will soon provide them such an audible proper 
rhythm that any deviation from the proper course will offend both eye 
and ear.  
 

Notes 
    1. Bessel actively participated in the work of the Physical section of the 
Königsberg Physical – Economic Society. 
    2. Bessel did not mention moral certainty which was discussed by Jakob Bernoulli 
but introduced into science much earlier (Sheynin 2009a, §§ 2.1.2, 2.2.2 and 3.2.2). 
    3. One of those events was apparently certain, but the other one only probable. 
    4. Only here did Bessel mention the theory of probability, in all other cases it was 
calculus of probability.  
    5. Some years ago: not less than nine (see Note 16). Then, Laplace had included 
the theory of probability into applied mathematics whereas his predecessors had 
regarded it as a branch of pure science. Again, Bessel had not mentioned Laplace’s 
Essai philosophique … of 1814. 
    6. Only assumed as the very first approximation and even so, not always. Then, in 
information theory, probability 1/2 (see below) means complete ignorance. 
    7. Not the number of the faces, but the appropriate ratio. 
    8. Yes, mathematicians, beginning with Jakob Bernoulli, and for any chance event 
rather than for probable events. 
    9. Bessel only defined the probable error in § 7. In 1816, he himself introduced it 
into probability theory. 
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    10. Bessel invariably mentions the calculus of probability instead of the theory of 
errors. Unlike Laplace or Gauss, he himself (1820, p. 166) picked up that term from 
Lambert. 
    11. Those actual counts are extremely dubious, see Sheynin (1984b, § 2) to which 
I am now adding that Lambert had studied that problem and Daniel Bernoulli urged 
him to go on with his investigation (Radelet de Grave et al 1979, p. 62). Bernoulli 
remarked that the possible influence of the Moon on the atmosphere can be revealed 
since its distance varies if only it influences the air the same way as the sea. 
However, the elasticity of the air and its insignificant inertia ought to be allowed for.  
    12. By aids Bessel meant astronomical instruments. 
    13. Lambert (1760, § 303) introduced the principle of maximum likelihood 
(although not the term itself) for continuous densities, but thought (§ 305) that the 
maximum likelihood estimator usually did not essentially differ from the arithmetic 
mean. The translator of Lambert’s book excluded those sections from its German 
translation. 
    14. This is dubious. Weights of observations are not changed owing to 
calculations. 
    15. A superficial statement. First, Bessel completely ignored systematic errors; 
second, natural scientists hardly ever followed such simple indications, see 
especially Sheynin (2002). 
    16. Delambre published investigations of ancient, medieval and contemporary 
astronomy in 1817, 1819 and 1821 respectively, and, in 1827, an investigation of 
astronomy of the 18th century. According to the context of Bessel’s lecture, he 
thought about Delambre’s book of 1821 or 1827 which means that Bessel read his 
lecture not before 1821. 
    17. But is any science completely cultivated? In any case, Bessel should have 
mentioned medical, if not meteorological statistics and certainly population 
statistics. 
    18. Why higher rather than celestial mechanics? He himself (1876, written about 
1846) described his own study of Laplace’s Mécanique Céleste. 
    19. How about Kepler? 
    20. Bessel could have mentioned astrology hardly justified by observations but 
recognized, for example, by that same Kepler.  
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V 

 

F. W. Bessel 

 

On measures and weights in general  

and on the Prussian measure of length in particular
1
. 

 
Über Maß und Gewicht im allgemeinen  

und das Preußische Längenmaß in besonderen.  
In author’s Populäre Vorlesungen über wissenschaftliche Gegenstände.  

Hrsg. H. C. Schumacher. Hamburg, 1848, pp. 269 – 325. 
 
    [1] When a magnitude is measured, its ratio to another one is 
determined and it is this ratio that exhaustively describes the former if 
the latter, or the measure, is known. Such a description is indeed the 
aim of the measurement. When the measured magnitude is a line, a 
flat surface, a body or a weight, their measures are, again, a line, a flat 
surface, a body or a weight. And if we agree to choose the same 
measure in all similar cases, all of them will be understandable.  
    Each society recognized the need to adopt a certain measure for 
each of the four cases of measurements, and no level of culture had 
apparently ever been low enough to manage without such measures. 
In previous times, arbitrariness in the choice of measures coupled 
with the limited nature of social ties led to the introduction of different 
measures in each town and small region. 
    Many of such local measures had certainly disappeared with the 
expansion of those ties but the great number of the remaining can be 
estimated by the comparison of the Italian measures of the foot in the 
Annuaire of the French Bureau des Longitudes for 1832. It took into 
account, not completely, the measures applied in field measurements, 
but not in commerce, and still, 215 measures were listed2. 
    The introduction of a certain measure is obviously the more 
successful, the more extensive becomes its region of application. The 
ties between neighbouring smaller societies had been inconvenient 
and difficult because of their different measures, and this circumstance 
must have been noticed very long ago. Nevertheless, those measures 
had hardly been often unified since apparently there always appeared 
some complications. A change of the existing measures invariably 
required changes in many appropriate customs, agreements and laws.  
    No society, for which a unification of measures was desirable, had 
therefore resolved to burden itself of its own free will. Moreover, that 
process was difficult; it was never possible to estimate whether the 
assumed benefit for the local ties will not disappear because of the 
losses for the external relations. Owing to these causes the differences 
between local measures had lasted for a long time even after the 
formation of a single country and only ended after legislation aiming 
at the common good abolished them.  
    That process apparently went on gradually with the introduction of 
separate generally valid regulations about, for example, the levying of 
taxes. The final goal, a complete unification of the measures in all 
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parts of a country, was already attained in most of the large European 
countries whereas the other ones have been approaching it.  
    During its revolutionary years, France had even attempted to 
introduce a single measure for all the civilized nations. The intended 
success was not achieved but some neighbouring countries had 
adopted the French measure3. 
    However, a definite determination of a measure ought to precede its 
general introduction. The yearning for maintaining the existing order 
will be the least if the most commonly applied measure is chosen as 
the general and more elevated standard. Such a choice will be difficult 
to doubt, but, in itself, it does not secure the required definite 
determination of a measure. If the name of the measure is retained, 
some uncertainty will surely occur because of the imperfection of its 
initial embodiment and errors in its extant copies.  
    If that uncertainty is moderate and does not essentially harm 
commerce or industry, any such established measure ought to be 
considered of equal weight. Nothing new will thus be introduced but 
the uncertainty will not be preserved (and increased).  
    If an initial measure was established five hundred or a thousand 
years ago, its uncertainly could have ever more increased with time. 
Reversing this process will at least be contrary to the intention of 
changing the existing measures as less as possible. In addition, the 
initial measure will be rarely found if at all, and even when discovered 
the aim of its establishment and the state of the mechanical art in 
previous times will allow us to believe that it was prepared very 
roughly so that its uncertainty was not contained within a narrow 
interval.  
    [2] Copies, more perfectly prepared later, will perhaps provide 
more definiteness, but the uncertainty of the initial measure will 
persist. If measures of each of the four types of the measured 
magnitudes are established, then a lesser number of embodied 
measures will be needed. All the planes should be measured by a 
measure of length, and each method of measurement will depend on 
the application of this measure. The establishment of the measure of a 
(restricted) plane invariably depends on the measure of length; any 
other embodiment will be inapplicable.  
    It is otherwise with the measure of three-dimensional bodies 
although they can often be, and actually are measured by the measure 
of length. Indeed, in other cases, for example, concerning liquids, 
measurements can be made much easier when a certain vessel is 
chosen as a measure. Its capacity can be measured by a measure of 
length, by the foot, say, and will be expressed in cubic foot or in a 
certain part of a cubic foot. However, it can just as well be defined 
independently from the measure of length and it was thus defined at 
least in all cases which became known to us from previous times. And 
the measure of weight is itself a weight.  
    And so, three measures are needed, those of length, of liquids and 
grain, and weights. Their embodiments are necessary and serve as the 
base for establishing any system of measures which becomes quite 
definite when those embodiments exclude any ambiguity, becomes 
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invariable when resisting all the influences of time. Then it conforms 
to its intention the better the more accessible are its initial units.  
    Each type of measurement is traced back to the testimony of our 
senses and cannot therefore be completely precise. The degree of the 
attained approximation to the real values depends on the applied 
thoroughness and its assurance by more or less appropriate aids. It 
immediately follows that it is easier to measure less precisely rather 
than more precisely. In everyday life the highest precision is never 
achieved; for example, achieved not higher than is ensured by our 
senses without their artificial sharpening. It can really be quite 
indifferent whether a new house is larger or smaller than by 1/10,000th 
of its intended size, or if the relative error of a load reaches 1/10,000.  
    It is therefore wasteful to develop the means of measurement as 
much as possible and thus to hinder usual work. Such attempts will 
only result in applying measures of unneeded precision. Bricklayers 
and carpenters will reasonably complain if ordered to apply, instead of 
roughly produced but satisfactory for their work wooden measures of 
the foot, a more thoroughly made expensive measure made of better 
material and precise to a hair’s breadth.  
    However, we may also imagine measurements whose significance 
heightens with precision. They prompt us to bring the precision of the 
methods of measurement and of the applied measures up to the 
highest possible level by the most powerful sharpening of our senses. 
When such measurements are carried out not in everyday life, but only 
owing to scientific requirements, it is necessary that neither the 
applied measure, nor its embodiment leaves even a tiniest ambiguity.  
    A measurement only remains significant as long as the measure on 
which it was based is preserved. Inversely, a measure only achieves 
weight and significance through measurements depending on it. As 
long as the bricklayer and carpenter are measuring with a foot, it does 
not really matter whether that measure is quite defined or somewhat 
ambiguous, whether it remains quite invariable or changes its length 
with time by a few ten thousandths. 
    [3] The need for a reliable determination of a unit for measuring 
lengths became felt in France in 1734 when two meridian arc 
measurements were planned, one of them near the equator to be 
carried out by Bouguer and Condamine, the other, at the polar circle, 
by Maupertuis. Two identical copies of the toise, iron bars whose ends 
marked the distance, were produced. From that time, they had been 
considered the unit of the French measure of length. That unit was 
chosen to coincide with the generally applied measure of the same 
name so precisely, that the existing small differences will not be 
noticeable, that the thus newly introduced measure will not disrupt 
handicraft or industry.  
    One of those toises was later damaged in a shipwreck; the other one 
which had been applied near the equator, in Peru, and called the Peru 
toise, was safely brought back to Paris. Its length at 13° Réaumur 
became the unit of the French system of length. It was divided into 6 
foot or 72 inches or 864 lines. As long as that original of the toise is 
preserved, or its length can be reproduced by copies, the significance 
of the result of the equatorial meridian arc measurement retains its full 
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significance but loses it as soon as that measure is lost. Means have 
therefore been devised for ensuring essential reliability of preserving 
the toise of Peru and for removing the causes of its damage. Until 
now, both aims have been attained. 
    In England, already the Magna Charta [1215] stipulated that the 
same measure ought to be applied in the entire kingdom. The measure 
of length is the yard. A brass bar produced at the time of Queen 
Elizabeth [I] and preserved at the Exchequer was preferred to the 
older, probably from the time of Henry VII, and preserved at the same 
place. It is considered as the standard yard and used for comparisons 
with the other yards which acquired a legal status by stamping.  
    However, these regulations proved so unsuccessful that the 
Parliament often had to turn its attention to measures and weights. A 
document prepared by Francis Baily, who was busy with producing a 
measuring bar for the Royal Astronomical Society, shows that 
gradually more than 200 laws having to do with measures had been 
introduced without eliminating essential uncertainty even in usual 
measurements. An investigation ordered in 1758 established that the 
ends of the yard kept at the Exchequer were neither flat nor parallel to 
each other and that therefore were not marking any definite measure 
of length. It also occurred that the other public standard of length 
preserved at the London Guildhall deviated from its stipulated length 
by 1/25 of an inch or by 1/9004. Many other legally recognized 
standards kept in different places of the kingdom essentially differed 
one from another.  
    The committee of the House of Commons which carried out this 
investigation determined the cause of this confusion that crept in the 
entire business of producing measures and weights: their 
manufacturers had often been unqualified and the means for checking 
their work were insufficient. For improving the situation mechanic 
Bird was asked to produce two brass bars with a cross-section an inch 
square and the length of the yard to be marked on a side of each by 
driven golden pins. Bird earned a good reputation by producing a 
mural quadrant for the Greenwich observatory and graduating it. Now, 
he recommended to the Parliament to preserve carefully one of those 
bars with Standard Yard 1758 inscribed on it and to keep the other 
one at the Exchequer for common usage when checking copies of the 
yard.  
    During the next years a newly appointed committee [of the House 
of Commons] combined its proposals with those of the previous 
committee but recommended to produce a copy of the Standard Yard 
and preserve it on the premises of some public authority for use on 
special occasions. Such a copy was indeed produced in 1760, but the 
law whose text was compiled in accord with that proposal and twice 
read in the Parliament did not completely get through: the text was 
lost because of the prorogation of the Parliament.  
    The existing uncertainty in the true value of the yard lasted 
therefore unrelentingly. Only in 1814 the House of Commons once 
more appointed a commission and in 1824 a law established that the 
measure produced in 1760 with an inscription Standard Yard 1760 in 
its present condition at 62° Fahrenheit was the true value of the yard. 
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    And still the intended aim was not yet reached since an 
investigation of that yard, legally elevated to become its initial 
measure, made in 1834 by Baily, revealed that an unambiguous length 
cannot be got from it since both points [pins] determining it were not 
rounded nor did they have any other regular form, but were irregular 
to the highest extent.  
    This fact was explained not by their initial condition but by the 
damage of the points by various use made without proper precaution. 
The ensuing uncertainty was obviously not large enough for 
preventing applications of that standard in everyday life, but I have 
noted above that scientific use requires complete definiteness rather 
than a restriction of uncertainty within narrow bounds5. 
    Scientific measurements have been made in England and its 
colonies, and I only mention the measurements of the length of a 
simple seconds pendulum, for which we are thankful to Kater, and of 
an arc of the meridian in England and of a much more extensive arc in 
India. General Roy had begun the first measurement and lieutenant 
colonel Mudge completed it. Colonel Lambton had begun the second 
measurement, and colonel Everest completed it. As far as I know, that 
arc will be extended to the north. 
    There was no legal and unambiguous measure so that whether just 
one measure had actually been applied can only be ascertained by 
privately owned and unused copies. When a completely unambiguous 
determination of the yard appears, it will become possible to compare 
the actually applied measures still existing and remaining in good 
condition with that yard and correct the concluded measurements. 
However, such later and always tentatively possible corrections, 
without which the essential effort and moneys will be more or less 
squandered, contradict the aims of an orderly system of measures.  
    I have dwelt on the history of the English measure of length since I 
consider it instructive. As a conclusion, I note that in 1824 the yard, 
elevated to the status of the initial measure, was lost when the building 
of the Parliament burned down. This, however, was not an unhappy 
event since the very first requirement of a measure, its complete 
definiteness, would have necessitated new investigations. 
    [4] I return now to the French legislation about measures. The 
revolution brought about an entirely new system of measures and 
weights, the so-called metric system introduced on 18 Germinal III by 
the law of the National Convent. It was entirely based on a new 
measure of length, the meter, and its multiplication and division by 10, 
the base of our number system, and its powers, 100, 1000, … A meter 
is the 1/10,000,000th part of a quadrant of the [Paris] meridian.  
    10, 100, 1000, 10,000 metres are called deca-, hecto-, kilo-, and 
myriametre respectively; 1/10, 1/100, 1/1000 of a meter, − deci-, 
centi- and millimetre. The unit of area, the are, is a decametre square; 
the unit of volume for wood, coal, etc., the stere, is a cube with meter 
square faces; the unit of liquids, the litre, a cube with decimetre square 
faces; the unit of weight, the gram, is the weight of pure water at its 
largest density (at about 4°C) filling a cube with centimetre square 
faces.  



42 
 

    In a similar way, the multiples and the fractional parts of the are, 
ster, litre and gram were named. The monetary unit, the franc, 
weighed 5 gram, 9/10th of it silver and 1/10th, copper, was divided into 
decimes and centimes. The day was just as well subjected to the 
decimal system: it had 10 hours, 100 minutes per hour, of 100 seconds 
each. The quadrant of a circle was divided into 100 grads, a grad 
contained 100 minutes of 100 seconds each. Even the calendar did not 
resist the revolution: it began with the vernal equinox and was divided 
into 12 months, each 30 days long, and 5 or 6 additional days6.  
    As follows from the above, this system disregarded all the existing 
systems and chose its main measure not more or less arbitrary, as it 
happened previously, but in connection with some measurement of the 
Earth. The introduction of the metric system in another time would 
have presumably been more difficult. And it was introduced in spite of 
the thus certainly caused inconvenience for internal life. Still, only a 
part of the new names yielded to the previous designations.  
    The myriametre became lieue, and decametre, decimetre, 
centimetre, were replaced by perche [perch], palme [palm] and doigt 
[finger] respectively and these unchanged names of the previous 
measures thus obtained new values. I do not intend to investigate the 
difficulties caused by such a resolute change of the system of 
measures but I retain my viewpoint on its main idea, the replacement 
of an arbitrary measure by a so-called natural measure. 
    The metric system has two inherent features which we are not 
obliged to consider essentially connected with each other: the unit of 
the system was linked to the size of the Earth, and it was divided into 
decimal parts. Such a division generally shortens calculations, but at 
the same time introduces a disadvantage: the fractions 1/12, 1/6, 1/3, 
… cannot be precisely expressed as they are in the often encountered 
duodecimal system. That advantage would have been more essential 
had it been more difficult to decimalize those fractions.  
    Other systems of measures sometimes apply the decimal 
multiplication and division, but in this respect they are unequal to the 
metric system which applies the same procedures throughout. The 
decimal division of the day and of the quadrant of the circle had not 
for a long time replaced the usual system as was applied in France; for 
that matter, the division of the day, as it seems, had never been 
inculcated in the general public. 
    The idea of natural measure was not new; even Huygens, in the 
mid-17th century, recommended the length of the simple seconds 
pendulum as the measure of length. His proposal had been repeatedly 
supported and discussed during the introduction of the metric system 
but had to give way to the choice of the 1/10,000,000th part of the 
quadrant of the [Paris] meridian. The metric system was the first to 
realize actually the idea of a natural measure, and, moreover, so 
comprehensively and with such consequences that the partisans of that 
idea should have been completely satisfied. However, we will 
consider that idea from various sides and will only then be able to 
express our friendly or hostile opinion about it. 
    [5] Each measure is obviously equally easy and reliably applied for 
measurements since it only serves for establishing the ratio of two 
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magnitudes of the same kind. It does not acquire any advantage even 
when the ratio of the measured distance between two points on the 
surface of the Earth to the length of the entire quadrant of the meridian 
is expressed by a decimal fraction and becomes directly known.  
    Still less (?) desirable is a direct expression in decimal fractions of 
the ratio of areas, volumes or weights to the square or cube whose 
sides/edges are equal to the length of a quadrant of the meridian, or, in 
case of weights, to the weight of water contained in that cube. And so, 
there is no advantage either with respect to simplicity or reliability 
when applying one or another measure or in the form in which a 
measure directly provides the result of measurement. An advantage of 
a measure can only be justified by its greater invariability.  
    With regard to this property a measure offered by nature itself is 
unquestionably more advantageous than any other. So the question 
which I intend to discuss is, whether the metric system actually 
possesses or can possess that advantage to which its emergence seems 
to be due.  
    If nature produces a body which, in each of its occurrences, has the 
same size [one of whose dimensions has the same size], it will hardly 
be doubtful that, since the choice of a measure is arbitrary, that size 
will be thus chosen. And if all the sizes of that body are always the 
same, it will be a natural measure of volume. In addition, if that body 
always has the same density of its matter, its mass will provide a 
natural measure of weight.  
    However, we do not know any body which possesses all those three 
properties or even one of them, or such, by means of which we can 
directly measure or weigh. If, nevertheless, we wish to have a natural 
measure, we can only obtain it obliquely by deriving it from a 
measured object.  
    The length of a simple seconds pendulum can be such an object, 
and it recommends itself by its availability in any place on the Earth 
as well as by the relative ease of the operations required by its 
measurement. Its invariability depends on assuming a constancy of 
gravity at the point of measurement whose correctness was never 
doubted. True, new experience showing slow elevations of large parts 
of the Earth’s surface compel us to question that assumption.  
    When wishing to choose that length as the base of a system of 
measurements, we ought to restrict its definition to a certain place, not 
even to a certain parallel since it is known that that length changes 
along them.  
    A quadrant of a meridian was preferred to the length of a pendulum 
since the latter’s interpretation depends on time (on the period of 
oscillation of the pendulum) whereas the former is a measure of length 
without any further connections [complications]. The thus chosen 
measure becomes definite after a certain meridian is named; this is 
necessary since we are not convinced in that all meridians of the Earth 
are identical whereas the new meridian arc measurements decisively 
resist this assumption7.  
    So which meridian we may choose not only as a measure, but as a 
natural measure? This can only be decided by measurements, but we 
never obtain any magnitude by measuring or observing it, we only get 
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to know it approximately. Therefore, measurement does not ensure the 
fulfilment of even the first requirement demanded from a measure, − 
the exclusion of any uncertainty. 
    [6] When introducing a certain measure corresponding to the results 
of measurement, − when introducing an embodiment of those results, 
− and adopting it for further usage, we thus sacrifice the natural 
measure. We will only get hold of a natural measure by measurement 
after learning how thus to reach a completely definite result. This, 
however, is impossible since each improvement of the methods of 
measurement only brings about a better approximation; imperfect 
possibilities of our senses will never lead to perfection8. 
    Moreover, it is not only the inevitable imperfection of 
measurements that resists the attainment of a natural measure, be it the 
length of a pendulum or a quadrant of a meridian. The object of 
observation rarely and in this context even never, appears in its pure 
form. It is usually distorted by extraneous influences which should 
therefore be separated from direct observations before these will be 
able to provide the intended determination. 
    This requirement presumes a complete knowledge of everything 
that is entangled with the object of observation, but there are no means 
for becoming convinced in such knowledge. The history of the 
determination of the length of the simple seconds pendulum can 
illustrate this proposition. 
    Concerning the early, less satisfactory attempts to measure it, I will 
say without thinking too long, that Borda, one of the most astute 
experimenters of the previous century, had measured the length of the 
pendulum in Paris when the metric system was being introduced. He 
applied a method, whose elegance coupled with its masterly 
execution, allowed to believe that his measurement could have only 
minutely deviated from the true value. Later, however, Kater 
discovered another, no less witty method and superbly applied it for 
the same measurement in London. However, two causes influencing 
the results had escaped the keen perception of both.  
    They, the causes, could have, and had engendered errors which 
much exceeded the errors of observations proper. Laplace discovered 
one of those causes: the invariably insufficient sharpness of the edges 
on which the pendulum oscillates. He showed that the influence of this 
cause can be noticeable whereas previously it was disregarded.  
    The other cause manifested itself during measurement of the length 
of the pendulum in Königsberg. It occurred that the previously applied 
theory of the influence of the surrounding air overlooked an essential 
circumstance so that it was decided that that influence was twice less 
than actually9. 
    The measurements themselves of Borda and Kater had been correct 
to about a few thousandths of a line, but those later discoveries 
revealed that their results were erroneous up to a few hundredths of a 
line. Now, the determination of the length of a pendulum can be freed 
from both those extraneous influences as well as from all the earlier 
known ones and no other causes of error had been discovered, but this 
fact does not convince us in their absence anymore than in the time of 
Borda.  
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    Bearing in mind these remarks, it is easy to imagine the 
consequences of an immediate adoption by some country of the 
Huygens proposal to choose the length of a simple seconds pendulum 
as the unit of measure and to base on it a decisive revolution of its 
system of measures. That length would have been measured as 
perfectly as the art and aids of the time allowed it, and the derived 
magnitude fixed as the measure. Not long afterwards, after the 
discovery that the length of the pendulum increases with the distance 
of the place of observation from the equator (by about 21/4 lines after 
moving from the equator to a pole)10, it will be noted that a 
measurement was only valid for that place and that the established 
measure did not possess the previously attributed property of being 
independent from the place of measurement.  
    This remark did not deprive the measure of being natural, but 
restricted it to a certain place. In addition, in Huygens’ times the 
means of measuring the length of a pendulum had been so imperfect 
that an error of some tenths of a line was as probable as an error of 
some thousandths for Borda. If only a most favourable chance did not 
provide a correct early measurement, Borda would have shown that 
the previous result was not the intended natural measure.  
    Then, if the idea of natural measure was still upheld, the trust which 
Borda’s splendid measurement inspired could have prompted to 
consider it as the discovered measure instead of the previously 
established. But the trust in the possession of a natural measure would 
have soon shattered: the later discovery of the two mentioned 
influences on the length of the pendulum would have compelled either 
to ignore these or to establish a measure anew. But only those will 
believe in its invariability, who cannot elevate their viewpoint from 
the condition of the experimental art existing in their time.  
    The illustrated variations of a natural measure derived from 
measurement ought to take place regardless of the measured object, 
ought to appear as well in the case of the meter derived from the 
quadrant of a meridian. Moreover, in this case the imperfection of the 
measurement is coupled with the indefiniteness of the measured 
object. It is impossible to measure a meridian from the equator to a 
pole, and since the knowledge of the figure of the meridian is lacking, 
a comparison of a measured arc with the quadrant of a meridian is 
impossible. 
    [7] There exists, however, a reason for the figure of the Earth on the 
whole probably to deviate inconsiderably from a spheroid formed by 
rotating an ellipse about its minor axis. Nevertheless, even if 
excluding from the existing arc measurements those that have lost 
their claim on reliability owing to the insufficiency of the means for 
their accomplishment or to other causes, the rest ten cannot at all be 
combined when assuming a spheroidal figure of the Earth. They 
indicate that the figure of the Earth is flattened in some places more, 
in other places, less.  
    The latest arc measurement in East Prussia made it probable that the 
actual figure of the Earth is to a regular surface approximately as the 
irregular surface of flowing water is to the surface of an even and calm 
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water. Separate deviations are therefore small and perhaps not exceed 
a few miles11. 
    This nature of the figure of the Earth means that an arc 
measurement can only determine the curvature of a place of a body 
which does not possess any regular figure; that, in addition, any 
number of such measurements can only determine a spheroid as nearly 
situated to them taken together but certainly not to each place of the 
surface of the Earth. 
    Those irregularities in the figure of the Earth indeed engender 
indefiniteness of the lengths of the quadrant of its meridian. At least in 
the present condition of the astronomical art, this indefiniteness joined 
with the imperfection of the measurements by themselves is much 
larger than those to which the measurements of the length of a 
pendulum are liable. I think that they are ten times larger even when a 
measured arc of the meridian is only 100 miles long. 
    [8] The introduction of the meter led to the measurement of a great 
arc of the Paris meridian from Formentera12 to Dunkerque more than 
1/8 of its quadrant. This arc was advantageously situated: its middle 
latitude was almost 45° so that the derived length of a degree was very 
near to the eighth of the length of a mean degree or to 1/90 of the 
quadrant and almost independent from the flattening of the Earth. Its 
length was 57008.22 toises. Multiplied by 90, it provided the length of 
the quadrant and of the meter: 1/10,000,000th of that was consequently 
3 foot 11.296 lines, or 443.296 lines of the toise of Peru. This length 
was declared the legal length of the meter. A platinum bar was 
produced for its embodiment; at the temperature of melting ice its end 
surfaces should have marked that length, the length of the declared 
standard meter. 
    The above makes it clear that there are no grounds for believing that 
the thus established meter is the intended natural measure. The 
determination of the size and figure of the Earth will continue forever, 
its eagerness has increased and will compel us to abandon the aim of 
legally establishing the length of the meter as described above.  
    At present, we already have ten arc measurements, and all of them 
have an equal right in deriving the size and figure of the Earth13. I 
have found out their most probable result: the mean degree of the 
quadrant of a meridian is 57011.453 toises, about 31/4 toises longer 
than legally established. It follows that the length of an entire quadrant 
which we ought to regard now as its most probable value is not 
10,000,000, but 10,000,000 and 565 metres. Its unavoidable variation, 
when keeping to the initial definition, i. e., to the meter being a 
1/10,000,000th part of a quadrant, will lead to internal contradiction: 
the fraction whose denominator differs from its numerator will still be 
unity. We should therefore abandon the initial definition and assume 
that the meter is established not by the length of a quadrant, but by its 
ratio to the toise. For a quadrant to be once more 10,000,000 metres 
long, the meter ought to be lengthened by 1/40 of the line.  
    However, for the new value of the meter to attain a weight greater 
than it had initially, we will have to sacrifice the unsuccessful idea of 
a natural measure. Indeed, it is impossible to doubt that each future arc 
measurement will again lead to another value of the meter. The 
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uncertainty remaining in its length after all the now existing arc 
measurements are coordinated is about the same as that, which 
follows from the change of the previous definition of the meter. It will 
decrease with the increase of the number of those measurements but 
no increase will be sufficient for it to disappear.  
    [9] I hope that by now my listeners are convinced in that it is  
impossible to possess a natural measure. I have remarked that its 
application for measurements cannot be easier or more reliable than in 
case of any other arbitrary measure. But if it is still doubtful that direct 
appearances of length measurements in the form of decimal fractions 
of the length of a quadrant cannot justify a preference of the meter to 
any other measure, I will add the following.  
    That doubt can be substantiated by easy calculations, but everyday 
life does not lead to them. In scientific measurements there occur 
instances when the knowledge of the ratio of a measured length to a 
quadrant is desirable, but calculations will be still necessary. Indeed, 
the adopted unity of that ratio, the desired round number of meters, is 
and will be lacking. 
   I believe to have some experience in scientific measurements and 
allow myself to indicate that I did not yet encounter a single instance 
in which the application of the French meter would have shortened 
calculations. All those, who recommended the introduction of a 
natural measure, attributed to it the advantage of its reconstruction in 
case of loss.  
    Actually, the knowledge of each previous measurement of a still 
existing magnitude leads back to the appropriate measure, but neither 
easier nor more reliably than it would have led to any other measure. 
The meter can be restored when knowing how many meters are 
contained in a quadrant, but not easier than any other measure given 
similar data. The described reconstruction of the meter can be 
supposed more reliable than the restoration of another measure only 
during the time when the tradition of the round number, ten million, 
still exists, whereas the tradition of a slightly less easily pronounced 
number disappeared. In other words, only during the time about which 
we assume beforehand, that the information on the present 
measurements is lost. I do not think that we ought to attach much 
significance to the period during which the knowledge of a measure 
was based on lost measurements. 
    I have shown that the so-called natural measure has no advantage 
over any other one either in the ease or reliability of its application to 
measurement, or in the form in which it represents the measurements, 
or in the ease or reliability of its reconstruction in case of loss. And 
since I do not know any other grounds for preferring it, I ought to 
decide that it really has no advantage over any other measure. 
    [10] For introducing a real natural measure we ought to refer 
anyone who requires a true measure not to its embodiment, but to 
nature itself. However, apart from today’s impossibility of following 
this advice, its unavoidable consequence is that differing measures 
will become the bases for each new measurement and the errors of the 
measurement proper will be combined with the variations in the 
derivation of the measure. When desiring to illustrate this conclusion 



48 
 

by a definite example of a measure only defined by its relation to a 
quadrant of a meridian rather than by its embodiment, we may 
imagine, for example, two measurements of the length of a simple 
seconds pendulum, one made at the time when the meter was 
introduced, and the other one, nowadays. Even if they completely 
coincide, they actually still essentially differ by about 1/40 of the line. 
And later measurements, when the most probable length of a quadrant 
will be different again, and when complete coincidence still takes 
place, the length of the seconds pendulum will ever differ.  
    This occurrence too strongly contradicts the aim of introducing a 
measure as though it envisaged a direct definition of the meter by the 
quadrant. Since there are no advantages in introducing a measure of 
length having a definite relation to a length offered by nature, I ought 
to acknowledge as well that I cannot find any advantage in 
introducing measures of liquid or weight having simple relations to 
the cube of the unit of the measure of length and, respectively, to the 
weight of water filling that cube.  
    Measuring a liquid by the number of filled measures is much easier 
than geometrically measuring its volume, which is why only the 
former method of measuring is being applied. And it obviously makes 
no difference whether the measure is an easily pronounced part of the 
cube of the unit for measuring lengths or another part of it. For 
restoring the measure in case of loss it is certainly possible to measure 
geometrically its volume, but it will be just as possible if the measure 
were initially arbitrary or produced according to a certain intention. 
    More important than the measure for liquids and [its] more precise 
determination is the measure or unit of weight. I have mentioned that 
in the metric system this unit is the mass of the densest water filling a 
cube with faces 1 cm square. Later regulations in various countries 
stipulated that the unit of weight was dependent on the mass of water 
contained in a given volume.  
    However, none of these regulations have required that in each case 
the weight be derived from this interpretation. Suppose, for example, 
that a vessel is placed on a pan of a scales and water is poured in it 
and finally balances the scales with a weighted body on the second 
pan. So measure the volume of the water and calculate the weight of 
that body. 
    But still, those regulations require weighing by an embodying 
weight which is incomparably more expedient that referring to the 
explanation which accords with the business at hand not better than 
the introduced meter accorded with a quadrant. Neither do I doubt 
that, when, for example, a repeated and very precise weighing of a 
given volume of densest water provides a weight differing from the 
embodied weight, the appearing doubt will be resolved by preferring 
the latter14. In this case an interpretation referring to volume and water 
will be useless since anyway both interpretations more or less 
essentially contradict each other. 
    On this occasion I remark that the weighing of a given volume of 
densest water with a relative reliability of 1/10,000 is not at all easy 
and is probably not yet attained15. In addition, concerning the use of 
water it is possible to make a remark similar to that stated above about 
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the introduction of a length provided by nature for measuring lengths. 
And a restoration of a lost weight is as easy and reliable when turning 
to volume and water as it is when arbitrarily (?) weighing it by water. 
    Before I finally leave the problem of natural measure, I ought to say 
something else about reducing a magnitude given by a measure to that 
same measure. In each case it is obviously possible, if only that 
magnitude had not experienced any change after being measured. Its 
new measurement will express it through the same measure whereas 
the previous measure should now be considered unknown and thus the 
ratio of those two measures will be known. However, this ratio will 
not be always derived equally reliably but more reliable when the 
magnitudes can be measured by simpler and more precise methods; 
less reliable when measured by complicated and less precise methods 
or even when the measurement is more or less indefinite.  
    This statement can be interpreted by the measurement of a quadrant 
of a meridian, which requires extremely complicated operations. It 
was finally achieved by combining the measurements of meridian arcs 
situated in various geographical latitudes. The length of each arc, the 
pole altitudes of whose end points differ exactly by 1°, is only derived 
by many separate steps.  
    [11] The derivation of the length of a terrestrial arc first requires a 
measurement of a line [of a base] on the surface of the Earth which is 
the only operation in which a measure of length itself is applied. That 
line becomes a side of a triangle whose angles are measured by proper 
instruments and the other sides of the triangle are trigonometrically 
calculated. A second triangle is adjoined to the first one and its 
elements become known in a similar way, then a third triangle is 
added etc16.  
    A chain of triangles extending from one point on the surface of the 
Earth to another on the same meridian is thus formed and the distance 
between them becomes known. To measure that distance directly 
without forming triangles will always be time-consuming and only 
possible if the measured line does not pass through hills or water 
[hardly ever possible]. 
    The polar altitudes of both end points of the chain are measured 
astronomically and after comparing their difference with the now 
calculated distance it becomes known how long an arc should be to 
correspond exactly to 1° of latitude.  
    The thus concluded meridian arc measurements are the basis for our 
knowledge of the length of an entire quadrant. If these measurements 
should lead back to the applied measure, it will occur the more 
reliably the nearer in time is the actual application of that measure to 
the measurements from which the transition to the measure is done 
once more.  
    Most reliable the measure is again derived as long as the end points 
of the base are still preserved so that it can be measured anew. Less 
reliable, when those points have disappeared and we are therefore 
compelled to measure once more (?) another side of the triangulation. 
Indeed, in this case the uncertainty of the angle measurements are 
added to that of the base measurement. Still less reliable, when every 
point of the triangulation has disappeared and only the computed 
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length of a degree is left. The uncertainty of the astronomical 
observations is then also added. Although becoming ever smaller, it 
will always remain larger than the uncertainty of the other 
measurements17. Finally, least reliable, when only the length of a 
quadrant is left since it is only derived, and will be derived, from a 
combination of various arc measurements under the presumption of a 
regular figure of the meridian which is known to be only 
approximately true.  
    This description clearly shows how a measure is discovered the less 
satisfactory the further in time it is from the final result of 
measurement; how greatly impractical it is to issue from a later 
measurement as long as a previous is available. The preservation of a 
quadrant of a meridian is certainly less doubtful than that of the traces 
of those steps which led to the knowledge of its length. However, the 
great advantage in preserving those steps requires deliberation about 
means for achieving this goal to the highest possible extent. The most 
desirable is the preservation of the initial measure itself and then of its 
direct copies.  
    [12] I think that everything stated until now about studying 
measures should be sufficiently clear. I consider unjustified a 
preference of one measure over another and I only recognize one 
reason for replacing an existing measure: its replacement by a measure 
which will become more generally used.  
    On the contrary, I consider the fulfilment of three requirements 
essential. First, a measure should be entirely unambiguous so that each 
measurement based on it will only be uncertain due to its own 
imperfection rather than occasioned by an uncertainty of the measure. 
Then, the established measure will ensure the promised means among 
which a long-lasting construction of the standard itself is the only one 
which, provided that its intention was not inappropriate, ensures its 
unambiguity. The fulfilment of this requirement is aided by producing 
as precise and as long-lasting as possible copies kept in different 
places as well as by measurements based on the standard [on the 
established measure?]. Copies, however, restore the measure the less 
unambiguously the more complicated they are.  
    Finally, I regard essential that the establishment of a measure be 
accompanied by discovering means for producing its copies as 
perfectly and as easily as possible18. The fulfilment of these three 
requirements by each established measure with superb rigour, 
especially in the case of the measures of length and weight should be 
achieved if the art of investigating measures, without restricting it just 
to everyday needs, is to be put in order and preserved.  
    By now, I have entirely developed an opinion in accord with which 
I had tried, in 1835, to fulfil the instruction of the Royal Prussian 
government to regulate finally the Prussian measure of length. In 
1816, a law was passed which declared that the length of the Prussian 
foot was a standard preserved at the Ministry for finance and trade. 
This standard was embodied by an iron bar a bit longer that 3 Prussian 
foot. 
    The length of 3 foot and its division into 36 inches and the division 
of the last inch into 12 lines was marked on that bar by strokes. Two 
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of them, located on one of the wide sides of the bar, perpendicularly 
intersected two parallel lines about 0.4 lines apart which ran along the 
entire length of the bar. The strokes marking inches were silver pins 
and those marking lines were on inlaid plates. The bar and its three 
copies to be preserved at appropriate places were produced by Pistor.  
    The intention formulated in the law which governed the work was, 
to produce a Prussian foot equal to 139.13 lines of the French foot so 
that the much more generally applied in Germany Rheinland foot will 
be as near [to the produced] as was possible by the existing 
uncertainty of the former. That law failed to ascertain some points 
which are required for an unambiguous description of the Prussian 
foot by its standard. It can be assumed doubtless that that foot is 1/3 of 
the distance between the end strokes of the scale as measured along 
the middle between the two parallel lines at temperature 161/4°C 
which the toise of Peru ought to assume for being 6 French foot long. 
    On the contrary, I do not think that the third requirement, also 
unmentioned in the law, can remain without an unambiguous 
definition although its necessity became known already in 1816. And 
later Kater had indeed indicated that the bending of a bar on whose 
surface two points or strokes are made, and whose distance apart had 
to determine a measure of length should be much more carefully 
avoided than it was thought previously. 
    [13] The scale of points or strokes is not sufficient for achieving an 
unambiguous definition of a measure; it ought to be accompanied by 
an instruction establishing the condition in which the figure of the bar 
should be for representing the intended measure. The cause of this 
previously overlooked influence of the bending was that the middle 
line of the bar neither shortens nor lengthens, the location of its end 
surfaces perpendicular to that line does not change either, but the 
surface of the bar becomes either convex and it necessarily lengthens, 
or concave, then it shortens. 
    That influence on the bar with the same properties as our has, is so 
great that a playing card inserted between it and the plane on which it 
lies can already change the distance between its extreme strokes by 
many thousandths of a line. Even the bending caused by the bar’s own 
weight when it rests on two points essentially changes this distance. 
My calculations showed that, when the bar rests on its ends, it 
shortens by 61/2 thousandths of a line; that this shortening becomes 
smaller as the distance between the ends of the bar and its supports 
lengthened; and that the shortening disappears and becomes a 
lengthening when that distance is 73/4 inches19. 
    The lacking specification of the method of resting the bar during its 
application thus engenders an uncertainty about the existing definition 
of the Prussian foot which is larger than that which still remains when 
it is restored to its intended legal length. The latter uncertainty can be 
got rid of by a later legal arrangement, but not if the bar had 
permanently changed its length. This can easily occur as a result of an 
accident or by careless handling and it does not seem advisable to base 
the preservation of a standard on such shaky grounds. 
    Such uncertainty is peculiar to any similarly produced standard. It 
can be avoided if the definition of a measure depends on the distance 



52 
 

not between two points or strokes marked on its surface, but between 
its end planes. It will then not be difficult to produce such a rigid bar 
that neither its own weight nor an unintentionally preserved bending 
will actually change the distance between its end planes as measured 
along its unchanged middle line. 
    Such arrangements, the same as provided for the standards of the 
toise and the meter, are more suitable for their aim than the described 
above. Moreover, it has another no less essential advantage: the end 
points of a bar can be produced of such a hard matter and so reliably 
attached to it that their preservation will be incomparably better 
ensured than in case of necessarily very fine points or strokes on the 
surface of the bar. Again, equally precise copies of the standard can be 
produced much easier since a contact of planes can be achieved with 
an almost unlimited reliability exceeding the microscopic sight of the 
strokes. 
    These advantages of an endpoint measure leave no doubt in that the 
still necessary definite establishment of the Prussian foot should be 
attempted on such grounds rather than by a later assertion concerning 
a measure restricted by strokes. And it is necessary to continue to 
follow the legal intention of having the foot equal to 139.13 lines of 
the French foot20. 
    [14] The new Prussian standard is a bar not anymore of iron, but of 
cast steel with a cross section 3/4 inch square. A bending exceeding 
the boundaries of elasticity of such a bar 3 foot long will require such 
an essential effort, that we should not at all fear its unintentional 
occurrence. Its end planes are frustum cones of reinforced sapphire 
whose longer bases are installed in the bar’s interior and the shorter 
bases jut out a bit from their end planes. They are embedded in gold 
and the method of their fastening is such that the distance between 
their outer surfaces is protected against accidents which are possible 
during applications of the bar. 
    Their robust reliability also protects them against wear and damage 
and the gold protects them against rust. The distance between the 
outer surfaces of the sapphires along the axis of the bar at 16.°25C 
serves for determining three Prussian foot. An instruction about the 
method of supporting the bar during its applications is unnecessary 
since even its maximal shortening is insignificant and remains 
undetected by any measurements.  
    This bar was produced by Baumann in Berlin, and to this excellent 
master I am also thankful for all the other appliances which I used 
during my occupation with the Prussian measure of length. The aim of 
establishing the length of a measure determined by the distance 
between the sapphires of 3 foot or 417.39 French lines was achieved 
by applying suitable means to a thousandth of a line.  
    Great could have been the caution exercised in producing that 
measure, but it can be essentially increased during measurement. It is 
necessary to compare repeatedly and as precisely as possible the 
length of the bar expressed in the French measure with that standard. 
A series of such measurements showed that the bar was 417.38939 
French lines long, by 0.00061 of those lines or by 0.00063 Prussian 
lines shorter than intended. Actually, it is really indifferent whether to 
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choose the established value of the Prussian foot or the still unknown 
value which will be a few ten thousandths shorter or longer. The 
length of the bar can therefore be declared exactly equal to 3 Prussian 
foot. 
    Chance can lead to this rather than to any other length approximate 
to within narrow boundaries, but this cannot be the reason for 
deviating from a pronounced intention. Remaining true to it, we gain 
the advantage of not daring without reason to disturb the clarity of 
law, and thus the bar was declared the basis of the Prussian measure of 
length: 
 

The Standard of the Prussian Unit of Length, 1837 
 
    This bar at 16.°25C as measured along its axis is 0.00063 lines 
shorter than 3 foot.  
 
    The Royal Act of 10 March 1839 recognized it as the only one 
possessing that property21. And thus the Prussian foot was declared 
definitely and unambiguously. In accord with the above, its ratio to 
the French foot is 
 
    139.13:144 = 1:1.03500323 = 0.96618056 
 
which allows to replace one of these measures by the other one. These 
measures had been compared with each other 48 times during 8 days. 
Their coincidence is so exact that from those 48 comparisons the 
mean error of the length of 3 foot was not larger than 1/4000 of a line, 
and the mean error of the mean result was only 1/27,000. The seventh 
significant digit of that ratio does not change even by one whole unit. 
    [15] In accord with the intention of this report any details may be 
left out, but I would like to hint in a few words why those 
measurements attained such a high precision which exceeded its usual 
boundaries. I mainly ascribe this fact to the avoidance of small 
differences of the temperature between the two compared measures 
which escaped notice by the thermometers. I have attained this goal by 
making all the measurements in a washtub filled with spirits of wine 
and immersing there both the measures and the appliance for 
measurement. Then, the latest arrangement was only founded on 
contacts of planes and all microscopic images were excluded. Also, 
the micrometer screws of that appliance were more rigorously 
investigated, and the appliance was faultlessly produced by Baumann, 
that talented artist, who invariably and willingly helped with 
everything.  
    The determination of the ratio of the two measures can be 
considered satisfactory indeed, but we must not forget that the applied 
French measure was not the toise of Peru, but its copy produced by 
Fortin in Paris and owned by the Königsberg observatory. Arago and 
Zahrtmann compared it with its original after which it acquired the 
greatest possible authenticity. The same length represented by that 
copy of the toise had been the basis for the measurement of the length 
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of the pendulum in Königsberg, Güldenstein22 and Berlin as also for 
the arc measurement in Eastern Prussia [No. 322/135].  

    Two more equally authentic copies of the toise of Peru are kept in 
the rich collection of instruments of the state councillor Schumacher 
in Altona. I have compared them with the previously mentioned by 
means of the same Baumann appliance and found out that one of them 
also produced by Fortin was 0.0025 of a line longer, and the other one 
produced by Gambey 0.0049 of a line shorter. 
    It follows that the copies of the toise of Peru can be uncertain which 
is not really important for most applications, although often not to be 
considered insignificant. If the true value of the toise of Peru will be 
still more reliably known also abroad, the ratio of both measures will 
possibly change. As I have said, this remark refers to the Königsberg 
toise which can therefore become more reliably known by comparing 
it with the Prussian foot. After its legal establishment this will make 
no difference but I mentioned it so that it could be found out to what 
extent it can be related to the French measure with which many other 
measures had been compared and on which many scientific 
measurements are based. 
    The actual aim of my efforts concerning the Prussian measure is a 
systematic arrangement of rules which should lead along an easily 
understood way to the production of copies whose reliability satisfies 
even the most delicate scientific measurements. In my opinion, 
without following such rules the achievement of an unambiguous 
standard is impossible. I understand the importance of a precise 
measure as well as the previous difficulties or impossibility of 
obtaining it by issuing from too much experience, my own included, 
and I may therefore doubt that the rules directed to that aim which 
were got hold of in Prussia do not deserve attention.  
    An authentic copy of the Prussian measure ought to be a bar of lithe 
cast steel of which that measure was produced as well. Both have the 
same thickness and the same or almost the same length. Instead of the 
sapphire end planes fastened to the measure a copy is fitted with end 
planes of tempered steel23. After being firmly attached to the bar, they 
are ground and polished smoothly and are exactly perpendicular to the 
bar’s axis. To prevent dust and rusting these end planes are covered by 
brass cylindrical caps pushed on the cylindrical ends of the bar which 
can be screwed or unscrewed from it. 
    Such a bar is being produced by Baumann. After its completion it 
will be compared with the measure and its length (at the temperature 
during the comparison) will be known in the Prussian measure. An 
inscription will be made: 
 
    (The year.) This bar at temperature … as measured along the axis 
of its cylindrical ends is … lines longer/shorter than three Prussian 
foot 
 
    This inscription will make it an authentic copy of the Prussian 
measure. For officially recognizing this fact it will be necessary to 
apply to the Royal Commission on Standards in Berlin and submit the 
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original comparison as stated on the inscription on the bar. The price 
of authentication is 60 Prussian talers.  
    [16] For estimating the advantage promised by these rules I ought 
to go into some detail about the comparison of a copy with the 
standard. It is done by means of an appliance equipped with two very 
delicate micrometers fixed on a mahogany prop together with a 
Repsold water level – probe24. The standard and the copy are brought 
in turn between those micrometers. Both bars are laid side by side on a 
trolley which can only move perpendicular to the line of the 
micrometers and only between two points, when the axis of either bar 
is brought on that line. The movement is stopped by a shock against 
the edges of the two screws each of which is situated in the intended 
position at each placement of the bars. 
    Consequently, the bars can very rapidly and without any 
supervision be brought one after another between the micrometers so 
that the influence of the observer’s body warmth on them and on the 
appliance is decreased as much as possible. To exclude from the 
comparison of the bars the presumption of a completely correct 
position in the line of the micrometers it is necessary to repeat this 
procedure after turning them both around.  
    Each pair of comparisons made with changing some external 
circumstances required 15 minutes or somewhat more. The mean of 
the two comparisons, if only considering the errors of measurement, 
ensured a very near approximation seldom leaving an uncertainty of 
more than 2/10,000 of a line. However reliable is the appliance by 
itself and however delicate are its micrometers, these good qualities 
would have been barely beneficial if no means were found for 
ensuring a sufficiently equal temperature of both bars. 
    The difficulty of attaining this equality is only felt when the 
appliance is properly fitted out and very precise. A warming of a steel 
bar 3 foot long by (1/44)°C already changes its length by 1/10,000 of a 
line, and about (1/4)°C is required to change it by 1/1000 of a line. 
Therefore, if the measurement itself ensures a reliability of not less 
than 1/1000 of a line, it will hardly be difficult to equalize the 
temperatures of the bars and keep them equal. In this case, leaving 
them near each other for an hour will be sufficient and the proximity 
of the observer will not lead to any new difference between those 
temperatures. However, that procedure will be unsuccessful when the 
difference should be ten times less.  
    The different radiation of heat from or to the side of the room, 
opposite to that in which the appliance is held, generates, in my 
experience, much larger differences and the temperatures are 
equalized so slowly, that an occurrence of a new difference can be 
expected much more than that equalizing.  
    However, this difficulty can be eliminated, as was so successfully 
proved by my previous measurements, by immersing both bars in a 
liquid. True, the possibility of damaging the standard and/or the 
appliance will increase (although due care eliminates the danger). So, 
it was necessary to find a rule valid for an indefinitely long time. 
    In my opinion, it should impede an unfavourable influence of 
negligence or carelessness, and I had therefore thought of abandoning 
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the immersion of the bars in a liquid and of discovering another 
means. Obviously, it is now essential to produce copies of the same 
material and size as the standard and to process them the same way. 
Failing that, it will be impossible to keep both bars incessantly at the 
same temperature in spite of external disturbances and the never 
ceasing fluctuations of the temperature of the surrounding air.  
    I expected success by covering the appliance, that is, the 
micrometers, trolley and the bars, with a tight-fitting mahogany casing 
out of which only protruded the micrometers’ heads and drums. That 
casing only had two openings for reading the thermometer which lay 
on the bars. However, when I experimented in my room, the relative 
lengths of the copy still fluctuated, often more than by 1/1000th of a 
line. A change of the placing of the appliance with respect to the 
window or the fireside, even after screening off the latter, did not help. 
Only when I moved the appliance into an unheated room in the 
basement of the observatory, carefully closed it and only entered from 
time to time for comparisons, did these comparisons occur according 
to my wish.  
    [17] None of the 14 full comparisons of a copy with the standard 
deviated from their mean by 2/10,000th of a line and only 4 deviated 
more than by 1/10,000th. And so a condition was found whose 
fulfilment is necessary for very reliable comparisons. To illustrate the 
size of 1/10,000th of a line, I indicate that it is about 1/300th of the 
mean thickness of a human [of a masculine?] hair. 
    The inscription on each copy shows its length in the Prussian 
measure at the temperature of its comparison with the standard rather 
than its directly measured deviation from it. For finding out that length 
it is necessary to know the length of the standard not only at its normal 
temperature (16.°25C), but at any other temperature, or its change 
with each of its degree. 
    So that nothing else can be desired in this respect, I produced my 
own appliance for determining the change in the length of the standard 
with temperature and found out that each degree centigrade changes it 
by 0.004375 of a Prussian line. If the owner of a copy assumes that its 
steel has the same coefficient of thermal expansion, he may use that 
result. However, it will be wrong for him to decide this beforehand, he 
should replace it in accord with his own experiments and find out all 
the means for applying the copy.  
    Copies of the Prussian measure have an essential advantage in that 
they had been directly compared with the standard rather than with an 
intermediate copy. Other countries, in which the study of measures is 
also regulated, had excluded their standards from usual applications 
and thus protected them from damage and wear. However, this seems 
to contradict their aim, and I have preferred to secure their unchanged 
long-lasting preservation by their proper construction. Actually, I do 
not see what can damage the sapphire end planes of a bar since there 
is no reason for them to come into contact with diamond, the only 
known harder body. And a steel bar 3/4th inch square cannot be 
permanently bent by careless handling. The method of preserving it if 
it is always duly covered, lays on the appliance for comparisons and 
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only once touched when turned about, decreases the danger of its 
damage by carelessness, and, in my opinion, eliminates it. 
    However, unavoidable accidents can always happen, and an 
additional protection against them is only possible by disseminating 
copies of good quality, and it is always desirable to preserve them in 
different places without application. 
    [18] After, owing to their proper construction and ordered efforts, 
the production of copies of good quality became obviously possible 
without presenting any difficulties, the standard and the appliance was 
brought from Königsberg to Berlin. Installed there in a best-appointed 
house and protected from fire in the best possible way, they were 
given over to the Royal Commission on Standards. They turned to 
Baumann, the same artist who had rendered such an excellent service 
to the entire business and should have been most deeply involved in 
the essence of all the equipment. They charged him with comparisons, 
and I cherish the hope that he will not experience anymore difficulties 
in satisfying the need that had been felt for a long time for a reliable 
measure of length. Even the most delicate scientific applications can, 
at least for the time being, be based on a measure whose three foot are 
uncertain not more than by 2/10,000th of a line, or whose unit’s (?) 
uncertainty is less than 1/2,000,000th of a line. If, however, the 
necessary precision of measurement heightens, means will be found 
for satisfying them.  
    The simplest of all the measurements, the copying of a standard, 
can provide a reliability surpassing now, as it does, that of all the other 
contemporary measurements. With respect to the precision needed for 
any goal, the described rules have eliminated any uncertainty about 
the Prussian measure of length as well as about its copies. At the same 
time, the measures of length of two countries became identical. The 
Royal Danish government has established exactly the same length of 
their now adopted measure as that described above and, in addition, 
introduced completely similar rules of its dissemination by copies. I 
hope that state councillor Schumacher, who had directed and directs 
all this business, will soon inform us about its final completion. We 
will thus have standards of exactly equal precision in Copenhagen and 
Berlin. 
 

Notes 
    1. Bessel published a paper of the same name [No. 344].  
    2. Italy only became a single country in 1870, but 215 measures of the foot, even 
40 years previously, is difficult to imagine. 
    3. The goal of an international metric convention signed in Paris in 1875 was to 
ensure a unity of measures and to develop the metric system. 
    4. The yard was subdivided into 36 inches and its 1/900th part approximately 
equalled 1 mm. 
    5. But can complete definiteness be ever attained? 
    6. Instead of a simple indication of a leap year the new definition was not clearly 
connected with the year’s number. The calendar was thus deprived of its decisive 
advantage. However, the new calendar was soon abandoned. F. W. B. 
    Abandoned in France and never introduced elsewhere. O. S. 
    7. Bessel [No.254/138] briefly mentioned Gauss’ pertinent reasoning. 
    8. There are other causes as well, for example, the influence of external 
conditions, unavoidable in spite of Bessel’s statement to the contrary a bit below. 
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    9. See Bessel [No. 254/138]. 
    10. First noticed by Richer in 1672, but Huygens hardly did not understand that 
that should be expected. 
    11. Zakatov (1950, § 49) indicated that in Helmert’s opinion there are no general 
deviations of the geoid from a rotational ellipsoid, that somewhat earlier F. A. 
Sludsky had formulated a contrary statement, and that, finally, the existence of great 
waves of the geoid has been proved. It was J. B. Listing who only introduced the 
term geoid in 1873. 
    12. A city in an island in the Mediterranean Sea. 
    13. Bessel [No. 306/131] provided the results of these 10 measurements and 
indicated the most probable value of the mean degree of a quadrant of a meridian, 
the same as cited in his report. Then, however, he took into account the necessary 
correction of the French measurement, derived a new value of that degree and, 
moreover, added terms depending on the mean value of the degree of latitude. Note 
that Mendeleev (1868) did not indicate the uncertainty of the meter. 
    Bessel invariably determined most probable values whereas Gauss in 1823 
abandoned them in favour of most plausible values. Then, Bessel calculated mean 
errors, actually having in mind mean square errors. I have seen the latter term in 
Maievsky (1870) and Chebyshev (1870). 
    Bessel forcefully declared that natural measures do not exist and indeed, in 1872 
the International metric commission abandoned the natural meter and defined the 
meter as the length of the Borda bar. However, a natural measure was found in 1960 
when the meter was defined in terms of the length of some light wave. 
    Gauss expressed his views on the same subject in a letter to Olbers of 8 Dec. 
1817: 
    The outlook on the possibly general introduction of the French system of 
measures which I find very convenient is indeed interesting. I always willingly apply 
it and believe that everything or most of what was stated against its general 
introduction was based on prejudice. I think that serious inconvenience connected 
with the introduction of a natural system of measures will only occur with the most 
subtle measurements, for which we will need in addition some other standard. […] 
Each arc measurement is directly or indirectly aimed at the determination of the 
metre. Expressing the length of the arc in metres means that the metre is the length 
of that piece of iron rather than 1:10,000,000 of the quarter of the meridian. […] 
Endless transformations (Schwanken) will follow.  
    14. This seems to have happened with regard to the gram. Anyway, many later 
weighing led to somewhat different values of the weight of water without, however, 
redefining the gram. F. W. B. 
    15. Mendeleev (1895/1950) weighed a definite volume of water and indicated 
previous results, in particular those of A. Ya. Kupfer of 1841 but did not mention 
Bessel. According to his estimate (p. 106), the length of the (standard) meter is 
determined comparatively easy up to 1/200,000 or even 1/10,000,000 (cf. Bessel’s 
estimate at the end of § 14) and the weighing of a kilogram, a hundred or a thousand 
times more precisely. 
    16. Elsewhere Bessel [No. 322/135, end of § 9) noted that the first base net 
introduced by Schwerd appeared in 1822. There also, he described the laying of the 
centres of triangulations, cf. below his considerations abut the preservation of the 
measurements in the field. In addition to triangles, braced quadrilaterals and centred 
figures can also be included in a chain of triangulation.  
    17. Never say either always or never! In the 20th century, when triangulation 
chains had been adjusted, bases and azimuths were not corrected. They were 
considered much more precise than angle measurements.  
    18. This requirement seems self-contradictory. 
    19. See [No. 317/119]. 
    20. Pistor attained his aim so fully that I was unable to find reliably any supposed 
difference between his measure produced in 1816 and the French measure. In those 
measurements from which this (?) was concluded (woraus dieses hervorgegangen 
ist), the measure lay on a flat surface which could not have considerably differed 
from a plane. F. W. B. 
    21. It follows that Bessel had read his report not earlier than in 1839.  
    22. Güldenstein, a castle near Oldenburg in Holstein, Danemark. 
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    23. Here and below, Bessel confused the present and the past tenses, but then it 
occurred that the bar is being produced. 
    24. A probe (Fühlhebel) measures deviations of conic and cylindrical bodies from 
a circular form. It was apparently connected with the water level. 
 

Brief Information about Those Mentioned 
    Kupfer Adolph Yakovlevich, 1791 – 1865, physicist, chemist, 
metrologist. Fellow of the Royal Society  
    Baily Francis, 1774 – 1844, astronomer 
    Bird John, 1709 – 1776, astronomer, constructor of instruments 
    Borda Jean Charle, 1733 – 1799, physicist, geodesist 
    Everest Sir George, 1790 – 1866, geodesist, geographer 
    Fortin Jean Nicolas, 1750 – 1831, constructor of instruments  
    Gambey Henri-Prudence, 1787 – 1847, inventor, manufacturer of 
precise instruments 
    Kater Henry, 1777 – 1835, physicist, metrologist, astronomer  
    Lambton William, died in 1823, geodesist 
    Listing Johann Benedict, 1808 – 1882, mathematician, physicist  
    Mudge William, 1762 – 1820, geodesist 
    Pistor Carl Philipp Heinrich, 1778 – 1847, mechanician, inventor  
    Repsold Adolf, 1806 – 1871, constructor of instruments 
    Richer Jean, 1630 – 1696, astronomer 
    Roy William, 1726 – 1790, geodesist 
    Sludsky Fedor Alekseevich, 1841 – 1897, mechanician, geodesist 
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VI 

 

[K. T.] Anger 

 

Recollections of the Life and Work of Bessel 
 

Erinnerungen an Bessel’s Leben und Wirken. Danzig [1846] 
 
    [1] The November issue of von Zach’s Monatliche Correspondenz 
for 1804 carried the following letter written to him by Olbers: 
 
    My enclosure pleasures me much by introducing to you a young 
and very gifted astronomer. Still a very young man, Friedrich Wilhelm 
Bessel serves here [in Bremen] in one of the best commercial houses. 
Pity that such a talent cannot be wholly occupied with astronomy!  
    His discourse will give you, just as it gave me, a very high opinion 
about his abilities, knowledge and skill in calculation. If anything 
should be reproached, it is the expenditure of much more time and 
effort than Harriot’s observations, although valuable, can deserve 
according to their essence. But since Bessel had undertaken this work, 
it should be published rather than lost. Perhaps you will decide to 
honour soon his discovery by rapidly giving it a place in your journal.  
    I very much wish my young friend such an encouragement. Now, we 
most exactly know what can be gleaned from Harriet’s observations 
for the theory of that comet.  
 
    Von Zach published this letter together with the discourse [No. 1/1] 
in the abovementioned issue of his journal and added his own Note: 
 
    For his own pleasure, a young German described, competently and 
ably, what many salaried professional astronomers would have been 
proud to say, and should have said long ago, about an English 
professor, but preferred to consider such a difficult work unnecessary. 
Fifteen years ago, the eminent French astronomer Méchain won an 
academic prize for a similar perfect investigation of the equally 
notable comet of 1661. Bessel will not win any prize, although he 
deserves it. However, is an excellent and flattering testimony of an 
Olbers less worthy? We are not mistaken! Olbers’ praise was justified 
by Bessel’s work.  
 
    Bessel’s memoir, which introduced him into the astronomical 
world, surprized everyone. A twenty-year-old youth, a worker of a 
practical trade, acquired knowledge all by himself. This predicted him 
a worthy place among the representatives of science, and we will see 
how he surpassed the wildest hopes. 
    [2] Friedrich Wilhelm Bessel was born in Minden, Prussia, on 22 
July 1784. There, his father, a judicial councillor, was a senior civil 
servant, and his mother, a daughter of the parish priest Schrader in 
Rehme. A numerous family, three sons and six daughters, obliged the 
parents to be exceptionally thrifty, so that already early our Bessel was 
able to understand the need to enter on a career which promised a 



61 
 

quick independence. After attending the local grammar school 
(Gymnasium) in his home town up to the middle classes, he quit it of 
his own intense accord when being only in his thirteen years and 
continued to be educated privately1.  
    Bessel came to Bremen while being in his fifteenth year and went to 
work at A. G. Kulenkamp und Sohne to learn commerce. No one 
apparently suspected that that apprentice, who took up his place in the 
office (Comptoir-pulte) on 2 Jan. 1799, will not only grace an 
academic chair, but reach the highest level in the kingdom of a 
science. However, he soon showed that he did not belong to ordinary 
people. After learning the mechanism of business life, he attempted to 
study its essential interrelations. These efforts proved so successful 
that he soon won the complete contentment and approval of the boss 
the more so since even during his first year his work and prudence 
proved very useful for business. 
    However, his regular work, which Bessel always fulfilled with 
utmost devotion, soon ceased to satisfy Bessel’s yearning for activity. 
The office became too narrow for him, and his spirit which was 
destined for investigating the space of the system of the world2, craved 
to come out in the great world. A travel to French and Spanish 
colonies and China as a freighter (cargadeur) during one of the 
intended Hanseatic expeditions soon became his most cherished wish. 
    It was in accord with his personality to prepare methodically his 
intentions. He began to devote his leisure time to study modern 
languages and, for being occupied during the voyages, navigation. In 
those times, the usual manual for studying the astronomical part of 
navigation was Hamilton Moore (1791) later superseded by Norie. It 
is known, however, how even now such manuals are compiled: 
problem – rule – example with not a word about proofs which have 
been considered as unnecessary luxuries since the student had to be 
trained rather than educated. 
    Bessel, however, was not satisfied so easy and tried to justify the 
correctness of the astronomical instructions. Had mathematics not 
been completely unknown to him, he would have soon searched for 
the solution of the problems in the only proper direction.  
    The popular book on astronomy by Voigt at least indirectly helped 
him since he found there a reference to the excellent book of 
Bohnenberger (1795). There he saw that mathematical knowledge was 
necessary for penetrating astronomy, and this discovery led him to 
pure mathematics. He delved into that science with tireless eagerness 
and mostly by reflection came to the point at which the scales fell 
from his eyes and the astronomical science began to shine in all its 
lustre and grandeur.  
    Just to provide one example how he had to go further all by himself, 
I mention Bessel’s first acquaintance with spherical trigonometry. He 
found its main formulas without understanding their meaning, even 
without realizing that they concerned a sphere and began to derive 
them on a plane. He had not arrived at any satisfactory result and 
surmised to apply them for the three-dimensional space. Only this idea 
was necessary for him to cope with such an important part of pure 
mathematics. 
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    When later recommending Bohnenberger (1795) to young 
mathematicians (?), he apparently recalled his own experience. 
However, Bessel was not at all satisfied with Bohnenberger’s 
description of methods for determining time and applied his 
instructions for producing, with the help of a joiner and watchmaker, a 
wooden sextant and restored an old pendulum clock to working 
condition. 
    [3] Nevertheless, work, not leading to a definite result and thus only 
remaining an exercise, provided him nothing. He, as he himself put it, 
always should have got something useful from any work done. And so 
it suddenly happened even when he first determined time with those 
imperfect aids. Indeed, the determination of time should be applied for 
determining longitudes, and Bohnenberger’s book contained pertinent 
instructions. So Bessel followed them and issued from his own 
observations. Indeed, he was able to observe an occultation of a bright 
star after which he had nothing more urgent than to derive the 
longitude of Bremen, and, to his joy, his result was very near the 
known value.  
    Thus Bessel became acquainted with practical astronomy and 
became his own teacher and examiner. Such success was destined to 
inspire him with noble self-confidence, and now he irrepressibly 
rushed ahead. Not being afraid of the thorny path, his spirit only 
acquired new vigour, and the more, the greater were the obstacles. The 
proverbial saying, per aspera ad astra (to the stars through hardships) 
came true. 
    Driven by the desire to apply invariably the acquired knowledge for 
the good of science, Bessel carried out burdensome astronomical 
calculations, and, when it became necessary, enriched the theory. 
After his abovementioned paper about the Halley comet (?), there 
soon followed a theoretical work [No. 3/3] which rectified the then 
painfully felt requirement and left behind the preliminary efforts of 
Euler and Laplace (eines Euler und Laplace). Then, as Olbers stated 
[source not mentioned], he calculated the path of the first comet of 
1805 during four short hours: 
    On 1 November, at 8 o’clock in the evening, I sent him both my 
observations made on Oct. 29 and 31 of that comet and both of the 
earlier ones made in Paris on Oct. 19 and 20 and asked him to 
calculate on occasion its path since I myself had no time for it. My 
note did not find him at home, but he surprised me by coming at 8 
o’clock of the following morning with the calculated elements of the 
cometary orbit for which he had only the time from 10 p. m. to 2 a. m. 
I can now say with pleasure that our Bessel is now completely won 
over to astronomy. He quit his commercial profession and came to 
Schröter in Lilienthal instead of Harding, and this is really a great 
acquisition for science. I have not yet met such a keen, diligent, 
insistent and patient genius. 
    [4] A new period in the life of that remarkable man had begun. For 
seven years Bessel had been devotedly occupied in a profession 
remote from science, but now, finally, he is not compelled to restrict 
his scientific pursuits to night hours. Schröter’s activities had been 
rather directed to that part of astronomy which we may call physical, 
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since he was more interested in the physical state of the heavenly 
bodies rather than in their motion in space.  
   He should have all the more welcomed an astronomer who was an 
expert in carrying out everything that had to do with determining 
places in the sky, with managing by properly handling insufficient 
aids and nimbly calculating everything. Restrictions mean greatness3! 
Bessel kept his own astronomical diaries; observed comets and the 
new [the minor] planets with a circular micrometer; and, as 
previously, conducted scientific studies. His insight into investigating 
instrumental errors and their influence on calculations is surprising. 
And he always remained his own teacher since he himself 
comprehensively studied each problem without turning to his 
predecessors4. 
    I can only mention a few of Bessel’s works of that period. They 
include his precise and diligent observations of the comet of 1807 and 
the calculation of the elements of its orbit; then, the paper on the 
figure of Saturn which took into account the attraction of its ring. 
Thus he became closely acquainted with celestial mechanics which 
proved so useful in his later investigations. 
    However, aside from the results which Bessel made known as an 
observer, calculator and theoretician, he busied himself with a new 
basis for, and a glorious expansion of astronomy. His astronomical 
work already showed him how inadequate were the foundations on 
which rested the aids for calculating observations. The places of stars 
and the elements of the reductions of those places had not been as 
reliable as was necessary for more precise observations of planets and 
comets after due separation of the instrumental errors and the 
unavoidable errors of observation5. And the tireless Bessel decided to 
accomplish a great work, to compile a new star catalogue based on the 
observations of James Bradley, the greatest observer of his time, and 
to calculate new elements for calculations [of the reductions].  
    However, he kept silent about this plan and only made it known 
after two years. He finally succeeded after continuing this work with 
characteristic persistence. Bessel’s contribution [No. 130] contained 
the fruit of these immense calculations, and all the European 
astronomers accepted his gift with surprise and gratitude.  
    [5] While in Lilienthal, Bessel’s circumstances had not been too 
good, and reality with its various troubles did not imperceptibly pass 
by. But still his spirit remained cheery. The holy zeal for science 
which had been living in his heart could not be weakened by the cold 
world beyond. Again, being used to moderation, he did not require 
much, and his witty and shrewd reviews provided him with readily 
paid royalties. Bessel had thus found a means preventing sudden 
difficulties.  
    Those same years when the placid occupations of a scientist who 
thought of conquering the world of the spirit were continuing, the 
flames of war have been ravaging a large part of the world [of 
Europe]. The conqueror disturbed Europe and Prussia had also been 
strongly affected. The times of Friedrich II seemed never to return, 
and his life was apparently spent for nothing.  
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    Fainthearted and calculating pygmies! You wish to determine 
beforehand the future of nations, you believe, that since your bodies 
are shackled, that your spirit is also disgraced? But no oppressor can 
destroy moral strength; at most, at most, he is only able to screen the 
world from it. Friedrich Wilhelm III understood the need to give the 
noblest to his people. When storms are raging out there, men ought to 
build a world for themselves and thus to become invigorated for 
defying the tempests.  
    Supported by excellent councillors, he encouraged in various ways, 
within tight boundaries of the land still left to him, even those sciences 
which did not directly influence the needs of life but freshened up the 
spirit and brought divinity nearer. Astronomy should have also been 
worthily represented and a temple of Urania6 built in the former 
capital of Prussia [in Königsberg]. 
    [6] Wilhelm von Humboldt, that regrettably already extinct star of a 
Dioscuri7, understood Bessel’s merit, and the good monarch appointed 
him as Professor of astronomy at Königsberg University. In 1810, 
Bessel left Lilienthal. Here [in Königsberg], although being for a long 
time busy with calculating Bradley’s observations, he completed his 
work about the comet of 1807. What was until then unheard of, he 
took into account its perturbations and precisely calculated its path. 
The same year there appeared his celebrated work about this comet 
which won him the Lalande prize. 
    And now began Bessel’s activities in various directions. He spent 
much time in preparations for the building of the observatory. His 
clear and lively lectures at the university soon won him a large 
number of listeners, the more so since he had not restricted those 
lectures to astronomy but included pure mathematics. And thus Bessel 
acquired general recognition as a scientist and respect and love in the 
close circle of his young students. For 35 long years he remained a 
benevolent teacher and friend of a large number of students. Among 
them, there possibly was no one at all not sincerely thankful to him for 
assistance of some kind.  
    Soon Bessel saw students from abroad. Thune came from Denmark 
and successfully helped him with the calculations of the star catalogue 
(§ 4). He possessed a rare ability to instruct young student 
astronomers by entrusting them with astronomical work in which he 
himself invariably participated. He thus stimulated interest in science 
and the desire to extend knowledge whereas the excitement of arriving 
at a final result protected the students from drowsiness.  
    Other university instructors of related branches of science later, 
successfully, as far as I know, adopted his excellent method. And it 
ought to be stated here that the instruction, which a large number of 
listeners obtained during the lectures by many oral and written 
questions and tasks, became lively and infused with a rare charm. 
    [7] We will soon see how Bessel began his activities in the 
observatory, but first we ought to describe his private life. Being set 
up in a carefree position by monarchical favour, he found himself, in 
his new home city, a marriage partner in the daughter of the medical 
officer of health and Professor Hagen. During a long time she had 
with sincerest love shared with him grief and joy, and finally, when 
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Bessel’s death dissolved their union, she paid him her last respects 
with a gentle hand.  
    Whoever had an occasion to see the great man in his cosy 
domesticity should have imagined a pleasant picture of the cordiality 
of his really happy family life. Such pictures are imprinted in memory 
and are often recalled after a long time in their blaze of colour and 
delightfulness. Christmas celebrations were a special feast. Well in 
advance, Bessel was seen buying all kinds of presents for his children 
and other dear relations, or making them diligently himself, as though 
carrying out a scientific research, lovingly and painstakingly.  
    Who would have been able to describe his boundless joy which 
shone in his eyes when he surprised others by his presents! Neither did 
the numerous and far extended family, to which he belonged, fail to 
prove its love and attachment to him. Boundless good-heartiness 
coupled with a high scientific culture characterized that man, greatly 
respected not only in Königsberg, and we are gladly acknowledging 
that he soon became a member of a fine union of families whose 
doyen was his father-in-law.  
    Whenever Bessel’s observations and calculations allowed it, his 
heart reached out for his family. The tender father was glad to see the 
development of his children. Although previously music had been 
somehow unpleasant to him, he reconciled himself with it all the more 
since it should have been an element of education. Bessel cherished 
the hope that his eldest son Wilhelm will sometime follow the path 
along which he himself had come so far. Actually, he was glad to 
notice that, even as a boy, Wilhelm had a strong inclination to 
mechanics, and thought that it was a favourable sign of his future, 
since a certain skill in practical things was a very desirable quality for 
an astronomer. And when Bessel saw that this inclination, had 
strengthened still more, he bought Wilhelm a complete lathe. And 
since he thought that each game should lead to a useful result, it was 
very pleasant for him that Wilhelm decided to produce a pendulum 
clock all by himself. He achieved it to his own and his father’s great 
joy and Bessel became delighted by comparing the rates of that clock 
and the main clock of the observatory and announcing a justified 
opinion about his son’s work. Regrettably, we will see that Bessel’s 
wish did not come true because of the intervention of the relentless 
fate. 
    [8] In due time Bessel transformed the vacant lot near the 
observatory into a friendly garden and experienced how the trees 
which he himself had planted offered him a shade during a hot day. 
He was often seen there assiduously working with a spade, but it was 
also pleasant for him to discuss astronomical subjects with his 
students, answer their questions and allow them to inform him about 
the results of their work.  
    Those who had not been close to Bessel could often ascribe his 
displeasure, which he did not always conceal, when they disturbed 
him, to his bad mood. Actually, however, this only occurred since he 
had to interrupt his work. Visitors who had reason to see him often felt 
whether they came at the proper time or not by the tone of his Come 
in! However, he did not become invariably vexed since any 
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information about a happy surmount of a difficulty or even about an 
end of a long calculation, was able to drive away his frustration. We 
mention this small circumstance since it shows how Bessel 
participated in the scientific attempts of his students. Indeed, such a 
man cannot sacrifice more than his time during which he had to 
interrupt his own work for helping beginners.  
    Bessel’s attractive nature won him respect of wider circles of 
society as well. He never had any enemies8, he readily acknowledged 
worthy attempts and achievements even belonging to alien areas of 
knowledge9, and willingly discussed alien items earnestly and 
wittingly defending his point of view if his opponent did not agree 
with him. Bessel’s deductions did not depend on personalities and 
could never insult his listeners but often gladdened them even if they 
kept to very different opinions. Indeed, it became clear at once that he 
did not reason in the spirit of contradiction but expressed his really 
deep conviction. 
    By a stroke of great luck Bessel was very healthy but soon would 
have succumbed to the unheard of tension had he reasonably not 
strengthened it by regular walk. In addition, he loved hunting which 
often pleased him and he rubbed shoulders with people whose 
interests could have essentially differed from his own. Contacts with 
businessmen were not unpleasant for him since he was well 
acquainted with commerce, and an exchange of opinions was 
therefore possible.  
    [9] Bessel was really lively, even in his later years. He conducted 
everything zealously so that the building of the observatory presented 
him with many difficulties and obstacles and took to heart their rapid 
elimination. Thus, soon after his arrival in Königsberg he wrote to 
Bode [source not indicated]: 
    The news about the departure of the [ordered] instruments from 
Rostock was exceptionally pleasant for me. I hope that they will soon 
arrive and that the building of the observatory will soon begin. 
Difficulties still occur all the time. They will not persist for a long time 
anymore, but will be able to paralyze our activities. 
    When recalling that that building fell on the period of 1811 – 1813, 
the appearance of those difficulties will become clear. It was told that 
in 1812, while visiting Königsberg, Napoleon rode on horseback 
around the city wall, noticed that construction cite and asked about its 
aim. Upon finding out that not a log cabin, but an observatory was 
being built, he exclaimed in wonder: 
    My God, so has the King of Prussia still time to think about such 
things at present?  
    The calculation of the Bradley observations led Bessel to desire for 
obtaining a similar series of fundamental observations, and now there 
occurred a possibility of achieving this. His observations at the 
Königsberg observatory are naturally separated into four periods. The 
first covers those made by a Dollond transit instrument and a Cary 
circle. The second period, observations with a Reichenbach meridian 
circle; the third, with an Utzschneider – Fraunhofer heliometer, and 
finally, the fourth period, with a Repsold meridian circle.  
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First observed at the new observatory on 12 Nov. 1813 was the 
passage of the Pole Star by the transit instrument, and the first volume 
of observations, of which 20 are now published, appeared in 1815. 
Here is Bessel’s Introduction to that first volume: 
    Whereas circumstances apparently made it impossible for Prussia 
to encourage essentially science, the observatory had nevertheless 
appeared, and astronomers are now receiving the first part of its 
observations. It was built in 1811, 1812 and 1813 so as to obtain a 
new auxiliary source for science and no effort was spared for wholly 
achieving this aim. Owing to the really royal generosity, all the 
difficulties, though apparently insurmountable, had been overcome. 
The observatory is therefore a worthy and glorious achievement, a 
memorial to the spirit that became dominant in Prussia even in these 
times. Let this institution blossom for a long time; it bears fruit and it 
reminds our grandchildren of the good deed of our great king and 
they will be thankful to him. From now onwards, science has a 
justified claim on the observatory which it ought to satisfy, and will 
satisfy. Indeed, it is impossible to change the intention of its donation. 
    It will certainly dawn on everyone that now, more than three 
decades later, these words prophetically stated, and dared to be stated 
by the great man, had so thoroughly come true. But thanks also go to 
him, without whose assistance nothing could have been achieved, 
since, wonderfully revealing himself, he had lent power to the man, 
and thus enabled him to attain such enormous success. 
    [10] Above, we have indicated that Bessel had previously 
understood that the elements underlying astronomical calculations 
were imperfectly known, and that he had decided, just as he always 
did when having the necessary means, to attempt to determine these 
elements as reliably as was required by science. A good example was 
the prize of the Berlin academy for Bessel’s contribution [No. 
104/37].   
    Because of its great importance, the rotation of the Earth around the 
Sun became the subject with which Bessel dealt especially thoroughly, 
and very many of his astronomical activities should be seen as 
preliminaries to a more precise study of this motion. Not only a new, 
but a better theory of the Sun seemed to be so desirable to him, that he 
spared no effort for successfully snatching it from heaven. The precise 
knowledge of that motion is already necessary because of its influence 
on the applications of all observations of the planets and comets. 
Indeed, even the best in themselves observations of these celestial 
bodies cannot lead to any quite reliable results if at any moment the 
place of the observer in space is not most clearly known.  
    But this was not the only circumstance which prompted our Bessel 
to devote his best efforts over a long sequence of years to accomplish 
the indicated great goal. He realized that the Newton law of 
gravitation, according to which the attraction of bodies in space is 
proportional to their masses, was not the only one10. On the contrary, 
without excluding another kind of attraction, it only belongs to various 
possible premises. This discovery was very important for the entire 
physical astronomy and for convincing Bessel himself whether the 
deviations of the elements of the Earth’s path from observations can 
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be eliminated by improving these elements or not, − that is, whether 
the Newton law is really a law of nature.  
    A new calculation of those elements, based on numerous and 
precise observations, was necessary. Bessel provided future 
calculators with all the auxiliary means which can lead to the study of 
that great problem. In addition, he satisfied for a long time the 
requirements of practical astronomy by improving the Carlini tables of 
the Sun. 
    [11] Bessel’s observations of the Sun by the Cary circle and the 
Dollond transit instrument, which lasted for five years, were so precise 
that they could be applied when investigating anew the 
abovementioned element11 which is connected with the errors of 
graduation of the circles of those instruments. Apart from the 
fundamental stars and planets he diligently observed stars which had a 
rapid proper motion, and even with those imperfect aids he got quite 
useful results. 
    His wholly original investigation of the errors of graduation of 
those circles led Bessel to a formula which proved very useful in 
meteorology and was invariably applied there12. 
    In 1820 Bessel began to observe with a Reichenbach, and a 
Fraunhofer meridian circles. He had most thoroughly investigated the 
errors of these instruments of unequal perfection and in general he 
ought to be considered the creator of the new art of observation13. 
Apart from the usual observations of the fundamental stars, the Sun 
and the planets, he began an immense enterprise, the observation of 
weak stars down to their ninth magnitude in the belt between – 15° of 
south and 45° of north declination. He believed that that extremely 
burdensome work apart from its usefulness will enable to extend 
systematically the search for new planets. Actually, the star catalogue 
of the Berlin Academy of Sciences based on those observations made 
possible the discovery of Astraea14. 
    On 19 Aug. 1821 Bessel observed the first zone of that belt, and on 
21 Jan. 1833, its last zone. In all, Bessel made 75,011 observations 
during 536 sessions15 but he left the belt from 45° north declination to 
the pole for other observers working in observatories equipped by 
suitable instruments. Astronomers thankfully acknowledged the great 
advantage provided by that work.  
    [12] Still, the realization of such an extensive work did not keep 
Bessel away from other scientific pursuits. During that same period he 
calculated the Tabulae Regiomontanaea [No. 248] and in 1816 and 
1827 determined by numerous observations the length of the simple 
seconds pendulum16. To achieve this purpose Bessel invented an 
apparatus which eliminated the possible uncertainty about both the 
middle point of the motion of the pendulum and that length. He 
observed the period of oscillation of two pendulums the difference 
between whose lengths was not measured but made equal to the toise 
of Peru. According to his indications, the eminent mechanic Repsold, 
who is known to have perished in a fire in Hamburg, had produced an 
excellent apparatus.  
    The result of this work proved even more important than its 
beginning allowed to expect. It occurred that the method of 
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calculating the influence of the resistance of the surrounding air as 
applied since the time of Newton was inadequate. Indeed, Bessel 
noticed that the motive force experienced by a body acts not only on 
its mass, but in addition on all the particles set in motion, and 
therefore on the moving particles of the liquid [Flüssigkeit; of the 
moisture (Feuchtigkeit)?]. By issuing from this circumstance, Bessel 
based a new theory of calculating the air resistance in case of such 
experiments17. The contribution [No. 219] describing all these 
investigations appeared in 1828. 
    Bessel applied the same apparatus for solving the important 
problem of whether the attraction of terrestrial objects by the Earth 
was proportional to their masses and repeated Newton’s experiments 
(?) with his auxiliary aids of differing precision. To achieve his aim, 
he determined the length of a simple seconds pendulum with twelve 
various substances (gold, silver, lead, iron, zinc, brass, marble, clay, 
quartz, meteoric iron and stone). In each case he finally obtained a 
complete confirmation of the proposition that the length of such a 
pendulum only depends on the attraction of the Earth, but not on the 
properties of those substances18. 
    Bessel also attempted to find out the grounds of our knowledge 
about the attraction of bodies both in our surroundings and space 
given the state of our art of observation and of our instruments. 
Indications, provided by the motions of some heavenly bodies about 
their incomplete compliance with the known general law of 
gravitation, provoked a question whether this law all by itself was 
sufficient for all those motions or are some of its still unknown 
modifications still necessary.  
    The experiment with those meteoritic substances of a possible 
extra-terrestrial origin19 have perhaps indicated deviations [from that 
law] including one that can only provide a weak gleam of light on this 
problem whose interpretation even under most favourable 
circumstances remains for the attention of astronomers of the next 
century.  
    Just as the Keplerian laws had confirmed the Tychonian 
observations until Newton theoretically modified them whereas more 
perfect observations justified his work20, a further step which will 
essentially supplement the laws (!) of attraction as known to us, is 
conceivable. Therefore, apart from their own interest, continuous 
precise observations of heaven are important since only they can 
extend our view of the true laws of nature.  
    Taking this into account, we see that Bessel’s numerous worries 
about science obtain a centre in which they meet and a consistent 
method, which he always applied, and subjected the foundations to 
sharp criticisms and, if they were not sufficiently fine, laid down a 
new basis. It thus follows that his method was necessary. 
    [13] The large heliometer provided him a means to study double 
stars and to determine the distance to 61 Cygni about whose rapid 
proper motion he already knew21. This determination only occurred 
after many unsuccessful attempts made by other astronomers22. By 
applying that same instrument Bessel had also penetrated into the 
systems of Saturn and Jupiter. He began by determining the path of 
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the Huygens’ satellites of Saturn23, which he attempted 18 years ago 
when applying a small instrument, although not without obtaining a 
useful result. Bessel’s investigation of the satellites of Jupiter which 
he observed very thoroughly was very interesting since until now (bis 
jetzt) their paths are actually unknown.  
    The precision of the observations with the heliometer was so high, 
that the meridian observations were unable to come up to them, and 
Bessel invariably and most diligently attempted to perfect them. The 
meridian circle produced by brothers Repsold, the sons of their 
eminent father24, for the Königsberg observatory ensured at Bessel’s 
hands the highest possible precision. 
    His discovery of the changes in the proper motion of stars25 was an 
excellent result and we may hope that Bessel’s observations, although 
not finished, will soon appear in a special volume edited by Busch in 
Königsberg and Petersen in Altona. 
    [14] Finally, we ought to mention Bessel’s merit in geodesy and in 
establishing a Prussian unit of length. Long ago he succeeded to 
simplify as much as possible calculations of vast geodetic 
constructions and thus to heighten their precision26. The arc 
measurement in East Prussia, which he carried out with Major von 
Baeyer [No. 322/135], provided an opportunity for applying those 
results and became a specimen worthy of imitating. 
    The government of Prussia commissioned him to put into definitive 
order the standard of length. Accordingly, in 1835 he came to Berlin 
and determined there the length of a simple seconds pendulum by his 
Königsberg apparatus. He had done it in accordance with the desire of 
the Danish government to even out their own and the Prussian 
standards whereas other observers determined the length of the 
pendulum at Güldenstein by the same apparatus27.  
    Bessel completely fulfilled the need, felt for a long time, for such a 
standard suitable even for scientific purposes. In 1839, the Ministry of 
Finance and Commerce published Bessel’s pertinent contributions 
[NNo. 334; 335/150] and sent his copies of the standard to the Royal 
government [in Copenhagen?]. 
    [15] It is impossible to mention all the works of the great 
astronomer or to provide comprehensive information about the ensued 
progress of science. History of astronomy will accomplish this goal 
much later than these sketchy pages wilt on the grave of the immortal 
man. I had only tried to draw a picture of his work insofar as it was 
necessary for showing how a great talent was coupled with a noblest 
character.  
    Bessel’s excellent work should have been recognized abroad. 
Academies and other scientific societies diligently attempted to elect 
him. In 1820 Friedrich VI of Denmark decorated him with the 
Danebrog Order, and other monarchs soon followed suit. In 1824 
Bessel was awarded the Red Adlerorder of the third class and the title 
of Privy State Councillor, and, finally, the ruling monarch awarded 
him the same order of the second class and the Order pour la mérite of 
the civil class. 
    The Paris academy conferred on him their highest scientific 
recognition. For a long time, he had been its corresponding member, 
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but then became its full member. These testimonies of respect 
gladdened him, but his happy family life quite especially assisted him 
by strengthening his scientific efforts and the cheerfulness of his 
spirit. Old age neared, and from 1839 his health had been shaky, so 
that this assistance became necessary for him to complete his 
tremendous investigations.  
    Bessel was greatly delighted by the marriage of his eldest daughter 
to his esteemed friend and previous student, Professor Adolph Erman 
from Berlin. His son Wilhelm whom we mentioned above displayed 
talent and inclination towards mathematical pursuits. Already in 1835 
Bessel introduced him into the scientific world by an astronomical 
work on the Boguslavski comet28. However, the charming and modest 
young man did not want to devote himself wholly to science, although 
his highest achievements should have already been intensely expected.  
    [16] Wilhelm preferred to devote himself to construction industry 
(Baufache). Upon graduating from the Königsberg University he went 
to Berlin and entered a general Bauschule. According to the opinion of 
his instructors and other experts he had been excellently successful, 
but then, in 1840, soon after passing very fairly an examination for 
work superintendent (Bau-Kondukteur), he succumbed to a nervous 
fever. This unexpected blow hit Bessel like a lightning bolt from the 
blue.  
    Being in his 56th year, he had experienced many sorrows, but what 
did they matter as compared with the loss of seeing his only promising 
son snatched up from him29! The parents had been informed about the 
occurred illness by near relatives living in Berlin, but their last 
message left no anxiety about the worst. However, Wilhelm’s 
condition suddenly aggravated, and when his death was mourned in 
Berlin, his parents in Königsberg began to hope once more. 
    It is difficult to describe the pain which seized the heart of the badly 
sagged father. But the noble man drew himself up and worthily 
endured the inevitable. Made happier by the love of his left dear 
relatives and reassured by the sympathy of the noblest men both in 
Germany and abroad, he sought and found consolation in those 
occupations which had been as necessary for his life as his breathing 
air. On 16 Jan. 1841 he wrote to a friend [neither name nor source 
mentioned]: 
    The loss of the only son, a son who had begun as honourably as I 
did … It is very difficult to endure it. But I ought to endure it. How 
gladly I would have given the few years still left to me for my dear 
Wilhelm to provide him 40 or 50 instead! Yes, in all probability they 
would have been happy years since I do not know what more should 
he have possessed. I try to distract myself by work and my condition 
has improved. My health remains rather good; I do not require much 
anymore since I got used to be content with little. 
    Bessel’s nearest including his scientific surroundings provided most 
pleasurable consolation; such scientists as C. G. J. Jacobi and 
Neumann had been his most intimate friends, and we may therefore 
believe that he had good relations with scientists from other cities. 
Alexander von Humboldt had always been friendly to him, and 
corresponded with him over the years. He corresponded all the time 
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with Gauss, Encke, Struve, Schumacher and Olbers (whose decease he 
regrettably had to mourn), and he had the pleasure of seeing Humboldt 
as well as Encke, Struve and Schumacher at his observatory30. Bessel 
had been connected with Schumacher by true devotion and often 
stated that his friend won himself a high merit by editing the 
Astronomische Nachrichten. Actually, we may presume that without 
that periodical many Bessel’s contributions would have remained 
unknown. Real chances of rapid publication had been very inviting for 
willingly and often going that way. 
    Bessel’s high standing in science necessitated a very extensive 
correspondence with foreign astronomers. From far away, even from 
overseas, correspondents asked advices or sent their findings for 
getting his opinion. In previous years Bessel never expressed any 
desire for going abroad, and it rather seemed that he had been averse 
to that. Now, however, Bessel decided to go, presumably bearing in 
mind his health which became ever weaker31.  
    Bessel was received everywhere with great honour. In Paris and 
London, being a member of the academies there, he was showered 
with expressions of honour. Upon returning home, he was gladdened 
by a pleasurable event, the marriage of his second daughter to consul 
Lorck, the son of a family with which his own had long been in 
friendly relations. 
    [17] Bessel’s health became ever more anxious. In wintertime he 
developed pathological symptoms but hoped to get rid of them during 
spring by spa treatment and certainly felt himself better in summer. 
These symptoms returned in the winter of 1843/1844 and did not 
completely disappear in summer and he was obliged to stay away 
from many festivities during the jubilee of the University. In October 
he suffered so much that his doctor had to forbid him any intensive 
work, and he obediently complied.  
    From then onwards, he himself began to consider his condition 
dubious; indeed, in case of death, that same month he indicated some 
wishes in writing. On New Year’s day Bessel’s suffering essentially 
increased and already then his doctor Kosch understood its cause. All 
summer Bessel had to struggle with acute pain. Schumacher’s visit 
provided him a pleasant spiritual excitement and the favour rendered 
him by His Majesty the King32, who had sent him [for some time] his 
physician-in-ordinary, touched him so much that he became able to 
forget for some time the suffering of his body.  
    At the beginning of this year [1846] it seemed that Bessel had 
already more or less recovered, and once more a ray of hope warmed 
his heart. Information about the discovery of a new planet [Astrae, § 
11] seemed to have revived him anew, and he was greatly pleased by 
the mark [by a new mark] of favour from the highly respected king. 
The king sat for his portrait and on 23 February informed Bessel in his 
own handwriting that he will soon send him that portrait. It came on 2 
March and from that time until his death it became the cause of 
Bessel’s pleasure, although from the end of February he did not dare 
leave his bed. On 7 March he dictated to his daughter a letter to 
Schumacher in which he expressed his fantastic joy at the present and 
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his great gratitude to the king. He wished to express his thanks 
himself, but was already too weak.  
    Bessel died on 17 March, at half past six in the evening. He 
remained completely conscious until the very end and expressed his 
joy at this circumstance to his spouse and daughter. During his last 
three days he changed very much. The pulse beat became hardly 
perceptible, he almost always drowsed [remained completely 
conscious?], his breath gradually weakened. Once he lifted his head 
and his last breath escaped from him. For a long time they still sat on 
his bed not daring to disturb the sacred peace by sound or movement.  
    His death occurred just as he always wished for himself. Foreign 
newspapers wrote that Bessel’s doctors did not understand his illness 
which was not true at all. An autopsy wholly confirmed Dr Kosch’ 
previous opinion: a spongy growth in the abdomen mechanically 
pressed the inner parts of his body and disturbed all its functions. 
    Bessel himself had time to forbid any ceremonies at his funeral. In 
the lecture hall of the observatory in which he had aroused to spiritual 
life hundreds of listeners now a coffin with his mortal remains had 
lain. Numerous orders with which monarchs had decorated him, as 
well as a laurel wreath presented by Europe (?) were displayed.  
    The funeral train went along the embankment running around the 
observatory to the churchyard nearby. His assistants, Dr Busch and 
Wichmann, carried the orders, national and foreign. All the city 
authorities had sent deputations, and huge numbers of people, even 
those little known to him, but having been fond of him, followed the 
coffin.  
    The location of his grave was chosen so that it was exactly opposite 
the observatory, and nothing hindered its view from the meridian hall.  
 

Notes 
    1. The thrifty parents paid for his education, but did not pay anymore for his 
attendance at the grammar school (or was public education free?). 
    2. Bessel did not at all restrict his later investigations to the system of the world. 
    3. In der Beschränkung zeigt sich erst der Meister (Goethe). 
    4. Bessel did not turn to his predecessors likely because he had not known them.  
    5. Instrumental errors are unavoidable as well. Anyway, Anger should have 
mentioned random and systematic errors. 
    6. Urania, the muse of astronomy. 
    7. Dioskuroi: the twin sons of Zeus. In this case, the brothers Humboldt (not twins 
at all!). Wilhelm Humboldt followed the advice of Olbers and Tralles (Bruhns 1875, 
p. 562). 
    8. On  Bessel’s relations with Gauss and Encke see Biermann (1966) and Repsold 
(1920, pp. 194, 200 – 202) respectively. 
    9. Acknowledging someone’s merits in an alien field is not difficult. 
    10. In § 12 Anger indicated that Bessel had even established that the motion of 
some heavenly bodies did not wholly comply with the Newtonian law. This is 
doubtful, but neither was John Herschel (1829) sure that that law was the only 
pertinent one. Then (see below), Newton’s law would have remained a law of nature 
even when supplemented by another one.  
    11. Anger did not mention any single element. 
    12. The usage of thermometers and barometers hardly involves the application of 
any such formula. 
    13. Anger had not mentioned Gauss at all! 
    14. Astrae was discovered by K. L. Hencke in 1845. 
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    15. Bessel had apparently reduced his observations as well. It is opportune to 
mention Newcomb (Benjamin 1910) who studied and treated more than 62 thousand 
observations (made and reduced by others) of the Sun and the planets which was 
always considered a great work. 
    16. The length of seconds pendulums depend on the place of observation. 
    17. The motion of pendulums is now observed in vacuum (Bomford 1952/1962, 
p. 344). 
    18. Bessel had apparently verified the constancy of the acceleration of gravity 
(and therefore of the length of a seconds pendulum). He then apparently had to 
produce 12 pendulums including two made from meteoritic substances, which is 
difficult to understand. And the application of the auxiliary aids (Anger) was not 
necessary at all.  
    19. In those times meteorites had not been considered as extra-terrestrial objects 
(Blazko 1947, p. 363). 
    20. Crass ignorance. 
    21. Anger hardly realized the great importance of that discovery. 
    22. Schumacher and Bessel himself (Repsold 1920, pp. 196 – 197).  
    23. Huygens had only discovered one satellite of Jupiter (Blazko 1947, p. 492).  
    24. Actually, the Repsold dynasty consisted of grandfather (perished in a fire in 
1830), father, and grandson (born in 1838) whereas Bessel received that heliometer 
in 1829 (Engelmann 1876, p. XXVII, left column). 
    25. Bessel theoretically explained the irregularity by the existence of considerable 
dark masses in the neighbourhood of those (bright) bodies, which meant that both 
those irregular bodies were real double stars. Later observations by other 
astronomers confirmed his conclusion (Engelmann 1876, p. XXVIII, left column).   
     26. This is wrong, see Sheynin (2001c, pp. 171 – 172). 
    27. Güldenstein: a castle near Oldenburg in Holstein, Denmark. Other observers: 
see Note 22. 
    28. In his note Bessel [No. 284] stated that his son Wilhelm had participated in 
observing that comet and reduced some of Boguslavski’s observations. 
    29. Bessel had two sons and three daughters, but only one son, Wilhelm, lived to 
become an adult (Engelmann 1876, pp. XXIX, right column and XXX, left column).   
    30. Concerning Encke see Note 8. 
    31. Bessel was invited to participate in a conference of the British Association for 
the Advancement of Science in Manchester (Repsold 1920, p. 210. 
   32. In § 5 Anger mentioned Friedrich Wilhelm III (who died in 1840). Now, it was 
Friedrich Wilhelm IV.  
 

Brief Information about Those Mentioned 
    Baeyer Johann Jacob, 1794 – 1885, geodesist 
    Bode Johann Elert, 1747 – 1826, astronomer 
    Boguslawski Palm Heinrich Ludwig von, 1789 – 1851, astronomer  
    Busch August Ludwig, 1804 – 1855, astronomer 
    Dollond John, 1706 – 1751, optician 
    Encke Johann Franz, 1791 – 1865, astronomer 
    Erman Georg Adolf, 1806 – 1877, physicist, geophysicst 
    Fraunhofer Joseph von, 1787 – 1826, physicist 
    Harding Karl Ludwig, 1765 – 1834, astronomer 
    Harriot Thomas, 1560 – 1621, astronomer 
    Humboldt Wilhelm von, 1767 – 1835, philologist, philosopher, 
linguist, statesman  
    Jacobi Carl Gustav Jacob, 1804 – 1851, mathematician 
    Lalande Joseph Jerome François, 1732 – 1807, astronomer 
    Neumann Franz Ernst, 1798 – 1895, physicist 
    Petersen Adolph Cornelius, 1804 – 1854, astronomer 
    Reichenbach Georg Friedrich, 1771 – 1826, constructor of scientific 
instruments 



75 
 

    Repsold Adolf, 1806 – 1871, constructor of scientific instruments 
    Repsold Johann Adolf, 1838 – 1919, constructor of scientific 
instruments.  
    Repsold Johann Georg, 1770 – 1830, constructor of scientific 
instruments, astronomer. Father of A. R., grandfather of J. A. R.  
    Schröter Johann Heronymus, 1745 – 1816, astronomer 
    Tralles Johann Georg, 1763 – 1822, mathematician, physicist 
    Utschneider Joseph, 1763 – 1840, engineer, businessman 
    Zach Franz Xaver von, 1754 – 1832, astronomer 
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VII 

 

Joh. A. Repsold 

 

H. C. Schumacher 
 

Asron.Nachr., Bd. 208, NNo. 4970 – 4971, 1918, pp. 17 – 34 
 
    [1] Heinrich Christian Schumacher, a son of a Danish medium-level 
civil servant and chamberlain Andreas Schumacher (1726 – 1790) and 
Sophie Hedwig Rebecka, née Weddi (1752 – 1822)1, was born 3 Sept. 
1780 in Bramstedt, a small town in Holstein, Denmark. Already in his 
seventh year, as he himself stated (to Gauss on 17 Jan. 1840), his 
father introduced him to King Friedrich VI of Denmark, the Duke of 
Holstein. Until his death at the end of 1839, the King had been 
holding a protective hand over Schumacher.  
    After the death of her husband, his mother moved to Altona where 
her sons, Christian2 and Andreas Anton Frederik (1782 – 1823), who 
became an officer, attended a grammar school (Gymnasium). 
    From 1799, being destined to jurisprudence, H. C. studied in the 
universities in Kiel and Göttingen. There [where exactly?], 7 June 
1801, he greeted Goethe, who journeyed through the city, as the 
speaker for the students (Goethe’s Annalen 1801). In 1804, upon 
graduating, H. C. took over a position of home teacher in a respected 
family in Livonia. Then, in 1805 or 1806, he moved to Dorpat [Tartu] 
to settle there as a Dozent of jurisprudence, but at the same time 
attempted to study mathematics and astronomy under Professor Pfaff3, 
the Director of the observatory there. Indeed, these sciences ever 
stronger attracted him. 
    For actually becoming a Dozent, in July 1806 Schumacher received 
a doctorate in absentia in Göttingen, and, having overcome many 
delays and formalities, he began to lecture. However, just after that, in 
1807 he was benevolently invited to the court in Copenhagen to take 
up a position in the pension chamber (his letter to Gauss, 4 Sept. 
1850). The bombardment of the city by the British navy led to serious 
disruption, but Schumacher, in spite of his assumptions, became 
extraordinary Professor of astronomy there. In the meantime, while 
awaiting that position, he returned to Altona, where his mother had 
still been living, and began translating Carnot (1803).  
    That same year he became acquainted with J. Georg Repsold in 
Hamburg, who had then been busy with producing a new object glass 
for his meridian circle and turned to Gauss to find out a better form for 
that glass. In October 1807 Schumacher prepared some drawings 
which possibly had to do with determining its refractive index as 
awaited from Gauss. 
    [2] In April 1808 Schumacher began to correspond with Gauss, and 
later their exchange of letters became extensive. Schumacher asked an 
advice about integrating the Pedrayes differential equation4, but a 
much later and essentially declining answer crossed with 
Schumacher’s second letter in which he stated that that question was 
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not anymore important for him: he had just received from Copenhagen 
an approval of a donation for studying astronomy. So now he asked 
Gauss about the possibility of help in continuing his studies of 
mathematics and astronomy.  
    Gauss agreed, and in October Schumacher came to Göttingen. 
Gauss thought that a formal instruction stipulated their common 
observations and unquestionably became the leader. Schumacher, 
however, was more worldly-wise which led to Gauss’ excitement and 
favourable attitude to him. Their contacts soon became friendlier, the 
more so since they only differed in age by three years.  
    The donation was granted for a year and its extension, which 
Schumacher hoped for, was not allowed. In September 1809 
Schumacher wrote Repsold about his intended visit to Paris with a 
possible return in October. And so it really happened and besides he 
went with Gauss who had recently lost his [first] wife and, to distract 
himself, wished to see Repsold as he previously had in mind. They 
went through Bremen to meet Olbers and the observatory in Lilienthal 
from which, on 2 November, Bessel set off to meet them (Schumacher 
1889, p. 120). Gauss spent about a a week in Hamburg – Altona.  
    At the end of 1809 began the correspondence between Schumacher 
and Bessel, but only in the 1820s did it become livelier5. After 
Schumacher, who looked for a position, unsuccessfully attempted to 
succeed Pfaff in Dorpat, he applied once more for a professorship in 
Copenhagen, but stayed temporarily in Altona. He taught [privately?] 
mathematics, completed his translation of Carnot (§ 1), wrote his 
Mathematische Geographie (1812) and reduced Repsold’s 
observations of 1804 for Gauss. He led a sociable life but wished to 
restrict it.  
    [3] Then, in August 1810, Schumacher was suddenly invited to 
Copenhagen as an extraordinary professor of astronomy. However, 
Bugge, the professor there, wished to remain in the observatory all by 
himself and Schumacher was asked to take a leave of absence, and for 
the time being to continue his observations at the Repsold observatory 
which began in December 1809. And so he stayed in Altona, where 
Repsold, who, following Gauss’ calculations, had just produced a new 
object glass for a meridian circle, willingly allowed him to use that 
instrument. So Schumacher began a series of observations of 
circumpolar stars. Repsold participated, and during this common work 
these very differently disposed men got closer to each other and 
became bosom friends. In spite of serious trials, their friendship 
persisted without weakening until Repsold’s death in 1830. 
    Schumacher took lodgings in Hamburg6, not far from Repsold, but 
his main home remained in Altona, in his mother’s house. Already in 
the spring of 1811 the common observations had to be ceased since 
under the French rule the fate of the instrument was uncertain, and the 
observatory itself soon became a new fortification. Under these 
circumstances Schumacher strongly desired, following Gauss’ advice, 
to receive a call to become director of the Mannheim observatory, 
although his absence from Copenhagen was only allowed under the 
condition that he returns in case of Bugge’s death.  
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    In August 1812 Schumacher left Altona after marrying Christine 
Magdalena, née von Schoon, and his mother accompanied him [them] 
to Mannheim. Schumacher found out that the observatory in 
Mannheim was in a deplorable state. The old instruments (Klüber 
1811) were terribly neglected and only could be made usable by great 
efforts (letter to Gauss of 6 Jan 1814), and there was no room for the 
recently delivered Reichenbach repeating circle. Schumacher even 
thought of moving the observatory (letter to Repsold of 17 May 1814 
[source not indicated]) but meanwhile began to observe diligently 
with Sisson’s zenith sector and Bird’s mural quadrant (Schumacher 
1816). For diversion and rest he painted many portraits (his letter to 
Bessel of 31 Oct. 1836). On occasion, his letters contained small 
sketches which show that he had a skilled hand and a keen eye.  
    Schumacher’s stay in Mannheim did not last long. Bugge died 
already in the beginning of 1815 and he was called back to take over 
the vacant professorship and the direction of the observatory in 
Copenhagen. A trip to Italy together with Reichenbach which he 
hoped for did not realize, and in July 1815 he went back (his letter to 
Repsold of 9 July 1815). 
    Horner was proposed as his successor at Mannheim but declined the 
offer; Struve hurried from Altona where he had recently celebrated his 
marriage but came too late: the Grand Duke had already decided in 
favour of Nicolai. Schumacher remained in correspondence with 
Fraunhofer and Reichenbach whom he visited while in Mannheim. 
    [4] The observatory in Copenhagen was not well equipped; in 1815, 
its condition was hardly better than in 1802, when Horner had visited 
it and described it to Repsold. Bugge was then absent and Horner 
found out that the rooms for observation in the Round Tower were so 
badly closed that he was able to enter without being accompanied. In 
three rooms he saw a six-foot long telescope, a quadrant with a six-
foot radius, and a meagre transit instrument six foot long with a four-
foot axis, all of them produced by Ahl, whose work Horner could not 
praise, and smaller English instruments.  
    This observatory could not satisfy Schumacher (in a letter to Bessel 
he called it one of the most pitiful in Europe). Perhaps mostly for 
undertaking a fruitful effort without its instruments he proposed to 
measure an arc from Skagen [the Danish northernmost town] to 
Lauenburg [a small town in Schleswig – Holstein] (4.5° long). With 
diplomatic skill he made his plan acceptable to the King who was 
benevolently disposed to him.  
    Meantime, he observed the pole altitude of Copenhagen with a 
Reichenbach universal instrument (Schumacher 1827), but already in 
the beginning of 1816 confidentially informed Repsold that means 
will probably be allocated for that arc measurement and asked him to 
measure the angles from St. Michaelis tower between  the 
neighbouring triangulation stations7.  
    In June Schumacher was fully busy with preparations for the arc 
measurement but, according to his opinion, they did not proceed 
sufficiently fast. He would have already begun, as he wrote to Gauss 
on 8 June 1816, had not Reichenbach let him down with the 
instruments. At the same time he asked whether Gauss, and possibly 
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Lindenau, can connect their triangulation to his, so that he will reach 
the triangulation in Bavaria. 
    Gauss was at first doubtful (?) but on the occasion of his trip to 
Göttingen Schumacher was able to dissipate all his misgivings. With 
his help it became possible to gain the assistance of the Hannover 
government. Now the work has begun, and Repsold helped with the 
instruments by word and deed. Since Schumacher still (?) did not live 
in Altona, Repsold also essentially helped him with problems of 
management. 
    For measuring a base Repsold had already begun producing a 
device8 (Schumacher’s letter to Olbers; Altona, 1821) and a suitable 
place (Braack) was found near Ahrenburg, a few hours from 
Hamburg. It was also possible to connect such a base with the 
Hannover triangulation. Schumacher found a competent auxiliary 
team for the measurement among the officers of the Danish army 
(Caroc, Nehus, Nyegaard, Zahrtmann and others) and called in 
Hansen, Olufsen, Nissen and Clausen, and, later, Peters and Petersen 
for calculations9. His work was made much easier by the most 
generously allocated moneys. 
    For determining the latitudes of the main stations (?), Schumacher 
thought it advisable to borrow a Ramsden zenith sector from the 
British government, and, in the spring of 1810, after successfully 
preparing this deal by diplomatic efforts, he went through Paris to 
London to collect the instrument. He also ordered a zenith sector from 
Troughton, then, however, discovered that it was not at all equal to the 
Ramsden instrument (his letter to Gauss of 30 Dec. 1823). The voyage 
gave him an occasion to establish relations with many influential men 
which later proved very beneficial for him. 
    [5] Soon after returning back Schumacher had been glad to spend 
some days with Bessel who came for the first time from Königsberg. 
He went with wife, child and sister, who had been living in his house, 
to visit his old home town. They met in Lauenburg where Schumacher 
and Gauss (who had again left) just finished their common 
observations with a sector. Until then, Bessel and Schumacher had 
only fleetingly come across each other, but this longer meeting had 
neared them.  
    In the winter of 1820 Schumacher observed in Copenhagen, where 
the king allowed him to build a small observatory for the sector and 
the Reichenbach circle. In summer, he worked with both these 
instruments in Skagen, then once more in Lauenburg. In October, the 
base at Braacken was measured with the participation of Gauss and 
Repsold. Struve also came as an onlooker to acquaint himself with 
such measurements.  
    It is understandable that, living in Copenhagen, it was difficult and 
time-consuming for Schumacher to obtain the instruments and to work 
together with Gauss, so he rent two rooms in Altona and was able to 
come there in June 1821 since, for the first time, he was completely 
relieved from his duties in Copenhagen and allowed to live 
permanently in Altona, but to deliver instead yearly reports. 
    He immediately bought an imposing house and in autumn occupied 
it with family. At the end of November 1821 he was able, for the first 
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time, to greet Gauss who came as his guest to take the sector. In the 
first (the ground?) floor Schumacher fitted his study. From its three 
windows Elbe was seen for many of its miles, and, further, even some 
triangulation stations. Next situated was his thoroughly selected 
reference library with a built-in bed and a spiral staircase to the so-
called barometer room, a storage space for many smaller instruments 
and devices. 
    In the middle of the garden sloping from north to south was built a 
small observatory (Jahn 1834, I, 1), and at the south end of the lot 
there was a smaller, later bought house with auxiliary rooms. Gauss 
lived there when he came to Altona in 1827 to observe with the 
Ramsden sector (Schumacher’s letter to him of 2 Febr. 1827) which 
Schumacher had set quite near the house. On other occasions Gauss 
apparently lived in the main house (Schumacher to Gauss, 6 June 
1846). In 1823 Bessel lived in a room with a splendid view to the 
south. Schumacher often willingly invited guests and kept an 
enjoyable kitchen and a well-stocked cellar. 
    [6] In 1821, apart from geodetic measurements, Schumacher took 
upon himself a topographic description of the duchy of Holstein10. 
Partly owing to its too precise execution, this led to a very 
considerable increase in the work and a delay in the measurements. In 
the autumn of the same year the base near Braacken was measured for 
the second time [why?], but in March 1822 Schumacher wrote Bessel: 
    Our arc measurement came to a standstill and probably will not be 
resumed for a whole year since the map of Holstein ought to be first 
prepared11. […] Then I will return to my beloved business.  
    Pendulum observations on a large scale were also planned. A 
pendulum of an invariable length should have been observed on a 
number of stations along the meridian from Skagen to Italy, but this 
plan had to be abandoned since Bessel, on whose participation 
Schumacher reckoned, was unable to devote the necessary time. He 
declined although Schumacher had even stated that he was 
    In such a happy independent position, able to go whenever you 
(Bessel) wish.  
    In spite of all the activities, many trips connected with them and the 
often occurring obstacles occasioned by his sickliness, Schumacher 
had been very active as an author. From 1820 until 1829 he published 
auxiliary tables for astronomical calculations, and, at the instigation of 
the Archive of Sea Charts in Copenhagen, a series of Ephemeris of the 
distances of the four planets, Venus, Mars, Jupiter and Saturn from 
the Moon’s Centre for 1821 – 1831.  
    In June 1821 he founded the Astronomische Nachrichten and 
became its editor which proved to be his main scientific achievement. 
After the demise of von Zach’s Monatliche Correspondenz and the Z. 
f. Astronomie of Lindenau and Bohnenberger that journal alleviated a 
deeply felt requirement and the government willingly granted means 
for its publication. Our finance minister all but asked me to publish an 
astronomical journal in Altona, as Schumacher wrote to Gauss. His 
journal was probably meant for raising the reputation of the new 
observatory (?), and Schumacher, with his extensive circle of 
acquaintances, was certainly the right man for achieving that goal. 
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Indeed, he had also enlisted the support of Gauss, Bessel and Olbers 
which he repeatedly made use of. Lengthier contributions had to be 
published as Astronomische Abhandlungen, although only three of 
them had appeared. Then, in 1836 – 1841 and 1843 – 1844 appeared 
Schumacher’s Jahrbuch, mostly for generally understandable 
communications.  
    [7] In 1823, Repsold mounted a Reichenbach meridian circle in the 
small but suitable observatory in Schumacher’s garden but many 
changes had to be done. Schumacher fand Bedenken, bei grober 
Einstellung des Fernrohres dieses, am Ocular-Ende, oder eine Speiche 
des Kreises anzufassen; es wurde deshalb am Cubus ein langer, bis 
fast zum Ocular reichender leichter Arm angebracht. Für das 
Nivellieren der Achse ließ Repsold anstatt des bisher üblichen, durch 
die Speichenöffnungen des Kreises zu steckenden Setz-Niveaus ein 
langes Hänge-Niveau herstellen, das ohne weiteres angehängt werden 
konnte; Schumacher findet es sehr bequem und lobt das neue, von 
Repsold hergestellte Niveau, das bei gleicher Feinheit der Teile sehr 
viel rascher zur Ruhe kommt als die Reichenbach’schen. Repsold 
glaubte auch die Sicherheit der Angaben des Alidaden-Niveaus 
dadurch zu steigern daß er es mit dem Kreise nicht in unmittelbarer 
Verbindung ließ, sondern es zu einem Setz-Niveau umgestaltete, das 
auf einem am Kreise befestigten Zylinder umzusetzen war. Endlich 
wurde der Versuch gemacht, die Spinnfaden zu vermeiden, weil sie 
trotz Repsold’s Verfahren, sie sich in einem Wasserbade strecken zu 
lassen, nicht immer ganz straff blieben. Schumacher verschaffte sich 
von Wollaston feine in Silber hülle gezogene Platindrähte zum Ersatz. 
Die Behandlung derselben beim Auflegen proved, however, very 
difficult. It apparently seemed dirty and not sufficiently rectilinear, 
and soon was not used anymore. 
    In the summer of 1824 the meridian circle was applied during an 
English chronometric trip for determining the longitudinal difference 
between Altona – Helgoland and Greenwich12. Schumacher feared, 
however, that that trip will be to little avail since the time in 
Greenwich is determined too poorly.  
    How well was Schumacher’s observatory equipped, becomes 
evident from Bessel’s letter of 16 May 1825. He wrote it just after his 
return from Altona when putting in order his meridian hall: 
    I have once more convinced myself in that I do not dare think of 
accomplishing something similar to the attractive and pleasant to look 
accomplished in your observatory. […] Now I will not spare time to 
maintain everything thoroughly and orderly although I ought to forget 
entirely your established ideal. 
    Schumacher highly esteemed his Miren-Fernrohr which he put up 
in 1827 on a well protected pillar beyond his observatory13. He was 
certainly compelled to apply it since no remote azimuth mark (which 
Bessel would have preferred had it been possible) was possible either 
to the north or to the south.  
    And he especially esteemed his Biegungs-Fernrohr produced by 
Repsold in 1828: a small telescope put up im Horizont perpendicular 
to the meridian circle. It had two as exactly as possible thick rings 
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upon which it rested on two solid bearings and carried a refined 
striding level (Astron. Nachr., 44.1).  
    Schumacher than combined his investigations with observations of 
the mercury horizon in the nadir and made many experiments, first 
with a Kater floating, then with a Repsold suspended zenith collimator 
(Astron. Nachr., 4.311 [44.311 (?)]). It seems, however, that he had 
not attained satisfactory results in either case. 
    [8] Already in 1823 the Berlin academy asked Bessel to continue 
the investigation of the length of the seconds pendulum which Tralles, 
their late member, had begun. Bessel, however, was unable to reach 
an agreement with the Academy since it had not allowed him 
sufficient independence. Then it dawned upon him that he can 
investigate all by himself, and Schumacher had to ask Repsold at once 
whether he was prepared to produce the necessary device. 
    Repsold had begun the production and Schumacher with great 
interest kept an eye on that work since he had recently taken upon 
himself the regulation of the Danish weights and measures. He 
stipulated that the Danish foot will be connected with the length of the 
seconds pendulum and hoped to apply the future Repsold device 
essentially different from those currently applied. He repeatedly 
informed Bessel about the progress of the work. Bessel in real earnest 
awaited its completion but remained patient since he wished that 
Repsold does everything just as it seemed to him most expedient 
during their initial discussions. 
    And when finally the completion was nearing, Repsold advised 
Bessel to take upon himself the delivery of the complicated device and 
to coordinate with him the best method of applying it. This had indeed 
happened and moreover in April 1825 Bessel came to Schumacher for 
two weeks of a very desirable stay. Schumacher had geared 
everything to Bessel’s wishes and habits so that his guest felt himself 
really at ease. Preliminary investigations were made in Schumacher’s 
basement. 
    In the summer of 1828, when Bessel’s pendulum observations in 
Altona had been completed, Schumacher went to Königsberg to see 
and study the application of the device. His own observations should 
have been made at first in Copenhagen but he found there no suitable 
room, and finally the castle Güldenstein near Oldenburg in Holstein 
(Denmark) was chosen: it was peacefully located and solidly built. 
And there, in late autumn of 1829, after Repsold had made some 
minor changes, Schumacher began to pendulum. In spite of his 
pressing requests Schumacher regretfully had to go on without 
Bessel’s help. Furthermore, after the first series of observations he fell 
ill and, until the end of November, lieutenant Nehus, with whom he 
came there, had to observe instead although, when possible, under 
Schumacher’s supervision. A repetition of the observations had to be 
postponed until next year.  
    Meantime, Schumacher hoped to acquire from Repsold a reversible 
pendulum to be produced according to Bessel’s indications as soon as 
Repsold somewhat recovers (now he is sickly), he wrote to Bessel on 
14 Dec. 1829. In four weeks, however, being deeply shaken, he had to 
inform Bessel about the sudden violent death of his old friend14, with 
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whom shortly before it happened, he had been speaking cosily but 
forebodingly. 
    A week later he added:  
    I feel myself as though transplanted to foreign parts where I cannot 
yet collect myself, or realize that Repsold is dead which I still regard 
as a bad dream.  
    In the same letter Schumacher once more implored Bessel to come 
for pendulum observations since he himself, as it seems, cannot quite 
properly find his feet there. In mid-June, Bessel had indeed taken to 
the long trip with wife and daughter. He first went to Güldenstein 
where Schumacher was working once more since mid-June.  
    [9] After completing the observations, they had gone together to 
Altona where Bessel stayed until the 12th of August. In spite of the 
great difference of their dispositions, revealed by Bessel’s rash and 
energetic nature as against Schumacher’s thoughtfulness and careful 
caution, the friends moved nearer to each other. Already in 1828 
Bessel wrote:  
    I would prefer very much if you will not so often leave my letters 
without any notice. The same with questions, although I do not really 
mean it. You should not restrict yourself to a few lines and many 
promises which will not be kept! Nice, just like a talk of a coffee-
loving lady.  
    And in 1831:  
    We virtually became old and grey and we tested each other 
repeatedly and passed the tests. And so must it continue until one of 
our hearts prefers to stop beating. 
    For his part, Schumacher repeatedly uttered such phrases as in 
1831: I have no one nearer to my heart. They poured out their hearts 
to each other over the most intimate matters. Schumacher also sent 
wine and cigars which he chose carefully whereas Bessel sent firs and 
dogs asked for by Schumacher, but the scientific communication did 
not suffer. 
    After concluding the pendulum observations in whose reductions 
Bessel had participated, Schumacher had for a long time been very 
busy with final measurements and weighing. It came to light that the 
Danish foot as derived from the length of the pendulum at Güldenstein 
was very near to the Prussian measure, and Schumacher and Bessel 
agreed to ask their governments to ascertain legally this fact. Their 
request could have naturally only been granted after extensive 
diplomatic preparations.  
    Meanwhile even in the autumn of 1830 Schumacher intended to go 
to Paris for precisely comparing his kilogram with the standard there, 
but he was ill and in the spring of 1831 sent Nyegaard instead. 
    Summer brought about Schumacher’s great agitation because of the 
visitation of cholera: he thought that Bessel had first of all been 
endangered since a mortuary was built near his observatory. Bessel 
must run away, come to him! However, the epidemic also reached 
Altona but petered out towards winter. 
    During next years he was also very ill so that his work at compiling 
the maps (§ 6) had not proceeded according to his wishes, and he was 
even unable to go on official trips to Copenhagen. Meanwhile 
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Humboldt became instrumental in initiating the comparison of the 
Prussian (the Rhineland) foot with the Danish measure and in April 
1834 Schumacher and Bessel came to Berlin to discuss that subject in 
more detail. In addition, Schumacher wished to charge someone with 
the engraving and publishing of his maps of Holstein whereas Bessel 
intended to prepare for the pendulum observations in Berlin which he 
thought of implementing with his device. 
    On the way back Schumacher visited first Hansen at the Seeberg 
observatory near Gotha, then Gauss whose second wife had recently 
died after prolonged suffering. Bearing in mind the sorrow in Gauss’ 
house, Schumacher thought of staying in a hotel, but Gauss insisted 
that he lived at him just like on other occasions. The reception was 
worse than cool, and Schumacher wrote Bessel about it really 
unwillingly and was only able to explain it by his trip15: he did not 
travel at first to Göttingen, and then to Berlin, and stayed in Berlin for 
14 days but was only able to stay now for a few days. Then, however, 
he continued apologetically:  
    But enough of that! Gauss himself is certainly unhappy about his 
dissatisfaction with everything in the world and exactly for this reason 
anyone who associated with him ought not to take amiss if his foul 
mood sometimes blazes up like a kindling. 
    Bessel however, concluded that our friend is a crass egoist. Then 
Schumacher remarked that Gauss  
    Is only dealing with magnetic subjects, much less in astronomy and 
not at all in observations. […] He is so poorly conversant with the 
situation in astronomy that he asked me to show him on occasion in 
the Astron. Nachr. which astronomical tables of the planets and other 
celestial bodies are now best. Without often dealing with them it is 
easy to forget.  
    [10] Schumacher ordered a magnetic device from Apel in Göttingen 
to acquaint himself in more detail about it and from the beginning of 
February allowed Nyegaard and Petersen to observe with it in Altona. 
In February 1835 after overcoming a serious attack of dysentery 
Schumacher went to Copenhagen on an official trip which he had to 
forgo for some years. It was arranged there that he, together with 
Bessel and Oerstedt, will precisely establish in Altona the ratio of both 
measures of the foot. Already by the end of June we find Schumacher 
in Berlin in preparation for that work. From the beginning of that 
month, also in Berlin, Bessel had been busy with his pendulum 
observations and was still very busy for many weeks more16.  
    Schumacher, however, only stayed for 14 days and went back 
through Hannover and Bremen to see Olbers. Once more he had an 
occasion to arouse Gauss’ discontent: a list of arrivals in Hannover 
which Gauss happened to see in a newspaper included Schumacher, 
and Gauss reprimanded him since he did not then come for a visit. He 
had to excuse himself by an indisposition which disturbed his initial 
plan for going through Göttingen.  
    Meanwhile Bessel finished his slow work in Berlin and, as agreed 
with Schumacher, set at once to compare the standards for which 
Baumann had produced him an apparatus. He concluded that both 
measures of the foot were identical for all practical purposes and 
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determined their ratio to his own Königsberg toise which was 
necessary for scientific applications. His standard was the best defined 
among the existing measures of the toise and was compared with the 
Toise of the Archive as thorough as the doubtful state of that French 
standard allowed it. After that Bessel decided that his three-month 
work in Berlin was finally concluded. 
    And now it turned out that Bessel and Schumacher, in spite of their 
detailed talks, had completely misunderstood each other. Schumacher 
reckoned that Bessel will still come to Altona where a comparator was 
waiting for a definitive comparison [of the measures] by him, 
Schumacher and Oerstedt.  
    Bessel, however, refused to come since he longed for his 
astronomical work and domesticity and in addition expected no 
pleasure in repeating his thorough measurements. Irritated letters had 
been exchanged until Schumacher, since nothing else came to mind, 
finally resigned himself to the impossibility of fulfilling his obligation 
which he had accepted in Copenhagen. 
    At the beginning of 1836 he had nevertheless asked Bessel to send 
him a clearly composed letter containing a proposal to conclude in the 
autumn, in Berlin, the not yet definitively finished comparison 
together with him and Oerstedt. Bessel (letter of 14 Feb. 1836), 
however, explained that the ascertainment of the Prussian measure 
made in the previous years still required a determination of its 
coefficient of thermal expansion and suggested that they meet in 
Berlin and in addition correct and ascertain the Danish standard.  
    Schumacher agreed, and only allowed himself, in a letter to 
Copenhagen, to interpolate Oerstedt whom Bessel did not mention. 
The apparatus was produced later than stipulated and their meeting 
only took place in the spring of 1837 and the business was completed. 
    From New Year’s Day 1837 Steinheil lived for a few months in 
Hamburg and Altona to compare measures and weights produced by 
Repsold with Schumacher17. His lively and captivating nature was 
especially agreeable to Schumacher who very much needed to be 
cheered up, but still, it was somewhat difficult for him to be the host. 
Already in 1833 they became good friends since Schumacher then 
made his first observations with Steinheil’s prismatic Kreis. 
    Schumacher now thought of publishing his work.  
    I really feel that I should have done it long ago. What had stopped 
me short was the fear that I will not reduce my observations how the 
extended mathematical knowledge now requires it. If a better way is 
possible, the worst way is inadmissible. If you can help me, it will 
certainly be excellent. 
    Bessel, to whom Schumacher had turned, replied on June the 10th 
1837: he was prepared to help if necessary.  
    I will willingly help you and cut off completely some of your work, 
or, since you always nicely conclude it, remove the calculations.  
    First of all, however, it was necessary to speed up the slowly 
advancing geodetic work. In summer Schumacher made geodetic 
measurements near Copenhagen (and incidentally became 
unpleasantly aware of the local general economizing, mostly, 
however, when pursuing a wrong goal). He was certainly unable 



86 
 

anymore to observe from towers; he remained on the ground and let 
Nehus and Nyegaard observe from high up. Next year, 1838, 
Schumacher worked there with Bessel’s device18 although not as 
intensively as he did. The Danish triangles lain out on the Danish 
islands Moon and Falster were connected with the Swedish triangles, 
and through Rügen with Bessel’s triangulation. 
    [11] The unhappy row that developed between Bessel and Encke in 
the beginning of 1838 involved Schumacher and caused him serious 
trouble. It is distressing to see that a trifling circumstance can finally 
lead to such a row. Actually, it only happened since Encke found it 
difficult to observe with a somewhat sensitive instrument which 
satisfied Bessel’s better knack and art of observation. It is 
understandable that someone, as uncontrollably lively, frank and 
willing to work as Bessel, cannot get along properly with a somewhat 
narrow-minded, ponderous and self-opinionated person like Encke.  
    Still, for twenty years they had remained in a more or less friendly 
correspondence. Encke had always recognized Bessel’s superiority19 
whereas Bessel well understood his priority and could have expected 
some consideration from Encke whom he in 1825 proposed as an 
academician and director of the Berlin observatory, a position which 
was initially offered to him himself. This state of affairs can be 
explained: Encke, in the Berliner Jahrbuch for 1839, p. 268f, and then 
in the Astron. Nachr. No. 346, had applied a lecturing tone and, 
moreover, he suggested that Bessel’s communications had contained a 
contradiction in terms. 
    However, in his letters to Schumacher Bessel expressed himself 
with such passion against Encke that some other reason for his deep 
ill-will should still be suspected. An essential reason ought to be 
looked for in that for Bessel good relations with Encke and their 
common work over a long period of time were the decisive 
preconditions for declining the invitation to Berlin  and 
recommending Encke instead (Bruhns 1869, p. 104f). And even apart 
from this argument it should be noticed that many matters concerning 
the Academy or the highest administration, with which Bessel thought 
himself more competent than others, did not reach him through the 
intermediate Encke.  
    The relations between Bessel and Encke had not turned out at all as 
favourably as they both probably expected. Unfriendly friction 
occurred already in connection with the printing of the Bessel star 
maps which was undertaken by the Aacdemy. Tension had remained, 
weakening and strengthening and gradually increasing until Encke’s 
last clumsiness sent Bessel ablaze. He felt himself hindered and 
discriminated by Encke and ascribed him dishonest motives which, 
however, was hardly proved. Nevertheless, the correspondence 
between Gauss and Schumacher (27 June 1846) described a case in 
which Encke spoke about Bessel in an inexact and distorting way. It 
can therefore be feared that other similar cases could have happened. 
Anyway, the relations between Encke and Bessel were essentially 
wrecked and it was not easy [it proved impossible] to make them good 
once more.  
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    Schumacher misfortunately intensified still more Bessel’s violent 
infuriation: he published Encke’s rejoinder (Astron. Nachr., 1838, No. 
346) without consulting Bessel since he did not dare reject Encke’s 
riposte to Bessel’s first publication on the same subject. Bessel, 
however, only compiled his paper in the Astron. Nachr. as a reply to 
Encke’s attack published in the Berliner Jahrbuch. And now he 
poured out all his rage on Schumacher’s bent head and accused him of 
being influenced by Encke and his friends, even if involuntarily. Soon, 
however, he certainly calmed down to such an extent that he was able 
to write that he ought to attempt to correct once more what I had done 
in extreme ill humour, and the relieved Schumacher cried out: I have 
my old Bessel once more! […] We both had enough bleak hours 
because of that damned business and now we wish to leave it alone. 
    However, Bessel thought that publication of new papers in the 
Astron. Nachr. will harm his dignity and Schumacher suggested to 
him to ask the opinion of Gauss and Olbers about this point, but they 
both answered uncertainly. Then, in July, after Bessel had again but 
somewhat reservedly sent a paper to the Astron. Nachr., Schumacher 
had the brain to answer that Bessel ought not to publish anything in 
the Astron. Nachr. until you yourself will have no more doubts about it 
and will not feel any eeriness. And so the ice was broken. 
    Bessel did not want to hear about Encke anymore, although 
Schumacher excused him as much as it was possible for him and 
Encke himself repeatedly attempted to give way. Even when Encke, in 
a letter to Schumacher, expressed his heartfelt condolence to Bessel’s 
heavy loss of his son, Bessel answered his friend that he was thankful 
to Encke but did not trust him anymore and ought to thank him 
silently.  
    [12] The tests which the friendship between Schumacher and Bessel 
had passed during those last years only seemed to link them stronger. 
Already in February 1839 Bessel announced his wish to come in the 
summer with his son for a visit to Altona, which greatly gladdened 
and satisfied Schumacher. A little later Bessel decided that they 
should correspond regularly: We became too old and cannot be 
indifferent to each other. We both always ought to have it in mind. 
During Bessel’s stay in Altona Schumacher arranged to have his 
portrait painted by the Hamburg painter Herterich. That portrait 
occupied its place above Bessel’s desk. 
    In December 1839 Schumacher experienced a sensitive blow by the 
death of his protector of many years, the King Friedrich VI. His 
successor, King Christian VIII, proved very favourably disposed to 
him, but the political situation demanded further economizing and the 
expenditure for geodetic work had to be restricted. This immediately 
resulted in that the compilation of the map of Holstein was taken away 
from Schumacher and given over to the general staff except for two 
almost completed sheets depicting the environs of Altona20 and the 
detailed map (of Holstein?). Personally, Schumacher did not suffer 
since his income previously based mostly on the cost of food (of 
subsistence?) was linked for life to its level. 
    However, misfortune, heavy family worries and other disturbance 
had harassed him for a long time and wore out his poorly bodily 
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strength. Accordingly, as it seems, his interest in geodetic 
measurements had declined, and he actually left them unfinished21.  
    Schumacher became ever more satisfied by his lively 
correspondence, which connected him with all cultivated countries, 
and with editing his Astron. Nachr., which won general recognition. 
How high did Bessel regard is already seen in his letter to Schumacher 
of 30 Jan. 1831. There, he complained about its undelivered issues and 
wrote: 
    You know that in my opinion the Astron. Nachr. is […] a necessary 
condition for a happy blossoming of our astronomy. Previously the 
von Zach’s journal and then the periodical of Lindenau [and 
Bohnenberger] had played a similar role. Our astronomy therefore 
came to the fore and our neighbours can now learn much from us. 
Astron. Nachr. is a step higher than its predecessors since we 
ourselves have risen a step. In addition, the Astron. Nachr. is 
advantageous in that it is being sent by separate sheets [1 sheet = 16 
pp.?] and it can replace correspondence for those who do not practise 
it. All this is lost if you do not look after its regular sending. 
    On another occasion he remarked in connection with the state of 
astronomy in Germany and the Astron. Nachr: 
    Astronomers ought to learn German22, and you can compel them to 
do so. 
    At the beginning of the reign of Christian VIII Schumacher was 
asked to return to Copenhagen and Bessel used this occasion for 
opposing that decision in a letter of thanks for the Commander Cross 
of the Dannebrog order. It is a vital matter for you to remain in 
Altona, he wrote to Schumacher in August 1840.  
    In his calm and comfortable house Schumacher felt himself best. 
His windows opened up on the spread of the whole southern sky and a 
friendly patch of land, and, pleasantly remote, on the invariably active 
shipping on the Elbe.  
    But still, Schumacher undertook two long voyages thought to be 
important, certainly in his own cosy coach and servant and the 
expenses were not extensively spared. In August 1840, responding to 
the wish of his king, he visited the Pulkovo observatory which opened 
in 1839 and reported about it in the Astron. Nachr., 18.33. Then, in 
July 1842 he went to Vienna to observe there a total Solar eclipse. 
Bessel, whom he willingly induced to come as well, answered:  
    My health is rather good, but my courage is broken. I feel that I am 
not young anymore, that only striving for work has remained. 
    (Half a year ago he lost his only son.) 
    Still, shortly afterwards, responding to a wish of his king, Bessel 
intended to visit a conference of the British Association for the 
Advancement of Science in Glasgow23. The worried Schumacher 
advised against that voyage, warned about the danger of sea voyages, 
continuing restlessness and the strain at the conference. Bessel, 
however, held on to his plan and in addition he intended to stay a few 
days at his brother in Saarbrücken. 
    [13] Schumacher then asked Bessel to arrange his voyage so that it 
allows him to visit Gauss as well. But the friends were unhappy in 
spite of their attentiveness, based on high respect, to the Grand Master 
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in Göttingen. For seeing Gauss, Bessel had to go a long way round, 
but his reception was not better than that accorded to Schumacher in 
1834 on his way back from Berlin. After receiving Bessel’s report 
about that visit, Schumacher wrote:  
    He is one of the most unusual men in the world with whom, in spite 
of all his rough edges, visitors cannot be really angry, although they 
often feel annoyed. Attention, as you remark, and as I myself know 
from my own repeated experience, is usually met with an expression of 
foul mood. And I therefore find that it is better just to remain exactly 
within the boundaries of usual politeness. 
    Weber (whom Schumacher had recently visited – J. A. R.) thinks 
that Gauss’ foul mood sets in mostly because of corns […] but that 
when the pain disappears he becomes amiability itself. I know, again 
from experience, that Gauss can indeed be amiable, although not 
often. 
    Bessel had not received this information too seriously With a head 
so heavy and sickly legs, how can stable equilibrium always remain? 
    On another occasion he remarked:  
    Incidentally, it is a pleasure to deal with Gauss: never a single petty 
word. Everything is honest, clear truth. 
    And Schumacher appropriately commented:  
    Mind you, he is a queer sort of a fellow [written in English – O. S.] 
and somewhat more of an egoist than necessary for a pleasant 
contact, but at the same time he is exceptionally honest and incapable 
of any mean slyness or evasion.  
    Nehus, Schumacher’s loyal colleague and friend of many years, 
died in April 1844; very unpleasant news came from his eldest son; 
and Bessel’s progressing illness much worried him. At the middle of 
the year all that heavily depressed Schumacher. Moreover, Bessel 
remarked with a sense of foreboding: I have so much before me which 
I do not want to leave, and I will not therefore grieve to live some 
years more. 
    Schumacher was unable to suppress the following reply:  
    It is an honest truth that I will not gladly outlive you. You and 
Collin24 are my only remaining real friends. Collin, however, is 
extremely remote from my pursuits and in case of your death I will be 
quite alone among strangers. 
    He felt himself ill and weak and next year even feared for the future 
of his Astron. Nachr.:  
    Jahn and Mädler intend to set up a new astronomical journal. I 
strike my colours.  
    Was that a mocking joke? He was sure about his connections with 
Gauss and Bessel, so that it was not easy to become his successful 
competitors. 
    By the end of 1844 began the lingering and heavy suffering of his 
old friend Bessel, and Schumacher’s life as though shattered. He 
wished to know everything about the illness, asked even more than 
could have been pleasant to the sufferer, thought of distracting him by 
news but was unable to refrain from complaining about his own 
imminent loss. During that time, his activity had only been slight.  
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    After Bessel’s death Schumacher even more closely sided with 
Gauss to whom he wrote on 23 March 1846: 
     Allow me to find now an ersatz for the great loss in your love and 
friendship for the time left to us both25. 
    [14] In the 1840’s, rebellious feelings developed in the Schleswig 
and Holstein duchy against the attempts of the Danish government to 
join it under the same conditions with Denmark and form a united 
state. That attempt manifested itself even in the Open Letter enacted 
(erlassenen) by King Christian VIII and culminated after it was at 
once proclaimed by his successor. 
    Schumacher hardly understood properly these events, perhaps did 
not even try. He was led too much through life by royal favour and 
patronage and was unable or unwilling to leave this track. He had 
remained very remote from political life, but found it impossible to 
free himself completely from its influence.  
    After 23 March 1848 the Provisional Government in Kiel took upon 
itself the management of the German part [of the duchy], Prince Noer 
in a surprise attack on Rendsburg initiated an armed resistance, and 
[his] guerrillas pitched their camp near Schumacher’s house. Its 
location became very embarrassing. Schumacher was a Danish civil 
servant with his own house in Copenhagen and until then had directly 
been discussing there his matters with the highest authorities, but now 
he was cut off from them.  
    It was difficult for a subject loyal to the king, and so much thankful 
to his rulers, to obey the alien new rule. As a consequence, the rich 
means which until then had always been allocated him, now were 
mostly denied. Schumacher’s age and sickliness made his dire 
situation twice more difficult. He attempted, as shown by his letters to 
Gauss, to encounter bravely all the hardships and found distraction 
from his gloomy mood in correspondence and continuation of his 
Astron. Nachr. Already on 10 Nov. 1848 he wrote [to whom?]:  
    It is remarkable how it is possible to blunt most serious troubles. If 
someone had forewarned me that for almost a whole year I will not 
know wherefrom I will next year only obtain a meagre maintenance, I 
would not have believed to live to the end of this year. And still, the 
really sorrowful year had only little worsened my health.  
    In March 1849 he spoke of restless and unhappy times, and in 
February 1850 even about his periodical: Right now, I attempt to 
support it with my last financial means.  
    By the beginning of 1849 Schumacher had overcome himself and 
printed a number of letters addressed to highly respected scientists and 
scientific bodies. He stressed the importance of the Altona 
observatory, and especially the worth of the Astron. Nachr., and hoped 
thus to improve his situation. It seems, however, that he was not really 
successful since the political relations were very dangerous. Peters’ 
popular journal, Z. f. populäre Mitteilungen, reproduced three letters 
by Schumacher and his widow to privy councillor Francke in Kiel, the 
then head of the finances of the Holstein government. They show that 
people there sincerely went to trouble for him. 
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    Schumacher was able to live in his old house although all by 
himself. His poor bodily strength gradually languished and he died on 
28 Dec. 1850. 
    [15] Schumacher was of small stature, and tall men were unpleasant 
to him. He was tenderly built and very lively at younger age but in 
weak health. Regrettably, his poor bodily strength had not always 
been up to his active interest in science, and he was unable to 
conclude all his undertakings26. He was a fine observer, but not easily 
satisfied with conditions of work: he had to feel himself comfortable 
and cared when choosing a proper place for his snuffbox. At the time, 
astronomers thought that they ought to smoke during observation. 
    Being versatilely educated, he was a man of the world (and 
somewhat of a playboy), and had elegant manners. After getting on in 
years, Schumacher became a refined small gentleman with a high, 
somewhat nasal voice, friendly and with a tendency towards slight 
jokes. In his judgement, he (letter to Gauss, 29 Aug. 1823) Adhered to 
a certain tact which seldom leads me [him] astray. Or (letter to 
Bessel, 23 Apr. 1833) he is guided by an 
    Unfortunate but certain instinct. Until now, I never erred about 
someone against whom I felt something without knowing what exactly, 
but I had been often mistaken in the opposite case. 
    Schumacher’s correspondence with Gauss over 42 years and with 
Bessel for 37 years provides a clear picture of his whole nature. 
However, their letters ought to be cautiously examined so that the 
judgement about him does not damage his image. It should be taken 
into account that he quite openly and frankly expressed himself to his 
respected friends (and especially to Bessel) who exceeded him in 
science in general, since he (letter to Gauss, 31 March 1840) was 
convinced that the  
    Letters exchanged between friends will never be exposed to the 
danger of appearing in strange hands.  
    And when this did partly happen27, we can only regret that 
Schumacher’s image seemed damaged indeed by the light, shone by 
his more significant friends. 
    However, the ties of friendship which linked him with them both 
had remained heartfelt and were willingly maintained by the three 
friends until the very end. This shows how high these great men 
esteemed him, which increases his worth. 
    Incidentally, Schumacher regarded his correspondents in very 
different ways. Gauss was older [only by three years, see end of § 2], 
and, when Schumacher got closer to him, was already in an exalted 
position, solemn and reserved, and plagued with many domestic 
misfortunes but aware of his greatness. In spite of all the free and easy 
relations between them, Gauss always remained for Schumacher an 
unattainable judge and leader, witness his expression during the 
twelve last years of their correspondence. Indeed, he invariably ended 
his letters of that period with the formula Yours thankful forever. 
Between them there always remained some civil formality and they 
did not feel themselves evenly matched28. Gauss worthily followed 
advice in business matters which Schumacher on occasion was able to 
offer, the more so since now and then it was given deferentially. 
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    On the contrary, Bessel and Schumacher met each other when each 
was still carving his way. Bessel, who was younger, had earlier 
established himself. Being brought up in a large commercial house, he 
acquired life and commercial experience and in a short time, all by 
himself, occupied a leading position in the astronomical science which 
ensured him a well founded self-satisfaction.  
    Schumacher readily acknowledged his superiority, but had later 
been able to become very beneficial to him by publishing many of his 
enthusiastically compiled contributions in the Astron. Nachr. Some 
equilibrium had therefore occurred. Furthermore, as their 
correspondence became more active, Bessel’s frank and lively nature 
withdrew all formality ever remoter, and the cooler Schumacher, 
warmly sensitive in the more important ways, accepted this change. 
And so their relations became wholeheartedly friendly and their letters 
covered not only scientific matters, but all the joys and sorrows of 
human life. 
    Already on 12 May 1825, just upon returning from Altona, Bessel 
wrote:  
    I would have liked to be with you all the time! When a period of 
tranquillity comes, we will perhaps work together more than now. We 
stand each other since I have recently seen still clearer that we have 
the same way of thinking. 
    Their letters, 1131 in all, are duly ordered by Auwers. Those who 
read them ought not to forget that Schumacher had written only to 
Bessel, and should restrain from making any indiscreet insights.  
    Schumacher was buried in a small cemetery in the then 
Palmaillenstrasse and which can still be found in the Hehnstrasse park 
barely 100 steps to the north from the house in which he had lived in 
good times and in bad. The gravestone is near the street. 
    Hamburg, June 1918  
 

Notes 
    1. Andreas apparently married a widow. 
    2. Repsold indicates how Schumacher signed his name (with the first name or 
without it, in the Roman alphabet or Gothic script) and concludes that his usual main 
name was Christian. 
    3. Johann Wilhelm Andreas Pfaff, the brother of the renowned mathematician 
Johann Friedrich Pfaff. His Astrology (Nuremberg 1816) puzzled Gauss (letter to 
Olbers, 28 Apr. 1817) although he had not specified that it was not J. F. Pfaff. 
    4. A complicated differential equation with sixteen terms. 
    5. The Berlin Academy of Sciences had kindly sent me their correspondence for 
studying it. I. A. R. It was never published. O. S. 
    6. The Hamburg Directory for 1811 and 1812 called Schumacher Doctor of 
Science and translator. I. A. R. 
    7. In 1818, an illuminated window of that tower inspired Gauss to construct the 
heliotrope (Biermann 1991b, p. 329). 
    8. This device is usually called after Bessel. See Note 18. 
    9. It was wrong to include Hansen, the great scholar, on a par with the others. 
    10. In § 14 Repsold properly mentioned the Schleswig and Holstein duchy. Until 
1864 Holstein belonged to Denmark.  
    11. The charts were supposedly compiled in a small scale. Preliminary 
triangulation was not therefore needed, but some more or less precise measurements 
were still required.  
    12. Helgoland was possibly an intermediate station. 
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    13. A mira or mark was obviously needed to check, now and then, the 
invariability of the circle of the telescope. However, I do not understand the 
Fernrohr (the telescope). Was it the second, less powerful telescope of the 
instrument? But the mira was then still necessary. Such checking telescopes had 
been in use when observing in some regions of the Soviet Union. 
    14. Repsold died in an accident occasioned by a fire.  
    15. Schumacher described the reproaches actually expressed by Gauss (Biermann 
1966, p. 14). 
    16. Mikhailov (1939, p. 213) stated that Bessel had essentially perfected the then 
generally accepted Kater pendulum device. On p. 404 Mikhailov placed its photo. 
And I repeat [v] that he also called Bessel’s metrological work classical. 
    17. Cf. [v]. 
    18. Its main components were the measuring bars put one after another and 
wedges for measuring the space between them [No. 322/135, Chapter 1]. Here and 
below, Repsold only mentions triangles of triangulations although other figures were 
also included (for example, braced quadrilaterals).  
    19. In 1828 Encke wrote to Bessel: Let heaven grant me the privilege to live for a 
long time before your eyes (Bruhns 1869, p. 272). In 1830 he wrote to Gauss that he 
had come back from Königsberg somewhat depressed since The little I have [he had] 
adopted disappears when compared with what Bessel had long ago been achieving 
(Ibidem, p. 277). Finally, in 1835 Encke complained [to whom?] that each letter 
from Bessel contained a description of a completed investigation whereas he has 
nothing worthy of mentioning (p. 281). I. A. R. 
    Encke became not only a member of the Berlin academy, but the permanent 
secretary of its physical and mathematical class (Repsold 1920, p. 194). O. S. 
    20. Repsold described those maps as communicated to him by the Director of the 
Danish Arc Measurement. 
    21. As communicated by that same person: After Schumacher’s death it turned 
out that most [observations] of the chain of triangulation through Jutland were 
missing and those [extant] were not definitively treated or published, see Andrae 
(1872 – 1884). I. A. R. 
    22. After Daniel Bernoulli and Lambert, in 1776, had published their astronomical 
contributions in German, Lalande (1802 – 1803/1985, p. 539) noted that 
astronomers ought to learn German.  
    23. This Association was established in 1831, which means that the conference 
celebrated its ten years of existence. Bessel himself [No. 354] named Manchester 
rather than Glasgow. The conference was possibly held in both cities (Manchester 
and Glasgow) in turn. 
    24. A Konferenzrat (conference councillor) dealing with finances. I. A. R. 
    25. Gauss (letter to Schumacher, 25 March 1846) was painfully shaken by 
Bessel’s death and concluded: So let us, dear Schumacher, all the more hold 
together (Biermann 1966, p. 19).  
    26. See Note 21. 
    27. In 1880 – 1885 the correspondence between Gauss and Schumacher was first 
published. 
    28. Witness Wagner (Biermann 1991a, p. 3): 
    My friends and acquaintances will attest that we never regarded our great 
mathematician as a colleague, but always as a superior endowed with wholly 
unusual spiritual power before whom one always stepped a few paces aside. I will 
not be misunderstood if I say that in our scientific republic he played about the same 
role as the lion in the animal fabled world. 
    For his part, Sartorius tells us: 
    We never saw a man with a more impressive outward appearance. All the other 
ones seemed on a par with us, but he stood as an unearthly being, as a priest at his 
post by the throne of the Deity. 

 

Brief Information about Those Mentioned 

Auwers Georg Friedrich Julius Arthur von, 1838 – 1915, 
astronomer  
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Bird John, 1709 – 1776, astronomer, constructor of scientific 
instruments  

Bohnenberger Johann Gottlieb Friedrich von, 1765 – 1831, 
astronomer 

Bugge Thomas, 1740 – 1815, astronomer 
Clausen Thomas, 1801 – 1885, mathematician, astronomer  
Encke Johann Franz, 1791 – 1865, astronomer  
Fraunhofer Joseph von, 1787 – 1826, optician, phisicist 
Hansen Peter Andreas, 1795 – 1874, astronomer, mathematician 
Horner Johann Caspar, 1774 – 1834, physicist, mathematician, 

astronomer 
Jahn Gustav Adolf, 1804 – 1857, astronomer  
Kater Henry, 1777 – 1835, physicist, metrologist, astronomer  
Lindenau Bernhard August von, 1780 – 1854, astronomer, jurist, 

politician 
Mädler Johann Heinrich von, 1794 – 1874, astronomer  
Nicolai Friedrich Bernhard Gottfried, 1793 – 1846, astronomer 
Noer Fürst von, Friedrich Emil August Prinz von Schleswig-

Holstein-Sondenburg-Augustenburg, 1800 – 1865  
Oersted Hans Christian, 1777 – 1851, physicist, chemist  
Olufsen Christian Friedrich Rottboll, 1802 – 1855 
Pedrayes y Foyo Augustin, 1744 – 1815, mathematician 
Peters Christian August Friedrich, 1806 – 1880, astronomer  
Petersen Adolph Cornelius, 1804 – 1854, astronomer 
Pfaff Johann Friedrich, 1765 – 1825, mathematician  
Reichenbach Georg Friedrich, 1771 – 1826, constructor of scientific 

instruments  
Repsold Johann Georg, 170 – 1829, businessman, constructor of 

scientific instruments 
Sartorius Waltershausen Wolfgang von, 1809 – 1876, mineralogist, 

geologist 
Sisson Jeremiah, 1720 – 1783, constructor of scientific instruments  
Steinheil Carl August von, 1801 – 1870, physicist, inventor, 

engineer, astronomer 
Throughton Edward, 1753 – 1835, constructor of scientific 

instruments  
Weber Wilhelm Edmund, 1804 – 1891, physicist  
Wollaston William Hyde, 1766 – 1828, physician, physicist, 

chemist  
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VIII 

 

O. Sheynin 

 

A Little Known Side of Gauss 
 

Unpublished 
 

1. The Marble Statue 
   Biermann (1991a) traced the change of our image of Gauss: his 
marble statue gradually became a human being with his 
contradictions, doubts and attempts, not free from his moods, 
sufferings and struggles. The sculptors of that cold statue belonged to 
the inner circle of Gauss’ surroundings during the last two decades of 
his life, but the main sculptor was Sartorius von Waltershausen. 
Biermann (p. 5) also stated that Gauss had conscientiously or 
otherwise powerfully assisted those attempts. I somewhat differ. 
    First, Gauss would have been unable to conceal the encountered 
difficulties and troubles or his helplessness in everyday life. Second, 
even when restricting Biermann’s conclusion to the realm of science, 
there is much to say about it. In 1801, Gauss published the 
Disquisitione arithmeticae which immediately made him one of the 
first (if not the best) mathematician of the whole world and in 1809 
appeared his Theoria motus, a masterpiece of astronomy. 
    Understandably, Gauss did not wish to lower the scientific level of 
his work and indeed, on 30 July 1806 (even before the Theoria motus 
was published) he made known his motto in a letter to Olbers: he 
intended to be either Caesar or a nonentity. Then, Gauss is known to 
have been collecting information, non-scientific as well as scientific, 
with a view of arranging random or only seemingly random events 
and discovering some order1. Biermann (1991b) reasonably noted that 
this habit could have well strengthened his desire for perfection. I 
conclude that Gauss had indeed unconscientiously and unavoidably 
assisted in sculpting that marble statue. 

2. Unpleasant Features 
    Humboldt called Gauss a scientific despot (Biermann 1991a, p. 9, 
without an exact reference) and Bessel (Biermann 1966, p. 14) 
considered him an insensitive egoist. Indeed, in 1833 Gauss published 
an essential contribution on terrestrial magnetism, typically 
acknowledged the help of Weber but did not include him as a joint 
author (May 1972, p. 305, right column) and his sons by his second 
marriage stated (Ibidem, p. 308, right column) that he had 
discouraged them from going into science [since] he did not want any 
second-rate work associated with his name. May (p. 307, right 
column) also indicated personal ambition (along with intellectual 
isolation) and deep conservatism. Indeed (p. 309, left column) Gauss 
was hostile or indifferent to radical ideas in mathematics, which, 
however, was somewhat far-fetched since Gauss is known to have 
studied the anti-Euclidian geometry (although May stated that Gauss 
had disliked and suppressed it). And here is a sudden comparison of 
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Gauss and Chebyshev: the latter was a pathological conservator 
(Novikov 2002, p. 330)2.  

3. References to Other authors 
    Biermann (1966, p. 18) described Gauss’ reluctance to refer to other 
authors. In particular, he (certainly being preceded by other 
commentators) quoted C. G. J. Jacobi who had remarked that for over 
twenty years Gauss had never quoted either me or D [Dirichlet]. At 
the same time, in his correspondence Gauss, however, put a high value 
on both these scholars (May 1972, p. 304, right column).  
    Biermann (1966) also quotes Gauss: he, Gauss, refers to other 
authors only after convincing himself of their merit, but he has neither 
time nor inclination for literary studies. 
    However, Gauss had a few times mistakenly referred to others 
which could have strengthened his resolve as stated above. Thus, in 
1770, Boscovich had offered a certain method of treating observations 
and Gauss (1809, § 186) mentioned him and mistakenly stated that 
Laplace had modified that method. There also, in § 177, Gauss 
attributed to Laplace rather than to Euler the computation of the 
integral of the exponential function of a negative square. Later, as 
Börsch and Simon, the Editors of Gauss (1887, p. 207), noted, he 
revealed his mistake but did not correct it since Euler had not 
presented that integral in its final form and, which was more 
important, a correction was undesirable since the material was in print. 

4. Imperfect Contributions 
    The Note of 1810. It appeared in a six-volume encyclopaedia on the 
history of literature (1805 – 1813) which, however, included items on 
natural science and mathematics. Its Editor was J. C. Eichhorn, a 
professor at Göttingen, who asked Gauss to describe mathematics and 
astronomy in the 18th century Germany. Biermann (1983), who 
reprinted the note, reasonably remarked that Gauss had to overcome 
his dislike of writing popular accounts and to satisfy that request.  
    Gauss almost failed. He insufficiently described the merits of 
Lambert and Daniel Bernoulli and called Süssmilch a mathematician. 
Germany (Biermann, p. 427) was then thought to comprise the region 
of the German language3, but Lambert called himself a Swiss (Wolf 
1860, beginning of essay). I do not know whether Jakob and/or 
Johann Bernoulli considered themselves German or Swiss, but Euler 
(whom Gauss highly praised) was partly a Russian scholar. Herschel 
(see below), whom Gauss also called a German scientist, was after all 
an English scholar. Moreover, why then Gauss had not mentioned 
German scholars working in Russia (e. g., Goldbach)? 
    Gauss (Biermann 1983, p. 426) indicated that during the 18th 
century four German scholars (he named only three, Herschel, Olbers 
and Harding) had discovered five planets whereas Herschel had also 
discovered six satellites of Uranus. The five planets were Uranus and 
four minor planets (not thus called in those times and discovered in 
the very beginning of the 19th century). However, Herschel had indeed 
discovered Uranus, but thought that this heavenly body was a comet. 
Even now only five of its satellites are known of which Herschel had 
discovered only two. 
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    The Memoir of 1823. Some places there are still incomprehensible. 
Here is Stewart (1995, p. 222) about its §§ 12 and 13: 
    It requires great generosity on the part of the reader to conclude 
that he [Gauss] actually proved anything. 
    A special point here is that the principle of least squares can be 
derived without any intermediate considerations (as in §§ 12 and 13). 
In § 6 Gauss introduced the density (though not the term) calling it the 
measure of precision for continuous densities. At the end of the 
memoir he proved, which was not difficult, that the sample variance is 
proportional to the sum of the squares of the residual free terms of the 
adjusted system of equations. Gauss thus arrived at the principle of 
least squares but did not even hint at this possibility. Why? Such was 
his well known habit, and I need not go here into details. See Sheynin 
(2012). 
    The Memoir of 1828. On p. 152 Gauss indicated that he was 
determining for the second time the latitudinal difference between the 
observatories in Göttingen and Altona but he did not say anything 
about its first determination. In several tables of the results of 
observations 16 stars remained unnamed without any explanation. In 
two cases (pp. 172 and 189) Gauss calculated the probable error of 
some results only tacitly assuming the appropriate normal 
distributions. On p. 161 Gauss called the arithmetic mean the most 
probable estimator (which it indeed is, but only for normal 
distributions) although in 1823 he turned instead to most reliable 
estimators. Finally, Gauss (p. 177) not quite properly equated residual 
free terms of an initial system of equations with errors. The same, 
however, can be said about Legendre and Laplace. 

5. The Problem of Priority 
    To Gauss (May 1972, p. 309) 
    Priority meant being first to discover, not first to publish; and he 
was satisfied to establish his dates by private records, 
correspondence, cryptic remarks in publications.  
    The most important case here was his discovery of the principle 
(and calling it method) of least squares. Gauss indicated that Legendre 
had priority of publication but claimed it for himself, since he had 
applied it from 1794 or 1795.  
    Legendre had protested whereas Gauss, about 25 years younger, did 
not answer his letter. As a result, for a long time French 
mathematicians including Poisson but not Laplace did not mention the 
appropriate works of Gauss. All that could have been different if only 
Gauss had answered Legendre, or, even better, if Legendre, instead of 
writing to Gauss, would have remarked at a later occasion, that 
everyone will agree with him rather than with Gauss. And here is the 
final stroke (letter of Gauss to Schumacher of 17 Oct. 1824): 
    With irritation and distress I have read that the pension of the old 
Legendre, an ornament to his nation and age, was cut off. 
 

Notes 
    1. On the inductive discovery of arithmetic regularities see Bachmann (1922).  
    2. And his talented student Liapunov (1895/1946, pp. 19 – 20) called Riemann’s 
ideas extremely abstract, his investigations pseudo-geometric and sometimes, again, 
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too abstract and having nothing in common with Lobachevsky’s deep geometric 
studies. He did not recall Klein, who, in 1871, presented a unified picture of the non-
Euclidean geometry in which the findings of Lobachevsky and Riemann had 
appeared as particular cases. 
    3. John Herschel (1829, p. 222) called German all those who were united by 
language and behaviour. It is difficult, however, to unite thus Gauss and Bessel, or 
Karl Pearson and Fisher, or Markov and Liapunov. 
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IX 

 

O.Sheynin 

 

Statistics and Its Essence 
 

Unpublished 
 

1. Early History 
    1.1. University Statistics. In the 1660s, Hermann Conring 
originated a new discipline, the Staatswissenschaft, or university 
statistics, and by the beginning of the eighteenth century it was taught 
all over Germany (Lazarsfeld 1961, p. 291). He modestly named 
Aristotle, Strabo and Ptolemy as the co-authors of the new discipline 
(Fedorovich 1894, p. 17).  
    Then, in mid-18th century Achenwall created the Göttingen school 
of Staatswissenschaft which described the climate, geographical 
situation, political structure and economics of separate states and 
estimated their population by issuing from data on births and mortality 
but did not study relations between quantitative variables. Wordy 
descriptions rather than numbers lay at the heart of the works of the 
Göttingen school, but Achenwall advised state measures fostering the 
multiplication of the population and recommended censuses without 
which (1763/1779, p. 187) a probable estimate of the population could 
be still got, see above. He also appropriately defined the so-called 
statistics as the Staatswissenschaft of separate states (Achenwall 1749, 
p. 1) and (1752/1756, Intro.) left an indirect definition of statistics: 
    In any case, statistics is not a subject that can be understood at 
once by an empty pate. It belongs to a well digested philosophy, it 
demands a thorough knowledge of European state and natural history 
taken together with a multitude of concepts and principles, and an 
ability to comprehend fairly well very different articles of the 
constitutions of present-day kingdoms. 
    On Achenwall see Schiefer (1916). It is appropriate to mention that 
in a letter of 1742 Daniel Bernoulli (Fuss 1843/1968, t. 2, p. 496) 
stated that mathematics can also be rightfully applied in politics. 
Citing Maupertuis’ approval, he continued: An entirely new science 
will emerge if only as many observations will be made in politics as in 
physics. But did he understand politics just as Achenwall did later? 
Or, as Laplace (1814/1995, p. 62), who urged that the method based 
on observation and calculus should be applied to the political and 
moral sciences? 
    Achenwall’s student Schlözer (1804, p. 86) figuratively stated that 
History is statistics flowing, and statistics is history standing still. 
Obodovsky (1839, p. 48) suggested a similar maxim: Statistics is to 
history as painting is to poetry. For those keeping to 
Staatswissenschaft Schlözer’s pithy saying became the definition of 
statistics which was thus not compelled to study causal connections in 
society or discuss possible consequences of innovations. Note 
however that that saying is unsatisfactory: even Leibniz (Sheynin 
1977, p. 224) stated that statistics of different countries or of different 



101 
 

periods in the life of the same country ought to be compared one with 
another, that, therefore, statistics should also be flowing. 
    By the end of the 19th century the scope of the Staatswissenschaft 
essentially narrowed, but it still exists, at least in Germany, in a new 
form. It applies quantitative data and studies causes and effects. It is 
the application of the statistical method to the life of a state or a 
region. On the history of Staatswissenschaft see Sheynin (2014). 
    Knies (1850, p. 24) and John (1883, p. 670) quoted unnamed 
German authors who had believed, in 1806 and 1807, that the issues 
of statistics ought to be the national spirit, love of freedom, the talent 
and the characteristics of the great and ordinary people of a given 
state. This critic had to do with the limitations of mathematics in 
general. Here, however, is an ancient example of uniting description 
with approximate numbers:  
    Moses (Numbers 13: 17 – 20), who sent out spies to the land of 
Canaan, wished to find out Whether the people who dwell in it are 
strong or weak, whether they are few or many, – wished to know both 
numbers (roughly) and moral strength.  
    Tabular statistics which had originated with Anchersen (1741) 
could have served as an intermediate link between words and numbers 
(between Staatswissenschaft and political arithmetic, see § 1.2), but 
Achenwall (1752, Intro.) had experienced a public attack against the 
first edition of that book (published in 1749 under a previous title) by 
Anchersen. Tabular statisticians continued to be scorned, they were 
called Tabellenfabrikanten and Tabellenknechte (slaves of tables) 
(Knies 1850, p. 23). In 1734, I. K. Kirilov (Ploshko and Eliseeva 
1990, pp. 65 – 66) compiled a tabular description of Russia, but it was 
only published in 1831. 
    In the beginning of the 1680s Leibniz compiled several manuscripts 
on political arithmetic (§ 1.2) and Staatswissenschaft which were only 
published in 1866. Now, they are available in his collected writings on 
insurance and finance mathematics (2000). In one of those 
manuscripts he (1680 – 1683/2000, pp. 442 and 443) adopted 
unfounded premises about population statistics including a simply 
fantastic statement: the birth rate can be nine or ten times higher than 
it actually is.  
    In his manuscripts devoted to Staatswissenschaft, Leibniz had 
recommended to compile state tables containing information useful 
for the state and to compare those of them which pertained to different 
states or times; to compile medical sourcebooks of observations made 
by physicians, of their recommendations and aphorisms; and to 
establish sanitary commissions with unimaginably wide tasks. He 
mentioned inspection of shops and bakeries, registration of the 
changes in the weather, fruit and vegetable yields, prices of foodstuffs, 
magnetic observations and, the main goal, recording of diseases and 
accidents affecting humans and cattle.  
    Leibniz (1682) also compiled a list of 56 questions (actually, of 58 
since he made two mistakes in numbering them). He left them in an 
extremely raw and disordered state and a few are even 
incomprehensible. Their main topics were population statistics in a 
wide sense; money circulation; cost of living; morbidity. Incidentally, 
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for some strange reason population statistics at least up to the 20th 
century had largely shunned medical problems. Graunt was a 
remarkable exception and Poisson (§ 5) treated them in his lectures. 
    1.2. Political Arithmetic. Statistics, in its modern sense, owed its 
origin to political arithmetic founded by Petty and Graunt. They 
studied population, economics, and commerce and discussed the 
appropriate causes and connections by means of elementary stochastic 
considerations. Petty called the new discipline political arithmetic (but 
had not defined it) and its aims were to study from a socio-economic 
point of view states and separate cities (or regions) by means of 
(rather unreliable) statistical data on population, industry, agriculture, 
commerce etc. Petty (1690/1899, p. 244) plainly formulated his denial 
of comparative and superlative Words and attempted to express 
himself in Terms of Number, Weight, or Measure …; Graunt 
undoubtedly did, if not said the same.  
    Petty (1927, vol. 1, pp. 171 – 172) even proposed to establish a 
register generall of people, plantations & trade of England, to collect 
the accounts of all the Births, Mariages, Burialls […] of the Herths, 
and Houses […] as also of the People, by their Age, Sex, Trade, Titles, 
and Office. The scope of that Register was to be wider than that of our 
existing Register office (Greenwood 1941 – 1943/1970, p. 61). 
    At least 30 Petty’s manuscripts (1927) pertained to political 
arithmetic. This source (pp. 39 – 40) shows him as a philosopher of 
science congenial in some respects with Leibniz: 
    What is a common measure of Time, Space, Weight, & motion? 
What number of Elementall sounds or letters, will […] make a speech 
or language? How to give names to names, and how to adde and 
subtract sensata, & to ballance the weight and power of words; which 
is Logick & reason. 
    Graunt (1662) studied the weekly bills of mortality in London 
which began to appear in the 16th century and had been regularly 
published since the beginning of the 17th century. His contribution had 
been (but is apparently not anymore) attributed to Petty who perhaps 
qualifies as co-author. For my part, I quote his Discourse (1674): I 
have also (like the author of those Observations [like Graunt!]) 
Dedicated this Discourse ...  
    Graunt used the fragmentary statistical data to estimate the 
population of London and England as well as the influence of various 
diseases on mortality and he attempted to allow for systematic 
corruptions of the data. Thus, he reasonably supposed that the number 
of deaths from syphilis was essentially understated out of ethical 
considerations. His main merit consisted in that he attempted to find 
definite regularities in the movement of the population. For example, 
he established that both sexes were approximately equally numerous 
(which contradicted the then established views) and that out of 27 new 
born babies about 14 were boys. When dealing with large numbers, 
Graunt did not doubt that his conclusions reflected objective reality 
which might be seen as a fact belonging to the prehistory of the law of 
large numbers (LLN). The parameter 14:13 was, in his opinion, an 
estimate of the ratio of the respective probabilities. 
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    Nevertheless, he had uncritically made conclusions based on a 
small number of observations as well and thought that the population 
increased in an arithmetical progression, since replaced by the 
geometrical progression definitively introduced by Süssmilch and 
Euler (§ 1.3). 
    In spite of the meagre and sometimes wrong information, Graunt 
was able to compile the first life table (common for both sexes). He 
somehow calculated the relative number of people dying within the 
first six years and within each next decade up to age 86. According to 
his table, only one person out of a hundred survived until that age. The 
very invention of the life (or mortality) table was the main point here. 
The indicated causes of death were also incomplete and doubtful, but 
Graunt formulated some important conclusions as well (although not 
without serious errors). His general methodological (but not factual) 
mistake consisted in that he assumed, without due justification, that 
statistical ratios during usual years (for example, the per cent of yearly 
deaths) were stable. Graunt had influenced later scholars (Huygens, 
letter of 1662/1888 – 1950, 1891, p. 149; Hald 1990, p. 86): 
    1. Grant’s [!] discourse really deserves to be considered and I like 
it very much. He reasons sensibly and clearly and I admire how he 
was able to elicit all his conclusions from these simple observations 
which formerly seemed useless. 
    2. Graunt reduced the data from several great confused Volumes 
into a few perspicuous Tables and analysed them in a few succinct 
Paragraphs which is exactly the aim of statistics.  
    1.3. Population Statistics. I discuss medical and juridical statistics 
separately (§§ 2.2 and 2.3), but I emphasize that those fields are 
fundamentally important for population statistics. Thus, Poisson (§ 5), 
in his lectures, treated all these three disciplines.  
    Halley (1693), a versatile scholar and an astronomer in the first 
place, compiled the next life table. He made use of statistical data 
collected in Breslau, a city with a closed population. Halley applied 
his table for elementary stochastic calculations and thus laid a 
mathematical foundation of actuarial science. He was also able to find 
out the general relative population of the city. Thus, for each thousand 
infants aged less than a year, there remained 855 children from one to 
two years of age, …, and, finally, 107 persons aged 84 – 100. After 
summing up all these numbers, Halley obtained 34 thousand (exactly) 
so that the ratio of the population to the new born babies occurred to 
be 34. Until 1750 his table remained the best one (K. Pearson 1978, p. 
206). 
    The yearly rate of mortality in Breslau was 1/30, the same as in 
London, and yet Halley considered that city as a statistical standard. If 
such a notion is appropriate, standards of several levels ought to be 
introduced. Again, Halley thought that the irregularities in his data 
will rectify themselves, were the number of years [of observation] 
much more considerable. Such irregularities could have been 
produced by systematic influences, but Halley’s opinion shows the 
apparently wide-spread belief in an embryo of the LLN. 
    Sofonea (1957, p. 31*) called Halley’s contribution the beginning 
of the entire development of modern methods of life insurance, and 
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Hald (1990, p. 141) stated that it became of great importance to 
actuarial science. Drawing on Halley, De Moivre (1725) introduced 
the continuous uniform law of mortality for ages beginning at 12 
years. 
    In 1701 Halley (Chapman 1941, p. 5) compiled a chart of Northern 
Atlantic showing the lines of equal magnetic declinations so that he 
(and of course Graunt) might be called the founders of exploratory 
data analysis. 
    It might be thought that statistics and statistical method are 
equivalent notions (see however § 9), but it is normal to apply the 
former term when studying population and to use the latter in all other 
instances and especially when applying statistics to natural sciences. 
Nevertheless, there also exist such expressions as medical and stellar 
statistics, and theory of errors. 
    Three stages may be distinguished in the history of the statistical 
method. At first, conclusions were being based on (statistically) 
noticed qualitative regularities, a practice which conformed to the 
qualitative essence of ancient science. Here, for example, is the 
statement of the Roman scholar Celsus (1935, p.19):  
    Careful men noted what generally answered the better, and then 
began to prescribe the same for their patients. Thus sprang up the Art 
of medicine.  
    The second stage (Tycho in astronomy, Graunt in demography and 
medical statistics) was distinguished by the availability of statistical 
data. Scientists had then been arriving at important conclusions either 
by means of simple stochastic ideas and methods or even directly, as 
before. During the present stage, which dates back to the end of the 
19th century, inferences are being checked by quantitative stochastic 
rules. 
    In the 18th century, statisticians had been attempting to bring into 
conformity the speedy increase in population with the Biblical 
command (Genesis 1:28), Be fruitful and multiply and fill the earth 
and subdue it, and K. Pearson (1978, p. 337) severely criticized them: 
    Instead of trying, in the language of Florence Nightingale, to 
interpret the thought of God from statistical data, [they] turn the 
problem around and twist their data to suit what they themselves 
consider the will of the Creator. 
    And, on the same page, again about those statisticians who paved 
the way for the Malthusians if not Malthus himself:  
    While the Creator would not approve of starvation for thinning 
humanity, He would have no objection to plague or war. 
    The most renowned statistician of the second half of the 18th 
century was Süssmilch although Pearson (p. 347) called Struyck a 
more influential forerunner in the field of vital statistics. Süssmilch 
(1741) adhered to the tradition of political arithmetic. He collected 
data on the movement of population and attempted to reveal pertinent 
divine providence but he treated his materials loosely. Thus, when 
taking the mean of the data pertaining to towns and rural districts, he 
tacitly assumed that their populations were equally numerous; in his 
studies of mortality, he had not attempted to allow for the differences 
in the age structure of the populations of the various regions etc. 
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    Nevertheless, his works paved the way for Quetelet (and perhaps 
Guerry); in particular, he studied issues which later came under the 
province of moral statistics (e.g., illegitimate births, crime, suicides) 
and his tables of mortality had been in use even in the beginning of the 
19th century, see Birg (1986) and Pfanzagl & Sheynin (1997). After 
Guerry (1833; 1864), see also Friendly (2007), and Quetelet the 
domain of moral statistics essentially broadened and includes now, for 
example, philanthropy and professional and geographical mobility of 
the population. 
    Like Graunt, Süssmilch discussed pertinent causes and offered 
conclusions. Thus, he (1758) thought of examining the dependence of 
mortality on climate and geographical position and he knew that 
poverty and ignorance were conducive to the spread of epidemics.  
    Süssmilch’s main contribution, the Göttliche Ordnung, marked the 
origin of demography. Its second edition of 1761 − 1762 included a 
chapter On the rate of increase and the period of doubling [of the 
population]; it was written jointly with Euler and served as the basis of 
one of Euler’s memoirs (Euler 1767). Süssmilch thought that, since 
multiplication of mankind was a divine commandment, rulers must 
take care of their subjects. He condemned wars and luxury and 
indicated that the welfare of the poor was to the advantage of both the 
state, and the rich. His pertinent appeals brought him into continual 
strife with municipal (Berlin) authorities and ministers of the state 
(Prussia). He would have likely agreed with a much later author (Budd 
1849, p. 27) who discussed cholera epidemics: 
    By reason of our common humanity, we are all the more nearly 
related here than we are apt to think. […] And he that was never yet 
connected with his poorer neighbour by deeds of Charity or Love, may 
one day find, when it is too late, that he is connected with him by a 
bond which may bring them both, at once, to a common grave. 
    Süssmilch’s collaboration with Euler and frequent references to him 
in his book certainly mean that Euler had shared his general social 
views. Malthus (1798) picked up one of the conclusions in the 
Göttliche Ordnung, viz., that the population increased in a geometric 
progression (still a more or less received statement). Euler compiled 
three tables showing the increase of population during 900 years 
beginning with Adam and Eve. His third table based on arbitrary 
restrictions meant that each 24 years the number of living increased 
approximately threefold. Gumbel (1917) proved that the numbers of 
births, deaths and of the living in that table were approaching a 
geometric progression and noted that several authors since 1600 had 
proposed that progression as the appropriate law.  
    Note, however, that it was Gregory King (1648 – 1712) who first 
discussed the doubling of population (K. Pearson 1978, p. 109).  
    Euler left no serious contributions to the theory of probability, but 
he published a few elegant and methodically important memoirs on 
population statistics. He did not introduce any stochastic laws, but the 
concept of increase in population is due to him, and his reasoning was 
elegant and methodically interesting, in particular for life insurance 
(Paevsky 1935). On Euler see Sheynin (2007a). 
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    Lambert published a methodical study in population statistics 
(1772). Without due justification he proposed there several laws of 
mortality (belonging to types IX and X of the Pearson curves). Then, 
he formulated the problem about the duration of marriages, studied 
children’s mortality from smallpox and the number of children in 
families (§ 108). See Sheynin (1971b) and Daw (1980) who also 
appended a translation of the smallpox issue.  
    When considering the last-mentioned subject, Lambert started from 
data on 612 families having up to 14 children, and, once more without 
substantiation, somehow adjusted his materials. He arbitrarily 
increased the total number of children by one half likely attempting to 
allow for stillbirths and the death of children. Elsewhere he (§ 68) 
indicated that statistical inquiries should reveal irregularities. 
    Population statistics owed its later development to the general 
problem of isolating randomness from Divine design. Kepler and 
Newton achieved this aim with regard to inanimate nature, and 
scientists were quick to begin searching for the laws governing the 
movement of population (and attempting to fit them to the Biblical 
command). Moreover, De Moivre thought that exactly that problem 
constituted the main aim of his philosophy. He dedicated the first 
edition of his Doctrine of Chances (1718/1756, p. 329) to Newton, 
and here are a few pertinent lines. He thought about working out 
    A Method of calculating the Effects of Chance […] and thereby [of] 
fixing certain rules, for estimating how far some sort of Events may 
rather be owing to Design than Chance […] [so as to learn] from your 
Philosophy how to collect, by a just Calculation, the Evidences of 
exquisite Wisdom and Design, which appear in the Phenomena of 
Nature throughout the Universe. 
    De Moivre thus believed that the (future) theory of probability 
should be applied in natural sciences, but he rigorously demonstrated 
his theorems. Studies of various distributions had not yet begun. 
Chance had been certainly separated from design in everyday life. 
Bühler (1886/1967, p. 267) described an appropriate (for us, 
unreasonable) example pertaining to the administration of justice in 
ancient India. Horrible trials with red-hot iron had been widespread. 
    1.3.1. The sex ratio at birth. The solution of this problem was not 
practically needed, but the subject itself attracted scientists and 
provided a possibility of applying mathematical methods.  
    1.3.1-1. Arbuthnot. He (1712) assembled the existing data on 
baptisms in London for 1629 – 1710, noted that during those 82 years 
more boys (m) were invariably born than girls (f) and declared that 
that fact was not the Effect of Chance but Divine Providence, working 
for a good End. Boys and men, as he added, were subject to greater 
dangers and their mortality was higher than that of the females. Even 
disregarding both that unsubstantiated statement and such [hardly 
exhibited] regularities as the constant Proportion m:f and fix’d limits 
of the difference (m – f), the Value of Expectation of a random 
occurrence of the observed inequality was less than (1/2)82, he stated.  
    Arbuthnot could have concluded that the births of both sexes 
obeyed the binomial distribution, which, rather than the inequality m > 
f, manifested Divine design; and could have attempted to estimate its 
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parameter. Then, baptisms were not identical with births. Graunt 
(1662, end of Chapt. 3) stated that during 1650 – 1660 less than half 
of the general [Christian] population had believed that baptism was 
necessary; Christians perhaps somehow differed from other people, 
London was perhaps an exception. Note however, that during the 18th 
century philosophers almost always understood randomness in the 
uniform sense.  
    One more point. Denote a year by m or f if more boys or girls were 
respectively born. Any combination of the m’s and f’s in a given order 
has the same probability (2−82 in Arbuthnot’s case). However, if the 
order is of no consequence, then those probabilities will greatly differ. 
Indeed, in a throw of two dice the outcome “1 and 2” in any order is 
twice as probable as “1 and 1”. It is this second case which Arbuthnot 
likely had in mind.  
    I note Laplace’s inference (1776/1891, p. 152; 1814/1995, p. 9) in a 
similar case: a sensible word will hardly be composed by chance from 
separate letters. Poisson (1837a, p. 114) provided an equivalent 
example and made a similar conclusion. However, a definition of a 
random sequence (and especially of its finite variety) is still, and will 
continue to be a subject of subtle investigations, see also § 7.6.2.  
    Freudenthal (1961, p. xi) called Arbuthnot the author of the first 
publication on mathematical statistics, see also Shoesmith (1987) and 
David & Edwards (2001, pp. 9 – 11). 
    1.3.1-2. Niklaus Bernoulli. While discussing the same subject, he 
indirectly derived the normal distribution. Let the sex ratio be m/f, n, 
the total yearly number of births, and µ and (n – µ), the numbers of 
male and female births in a year. Denote 
 
    n/(m + f) = r, m/(m + f) = p, f/(m + f) = q, p + q = 1, 
 
and let s = 0(√n). Then Bernoulli’s formula (Montmort 1713/1980, pp. 
388 – 394) can be presented as  
 
    P(|µ– rm| ≤ s) ≈ (t – 1)/t,  
    t ≈ [1 + s(m + f)/mfr]s/2 ≈ exp[s2(m + f)2/2mfn], 
    P (|µ – rm| ≤ s) ≈ 1 – exp(s2/2pqn),  
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    It is not an integral theorem since s is restricted (see above) and 

neither is it a local theorem; for one thing, it lacks the factor 2/π . 
    The context of De Moivre’s paper (1733) in which he proved the 
first version of the central limit theorem, CLT (a term introduced by 
Polya (1920)) shows that he intended it for studying that same 
problem, the sex ratio at birth.  
    1.3.1-3. While investigating the same problem, Daniel Bernoulli 
(1770 – 1771) first assumed that male and female births were equally 
probable. It followed that the probability that the former constituted a 
half of 2N births will be 
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    He calculated this fraction not by the Wallis formula but by means 
of differential equations and obtained 
 

     
 
    Application of differential equations was Bernoulli’s usual method 
in probability. Bernoulli also determined the probability of the birth of 
approximately m boys (see below): 
 
    P(m = N ± µ) = qexp(– µ2/N) with µ of the order of √N.         (1) 
 
    In the second part of his memoir Bernoulli assumed that the 
probabilities of the birth of both sexes were in the ratio of a:b. 
Equating the probabilities of m and (m + 1) boys being born, again 
being given 2N births, he thus obtained the [expected] number of male 
births 
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which was of course evident. More interesting was Bernoulli’s 
subsequent reasoning for determining the probability of an arbitrary m 
(for µ of the order of √N): 
 
    P(m = M + µ + 1) – P(m = M + µ) ≡ dπ =  
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    The subsequent transformations included the expansion of  
ln[(M + 1 + µ)/(M + 1)] into a power series. Bernoulli’s answer was 
 

    P(m = M  µ) = π = P(m = M)exp
2( )µ
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hence (1). Note that Bernoulli had not applied the local De Moivre (– 
Laplace) theorem. 
    2. Statistical Startups, Not Yet Explored Topics, Difficulties 
    Graunt (1662) was not sure whether anyone except the Sovereign 
and his chief Ministers needed statistics, but since then the situation 
has essentially changed, and especially with the creation of the welfare 
state and government decision making. Great changes have occurred 
with regard to natural sciences as well. Mostly in the 19th century a 
number of new disciplines linked to statistics have originated: medical 
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statistics (especially epidemiology), public hygiene (the forerunner of 
ecology), geography of plants, zoogeography, biometry, climatology, 
stellar statistics, and kinetic theory of gases. Many fundamental 
problems, such as the influence of solar activity on terrestrial 
phenomena have been studied statistically. 
    Just to illustrate the widest scope of statistics I mention two papers: 
Thornberg (1929) about the trade union movement (which showed an 
unusual aspect of the application of statistics in industry) and Thorp 
(1948) who described the use of statistics in foreign relations.  
    During the first five decades of the 19th century statistical 
institutions and/or national statistical societies came into being in the 
main states of Europe and America. International statistical congresses 
aiming at unification of official statistical data had been held from 
1851 onward, and in 1885 the still active International Statistical 
Institute was established instead. 
    Throughout the 19th century the importance of statistics had been 
considerably increasing. By the mid-19th century it became important 
to foresee how various transformations influence society and Quetelet 
(§ 7.1) repeatedly stressed this point. Then, at the end of that century 
censuses of population, answering an ever widening range of 
questions, began to be carried out in various countries. However,  
    ● Public opinion was not yet studied.  
    ● Sampling had been considered doubtful. Cournot (1843) passed it 
over in silence and Laplace’s sample determination of the population 
of France was largely forgotten. Quetelet opposed sampling. Much 
later Bortkiewicz (1904, p. 825) and Czuber (1921, p. 13) called 
sampling conjectural calculation although already the beginning of 
the century witnessed legions of new data (Lueder 1812, p. 9) and the 
tendency to amass sometimes useless or unreliable data revealed itself 
in various branches of natural sciences.  
    I adduce two barely known statements. In 1904, Newcomb had sent 
a letter to the Carnegie Institution urging it to establish an institute or 
a bureau of exact sciences for developing methods of dealing with the 
great mass of existing observations (Methods 1905, p. 180). Neither 
he, nor Pearson (p. 184), who was one of the several scientists, whom 
the Carnegie Institution asked to comment on Newcomb’s proposal, 
mentioned sampling. Pearson argued that the situation was certainly 
bad and held that at least 50 per cent of the observations made and the 
data collected are worthless. Either the conditions necessary for 
testing a theory were not met or collectors or observers were 
hopelessly ignorant of the conditions required for accurate work. 
Owing to various difficulties, Newcomb’s proposal was not adopted. 
    In 1915 or 1916, Chuprov mentioned the need to organize after the 
end of the world war, under the (Russian) Academy of Sciences, the 
studies of population and its productive forces (Sheynin 1990/2011, p. 
130).  
On the history of sampling, whose most active partisan was Kiaer, see 
You Poh Seng (1951) and Tassi (1988). 
    ● The development of the correlation theory began at the end of the 
19th century, but even much later Kaufman (1922, p. 152) declared 



110 
 

that the so-called method of correlation adds nothing essential to the 
results of elementary analysis.  
    ● Variance began to be applied in statistics only after Lexis, but 
even later Bortkiewicz (1894 – 1896, Bd. 10, pp. 353 – 354) stated 
that the study of precision was a luxury, and that the statistical flair 
was much more important. This opinion had perhaps been caused by 
the presence of large systematic corruptions in the initial materials.  
    ● Preliminary (or exploratory) data analysis (generally recognized 
only a few decades ago) was necessary, and should have been the 
beginning of the statistician’s work.  
    ● Statistical quality control had not been applied until the 1920s. 
    ● Econometrics only originated in the 1930s as a blend of 
economics, statistics and mathematics (Frisch 1933, p. 1): the main 
object of the just established Econometric Society was to promote 
unification of the theoretical-quantitative and the empirical-
quantitative approach to economic problems and to foster constructive 
and rigorous thinking similar to that which has come to dominate in 
the natural sciences. 
    Poincaré, in an undated letter kept in his Dossier at the Paris 
Academy of Sciences (Sheynin 2009b, No. 619) quite positively 
described the work of Laurent both in probability and actuarial science 
and noted his Traité [1902] on mathematical political economy and 
lectures dans un cours libre at the Sorbonne on the same subject. 
Poincaré called this discipline a science nouvelle crée par Walras et 
ses disciples. So are Walras and Laurent the forerunners of 
econometrics?  
    I can also mention Petty and Bortkiewicz. Petty’s essays on 
political arithmetic were econometric in its methodological 
framework, even from the modern point of view (Strotz 1978, p. 188). 
And Bortkiewicz  
    Made the necessary modifications that rendered the Marxian 
scheme of surplus values and prices consistent. However, his dry 
presentation prevented the Marxists (except for Klimpt [1936]) from 
accepting his method. And he had made the lonely effort to construct 
a Marxian econometrics [without applying statistical data] (Gumbel 
1978, pp. 25 and 26). 
    Strotz (p. 189) also argues that econometrics is disappearing as a 
special branch of economics. 
    In conformity with the situation in the Soviet Union (Sheynin 1998) 
econometrics had hardly existed there. At an economic conference in 
1960 Kolmogorov (Birman 1960, p. 44) stated that  
    The main difficult but necessary aim is to express the desired 
optimal state of affairs in the national economy by a single indicator.  
    Indeed, the prices of commodities had only been administratively 
established. 
    I list now the difficulties, real and imaginary, of applying the theory 
of probability to statistics. 
    ● The absence of equally possible cases whose existence is 
necessary for understanding the classical notion of probability. 
Statisticians repeatedly mentioned this cause. 
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    ● Disturbance of the constancy of the probability of the studied 
event and/or of the independence of trials. Before Lexis (1879) 
statisticians had only recognized the Bernoulli trials; and even much 
later, again Kaufman (1922, pp. 103 – 104), argued that the theory of 
probability was applicable only to these trials, and, for that matter, 
only in the presence of equally possible cases.  
    ● The abstract nature of the (not yet axiomatized) theory of 
probability. The history of mathematics testifies that the more abstract 
it became, the wider had been the range of its applicability.  
    In the beginning of the 1820s in a letter to Quetelet, Fourier 
maintained that the statistical sciences will only progress insofar as 
they were supported by mathematical theories (Quetelet 1826, p. 177). 
Soon, however, Quetelet (1828, p. i) called the calculus of probability 
(not just mathematics) the basis of observational sciences, and later 
(1869, t. 1, p. 134) a most reliable and most indispensable companion 
of statistics. Bortkiewicz (1904) expressed similar ideas. 
    For most statisticians all these pronouncements remained alien (see 
also § 8.3.3). They had not expected any help from the theory of 
probability. Block (1878/1886, p. 134) thought that it was too abstract 
and should not be applied too often, and Knapp (1872, p. 115) called it 
difficult and hardly useful beyond the sphere of games of chance and 
insurance. In 1911, G. von Mayr declared that mathematical formulas 
were not needed in statistics and privately told Bortkiewicz that he 
was unable to bear mathematics (Bortkevich & Chuprov 2005, Letter 
109 of 1911). Bortkiewicz (1904, p. 822) also mentioned Guerry 
(1864, p. XXXIII ff) as an opponent of the application of the theory of 
probability and therefore his opponent as well.  
    I have noted (§ 2.1) that in 1835 several scientists including Poisson 
had stressed the connection between statistics and probability. A bit 
earlier three scholars, again including Poisson (Libri-Carrucci et al 
1834), declared that the most sublime problems of the arithmétique 
sociale [see § 5] can only be resolved with the help of the theory of 
probability. 
    Nevertheless, statisticians never mentioned Daniel Bernoulli who 
published important statistical memoirs, almost forgot insurance, 
barely understood the treatment of observations, did not notice either 
Quetelet’s mistakes or his inclinations to crime and to marriage (§ 
7.1). After his death in 1874 they all the more turned away from 
probability.  
    Two circumstances worsened the situation. First, mathematicians 
often did not show how to apply their findings in practice. Poisson 
(1837a) is a good example; his student Gavarret (1840) turned 
physician simplified his formulas, but still insisted that conclusions 
should be based on a large number of observations which was often 
impossible (§ 2.1). Second, student-statisticians barely studied 
mathematics and, after graduation, did not trust it. 
    It is not amiss to mention here a pioneer attempt to create 
mathematical statistics (Wittstein 1867). He compared the situation in 
statistics with the childhood of astronomy and stressed that statistics 
(and especially population statistics) needed a Tycho and a Kepler to 
proceed from reliable observations to regularities. Specifically, he 
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noted that statisticians did not understand the essence of probability 
theory and never estimated the precision of the results obtained.  
    Knies (1850 [p. 163]) was strongly in favour of adopting the name 
statistics for political arithmetic called by him mathematical statistics 
(John 1883, p. 677). Hardly proper, but the term mathematical 
statistics was apparently thus first pronounced. 
    ● A few words about astronomy and meteorology. In astronomy 
asteroids were understood to form a statistical population: their orbital 
parameters were studied statistically (Newcomb). From the mid-18th 
century (William Herschel) statistical reasoning was also applied to 
studying the arrangement and (later) the movement of stars and 
Kapteyn (1906) initiated an international plan for a sampling study of 
the stellar universe. In meteorology, Humboldt (1817) used statistical 
data on air temperatures to construct isotherms on a world-wide scale 
and thus to isolate the Earth’s main climatic belts (more precisely, to 
confirm quantitatively their existence, qualitatively suggested by 
ancient geographers) and originate climatology. The introduction of 
contour lines for representing statistical information (a brilliant 
example of exploratory data analysis) was due to Halley (§ 1.3).  
    In general, Humboldt (1845 – 1862, Bd. 1, pp. 18 and 72; Bd. 3, p. 
288) conditioned the investigation of natural phenomena by 
examination of mean states. In the last-mentioned case he mentioned 
the sole decisive method [in natural sciences], that of the mean 
numbers which (1845, Bd. 1, p. 82) show us the constancy in the 
changes. In other words, he stressed the importance of statistical 
studies. 
    Lamarck, the most eminent biologist of his time, seriously occupied 
himself with physics, chemistry and meteorology. In meteorology, his 
merits had for a long time been ignored (Muncke 1837), but he is now 
remembered for his pioneer work in the study of weather (Shaw & 
Austin (1926/1942, p. 130). He repeatedly applied the term 
météorologie statistique (e.g., 1800 – 1811, t. 4, p. 1) whose aim 
(Ibidem, t. 11, p. 9 – 10) was the study of climate, or, as he (Ibidem, t. 
4, pp. 153 – 154) maintained elsewhere, the study of the climate, of 
regularities in the changes of the weather and of the influence of 
various meteorological phenomena on animals, plants and soil.  
    He preferred a reasoned rather than an empirical meteorology 
(Ibidem, t. 5, p. 1) with its own theory, general principles and 
aphorisms (Ibidem, t. 3, p. 104). At the time, such an approach was 
impossible but the development of statistical physics in the 19th 
century somewhat changed the situation (Angström 1929, p. 229). 
    Buys Ballot (1850, p. 629) noted the appearance of the second stage 
in the development of meteorology, the study of the deviations of 
meteorological elements from their mean values or states. He could 
have mentioned a few other sciences as well (for example, astronomy 
and geodesy, − and statistics!).  
    2.1. Medical Statistics. Interestingly enough, the expression 
medical probability appeared not later than in the mid-18th century 
(Mendelsohn 1761, p. 204). At the end of that century Condorcet 
(1795/1988, p. 542) advocated collection of medical observations and 
Black (1788, p. 65) even compiled a possibly forgotten Medical 
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catalogue of all the principle diseases and casualties by which the 
Human Species are destroyed or annoyed that reminded of Leibniz’ 
thoughts. Descriptions belonging to other branches of natural sciences 
as well have actively been compiled (mostly later) and such work 
certainly demanded preliminary statistical efforts. Some authors 
mistakenly stated that their compilations ruled out the need for 
theories and, in addition, until the beginning of the 20th century the 
partisans of complete descriptions continued to deny sampling in 
statistics proper.  
    The range of application of the statistical method in medicine 
greatly widened after the emergence, in the mid-19th century, of 
public hygiene (largely a forerunner of ecology) and epidemiology. 
About the same time surgery and obstetrics, branches of medicine 
proper, yielded to the statistical method. 
    Public hygiene began statistically studying problems connected 
with the Industrial Revolution in England and, in particular, by the 
great infant mortality (Chadwick 1842/1965, p. 228). Also, witness 
Farr (ca. 1857/1885, p. 148): Any deaths in a people exceeding 17 in a 
1,000 annually are unnatural deaths. Unnatural, but common! 
    Epidemiology was properly born when cholera epidemics had been 
ravaging Europe. Snow (1855) compared mortality from cholera for 
two groups of the population of London, whose drinking water was 
either purified or not, ascertained that purification decreased mortality 
by eight times, and thus discovered how did cholera epidemics spread. 
The need to combat the devastating visitations of cholera was of 
utmost importance. 
    No less important was the study of prevention of smallpox. The 
history of smallpox epidemics and inoculation, the communication of 
a mild form of smallpox from one person to another, is described in 
various sources (Condamine 1759, 1763, 1773; Karn 1931). In his 
first memoir, Condamine listed the objections against inoculation, 
both medical and religious.  
    Indeed, White (1896/1898) described the warfare of science with 
theology including, in vol. 2, pp. 55 – 59, examples of fierce 
opposition to inoculation (and, up to 1803, to vaccination of 
smallpox). Many thousands of Canadians perished in the mid-19th 
century only because, stating their religious belief, they had refused to 
be inoculated. White clearly distinguished between theology, the 
opposing force, and “practical” religion.  
    Karn stated at the very beginning of her article that 
    The method used in this paper for determining the influence of the 
death-rates from some particular diseases on the duration of life is 
based on suggestions which were made in the first place by D. 
Bernoulli. 
    Daniel Bernoulli (1766) justified inoculation. That procedure, 
however, spread infection, was therefore somewhat dangerous for the 
neighbourhood and prohibited for some time, first in England, then in 
France. Referring to statistical data, but not publishing it, Bernoulli 
specified the yearly rates of the occurrence of smallpox in those who 
have not had it before and of the corresponding mortality and assumed 
that the inoculation itself proved fatal in 0.5% of cases.  
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    He formed the appropriate differential equation whose solution 
showed the relation between age in years and the number of people of 
that age and, in addition, of those who had not contacted smallpox. 
Also by means of a differential equation he derived a similar formula 
for a population undergoing inoculation, that is, for its 99.5% which 
safely endured it and were not anymore susceptible to the disease. It 
occurred, that inoculation lengthened the mean duration of life by 3 
years and 2 months and that it was therefore, in his opinion, extremely 
useful. The Jennerian vaccination, – the inestimable discovery by 
Jenner, who has thereby become one of the greatest benefactors of 
mankind (Laplace 1814/1995, p. 83), – was introduced at the end of 
the 18th century. Its magnificent success had not however ruled out 
statistical studies. Thus, Simon (1887, vol. 1, p. 230) formulated a 
question about the impermanence of protection against post-vaccinal 
smallpox and concluded that only comprehensive national statistics 
could have provided an answer. 
    D’Alembert (1761; 1768) criticized Daniel Bernoulli. Not everyone 
will agree, he argued, to lengthen his mean duration of life at the 
expense of even a low risk of dying at once of inoculation; then, moral 
considerations were also involved, as when inoculating children. 
D’Alembert concluded that statistical data on smallpox should be 
collected, additional studies made and that the families of those dying 
of inoculation should be indemnified or given memorial medals. 
    He also expressed his own thoughts, methodologically less evident 
but applicable to studies of even unpreventable diseases. Dietz & 
Heesterbeek (2002) described Bernoulli’s and D’Alembert’s 
investigations on the level of modern mathematical epidemiology and 
mentioned sources on the history of inoculation.  
    Seidel (1865; 1866), a German astronomer and mathematician, 
quantitatively estimated the dependence of the number of cases of 
typhoid fever on the level of subsoil water and precipitation but made 
no attempt to generalize his study, to introduce correlation.  
    Already in 1839 there appeared (an unconvincing) statistical study 
of the amputation of limbs. J. Y. Simpson (1847 – 1848/1871, p. 102) 
mistakenly attempted to obtain reliable results about that operation by 
issuing from materials pertaining to several English hospitals during 
1794 – 1839. Indeed, physicians learned that the new procedure, 
anaesthesia, could cause complications, and began to compare 
statistically the results of amputations made with and without using it. 
    Simpson (1869 – 1870/1871, title of contribution) also coined the 
term Hospitalism which is still in vogue. He compared mortality from 
amputations made in various hospitals and reasonably concluded, on 
the strength of its monotonous behaviour, that mortality increases with 
the number of beds; actually (p. 399), because of worsening of 
ventilation and decrease of air space per patient. Suchlike justification 
of conclusions was not restricted to medicine, cf. Quetelet’s study of 
probabilities of conviction of defendants (§ 7.1). 
    In the mid-19th century Pirogov began to compare the merits of the 
conservative treatment of the wounded versus amputation. Later he 
(1864, p. 690) called his time transitional: 
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    Statistics shook the sacred principles of the old school, whose views 
had prevailed during the first decades of this century, – and we ought 
to recognize it, – but it had not established its own principles. 
    Pirogov (1849, p. 6) reasonably believed that the application of 
statistics in surgery was in complete agreement with the latter because 
surgical diseases depended incomparably less on individual influences 
but he indicated that medical statistics was unreliable, that (1864/1865 
– 1866, p. 20) a general impression based on sensible observation of 
cases was better. He (1879/1882, p. 40) singled out extremely different 
circumstances and stressed (1871, pp. 48 – 49) the importance of 
efficient administration. Pirogov participated in the Crimean war, in 
which Florence Nightingale, on the other side, showed her worth both 
as a medical nurse and a statistician. She would have approved of 
Pirogov’s conclusion above.  
    Pirogov was convinced in the existence of regularities in mass 
phenomena. Thus (1850 – 1855/1961, p. 382), each epidemic disease 
as well as each considerable operation had a constant mortality rate, 
whereas war was a traumatic epidemic (1879/1882, p. 295). This latter 
statement apparently meant that under war conditions the sickness rate 
and mortality from wounds obeyed statistical laws. Then (1854, p. 2), 
the skill of the physicians [but not of witch doctors] hardly influenced 
the total result of the treatment of many patients. On Pirogov see 
Sheynin (2001a). 
    A French physician Louis (1825) introduced the so-called 
numerical method of studying symptoms of various diseases. His 
proposal had been applied much earlier in various branches of science. 
It amounted to the use of the statistical method without involving 
stochastic considerations which. Quantitative data were also collected 
in agriculture, meteorology, astronomy etc.; astronomical catalogues, 
for example, fall in the same category. Nevertheless, this line of 
development was not sufficient. Discussions about the numerical 
method lasted at least a few decades. Thus, d’Amador (1837) attacked 
Louis wrongly attributing to him a recommendation to use the theory 
of probability.  
    Tolstoy (1884 – 1886/2003, p. 27) apparently mocked that, not 
generally accepted anymore approach, by stating that physicians only 
compared the probabilities of various possible illnesses without really 
caring about their patients.  
    Gavarret (1840) noted the shortcomings of the numerical method 
and adduced examples on the comparison of competing methods of 
medical treatment as also an advice on the check of the null 
hypothesis (as it is now called), see p. 194. Thus, apart from 
popularizing probability theory, Gavarret’s main achievement was the 
introduction of the principle of the null hypothesis and the necessity of 
its check into medicine (actually, in natural science in general).  
    Laplace (1798 – 1825/1878 – 1882, t. 3, ca. 1804, p. xi; 1814/1995, 
p. 116) argued that the adopted hypotheses ought to be incessantly 
rectified by new observations until veritable causes or at least the 
laws of the phenomena be discovered. Cf. Double et al (1835, pp. 176 
– 177): the main means for revealing the vérité were induction, 
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analogy and hypotheses founded on facts and incessantly verified and 
rectified by new observations.  
    Gavarret’s contribution became generally known and many authors 
repeated his recommendations. The time for mathematical statistics or 
for its application in medicine was not yet ripe, but at least the Poisson 
– Gavarret tradition led to the existence, in medicine, of a lasting drive 
towards the use of probability based on numerous observations (and 
the skill of the physician). Indeed, Poisson (1837a, Note to Annotated 
Contents) stated that Medicine will not become either a science or an 
art if not based on numerous observations, on the tact and proper 
experience of the physicians …  
    A few years earlier Double, Poisson et al (1835) also maintained 
that statistics was the functioning mechanism of the calculus of 
probability, necessarily concerning infinite [?] masses … Cournot 
(1843, § 103) and Rümelin (1863 – 1864/1875, p. 222) were of the 
same opinion.  
    A large number of observations! However, at least from the mid-
18th century (Bull 1959, p. 227) valuable medical conclusions had 
been based on very small numbers of them, but it was Liebermeister 
(ca. 1876) who vigorously opposed Gavarret and Poisson. He argued 
that it was impossible, in therapeutics, to collect vast observations 
and, anyway, that recommendations based on several (reliable) 
observations should be adopted as well. Statisticians have only quite 
recently discovered his paper written as though by a specialist in 
mathematical statistics. Then, at least from Gossett (Student) onwards 
small samples became necessary for statistics. For his life and work 
see E. S. Pearson (1990).  
    2.2. Juridical Statistics. Niklaus Bernoulli published a dissertation 
on the application of the art of conjecturing to jurisprudence 
(1709/1975). It contained the calculation of the mean duration of life 
and recommended its use for ascertaining the value of annuities and 
estimating the probability of death of absentees about whom nothing 
is known; methodical calculations of expected losses in marine 
insurance; calculation of expected losses in the celebrated Genoese 
lottery and of the probability of truth of testimonies; the determination 
of the life expectancy of the last survivor of a group of men (pp. 296 – 
297), see Todhunter (1865, pp. 195 – 196). Assuming a continuous 
uniform law of mortality (the first continuous law in probability 
theory), he calculated the expectation of the appropriate order statistic 
and was the first to use, in a published work, both this distribution and 
an order statistic. 
    Bernoulli’s work undoubtedly fostered the spread of stochastic 
notions in society, but he borrowed separate passages from the Ars 
Conjectandi and even from the Meditationes (Kohli 1975, p. 541), 
never intended for publication. His general references to Jakob, his 
late uncle, do not excuse his plagiarism the less so since he dedicated 
his work not to the memory of Jakob, but to his father Johann. 
    Condorcet, Laplace and Poisson actively studied the application of 
probability and statistics to jurisprudence. Todhunter (1865, p. 352) 
concluded that The obscurity and self contradictions in the work of 
Condorcet are without any parallel, but Poisson (1837a, pp. 2 and 5) 
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favourably mentioned his ideas. As to Laplace, it seems that his main 
achievement consisted in drawing Poisson’s attention to the 
administration of justice.  
    Poisson (1837a, pp. 1 – 2) thought that the study of the probabilities 
of verdicts and, in general, of majority decisions, was a most 
important application of the calculus of probability. He (p. 17) 
perceived his main goal in that field as an examination of the stability 
of the rate of conviction and of the probability of miscarriage of 
justice as well as in the comparison of judicial statistics of different 
countries and (p. 7) in proving the applicability of mathematical 
analysis to things that are called moral.  
    Poisson was mainly interested in studying criminal offences. Unlike 
Laplace, he (p. 4 and § 114, p. 318) introduced a positive probability 
of the defendant’s guilt (not to be taken into account in any individual 
case). One of his statements (§ 136, pp. 375 – 376) is debatable: he 
thought that the rate of conviction should increase with crime. 
    Poisson estimated the (beneficial or otherwise) changes in the rate 
of conviction following changes in the administration of justice (in the 
number of jurors, in the majority vote needed for conviction). I do not 
know, however, whether his calculations had been taken into account.  
    Neither Condorcet, nor Poisson mentioned that they had assumed 
that the jurors reach decisions independently from each other whereas 
Laplace (1816, p. 523) only said so in passing. 
    The application of the theory of probability to jurisprudence 
continued to be denied. Here are the two most vivid pertinent 
statements (Mill 1843/1886, p. 353; Poincaré 1896/1912, p. 20): 
    1) Misapplications of the calculus of probability […] made it the 
real opprobrium of mathematics. It is sufficient to refer to the 
applications made of it to the credibility of witnesses, and to the 
correctness of the verdicts of juries. 
    2) People influence each other and act like the moutons de Panurge. 
    The higher is a scientist’s standing, the more reserved he ought to 
be when invading an alien field. Even Mill, not to mention Poincaré, 
should not have categorically condemned a subject of which he was 
ignorant.  
    It is opportune to cite Gauss whose opinion was voiced by W. E. 
Weber in a letter of 1841 to J. F. Fries (Gauss, W-12, pp. 201 – 204): 
probability can serve as a guide line for determining the desired 
number of jurors and witnesses. Fries had then been preparing his 
book on the principles of the theory of probability; it appeared in 
1842. Then, juridical statistics effectively applied the notion of errors 
of both kinds. 
    2.3. Insurance of Property and Life Insurance. Marine insurance 
was the first essential type of insurance of property but it lacked 
stochastic ideas or methods. In particular, there existed an immoral 
and repeatedly prohibited practice of betting on the safe arrivals of 
ships. Anyway, marine insurance had been apparently based on rude 
and subjective estimates.  
    And here is a quote from the first English Statute on assurance 
(Publicke Acte No. 12, 1601; Statutes of the Realm, vol. 4, pt. 2, pp. 
978 – 979): 
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    And whereas it hathe bene tyme out of mynde an usage amongste 
merchants, both of this realme and of forraine nacyons, when they 
make any great adventure, […] to give some consideracion of money 
to other persons […] to have from them assurance made of their 
goodes, merchandizes, ships, and things adventured, […] whiche 
course of dealinge is commonly termed a policie of assurance […]. 
 
    Life insurance came into its own not by a front-door entrance, but 
by the marine insurance porthole (O’Donnell 1936, p. 78) … It exists 
in two main forms. Either the insurer pays the policy-holder or his 
heirs the stipulated sum on the occurrence of an event dependent on 
human life; or, the latter enjoys a life annuity. Annuities were known 
in Europe from the 13th century onward although later they were 
prohibited for about a century until a Papal bull officially allowed it in 
1423 (Du Pasquier 1910, pp. 484 – 485). The annuitant’s age was not 
usually taken into consideration either in the mid-17th century 
(Hendriks 1853, p. 112), or even, in England, during the reign of 
William III [1689 – 1702] (K. Pearson 1978, p. 134). Otherwise, as it 
seems, the ages had been allowed for only in a very generalized way 
(Kohli & van der Waerden 1975, pp. 515 – 517; Hald 1990, p. 119). 
At the end of the 17th century the situation began to change.  
    In the 18th, and even in the mid-19th century, life insurance still 
hardly essentially depended on stochastic considerations; moreover, 
the statistical data collected by the insurance societies as well as their 
mortality tables and methods of calculations remained secret. And 
more or less honest business based on statistics of mortality hardly 
superseded downright cheating before the second half of the 19th 
century. Nevertheless, beginning at least from the 18th century, the 
institute of life insurance which essentially depended on studies of 
mortality strongly influenced the theory of probability and turned the 
attention of scholars to medical and social problems. 
    Tontines constituted a special form of mutual insurance. Named 
after the Italian banker Laurens Tonti (Hendriks 1863), they, acting as 
a single body, distributed the total sums of annuities among their 
members still alive, so that those, who lived longer, received 
considerable moneys. Tontines were neither socially accepted nor 
widespread on the assumed rationale that they were too selfish and 
speculative (Hendriks 1853, p. 116). Nevertheless, they did exist in 
the 17th century. Euler (1776) devised a tontine with flexible moments 
of entering it, flexible ages of its members and of their contributions 
(therefore, of their annual income as well). Such a tontine could have 
theoretically existed forever rather than disappearing with the death of 
its last member. Euler’s innovation was apparently never taken up.  
    De Moivre first examined life insurance in the beginning of the 
1720s and became the most influential author of his time in that field. 
Issuing from Halley’s table, he (1725/1756, pp. 262 – 263) assumed a 
continuous uniform law of mortality for all ages beginning with 12 
years and a maximal duration of life equal to 86 years. 
    Hald (1990, pp. 515 – 546) described in detail the work of De 
Moivre and of his main rival, Simpson (1775), in life insurance. 
Simpson improved on, and in a few cases corrected the former’s 
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findings. After discussing one of the versions of mutual insurance, 
Hald (p. 546) concluded that Simpson’s relevant results represented an 
essential step forward; however, his attitude to De Moivre showed 
him as an unblushing liar (K. Pearson 1978, p. 184). 
    Daniel Bernoulli (1768b) investigated the duration of marriages for 
differing ages of man and wife which was important for insurance on 
two lives. He based his analysis on another study (1768a) of extracting 
pairs of white and black stripes from an urn with the respective 
probabilities being equal or unequal.  
    Laplace (1814/1995, p. 89) compared free people to an association 
whose members mutually protect their property and went on to praise 
institutions based on the probabilities of human life. Markov 
collaborated with pension funds (Sheynin 1997) and in 1906, in a 
newspaper, he destructively criticized a proposed official scheme for 
insuring children (reprinted in same article). 
    Actuarial science inevitably led to the compilation of life tables and 
their improvement. Quetelet & Smits (1832, p. 33) stated that separate 
tables for men and women had only recently begun to be published. 
However (Nordenmark 1929, p. 250), Wargentin compiled such 
separate tables for Sweden in 1766.  
    Then, many authors noted that the expectation of life of the general 
male (say) population is either larger or smaller than that of men from 
selected populations (e. g., from monks). Note a related remark made 
by Buffon (1777/1954, § 8, note) in 1762, in a letter to Daniel 
Bernoulli and thus to some extent foreshadowing Quetelet’s Average 
man: 
    Mortality tables are always concerned with the average man; that 
is, with people in general, feeling themselves quite well or ill, healthy 
or infirm, robust or feeble. 
    Andersson (1929, p. 239) voiced a serious complaint:  
    The State does not [do] much […] to protect and forward the sound 
practice of insurance. […] State statistics should pay regard to all the 
desires of insurance and try to meet them. […] No country has as yet 
suitable fire statistics, no shipping statistics are [is] being performed 
with due attention to the special demands of marine insurance. […] 
The insurance itself […] still has not given the due place to statistics 
in the scientific insurance work.  
    2.4. Earliest Stochastic and Statistical Investigations 
    2.4.1. Pascal and Fermat. In 1654 Pascal and Fermat exchanged 
several letters (Pascal 1654) which heralded the beginning of the 
formal history of probability. They discussed several problems; here is 
the most important of them which was known even at the end of the 
14th century. Two or three gamblers agree to continue playing until 
one of them scores n points; for some reason the game is interrupted 
and it is required to divide the stakes in a reasonable way. Both 
scholars solved this problem of points, see Takácz (1994), by issuing 
from one and the same rule: the winnings of the gamblers should be in 
the same ratio(s) as existed between the expectations of their scoring 
the n points. The actual introduction of that notion, expectation, was 
their main achievement. They also effectively applied the addition and 
the multiplication theorems.  
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    The methods used by Pascal and Fermat differed from each other. 
In particular, Pascal solved the above problem by means of the 
arithmetic triangle (Edwards 1987) composed, as is well known, of 
binomial coefficients of the development (1 + 1)n for increasing values 
of n. Pascal’s relevant contribution (1665) was published 
posthumously, but Fermat was at least partly familiar with it. Both 
there, and in his letters to Fermat, Pascal made use of partial 
difference equations (Hald 1990, pp. 49 and 57).  
    The celebrated Pascal wager (1669/2000, pp. 676 – 681), also 
published posthumously, was a discussion about choosing a 
hypothesis. Does God exist, rhetorically asked the devoutly religious 
author, and answered: you should bet. If He does not exist, you may 
live calmly [and sin]; otherwise, however, you can lose eternity. In the 
mathematical sense, Pascal’s reasoning is vague; perhaps he had no 
time to edit his fragment. Its meaning is, however, clear: if God exists 
with a fixed and however low probability, the expectation of the 
benefit accrued by believing in Him is infinite. Pascal died in 1662 
and the same year Arnauld & Nicole (1662/1992, p. 334) published a 
similar statement: 
    Infinite things, like eternity and salvation, cannot be equated to any 
temporal advantage. […] We should never balance them with any 
worldly benefit. […] The least degree of possibility of saving oneself is 
more valuable than all the earthly blessings taken together, and the 
least peril of losing that possibility is more considerable than all the 
temporal evils […]. 
    2.4.2. Huygens. Huygens was the author of the first treatise on 
probability (1657). Being acquainted only with the general contents of 
the Pascal – Fermat correspondence, he independently introduced the 
notion of expected random winning and, like those scholars, selected 
it as the test for solving stochastic problems. He went on to prove that 
the value of expectation of a gambler who gets a in p cases and b in q 
cases was 
 

    .
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+
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    Jakob Bernoulli (1713/1999, p. 9) justified the expression (1) much 
simpler than Huygens did: if each of the p gamblers gets a, and each 
of the q others receives b, and the gains of all of them are the same, 
then the expectation of each is equal to (1). After Bernoulli, however, 
expectation began to be introduced formally: expressions of the type 
of (1) followed by definition. 
    Huygens solved the problem of points under various initial 
conditions and listed five additional problems two of which were due 
to Fermat, and one, to Pascal. He solved them later, either in his 
correspondence, or in manuscripts published posthumously. They 
demanded the use of the addition and multiplication theorems, the 
introduction of conditional probabilities and the formula (in modern 
notation) 
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    P(B) = ΣP(Ai)P(B/Ai), i = 1, 2, …, n. 
 
    Problem No. 4 was about sampling without replacement. An urn 
contained 8 black balls and 4 white ones and it was required to 
determine the ratio of chances that in a sample of 7 balls 3 were, or 
were not white. Huygens determined the expectation of the former 
event by means of a partial difference equation (Hald 1990, p. 76). 
Nowadays such problems leading to the hypergeometric distribution 
(Jakob Bernoulli 1713/1999, pp. 167 – 168; De Moivre 1712/1984, 
Problem 14 and 1718/1756, Problem 20) appear in connection with 
statistical quality control. 
    Pascal’s Problem No. 5 was the first to discuss the gambler’s ruin. 
Gamblers A and B undertake to score 14 and 11 points respectively in 
a throw of 3 dice. They have 12 counters each and it is required to 
determine the ratio of the chances that they be ruined. The stipulated 
numbers of points occur in 15 and 27 cases and the ratio sought is 
therefore (5/9)12.  
    In 1669, in a correspondence with his brother, Huygens (1888 – 
1950, 1895), see Kohli & van der Waerden (1975), discussed 
stochastic problems connected with mortality and life insurance. 
Issuing from Graunt’s mortality table (§ 1.2), Huygens (pp. 531 – 532) 
introduced the probable duration of life (but not the term itself). He 
also showed that the probable duration of life can be determined by 
means of the graph (plate between pp. 530 and 531) of the function y 
= 1 – F(x), where, in modern notation, F(x) was a remaining unknown 
integral distribution function with admissible values of the argument 
being 0 ≤ x ≤ 100. 
    In the same correspondence Huygens (p. 528) examined the 
expected period of time during which 40 persons aged 46 will die out; 
and 2 persons aged 16 will both die. The first problem proved too 
difficult, but Huygens might have remarked that the period sought was 
40 years (according to Graunt, 86 years was the highest possible age). 
He mistakenly solved a similar problem by assuming that the law of 
mortality was uniform and that the number of deaths will decrease 
with time: for a distribution, continuous and uniform in some interval, 
n order statistics will divide it into (n + 1) approximately equal parts 
and the annual deaths will remain about constant. In the second 
problem Huygens applied conditional expectation. When solving 
problems on games of chance, Huygens issued from expectations 
which varied from set to set rather than from constant probabilities 
and was compelled to compose and solve difference equations. See 
also Shoesmith (1986). 
    2.4.3. Newton left interesting ideas and findings pertaining to 
probability, but more important were his philosophical views (K. 
Pearson 1926): 
    Newton’s idea of an omnipresent activating deity, who maintains 
mean statistical values, formed the foundation of statistical 
development through Derham, Süssmilch, Niewentyt, Price to Quetelet 
and Florence Nightingale […]. De Moivre expanded the Newtonian 
theology and directed statistics into the new channel down which it 
flowed for nearly a century. The cause which led De Moivre to his 
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Approximatio [1733] or Bayes to his theorem were more theological 
and sociological than purely mathematical, and until one recognizes 
that the post-Newtonian English mathematicians were more 
influenced by Newton’s theology than by his mathematics, the history 
of science in the 18th century – in particular that of the scientists who 
were members of the Royal Society – must remain obscure. 
    Bayes theorem is a misnomer (§ 2.4.7). Then, Newton never 
mentioned mean values. In 1971, answering my question on this point, 
the Editor of his future book (1978), E. S. Pearson, stated: 
    From reading [the manuscript of that book] I think I understand 
what K. P. meant. […] He had stepped ahead of where Newton had to 
go, by stating that the laws which give evidence of Design, appear in 
the stability of the mean values of observations. i. e., [he] supposed 
that Newton was perhaps unconsciously thinking what De Moivre put 
into words.  
    Indeed, K. Pearson (1978, pp. 161 and 653) had attributed to De 
Moivre (1733/1756, pp. 251 – 252) the Divine stability of statistical 
ratios, that is, the original determination of original design and 
referred to Laplace who (1814/1995, p. 37) had formulated a related 
idea: 
    In an infinitely continued sequence of events, the action of regular 
and constant causes ought, in the long run, to outweigh that of 
irregular causes. 
    However, Laplace never mentioned Divine design. And here is 
Newton’s most interesting pronouncement (1704/1782, Query 31): 
    Blind fate could never make all the planets move one and the same 
way in orbs concentrick, some inconsiderable irregularities excepted, 
which may have risen from the mutual actions of comets and planets 
upon one another, and which will be apt to increase, till this system 
wants a reformation. Such a wonderful uniformity in the planetary 
system must be allowed the effect of choice. And so must the 
uniformity in the bodies of animals. 
    Newton’s recognition of the existence and role of random 
disturbances is very important. At the same time Newton (1958, pp. 
316 – 318) denied randomness and explained it by ignorance of 
causes.  
    Newton (MS 1664 – 1666/1967, pp. 58 – 61) was the first to 
mention geometric probability: If the Proportion of the chances […] 
bee irrational, the interest may bee found after ye same manner. 
Newton then considered a throw of an irregular die. He remarked that 
[nevertheless] it may bee found how much one cast is more easily 
gotten than another. He likely bore in mind statistical probabilities. 
Newton (1728, p. 52) also applied simple stochastic reasoning for 
correcting the chronology of ancient kingdoms:  
    The Greek Chronologers […] have made the kings of their several 
Cities […] to reign about 35 or 40 years a-piece, one with another; 
which is a length so much beyond the course of nature, as is not to be 
credited. For by the ordinary course of nature Kings Reign, one with 
another, about 18 or 20 years a-piece; and if in some instances they 
Reign, one with another, five or six years longer, in others they reign 
as much shorter: 18 or 20 years is a medium. 
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    Newton derived his own estimate from other chronological data and 
his rejection of the twice longer period was reasonable. Nevertheless, 
a formalized reconstruction of his decision is difficult: within one and 
the same dynasty the period of reign of a given king directly depends 
on that of his predecessor. Furthermore, it is impossible to determine 
the probability of a large deviation of the value of a random variable 
from its expectation without knowing the appropriate variance (which 
Newton estimated only indirectly and in a generalized way). And here 
is the opinion of Whiteside (private communication, 1972) about his 
thoughts concerning errors of observation: 
    Newton in fact (but not in explicit statement) had a precise 
understanding of the difference between random and structurally 
‘inbuilt’ errors. He was certainly, himself, absorbed by the second 
type of ‘inbuilt’ error, and many theoretical models of differing types 
of physical, optical and astronomical phenomena were all consciously 
contrived so that these structural errors should be minimized. At the 
same time, he did, in his astronomical practice, also make suitable 
adjustment for ‘random’ errors in observation … 
    2.4.4. Arbuthnot. See § 1.3.1-1. 
    2.4.5. Jakob Bernoulli. His Ars Conjectandi (1713) appeared 
posthumously; Niklaus Bernoulli compiled a Preface (Jakob Bernoulli 
1975, p. 108) where, for the first time ever, the term calculus of 
probability (in Latin) had appeared. The book itself contained four 
parts. Interesting problems are solved in parts 1 (a reprint of Huygens’ 
tract, see § 2.4.2) and 3 (the study of random sums for the uniform and 
the binomial distributions, a similar investigation of the sum of a 
random number of terms for a particular discrete distribution, a 
derivation of the distribution of the first order statistic for the discrete 
uniform distribution and the calculation of probabilities appearing in 
sampling without replacement). The author’s analytical methods 
included combinatorial analysis and calculation of expectations of 
winning in each set of finite and infinite games and their subsequent 
summing. 
    In the beginning of pt. 4 Bernoulli explained that the theoretical 
number of cases was often unknown, but what was impossible to 
obtain beforehand, might be determined by observations. In his Diary 
(Meditationes), whose stochastic considerations were only published 
in Bernoulli (1975), he indirectly cited Graunt and reasoned how 
much more probable it was that a youth outlives an old man than vice 
versa.  
    Bernoulli maintained that moral certainty ought to be admitted on a 
par with absolute certainty. His theorem will show, he declared, that 
statistical probability was a morally certain (a consistent) estimator of 
the theoretical probability. It was Descartes (1644/1978, pt. 4, No. 
205, 483°, p. 323) who introduced moral certainty for regulating our 
morals (moeurs). 
    Actually, Bernoulli strictly proved a proposition that, beginning 
with Poisson, is called the LLN. Denote the statistical probability of 
the occurrence of the studied event in a trial by p̂  and the theoretical 
probability of the event by p; assume that n independent Bernoulli 
trials in which p = Const are made. Then, as n → ∞, 



124 
 

 
    ˆlim ( ) 1.P p p− =                                                                (2) 
 
    This is an existence theorem and Bernoulli properly stated that it 
signified that [for the Bernoulli trials] induction (the trials) was not 
worse than deduction (the theoretically determined p). Had the right 
side of (2) be a proper fraction, he added, induction would have been 
worse. 
    His direct LLN thus determined p̂  whereas, as stated above, he 

initially stated that p̂  was a morally certain estimate of p; moreover, 
he even adduced an appropriate example in which p did not even 
exist. This initial statement is called the inverse LLN, and Bernoulli 
mistakenly believed that any version of that law led to the other 
version. 
    Bernoulli also estimated the rapidity of the convergence of one 
probability to the other; however, not knowing the later discovered 
Stirling theorem, his estimation was not good enough. Without 
noticing the existence theorem K. Pearson (1925) denied Bernoulli’s 
great achievement and even compared it with the wrong Ptolemaic 
system of the world. 
    As Cournot (1843, § 86) emphasized, although not really definitely, 
stochastic reasoning was now justified beyond the province of games 
of chance, at least for the Bernoulli trials. Strangely enough, 
statisticians for a long time had not recognized this fact. Haushofer 
(1872, pp. 107 – 108) declared that statistics, since it was based on 
induction, had no intrinsic connections with mathematics based on 
deduction. And Maciejewski (1911, p. 96) introduced a statistical 
LLN instead of the Bernoulli proposition that allegedly impeded the 
development of statistics. His new law qualitatively asserted that 
statistical indicators exhibited ever lesser fluctuations as the number 
of observations increased and his opinion likely represented the 
prevailing attitude of statisticians. Bortkiewicz (1917, pp. 56 – 57) 
thought that the LLN ought to denote a quite general fact, 
unconnected with any stochastic pattern, of a degree of stability of 
statistical indicators under constant or slightly changing conditions 
and a large number of trials. Even Romanovsky (1961, p. 127) kept to 
a similar view.  
    2.4.6. De Moivre. For n → ∞ De Moivre’s main result of 1733 
concerning Bernoulli trials can be written as  
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lim  [ ] exp( ) .
22π

b

a

np z
P a b dz

npq

−
≤ ≤ = −∫                       (3) 

 
Here µ is the number of successes, np = Eµ and npq = varµ. 
    This is the integral De Moivre – Laplace theorem, as Markov 
(1900/1924, p. 53) called it, – a particular case of the CLT. Neither De 
Moivre, nor Laplace knew about uniform convergence with respect to 
a and b that takes place here. De Moivre proved (3) in a short Latin 
memoir of 1733 which he sent around to his colleagues and then 
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translated it into English and incorporated in the editions of 1738 and 
1756 of his Doctrine of Chances.  
    Laplace (1812) proved (3) simpler and provided a correction term 
allowing for the finiteness of n. De Morgan (1864) was the first to 
notice the normal distribution in (3) but he also made unbelievably 
wrong statements about the appearance of negative probabilities and 
those exceeding unity. More: in a letter of 1842 he (Sophia De 

Morgan 1882, p. 147) declared that tan∞ = cot∞ = 1.−  
    2.4.7. Bayes. I dwell on the posthumous memoir (Bayes 1764 – 
1765) complete with the commentaries by R. Price. In its first part 
Bayes introduced his main definitions and proved a few theorems; 
note that he defined probability through expectation. There was no 
hint of the so-called Bayes theorem introduced by Laplace 
(1812/1886, p. 183) 
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∑
,                                               (4) 

 
as Cournot (1843, § 88), actually following predecessors, called it.  
    Here is the real Bayes’ theorem in a simplified description 
(Gnedenko 1950/1954, p. 366). It is required to determine the 
unknown probability r having continuous uniform density on interval 
[0, 1] if after n = p + q (independent) trials it occurred p times and 
failed q times. Answer: 
 

    P(a  r  b) = 
1

0

(1 ) (1 ) .
b

p q p q

a

u u du u u du− ÷ −∫ ∫               (5) 

 
Here, [a, b] is a segment within [0, 1]. Bayes derived the denominator 
of (5) obtaining the value of the [beta-function] B(p+ 1; q + 1) and 
spared no effort in estimating its numerator, a problem that remained 
difficult until the 1930s. The right side of (5) is now known to be 
equal to the difference of two values of the incomplete beta-function 
 
    Ib(p + 1; q + 1) – Ia(p + 1; q + 1). 
 
    Beginning with the 1930s and perhaps for three decades English 
and American statisticians had been denying Bayes after which his 
theorem has returned from the cemetery (Cornfield 1967). 
The first and the main critic of the Bayes theorem or formula was 
Fisher (1922, pp. 311 and 326). It seems that he disagreed with the 
introduction of hardly known prior probabilities and/or with the 
assumption that they were equal to one another. 
    Bayes had not expressly discussed the case of n → ∞. In another 
posthumous note published in 1764 he warned mathematicians about 
the danger of applying divergent series. He had not named De Moivre, 
but apparently had in mind his derivation of the De Moivre – Laplace 
theorem as well. De Moivre and his contemporaries had indeed 

m

≤ ≤
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employed convergent parts of divergent series for approximate 
calculations, and about a century later Poisson (1837a, § 68, p. 175) 
stated that that trick was possible. Note that divergent series are now 
included in the province of mathematics. 
    Timerding, the Editor of the German translation of the Bayes 
memoir (1908), managed to consider the limiting case without 
applying divergent series. He issued from Bayes’ calculations made 
for large but finite values of p and q. Applying a clever trick, he 
proved that, as n → ∞, the probability of the studied event obeyed the 
proposition  
 

    limP{
2

3/2
0

1
} exp( ) ,

22π
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z z dw

pqn
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− ≤ ≤ = −∫                         (6) 

 
where (not indicated by Timerding) a = p/n = Er, pq/n3 = varr so that 
r ≈ Er = p/n. 
    The assumption of a uniform density is not a restriction; according 
to information theory, it is tantamount to a statement of ignorance. 
The influence of a non-uniform density taking place apparently 
decreases with the increase of n (with the increase in posterior 
information).  
    The functions in the left sides of formulas (3) and (6) are different 
random variables, centred and normed in the same way; Bayes, 
without knowing the notion of variance, apparently understood that 
(3) was not sufficiently precise for describing the problem inverse to 
that studied by De Moivre, who (1718/1756, p. 251) mistakenly 
thought otherwise (as Jakob Bernoulli also did). Note that, unlike the 
direct law, its inverse counterpart has less initial data (the theoretical 
probability is unknown) which qualitatively explains the situation.  
    A modern encyclopaedia (Prokhorov 1999) contains 14 items 
mentioning Bayes, for example, Bayesian estimator, Bayesian 
approach (and many more items are mentioned elsewhere). There also, 
on p. 37, the author of the appropriate entry mistakenly attributes 
formula (4) to Bayes. For my part, I believe that, since Bayes had 
correctly interpreted the inverse LLN, he thus completed the first 
stage of the theory of probability. Moreover, he and his predecessors, 
Jakob Bernoulli (§ 2.4.5) and De Moivre (end of § 1.3 and § 2.4.6) 
provided strict proofs whereas Laplace resolutely transferred 
probability to applied mathematics (and Poisson followed him). 
    Bayes was also the main predecessor of Mises (who never 
acknowledged it). And when a statistician starts working, he 
invariably has to issue from some statistical probability. If and when 
justifying this step, he refers to Mises, but he could have mentioned 
Bayes instead.  

3. Treatment of Observations 
    3.1. The following explanation will be needed below. Denote the 
observations of a constant sought by 
 
    x1, x2, …, xn, x1 ≤ x2 ≤ … ≤ xn.                                       (1) 
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    It is required to determine its value, optimal in some sense, and 
estimate the residual error. The classical theory of errors considers 
independent observations and, without loss of generality, they might 
also be regarded as of equal weight. This problem is called adjustment 
of direct observations. 
    Suppose now that k unknown magnitudes x, y, z, … are connected 
by a redundant system of n physically independent equations (k < n) 
 
    aix + biy + ciz + … + si = 0                                                (2) 
 
whose coefficients are given by the appropriate theory and the free 
terms are measured. The approximate values of x, y, z, … were usually 
known, hence the linearity of (2). The equations are linearly 
independent (a later notion), so that the system is inconsistent (which 
was perfectly well understood). Nevertheless, a solution had to be 
chosen, and it was done in such a way that the residual free terms (call 
them vi) were small enough. The values of the unknowns thus 
obtained are called their estimates ( ˆ ˆ, ,...x y ) and this problem is called 
adjustment of indirect measurements. 
    Since the early 19th century the usual condition for solving (2) was 
that of least squares 
 
    W = ∑vi

2 = [vv] = v1
2 + v2

2 + … + vn
2 = min,                   (3) 

 
so that 
 
    / / ... 0.W x W y∂ ∂ = ∂ ∂ = =                                                   (4) 
 
    Conditions (4) easily lead to a system of normal equations 
 
    [aa] x̂  + [ab] ŷ  + … + [as] = 0, [ab] x̂  + [bb] ŷ  + … + [bs] = 0, …,  
 
with a positive definite and symmetric matrix. For direct 
measurements the same condition (3) leads to the arithmetic mean. 
    There also existed a determinate branch of the theory of errors now 
partly superseded by experimental design. It studies the process of 
measurement without applying stochastic reasoning. Here is a 
simplest example: determine the form of a geodetic figure ensuring 
optimal (in some sense) results. The real development of the 
determinate error theory was due to the differential calculus which 
ensured the study of the sought functions of measured magnitudes, but 
even Hipparchus was aware that, under favourable conditions, a given 
error of observation can comparatively little influence the unknown 
sought (Toomer 1974, p. 131), see also below.  
    Gauss and Bessel originated a new direction in practical astronomy 
and geodesy. They demanded and carried out thorough examinations 
of the instruments and investigations of the plausibility of the methods 
of observation. This direction belonged to the determinate error 
theory. 
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    Now, the design of experiments is a branch of mathematical 
statistics dealing with the rational organization of measurements 
subject to random errors (Enc. Math. 1977 – 1985/1988 – 1994, vol. 3, 
p. 66). Finney (1960), however, argued that this new discipline does 
not entirely belong to the mathematical theory of statistics, but did not 
elaborate. I would say, belongs to theoretical statistics, see § 7.2.  
    The design of experiments ought to include the choice of optimal 
methods and circumstances of observation, design of instruments 
capable of using such methods etc. (Box 1964). Many of such 
problems have nothing to do with randomness; and they undoubtedly 
belonged to the determinate error theory. 
    Some Russian authors (Romanovsky 1955; Bolshev 1989) state that 
the stochastic theory of errors belongs to statistics, but it seems more 
natural to define it as the application of the statistical method to the 
treatment of observations in experimental science, see § 9. 
Romanovsky excluded systematic errors from their consideration; 
Bolshev agreed and attributed their study to a special discipline, the 
processing (the treatment) of observations. I categorically deny such 
opinions. Observers have to take care of both random and systematic 
errors which cannot therefore be attributed to separate branches (or 
twigs) of science.  
    3.2. Ancient astronomers apparently selected point estimates for 
the constants sought by choosing almost any number within 
reasonable bounds. According to modern notions, such an attitude is 
quite proper if the errors of observations are large; moreover, it fits in 
with the qualitative nature of ancient science. 
    It was Daniel Bernoulli (1780) who introduced, although in a 
restricted sense, the notions of random and systematic errors, but 
ancient astronomers obviously acquired some understanding of both. 
The influence of refraction, for example, was systematic. 
    3.3. In Kepler’s time, and possibly even somewhat earlier, the 
arithmetic mean became the generally accepted estimator of 
measurements. Indeed, Kepler (1609/1992, p. 200/63), when treating 
four observations, selected a number as the medium ex aequo et bono 
(in fairness and justice). A plausible reconstruction assumes that it 
was a generalized arithmetic mean with differing weights of 
observations. More important, the Latin expression above occurred in 
Cicero, 106 – 43 BC (Pro A. Caecina oratio), and carried an 
implication Rather than according to the letter of the law, an 
expression known to lawyers. In other words, Kepler, who likely read 
Cicero, called the ordinary arithmetic mean the letter of the law, i.e., 
the universal estimator of the parameter of location. 
    Kepler repeatedly adjusted observations. How had he convinced 
himself that Tycho’s observations were in conflict with the Ptolemaic 
system of the world? I believe that Kepler applied the minimax 
principle which demanded that the residual free term of the given 
system of equations, maximal in absolute value, be the least from 
among all of its possible solutions. He (1609/1992, p. 286/113) 
apparently determined such a minimum, although only from among 
some possibilities, and found out that that residual was equal to 8′ 
which was inadmissible. Any other solution would have been even 
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less possible, so that either the observations or the underlying theory 
were faulty. Kepler reasonably trusted Tycho’s observations and his 
inference was obvious. Note that this principle did not ensure optimal, 
in any sense, results. 
    When adjusting observations, Kepler (Ibidem, p. 334/143) 
corrupted them by small arbitrary corrections. He likely applied 
elements of what is now called statistical simulation, but in any case 
he must have taken into account the properties of usual random errors, 
i.e., must have chosen a larger number of small positive and negative 
corrections and about the same number of the corrections of each sign. 
Otherwise, Kepler would have hardly achieved success.  
    3.4. Direct Observations. I am now entering the 18th century and, 
after discussing Lambert, begin with the treatment of direct 
observations. 
    3.4.1. The term Theory of errors (Theorie der Fehler) is due to 
Lambert (1765a, Vorberichte and § 321) who defined it as the study 
of the relations between errors, their consequences, circumstances of 
observation and the quality of the instruments. He isolated the aim of 
the Theory of consequences as the study of functions of observed (and 
error-ridden) magnitudes. In other words, he introduced the 
determinate error theory and devoted to it §§ 340 – 426 of his 
contribution. Neither Gauss, nor Laplace ever used the new 
terminology, but Bessel (1820, p. 166; 1838b, § 9) applied the 
expression theory of errors without mentioning anyone and by the 
mid-19th century it became generally known.  
    Lambert studied the most important aspects of treating observations 
and in this respect he was Gauss’ main predecessor. He (1760, §§ 271 
– 306) described the properties of usual random errors, classified them 
in accordance with their origin (§ 282), unconvincingly proved that 
deviating observations should be rejected (§§ 287 – 291) and 
estimated the precision of observations (§ 294), again lamely but for 
the first time ever. He then formulated an indefinite problem of 
determining a [statistic] that with maximal probability least deviated 
from the real value of the constant sought (§ 295) and introduced the 
principle of maximal likelihood, but not the term itself, for a 
continuous density (§ 303), maintaining, however (§ 306), that in most 
cases it will provide estimates little deviating from the arithmetic 
mean. The translator of Lambert’s contribution into German left out 
all this material claiming that it was dated. 
    Lambert introduced the principle of maximum likelihood for an 
unspecified, more or less symmetric and unimodal curve (as shown on 
his figure), call it φ(x – x̂ ), where x̂  was the sought parameter of 
location. Denote the observations by x1, x2, …, xn, and, somewhat 
simplifying his reasoning, write his likelihood function as  
 
    φ(x1 – x̂ ) φ(x2 – x̂ ) … φ(xn – x̂ ). 
 
    When differentiating it, Lambert had not indicated that the 
argument here was the parameter x̂ , etc. 
    Lambert (1765a) returned to the treatment of observations. He 
attempted to estimate the precision of the arithmetic mean, but did not 
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introduce any density and was unable to formulate a definite 
conclusion. He also partly repeated his previous considerations and 
offered a derivation of a density law of errors occurring in pointing an 
instrument (§§ 429 – 430) in accordance with the principle of 
insufficient reason: it was a semi-circumference (with an unknown 
radius) simply because there were no reasons for its angularity.  
    3.4.2. Simpson (1756), see also Shoesmith (1985), applied, for the 
first time ever, stochastic considerations to the adjustment of 
measurements by assuming that observational errors obeyed some 
density law and thus extended probability to a new domain and 
effectively introduced random observational errors. He aimed to refute 
some unnamed authors who had maintained that one good observation 
was as plausible as the mean of many of them. Simpson considered 
errors obeying the discrete uniform and triangular distributions and 
effectively applied the proper generating functions.  
    For both these cases he founded out that the probability that the 
absolute value of the error of the arithmetic mean of n observations 
was less than some magnitude, or equal to it. He decided that the 
mean was always [stochastically] preferable to a separate observation 
and thus arbitrarily and wrongly generalized his proof. Simpson also 
indicated that his first case was identical with the determination of the 
probability of throwing a given number of points with n dice each 
having (v + 1) faces. Note that in the continuous case Simpson’s 
distributions can be directly compared with each other: their 
respective variances are v2/3 and v2/6. 
    Soon Simpson (1757) reprinted his memoir adding to it an 
investigation of the continuous triangular distribution. However, his 
graph showed the density curve of the error of the mean which should 
have been near-normal but which did not possess the distinctive form 
of the normal distribution. 
    3.4.3. Daniel Bernoulli (1769) assumed the density law of 
observational errors as a semi-ellipse or semi-circumference of some 
radius r which he ascertained by assigning a reasonable maximal error 
of observation and the location parameter equal to the weighted 
arithmetic mean with posterior weights 
 
    pi = r2 – ( x̂ − xi)

2.                                                            (5) 
 
    Here, xi were the observations and x̂ , the usual mean. The first to 
apply weighted, or generalized arithmetic means was Short (1763). 
Such estimators demanded a subjective selection of weights and only 
provided a correction to the ordinary arithmetic mean which tended to 
vanish for even density functions. 
    In his published memoir Daniel Bernoulli (1778) objected to the 
application of the arithmetic mean which (§ 5) only conformed to an 
equal probability of all possible errors and was tantamount to shooting 
blindly. K. Pearson (1978, p. 268), however, reasonably argued that 
small errors were more frequent and had their due weight in the mean. 
Instead, Bernoulli suggested the maximum likelihood estimator of the 
location parameter. Listing reasonable restrictions for the density 
curve (but adding the condition of its cutting the abscissa axis almost 
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perpendicularly), he selected a semi-circumference with radius equal 
to the greatest possible, for the given observer, error. He then (§ 11) 
wrote out the likelihood function as 
 
    {[r2 – (x – x1)

2] [r2 – (x – x2)
2] [r2 –(x – x3)

2]…}1/2, 
 
where x was the unknown abscissa of the centre of the semi-
circumference, and x1, x2, x3, …, were the observations. Preferring, 
however, to ease calculation, he left the semi-circumference for an arc 
of a parabola but he had not known that the variance of the result 
obtained will therefore change. 
    For three observations his likelihood equation was of the fifth 
degree. Bernoulli numerically solved it in a few particular instances 
with some values of x1, x2, and x3 chosen arbitrarily (which was 
admissible for such a small number of them). I present his equation as 
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with an unavoidable use of successive approximations. For some 
inexplicable reason these formulas are lacking in Bernoulli’s memoir 
although the posterior weights (7) were the inverse of the weights (5) 
from his manuscript and heuristically contradicted his own 
preliminary statement about shooting skilfully. It is now known, 
however, that such weights are expedient in case of some densities.  
    3.4.4. Euler (1778, § 6) objected to the principle of maximum 
likelihood. He argued that the result of an adjustment should barely 
change whether or not a deviating observation was adopted, but that 
the value of the likelihood function essentially depended on that 
decision. His remark should have led him to the median although he 
(§ 7) selected the estimate (6) with posterior weights (5) and 
mistakenly assumed that Bernoulli had chosen these same weights.  
    It is not regrettably known whether Gauss had read these two 
contributions. Indeed, an intermediate formula of Euler heuristically 
resembled Gauss’ choice of least variance as a criterion for treating 
observations.  
    3.5. Indirect Measurements. Here, I consider the adjustment of 
redundant systems  
 
    aix + biy + … + si = vi, i = 1, 2, …, n                                 (8)  
 
in k unknowns (k < n) and residual free terms vi.  
    3.5.1. In case of two unknowns astronomers usually separated 
systems (8) into all possible groups of two equations each and 
averaged the solutions of these groups. As discovered in the 19th 
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century, the least-squares solution of (8) was some weighted mean of 
these partial solutions (Whittaker & Robinson 1924/1949, p. 251). 
    3.5.2. For three unknowns that method becomes unwieldy. In an 
astronomical context, Mayer (1750) had to deal with 27 equations in 
three unknowns. He calculated three particular solutions (see below), 
and averaged them. The plausibility of the results thus obtained 
depended on the expediency of the separation and it seems that Mayer 
had indeed made a reasonable choice. Being mostly interested in only 
one unknown, he included the equations with its greatest and smallest 
in absolute value coefficients in the first, and the second group 
respectively. Note also that Mayer believed that the precision of 
results increased as the number of observations, but in his time this 
mistake was understandable.  
    Mayer solved each group of equations under an additional condition 
 
    Σvi = 0,  
 
where i indicated the number of an equation; if the first group 
included the first nine of them, then i = 1, 2, …, 9. Laplace 
(1812/1886, pp. 352 – 353) testified that the best astronomers had 
been following Mayer. A bit earlier Biot (1811, pp. 202 – 203) 
reported much the same.  
    The condition above determines the method of averages and 
Lambert’s recommendation (1765b, § 20) about fitting an empirical 
straight line might be interpreted as its application. Lambert separated 
the points (the observations) into two groups, with smaller and larger 
abscissas, and drew the line through their centres of gravity, and into 
several groups when fitting curves. 
    3.5.3. The Boscovich Method. He (Maire & Boscovich 1770, p. 
501) adjusted systems (8) under additional conditions 
 
    v1 + v2 + … + vn = 0, |v1| + |v2| + ... + |vn| = min,            (9; 10) 
 
the first of which can be allowed for by summing all the equations and 
eliminating one of the unknowns from the expression thus obtained. 
The second condition linked the Boscovich method with the median. 
Indeed, he adjusted systems (8) by constructing a straight line whose 
slope was equal to the median of some fractions. In 1809, Gauss noted 
that (10) led exactly to k zero residuals vi, which follows from an 
important theorem in the then not yet known theory of linear 
programming.  
    Galileo (1632), see Hald (1990, § 10.3), and Daniel Bernoulli 
(1735/1987, pp. 321 – 322) applied condition (10) in the case in which 
the magnitudes such as vi were positive by definition. Just the same, 
William Herschel (1805) determined the movement of the Sun by 
issuing from the apparent motion of the stars. The sum of these 
motions depends on the former and its minimal value, as he assumed, 
estimated that movement. Herschel’s equations were not even 
algebraic, but, after some necessary successive approximations, they 
might have been considered linear. In those times the motion of a star 
could have been discovered only in the plane perpendicular to the line 
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of vision. When treating direct measurements Herschel (1806) 
preferred the median rather than the arithmetic mean (Sheynin 1984a, 
pp. 172 – 173). 
    3.5.4. The Minimax Method. Kepler (§ 3.3) had apparently made 
use of some elements of this method. Laplace (1789/1895, pp. 493, 
496 and 506 and elsewhere) applied it for preliminary investigations. 
This method corresponds, as Gauss (1809, § 186) remarked, and as it 
is easy to prove, to the condition 
 
    lim (v1

2k + v2
2k + … + vn

2k) = min, k → ∞. 
 
    Below, I describe the subsequent history of the theory of errors, but 
right now I emphasize that beginning with Simpson and until the 
1930s it had been the main field of application of the theory of 
probability and that mathematical statistics had borrowed two main 
principles from the theory of errors, those of maximal likelihood and 
of least variance.  

4. Laplace 
    He devoted a number of memoirs to the theory of probability and 
later combined them in his Théorie analytique des probabilités (TAP) 
(1812). He made use of characteristic functions and the inversion 
formula, calculated difficult integrals, applied Hermite polynomials, 
introduced the Dirac function and (after Daniel Bernoulli) the 
Ehrenfests’ model and studied sampling. Issuing from observations, 
Laplace proved that the Solar system will remain stable for a long 
time and completed the explanation of the movement of its bodies in 
accordance with the law of universal gravitation.  
    He had not even heuristically introduced the notion of random 
variable and was unable to study densities or characteristic functions 
as mathematical objects, did not bother to prove rigorously his 
theorems (for example, often issued from non-rigorously proved 
versions of the CLT, not even properly formulated) which was 
contrary to the attitude of his predecessors (§ 2.4.7). His theory of 
probability therefore became an applied mathematical discipline 
unyielding to development and it had to be constructed anew. Here, 
indeed, is Poisson (1837a, § 84) who methodically followed Laplace: 
    There exists a very high probability that these unknown chances 
little differ from the ratio … 
    Then, Laplace insisted on his own impractical justification of the 
method of least squares and virtually neglected Gauss. Many 
commentators reasonably stated that his contributions made difficult 
reading. 
    Here is an interesting problem from Chapter 2 of the TAP. An 
interval OA is divided into equal or unequal parts and perpendiculars 
are erected to the intervals at their ends. The number of perpendiculars 
is n, their lengths (moving from O to A) form a non-increasing 
sequence and the sum of these lengths is given. Suppose now that the 
sequence is chosen repeatedly; what, Laplace asks, will be the mean 
broken line connecting the ends of the perpendiculars? The mean 
value of a current perpendicular? Or, in the continuous case, the mean 
curve? Each curve might be considered as a realization of a stochastic 
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process and the mean curve sought, its expectation. Laplace was able 
to determine this mean curve and to apply this finding for studying 
expert opinions.  
    Suppose that some event can occur because of n mutually exclusive 
causes. Each expert arranges these in an increasing (or decreasing) 
order of their [subjective] probabilities, which, as it occurs, depend 
only on n and the number of the cause, r, and are proportional to 
 

    

1 1 1
... .

1 1n n n r
+ + +

− − +  
 
    The comparison of the sums of these probabilities for each cause 
also shows the mean opinion about its importance. To be sure, 
different experts will attribute differing perpendiculars to one and the 
same cause. 
    In Chapter 6 Laplace applied the Bayesian approach to problems in 
population statistics. First, he wrote out formula (6) from § 2.4.7 with 
r being the unknown probability of a male birth and p and q, the very 
large numbers of male and female births. He expressed the integrals of 
functions of very large numbers (as Laplace called them) by integrals 
of an exponential function of a negative square.  
    In the same way Laplace estimated the population of France (M) by 
issuing from sampling, from the known number of yearly births in 
France and in some of its regions (N and n) and the population of 
those regions (m). K. Pearson (1928) remarked that Laplace had 
mistakenly considered (m, n) and (M, N) as independent samples from 
the same infinite population (whose very existence was doubtful) and 
that his estimate of the achieved precision of sampling (the first of its 
kind) was somewhat erroneous.  
    Laplace’s theory of errors was based on several versions of the CLT 
(whose conditions he never really formulated!) and therefore required, 
first of all, a large number of observations. In geodesy, that number 
was barely sufficient, and the errors in long series of astronomical 
observations hardly obeyed one and the same law of distribution. And 
only the normal distribution became worthy of attention.  
    Without explanation which appeared in his Supplement 2 
(1818/1886, p. 571) Laplace (1816) approximated the squared sum of 
the real errors by the same sum of the residuals and, for the case of s 

observations, arrived at an estimator of their variance m = [ ]/ .vv s  

Interestingly, he (1814/1995, p. 45) stated that the weight of the mean 
result increases like the number of observations divided [divisé] by the 
number of parameters. See below the more precise formula due to 
Gauss (§ 6.1) and note that variance is a modern term. 
    Curiously, Laplace (1796/1884, p. 504), actually attributed the 
planetary eccentricities to randomness:  
    Had the Solar system been formed perfectly orderly, the orbits of 
the bodies composing it would have been circles whose planes 
coincided with the plane of the Solar equator. We can perceive 
however that the countless variations that should have existed in the 
temperatures and densities of the diverse parts of these grand masses 
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gave rise to the eccentricities of their orbits and the deviations of their 
movement from the plane of that equator. 
    Curiously, since Newton had proved that the eccentricities were 
determined by the planets’ initial velocities. However, did Newton get 
rid of randomness? No, not at all: those velocities seem to be random. 

5. Poisson 
    He (Sheynin 1978) introduced the concepts of random variable and 
distribution function. He contributed to limit theorems and brought 
into use the LLN, proving it for the case of Poisson trials. He devoted 
much attention to the study of juridical statistics (§ 2.2) and 
systematically determined the significance of empirical discrepancies. 
Poisson stressed the difference between subjective and objective 
probabilities. Cournot (1843) kept to the same attitude and even 
introduced non-numerical probabilities. They as well as the subjective 
probabilities are being applied as expert estimates (cf. § 4). 
    Since Poisson (1837a) consistently checked the significance of 
empirical discrepancies, for example between results of different 
series of observations, he, along with Bienaymé, can be called the 
Godfather of the Continental direction of statistics (Lexis, 
Bortkiewicz, Chuprov, Markov, Bohlmann, see § 8.3) that mostly 
studied population. True, his approach was definitely restricted as it 
became apparent in medicine (§ 2.1).  
    Poisson’s generally known formula (1837a, § 81, p. 206) 
 

    
2(1 /2! ... / !),  µw nP e w w w n w p−= + + + + =  

 
for an event having probability q = 1 – p ≈ 0 to occur not more than n 
times in a large number µ of Bernoulli trials had been all but ignored 
until Bortkiewicz (1898) introduced his law of small numbers, 
allegedly a breakthrough extremely important for statistics. However, 
Whitaker (1914) and then, Kolmogorov (1954) had identified it as the 
Poisson formula. They did not justify that statement, and I (2008) 
proved it, see also § 8.3.3. 
    Poisson’s (1837a) LLN is his best known innovation. It generalized 
the Bernoulli trials on the case of variable probabilities pi of success 
although many authors have reasonably noted that his proof was not 
rigorous. For him, the LLN was rather a principle whose scope he 
exaggerated. Still, he (p. 10) qualitatively connected it with the 
existence of a stable mean interval between molecules (Gillispie 1963, 
p. 438). The founders of the kinetic theory of gases had not regrettably 
noticed Poisson’s conclusion. 
    Poisson’s programme of probability calculus and social arithmetic 
(1837b) devoted serious attention to that latter subject. I quote the 
appropriate part of the programme: 
    Des tables de population et de mortalité. De la durée de la vie 
moyenne dans diverses contrées. Partage de la population suivant les 
âges et les sexes. De l’influence de la petite vérole, de l’inoculation et 
de la vaccine sur la population, et la durée de la vie moyenne. […] 
    That programme also mentioned insurance establishments, 
annuities, tontines, savings banks and emprunts (loans or perhaps 
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bonds). Social arithmetic therefore meant population statistics, at least 
some medical statistics and insurance. 
    Following Laplace, Poisson (see § 4) had often left demonstrations 
without indicating the boundaries of possible errors and his theory of 
probability still belonged to applied mathematics. One of his examples 
(1837a, § 11) led to a subjective probability of the studied event equal 
to 1/2, and, in conformity with the future information theory, he 
(Ibidem, § 4) properly remarked that such results illustrate la perfaite 
perplexité de notre esprit.  
    Poisson (1825 – 1826) applied subjective probability when 
investigating a game of chance. Cards are extracted one by one from 
six decks shuffled together as a single whole until the sum of the 
points in the sample obtained will be in the interval [31; 40]. The 
sample is not returned and a second sample of the same kind is made. 
It is required to determine the probability that the sums of the points 
are equal. Like the gamblers and bankers, Poisson tacitly assumed that 
the second sample was extracted as though from the six initial fresh 
decks. Actually, this was wrong, but the gamblers thought that, since 
they did not know what happened to the initial decks, the probability 
of drawing some number of points did not change. 
    When blackjack is played, bankers are duty bound to act the same 
wrong way: after each round the game continues without the used 
cards, and, to be on the safe side, they ought to stop at 17 points. A 
gambler endowed with a retentive memory can certainly profit from 
this restriction. 
    Catalan (1877; 1884) even formulated the following principle: If 
the causes, on which the probability of an event depended, changed in 
an unknown way, that probability remains unaltered. 

6. Gauss, Helmert, Bessel 
    6.1. Gauss. He was the real, although not the formal discoverer of 
the method of least squares (MLSq) first publicly proposed by 
Legendre (1805). Indeed, Gauss had applied it from 1794 or 1795, 
informed his colleagues about it before 1805 and justified it. 
Legendre, however, only put forward reasonable arguments and, even 
so, actually and mistakenly stated that the MLSq also ensured a 
minimax solution of redundant systems of equations.  
    Three circumstances greatly impeded the dissemination of Gauss’ 
ideas. First, although citing Legendre, he (1809, § 186) mentioned our 
principle (of least squares) which insulted the much older French 
scientist. That same year, Legendre (Gauss, W-9, p. 380) wrote a letter 
to Gauss stating that priority is only established by publication. A 
withdrawn person that he was, Gauss did not answer; for the time 
being, Legendre could have dropped the subject and repeated his 
proper remark at the first occasion.  
    As it happened, however, Legendre, as well as all the other French 
mathematicians interested in the treatment of observations except 
Laplace, became infuriated and, to their own detriment, for at least a 
few decades had continued to ignore Gauss’ contributions to the 
theory of errors.  
    Second, Laplace (1812, § 24) properly described the situation, but 
kept to his own version of the theory of errors. Third, Laplace 
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somehow eclipsed Gauss. Innumerable geodetic textbooks only 
described the MLSq according to Gauss (1809), but even so many 
scientists barely noticed that work. Tsinger (1862, p. 1), who 
obviously did not even read Gauss, was the worst perpetrator:  
    Laplace provided a rigorous [?] and impartial investigation […]. 
On the basis of extraneous considerations, Gauss endeavoured to 
attach to [the MLSq] an absolute significance etc. 
    So what had Gauss achieved in 1809? Gauss (1809, § 177) assumed 
as an axiom that the arithmetic mean of many observations was the 
most probable value of the measured constant if not absolutely 
precisely, then very close to it. Together with the principle of maximal 
likelihood, his axiom or postulate (Bertrand 1888, p. 176) led to the 
normal distribution of the observational errors as the only possible 
law. Gauss was hardly satisfied with his derivation. His axiom 
contained qualification remarks, other laws of error were possible and 
maximum likelihood was worse than an integral criterion. It is 
somewhat strange that Gauss himself only mentioned the last item and 
only in a few letters. In his letter to Bessel of 1839 (Plackett 
1972/1977, p. 287) he stated that the highest probability of the value 
of an unknown parameter was still infinitely low so that he preferred 
to rely on the least disadvantageous game, on maximum weight or 
minimal variance. 
    Indeed, Gauss (1823b, § 6) introduced the variance  
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where the density φ(x) was an even unimodal function (which 
conformed with the properties of usual random errors) and selected its 
minimal value as the criterion for adjusting observations. 
    He (§§ 18 and 19) also introduced independence of linear functions: 
they should not contain common observations. Then Gauss (§§ 37 – 
38) proved what was practically necessary: for n observations and k 
unknowns, the unbiased sample variance and its estimator were, 
respectively, 
 
    m2 = E[vv]/(n – k), 2m̂ = [vv]/(n – k).                                     (1a, b) 

 
    Instead of the mean value, the sum of squares [vv] itself has to be 
applied. Coupled with the principle of maximal weight, formulas (1) 
provide effective estimators, as they are now called. Without 
mentioning Laplace, see above, Gauss (1823b, §§ 37 – 38) noted that 
his formula was not good enough. Elsewhere, Gauss (1823a/1887, p. 
199) stated that its correction was also necessary for the dignity of 
science.  
    The necessary restrictions for the derivation of (1a) are linearity of 
the equations (1) of § 3.1, independence of their free terms (of the 
results of observation), and the unbiasedness of the estimators ˆ ˆ, ,...x y  
of the unknowns. An extremely important corollary follows: the 
immediately appearing principle of least squares can be derived 
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without recourse to sections 7 – 38 of the memoir. Gauss had thus 
derived the principle of least squares by two independent ways: by the 
method which he described in those intermediate sections and by the 
just outlined method. 
    The first method is so complicated that perhaps up to the second 
half of the 20th century textbook authors invariably introduced the 
MLSq in accordance with Gauss’ first memoir of 1809, which he no 
longer acknowledged. Now, however, after my discovery outlined 
above (Sheynin 2012), the situation has changed.  
    Gauss (§ 40) calculated the boundaries of the var 2m̂  by means of 

the fourth moment of the errors but made a mistake later corrected by 
Helmert and then by Kolmogorov et al. 
    But why did not Gauss even hint at the described possibility? I can 
only quote Kronecker (1901, p. 42):  
    The method of exposition in the Disquisitiones [Arithmeticae of 
1801] as in his works in general is Euclidean. He formulates and 
proves theorems and diligently gets rid of all the traces of his train of 
thoughts which led him to his results. This dogmatic form was 
certainly the reason for his works remaining for so long 
incomprehensible. 
    Later commentators expressed the same opinion. It remains to 
illustrate the former difficulties which led to the choice of the memoir 
of 1809 over Gauss’ final memoir of 1823: the very existence of that 
final memoir (Eisenhart 1964, p. 24)  
    Seems to be virtually unknown to all American users of Least 
Squares, except students of advanced mathematical statistics. 
    Laurent (1875) turned to the method of least squares, but without 
even knowing about the existence of that memoir. And here is Fisher 
(1925, p. 260):  
    In the cases to which it is appropriate, this method [of least 
squares] is a special application of the method of maximum likelihood, 
from which it may be derived.  
    Quite recently Nikulin & Poliscuk (1999) failed to mention that 
final memoir. Petrov (1954) perhaps still provides the best description 
of the properties of estimators derived by the MLSq. 
    A very short biography of Gauss is Sheynin (2001b). 
    6.1.1. There are important additional considerations: the 
determination of the necessary number of observations, the rejection 
of outliers and the so-called true values of the unknowns (Sheynin 
2007b). Owing to the unavoidable presence of systematic errors, the 
number of observations is not really determined by the formulas (1). 
For the same reason statistical criteria for rejecting outliers are hardly 
useful and this latter problem remains delicate.  
    Astronomers, geodesists, metrologists and other specialists making 
measurements have always been using the expression true value. 
Mathematical statistics has done away with true values and introduced 
instead parameters of densities (or distribution functions), and this was 
a step in the right direction: the more abstract was mathematics 
becoming, the more useful it proved to be.  
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    Fisher was mainly responsible for that change; indeed, he (1922, 
pp. 309 – 310) defined the notions of consistency, efficiency and 
sufficiency of statistical estimators without any reference to true 
values. But then, on p. 311, he accused the Biometric school of 
applying the same names to the true value which we should like to 
know […] and to the particular value at which we happen to arrive… 
So the true value was then still alive and even applied, as in the lines 
above, to objects having no existence in the real world.  
    The same can be said about Gauss (1816, §§ 3 and 4) who 
repeatedly considered the true value of a measure of precision of 
observations. And Hald (1998) mentioned true value many times in 
Chapters 5 and 6; on p. 91 he said: the estimation of the true value, the 
location parameter… 
    So what is a true value? Markov (1900/1924, p. 323) was the only 
mathematician who cautiously, as was his wont, remarked: It is 
necessary in the first place to presume the existence of the numbers 
whose approximate values are provided by observations. This phrase 
first appeared in the 1908 edition of his Treatise (and perhaps in its 
first edition of 1900). He had not attempted to define true value, but 
this is exactly what Fourier (1826/1890, p. 534) had done about a 
century before him. He determined the véritable objet de la recherche 
(the constant sought, or its true value) as the limit of the arithmetic 
mean of n appropriate observations as n → ∞. Incidentally, he thus 
provided the Gauss postulate with a new dimension. 
    Many authors, beginning perhaps with Timerding (1915, p. 83) [and 
including Mises (1919/1964b, pp. 40 and 46)], without mentioning 
Fourier and independently from each other, introduced the same 
definition. One of them (Eisenhart 1963/1969, p. 31) formulated the 
unavoidable corollary: the mean residual systematic error had to be 
included in that true value:  
    The mass of a mass standard is […] specified […] to be the mass of 
the metallic substance of the standard plus the mass of the average 
volume of air adsorbed upon its surface under standard conditions. 
    However, even leaving systematic influences aside, the precision of 
observations is always restricted and the number of observations 
finite, so that the term limit in the Fourier definition (which is in 
harmony with the Mises definition of probability) must not be 
understood literally. 
    Statistics moved from true values to parameters of densities or 
distribution functions, but still does not entirely abandon them.  
    6.2. Chronologically, Helmert belongs to the second half of the 19th 
century, but it is better to mention him here. He mainly completed the 
development of the classical Gaussian theory of errors and some of his 
findings were interesting for mathematical statistics. Until the 1930s, 
Helmert’s treatise (1872) remained the best source for studying the 
error theory and the adjustment of triangulation. When adjusting a 
complicated geodetic net, Helmert (1886, pp. 1 and 86) temporarily 
replaced chains of triangulation by geodetic lines. His innovation had 
been applied in the Soviet Union. The chains of the national primary 
triangulation were there situated between bases and astronomically 
determined azimuths. Before the general adjustment of the entire 



140 
 

system, each chain was replaced by the appropriate geodetic line; only 
they were adjusted, then the chains were finally dealt with 
independently one from another.  
    Elsewhere Helmert (1868) studied various configurations of 
geodetic systems. In accordance with the not yet existing linear 
programming, he investigated how to achieve necessary precision 
with least possible effort, or, to achieve highest possible precision 
with a given amount of work. Some equations originating in the 
adjustment of geodetic networks are not linear, not even algebraic; 
true, they can be linearized, and perhaps some elements of linear 
programming could have emerged then, in 1868, but this had not 
happened. Nevertheless, Helmert noted that it was expedient to leave 
some angles of particular geodetic systems unmeasured, but his 
remark was purely academic: all angles ought to be measured at least 
for checking the work as a whole.  
    Abbe (1863) derived the chi-square distribution, see also Sheynin 
(1966) and Kendall (1971), as the frequency of the sum of the squares 
of n normally distributed errors. Helmert (1875; 1876) derived the 
same distribution by induction beginning with n = 1 and 2 and Hald 

(1952/1960, pp. 258 – 261) provided a modernized derivation. Much 
later Helmert (1905) offered a few tests for revealing systematic 
influences in a series of errors. Among other results, I note that he 
(1876) derived a formula that showed that, for the normal distribution, 
[vv], – and, therefore, the variance as well,– and the arithmetic mean 
were independent. He had thus proved the important Student – Fisher 
theorem although without paying any attention to it. 
    Czuber (1891, p. 460) testified that Helmert had thought that  
(var 2 2ˆ ˆ)/m m was more important than var 2m̂  by itself and Eddington 

(1933, p. 280) independently expressed the same opinion. Czuber also 
proved that, for the normal distribution, that relative error was 
minimal for the estimator (1b). 
    In addition, Helmert noted that for small values of n the var 2m̂  did 

not estimate the precision of formula (1b) good enough. His 
considerations led him to the so-called Helmert transformations.  
    6.3. Bessel. His achievements in astronomy and geodesy include the 
determination of astronomical constants; the first determination of a 
star’s parallax; the discovery of the personal equation; the 
development of a method of adjusting triangulation; and the derivation 
of the parameters of the Earth’s ellipsoid of revolution. He (1838a) 
also proved the CLT, but its rigorous proof became possible, with a 
doubtful exception of one of Cauchy’s memoirs, only much later. 
Incidentally, Gauss was familiar with the pertinent problem. In the 
letter to Bessel of 1839 mentioned in § 6, he stated that he had read 
that proof with great interest, but that  
    This interest was less concerned with the thing itself than with your 
exposition. For the former has been familiar to me for many years, 
though I myself have never arrived at carrying out the development 
completely. 
    The personal equation of an observer is his systematic error of 
registering the moments of the passage of a star through the cross-
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hairs of the eyepiece of an astronomical instrument. When studying 
this phenomenon, it is possible to compare the moments fixed by two 
astronomers at different times. Although Bessel did not explain the 
situation, it followed from the context that he and another astronomer 
had only one clock. Consequently, it was necessary to take into 
account its correction. Bessel (1823), who discovered the existence of 
the personal equation, had indeed acted appropriately, since 
apparently (he did not explain the situation) both observers had been 
using the same clock. 
    However, in one case he mistakenly presumed that the rate of the 
clock was constant, and his pertinent observations proved useless; he 
made no such comment. When studying Bradley’s observations, 
Bessel (1818; 1838a, § 11) he dismissed the deviations of their errors 
from normality. Or, rather, he decided to save his CLT by stating that, 
given more observations (more than a few hundred!), those deviations 
will disappear …  
    And I (Sheynin 2000) discovered 33 mistakes in arithmetical and 
simple algebraic operations in Bessel’s contributions collected in his 
Abhandlungen (1876). Not being essential, they testify to his 
inattention and undermine the trust in the reliability of his more 
involved calculations.  
    That Gauss had been familiar with the derivation of the CLT could 
have angered Bessel. Anyway, in 1844, in a letter to Humboldt he 
(Sheynin 2001c, p. 168) reversed his previous opinion and stressed 
Legendre’s priority in the dispute over the discovery of the MLSq. 
Moreover, in 1825 Bessel met Gauss and quarrelled with him, 
although no details are known (Ibidem) and even in 1822 Olbers in a 
letter to Bessel (Erman 1852, Bd. 2, p. 69) regretted that the relations 
between the two scholars were bad. Gerling (1861), a former student 
of Gauss, described Bessel’s unwarranted attempts made in 1843 to 
establish his priority over Gauss in the adjustment of triangulation. 
See also Sheynin (2001c, pp. 171 – 172).  
    Bessel’s posthumously published collected reports (1848) include 
an item on the theory of probability (pp. 387 – 407), this being his 
report to a physical society, written on a low scientific level 
(apparently occasioned by the poor knowledge of his listeners). 
Among the applications of the theory of probability Bessel only dwelt 
on astronomy, but he did not say a single word about the discovery of 
the minor planets, about the MLSq or Gauss. A distressing 
impression! 
    Bessel (p. 401) stated that the great Lambert had objected to the use 
of the arithmetic mean. Actually, Lambert (1760) introduced the 
principle of maximum likelihood but noted, certainly without proving 
it, that the appearing estimate does not deviate much from the 
arithmetic mean, the mean which he never denied. Worse is to come. 
Bessel (1843) stated that William Herschel had discovered the planet 
Uranus, saw its disc. Actually, Herschel only saw a moving body and 
thought that it was a comet. It follows that Bessel did not know the 
true story and falsely reconstructed it. Then, he (1845), without any 
statistical data, invented a false picture about Native Americans. See 
also my note on Bessel (Sheynin 2016).  
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    A great scholar and a deep-rooted fabricator! A case for the 
psychologist. 

7. The Second Half of the 19
th

 Century 
    7.1. At the beginning of his scientific career Quetelet visited Paris 
and I think that Fourier had mostly inspired him. Quetelet tirelessly 
treated statistical data and attempted to standardize statistics on an 
international scale. He was co-author of the first statistical reference 
book (Quetelet & Heuschling 1865) on the population of Europe 
(including Russia) and the USA that contained a critical study of the 
initial data; in 1853, he (1974, pp. 56 – 57) served as chairman of the 
Conférence maritime pour l’adoption d’un système uniforme 
d’observation météorologiques à la mer and the same year he 
organized the first International Statistical Congress. K. Pearson 
(1914 – 1930, 1924, vol. 2, p. 420) praised Quetelet for organizing 
official statistics in Belgium and […] unifying international statistics. 
About 1831 – 1833 Quetelet had successfully suggested the formation 
of a Statistical Society in London, now called the Royal Statistical 
Society. 
    Quetelet’s writings (1869; 1871) contain many dozen of pages 
devoted to various measurements of the human body, of pulse and 
respiration, to comparisons of weight and stature with age, etc. and he 
extended the applicability of the normal law to this field. Following 
Humboldt’s advice, Quetelet (1870; 1871) introduced the term 
anthropometry and thus curtailed the boundaries of anthropology. He 
was influenced by Babbage (1857), an avid collector of biological 
data. In turn, Quetelet impressed Galton (1869, p. 26) who called him 
the greatest authority on vital and social statistics. While discussing 
that contribution, K. Pearson (1914 – 1930, vol. 2, 1924, p. 89) 
declared: 
    We have here Galton’s first direct appeal to statistical method and 
the text itself shows [that the English translation of Quetelet (1846)] 
was Galton’s first introduction to the […] normal curve. 
    Quetelet (1846) recommended the compilation of questionnaires 
and the preliminary checking of the data; maintained (p. 278) that too 
many subdivisions of the data was a charlatanisme scientifique, and, 
what was then understandable, opposed sampling (p. 293). Darwin 
(1887, vol. 1, p. 341) approvingly cited that contribution whereas 
Quetelet (1846, p. 259) declared that the plants and the animals have 
remained as they were when they left the hands of the Creator.  
    Lamarck was the first who attempted to construct a theory of 
evolution, and Quetelet’s statement proves that his thoughts had been 
more or less discussed. However, Quetelet never mentioned either 
Lamarck, or Wallace, or Darwin. 
    He collected and systematized meteorological observations and 
described the tendency of the weather to persist by elements of the 
theory of runs. Köppen (1875, p. 256), an eminent meteorologist, 
noted that ever since the early 1840s the Belgian meteorological 
observations proved to be the most lasting [in Europe] and extremely 
valuable. In six letters, in 1841 – 1851, Faraday (1996 – 1999) praised 
Quetelet’s observations of atmospheric electicity and called him a 
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worthy example of activity & power to all workers in science (Sheynin 
2009b, No. 371).  
    Quetelet discussed the level of postage rates (1869, t. 1, pp. 173 and 
422) and rail fares (1846, p. 353) and recommended to study 
statistically the changes brought about by the construction of telegraph 
lines and railways (1869, t. 1, p. 419). He (1836, t. 2, p. 313) 
quantitatively described the monotone changes in the probabilities of 
conviction of the defendants depending on their personality (sex, age, 
education) and Yule (1900/1971, pp. 30 – 32) called it the first attempt 
to measure association. 
    Quetelet is best remembered for the introduction of the Average 
man (1832a, p. 4 and elsewhere), inclinations to crime (1832b, p. 17 
and elsewhere) and marriage (1848a, p. 77 and elsewhere), – actually, 
the appropriate statistical probabilities, – and for mistaken (Rehnisch 
1876) statements about the constancy of crime (1829, pp. 28 and 35 
and many other sources) whose level he (1836, t. 1, p. 10) connected 
with the general organization of the society. The two last-mentioned 
items characterized Quetelet as the follower of Süssmilch in 
originating moral statistics. Quetelet (1848a, p. 82 and elsewhere) 
indicated that the inclination to crime of a given person might differ 
considerably from the apparent mean tendency and (pp. 91 – 92) and 
related these inclinations to the Average man, but statisticians did not 
notice that reservation and denied inclinations and even probability 
theory. True, many of them, e. g., Haushofer (1872) or Block (1878), 
only applied arithmetic. After Quetelet’s death statisticians (mostly in 
Germany) had simply discarded him.  
    The Average man, as Quetelet thought, was the type of the nation 
and even of entire mankind. Reasonable objections were levelled 
against this concept. Thus, the Average man was even physiologically 
impossible (the averages of the various parts of the human body were 
inconsistent one with another). Then, Quetelet (1846, p. 216) only 
mentioned the Poisson LLN in connection with the mean human 
stature. Bertrand (1888, p. XLIII) ridiculed Quetelet:  
    In the body of the average man, the Belgian author placed an 
average soul. He has no passions or vices [wrong, see above], he is 
neither insane, nor wise, neither ignorant nor learned. […] [He is] 
mediocre in every sense. After having eaten for thirty-eight years an 
average ration of a healthy soldier, he has to die not of old age, but of 
an average disease that statistics discovers in him. 
    However, that concept is useful at least as describing an average 
producer and consumer; Fréchet (1949) replaced him by a closely 
related typical man. 
    Quetelet (1848a, p. 80 and elsewhere) noticed that the curves of the 
inclinations to crime and to marriage plotted against ages were 
exceedingly asymmetric. He (1846, pp. 168 and 412 – 424) also knew 
that asymmetric densities occurred in meteorology and he (1848a, p. 
viii) introduced a mysterious loi des causes accidentelles whose curve 
could be asymmetric (1853, p. 57)! No wonder Knapp (1872, p. 124) 
much too politely called him rich in ideas, but unmethodical and 
therefore un-philosophical. Nevertheless, Quetelet had been the 
central figure of statistics in the mid-19th century. 
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    7.2. Being influenced by his cousin, Darwin, Galton began to study 
the heredity of talent (1869). In a letter of 1861 Darwin (1903, p. 181) 
favourably mentioned that contribution. Darwin (1876/1878, p. 15) 
also asked Galton to examine his investigation of the advantages of 
cross-fertilization as compared with spontaneous pollination. Galton 
solved that problem by effectively applying rank correlation. Then, he 
(1863) devised an expedient system of symbols for weather charts and 
immediately discovered the existence of previously unknown 
anticyclones. This was the third (after Halley and Humboldt, see § 
1.3) example of a wonderful application of a preliminary or 
exploratory data analysis, the comparatively new stage of statistical 
investigations. See Andrews (1978) who refers to many authors 
especially J. W. Tukey. In particular, this analysis aims at discovering 
patterns in the data (including systematic influences). Tukey 
(1962/1986, p. 397) remarked on an important feature of that stage:  
    Data analysis, and the parts of statistics which adhere to it, must 
[…] take on the characteristics of a science rather than those of 
mathematics. 
    Kolmogorov (1948a, p. 216) unfortunately, as I think, stated that 
mathematical statistics comprised theoretical statistics and a 
(preliminary) descriptive part devoted to systematizing mass data and 
to calculating the appropriate means, moments, etc. He himself 
(Anonymous 1954, pp. 46 – 47) later maintained that theoretical 
statistics comprises mathematical statistics and some technical 
methods of collecting and treating statistical methods. Many 
statisticians seem to share this opinion but he belittled these technical 
methods and denied theoretical statistics. Anyway, I cannot agree with 
Anscombe (1967, p. 3n) who called mathematical statistics a 
grotesque phenomenon. 
    Galton (Pearson 1914 – 1930, vol. 2, Chapter 12) also invented 
composite photographs of people of a certain nationality or 
occupation, or criminals, all of them taken on the same film with an 
appropriately shorter exposure. Such photographs heuristically 
showed Quetelet’s Average man. 
    In 1892, Galton became the main inventor of fingerprinting. 
Another of Galton’s invention (1877) was the so-called quincunx, a 
device for demonstrating the appearance of the normal distribution as 
the limiting case of the binomial law which also showed that the 
normal law was stable. Galton’s main statistical merit consisted, 
however, in the introduction of the notions of regression and 
correlation. The development of correlation theory became one of the 
aims of the Biometric school, and Galton’s close relations with 
Pearson were an important cause of its successes. 
    7.3. I reconstruct now Darwin’s model of evolution (1859). 
Introduce an n-dimensional (possibly with n = ∞) system of 
coordinates, the body parameters of individuals belonging to a given 
species (males and females should be treated separately), and the 
appropriate Euclidean space with the usual definition of distance 
between its points. At moment tm each individual is some point of that 
space and the same takes place at moment tm+1 for the individuals of 
the next generation. Because of the vertical variation, these, however, 
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will occupy somewhat different positions. Introduce in addition point 
(or subspace) V, corresponding to the optimal conditions for the 
existence of the species, then its evolution will be represented by a 
discrete stochastic process of the approximation of the individuals to V 
(which, however, moves in accordance with the changes in the 
external world) and the set of individuals of a given generation 
constitutes the appropriate realization of the process. Probabilities 
describing it (as well as estimates of the influence of habits, instincts, 
etc.) are required for the sake of definiteness, but they are of course 
lacking. 
    Mendel’s discovery was only unearthed at the very end of the 19th 
century, and it certainly changed the picture of evolution. Then, the 
importance of mutation became known (De Vries 1905). Darwin and 
his teaching inspired the founders of the Biometric school (§ 8.1). See 
a very short biography of Mendel (Sheynin 2001d). 
    7.4. In 1855 Bertrand had translated Gauss’ works on the MLSq 
into French. The title-page of this translation carried a phrase 
Translated and published avec l’autorisation de l’auteur, but Bertrand 
himself (C. r. Acad. Sci. Paris, t. 40, 1855, p. 1190) indicated that 
Gauss, who had died that same year, was only able to send him 
quelques observations de détail. 
    Bertrand’s own work on probability began in essence in 1887 – 
1888 when he published 25 notes in one and the same periodical as 
well as his main treatise (1888), written in great haste and carelessly, 
but in a very good literary style. I take up its main issues and state 
right now that it lacks a systematic description of its subject. 
    1) Statistical probability and the Bayesian approach. Heads 
appeared m = 500,391 times in n = 106 tosses of a coin (p. 276). The 
statistical probability of that event is p = 0.500391; it is unreliable, not 
a single of its digits merits confidence. After making this astonishing 
declaration, Bertrand compared the probabilities of two hypotheses, 
namely, that the probability was either p1 = 0.500391, or p2 = 
0.499609. However, instead of calculating 
 
    [p1

mp2
n] ÷ [p2

mp1
n], 

 
he applied the De Moivre – Laplace theorem and only indicated that 
the first probability was 3.4 times higher than the second one. So what 
should have the reader thought? 
    As I understand him, Bertrand (p. 161) condemned the Bayes 

principle only because the probability of the repetition of the 
occurrence of an event after it had happened once was too high. This 
conclusion was too hasty, and the reader was again left in suspense: 
what might be proposed instead? Note that Bertrand (p. 151) 
mistakenly thought that the De Moivre – Laplace theorem precisely 
described the inverse problem, the estimation of the theoretical 
probability given the statistical data, cf. § 2.4.7. 
    2) Mathematical treatment of observations. Bertrand paid much 
attention to this issue, but his reasoning was amateurish and 
sometimes wrong. Even if, when translating Gauss (see above), he had 
grasped the essence of the MLSq, he barely remembered that subject 
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after more than 30 years. Thus, he (pp. 281 – 282) attempted to prove 
that the sample variance (1) of § 6 might be replaced by another 
estimator of precision having a smaller variance. He failed to notice, 
however, that, unlike the Gauss’ statistic, his new estimator was 
biased. Furthermore, when providing an example, Bertrand calculated 
the variance for the normal distribution instead of applying the Gauss 
additional formula for that case.  
    At the same time Bertrand also formulated some sensible remarks. 
He (p. 248) expressed a favourable opinion about the second Gauss 
justification of the MLSq but indicated (p. 267) that, for small errors, 
the even distribution 
 
    φ(x) = a + bx2 

 

can be approximately represented by an exponential function of a 
negative square, – that the first substantiation of the method was 
approximately valid.  
    3) Several interesting problems dwell on a random composition of 
balls in an urn; on sampling without replacement; on the ballot 
problem; and on the gambler’s ruin. 
    a) White and black balls are placed in the urn with equal 
probabilities and there are N balls in all. A sample made with 
replacement contained m white balls and n black ones. Determine the 
most probable composition of the urn (pp. 152 – 153). Bertrand 
calculated the maximal value of the product of the probabilities of the 
sample and of the hypotheses on the composition of the urn.  
    b) An urn has sp white balls and sq black ones, p + q = 1. 
Determine the probability that after n drawings without replacement 
the sample will contain (np – k) white balls (p. 94). Bertrand solved 
this problem applying the [hypergeometric distribution] and obtained, 
for large values of s and n, an elegant formula 
 

    P = 
1

2πpqn

s

s n−
exp[

2

2 ( )

k s

pqn s n
−

−
]. 

 
    He published this formula earlier without justification and noted 
that the variable probability of extracting the balls of either colour was 
en quelque sorte un régulateur. 
    c) Candidates A and B scored m and n votes respectively, m > n and 
all the possible chronologically differing voting records were equally 
probable. Determine the probability P that, during the balloting, A was 
always ahead of B (p. 18). Following André (1887), who provided a 
simple demonstration, Bertrand proved that 
 
    P = (m – n)/(m + n),                                                            (1) 
 
see also Feller (1950, § 1 of Chapter 3). Actually, Bertrand was the 
first to derive formula (1) by a partial difference equation. This ballot 
problem has many applications (Feller, Ibidem). Takácz (1982) traced 
its history back to De Moivre. He indicated that it was extended to 
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include the case of m ≥ µn for positive integral values of µ and that he 
himself, in 1960, had further generalized that extended version. 
    d) I select one out of the few problems on the gambler’s ruin 
discussed by Bertrand (pp. 122 – 123). Gambler A has m counters and 
plays with an infinitely rich partner. His probability of winning any 
given game is p. Determine the probability that he will be ruined in 
exactly n games (n > m). Bertrand was able to solve this problem by 
applying formula (1). Calculate the probability that A loses (n + m)/2 
games and wins (n – m)/2 games; then, multiply it by the probability 
that during that time A will never have more than m counters, that is, 
by m/n. Conforming to common sense, Bertrand’s derived formula 
shows that in case of a very high p the game will last exceedingly 
long.  
    In a brief chapter he largely denied everything done in the moral 
applications of probability by Condorcet (and did not refer to Laplace 
or Poisson). 
    In two of his notes Bertrand (1887a; 1887b) came close to proving 
that for a sample from a normal population the mean and the variance 
were independent (to the Student – Fisher theorem).  
    4) I take up Bertrand’s celebrated problem about a random chord of 
a circle in § 7.6.1. 
    Taken as a whole, Bertrand’s treatise is impregnated with its non-
constructive negative (and often unjustified) attitude towards the 
theory of probability and treatment of observations. And at least once 
he (pp. 325 – 326) wrongly alleged that Cournot had supposed that 
judges decided their cases independently one from another. I ought to 
add, however, that Bertrand exerted a strong (perhaps too strong) 
influence upon Poincaré, and, its spirit and inattention to Laplace and 
Bienaymé notwithstanding, on the revival of the interest of French 
scientists in probability (Bru & Jongmans 2001). 
    7.5. In the theory of probability, Poincaré is known for his treatise 
(1896); I refer to its extended edition of 1912. I note first of all that he 
had passed over in silence not only the Russian mathematicians, but 
even Laplace and Poisson, and that his exposition was imperfect.  
    Following Bertrand, Poincaré (p. 62) called the expectation of a 
random variable its probable value; denoted the measure of precision 
of the normal law either by h or by √h; made use of loose expressions 
such as z lies between z and z + dz (p. 252). 
    Several times Poincaré applied the formula 
 

    lim
φ( ) ( )

ψ ( )  ( )

n

n

x x dx

x x dx

Φ

Φ

∫
∫

 = 0

0

φ ( )

ψ ( )

x

x
, n → ∞                            (2) 

 
where Ф(x) was a restricted positive function, xo, the only point of its 
maximum, and the limits of integration could have been infinite 
(although only as the result of a formal application of the Bayesian 

approach). Poincaré (p. 178) only traced the proof of (2) and, for 
being true, some restrictions should perhaps be added. To place 
Poincarè’s trick in the proper perspective, see Erdélyi (1956, pp. 56 – 
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57). I discuss now some separate issues mostly from Poincaré’s 
treatise.  
    1) The theory of probability. Poincaré (p. 24) reasonably stated that 
a satisfactory definition of prior probability was impossible. Strangely 
enough, he (1902/1923, p. 217) declared that all the sciences were 
nothing but an unconscious application of the calculus of probability, 
that the theory of errors and the kinetic theory of gases were based on 
the LLN (wrong about the former) and that the calculus of probability 
will evidently ruin them (les entrainerait évidemment dans sa ruine). 
Therefore, as he concluded, the calculus was only of practical 
importance. Another strange pronouncement is in his treatise (p. 34). 
As I understand him, he maintained that a mathematician is unable to 
understand why forecasts concerning mortality figures come true. 
    In a letter of ca. 1899 partly read out at the hearing of the notorious 
Dreyfus case (Le procès 1900, t. 3, p. 325; Sheynin 1991, pp. 166 – 
167) Poincaré followed Mill (§ 2.2) and even generalized his 
statement to include moral sciences and declared that the appropriate 
findings made by Condorcet and Laplace were senseless. And he 
objected to a stochastic study of handwriting for identifying the author 
of a certain document. 
    The interest in application of probability to jurisprudence is now 
revived. Heyde & Seneta (1977, p. 34) had cited several pertinent 
sources published up to 1975; to these I am adding Zabell (1988), 
Gastwirth (2000) and Dawid (2005) who emphasized the utmost 
importance of interpreting background information concerning 
stochastic reasoning.  
    2) Poincaré (1892a) had published a treatise on thermodynamics 
which Tait (1892) criticized for his failure to indicate the statistical 
nature of this discipline. A discussion followed in which Poincaré 
(1892b) stated that the statistical basis of thermodynamics did not 
satisfy him since he wished to remain entirely beyond all the 
molecular hypotheses however ingenious they might be; in particular, 
he therefore passed the kinetic theory of gases over in silence. Soon he 
(1894/1954, p. 246) made known his doubts: he was not sure that that 
theory can account for all the known facts. In a later popular booklet 
Poincaré (1905/1970, pp. 210 and 251) softened his attitude: physical 
laws will acquire an entirely new aspect and differential equations will 
become statistical laws; laws, however, will be shown to be imperfect 
and provisional. 
    3) The binomial distribution. Suppose that m Bernoulli trials with 
probability of success p are made and the number of successes is α. 
Poincaré (pp. 79 – 84), in a roundabout and difficult way, derived (in 
modern notation) E(α – mp)2 and E|α – mp|. In the first case he could 
have calculated Eα2; in the second instance he obtained 
 
    E|α – mp| ≈ 2mpq mp

mC pmpqmq, q = 1 – p. 

 
    4) Without mentioning Gauss (1816, § 5), Poincaré (pp. 192 – 194) 
derived the moments of the [normal] distribution 
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    φ(y) = /πh exp(– hy2)                                                           (3) 
 
obtaining 
 

    Ey2p = 
2

(2 )!

! 2p p

p

h p
                                                                      (4) 

 
and proved, by issuing from formula (2), that the density function 
whose moments coincided with the respective moments of the 
[normal] law was [normal]. This proposition was, however, due to 
Chebyshev (1887), see also Bernstein (1945/1964, p. 420). 
    Then Poincaré (pp. 195 – 201) applied his investigation to the 
theory of errors. He first approximately calculated E y 2p for the mean 
y  of a large number n of observations having Eyi = 0 and Eyi

2 = 
Const, equated these moments to the moments (4) and thus expressed 
h through Eyi

2. This was a mistake: y being a mean, had a measure of 
precision nh rather than h. Poincaré (p. 195) also stated that Gauss had 
calculated E y 2; actually, Gauss (1823b, §15) considered the mean 
value of ∑yi

2/n.  
    The main point here and on pp. 201 – 206, where Poincaré 
considered the mean values of (y1 + y2 + … + yn)

2p with identical and 
then non-identical distributions and Eyi = 0, was a non-rigorous proof 
of the CLT: for errors of sensiblement the same order and constituting 
une faible part of the total error, the resulting error follows 
sensiblement the Gauss law (p. 206). For Poincaré, the theory of 
probability was still an applied science as he himself actually stated, 
see item 1) above. 
    Also for proving the normality of the sum of errors Poincaré (pp. 
206 – 208, only in 1912) introduced characteristic functions which did 
not conform to their modern definition. Nevertheless, he was able to 
apply the Fourier formulas for passing from them to densities and 
back. These functions were 
 

    f(α) = Σpx e
αx, f(α) = αφ( ) xx e dx∫                                            (5) 

 
and he noted that 
 
f (α) = 1 + αEx/1! + α2Ex2/2! + …                                            (6) 
 
    5) Homogeneous [Markov chains]. Poincaré provided interesting 
examples which can be interpreted in the language of these chains. 
    a) He (p. 150) assumed that all the asteroids moved along one and 
the same circular orbit, the ecliptic, and explained why they were 
uniformly scattered across it. Denote the longitude of a certain minor 
planet by l = at + b where a and b are random and t is the time, and, 
by φ(a; b), the continuous joint density function of a and b. Issuing 
from the expectation 
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    Eeiml = ( )   ( )φ ; im at ba b e dadb+

∫∫  

 
(which is the appropriate characteristic function in the modern sense), 
Poincaré not very clearly proved his proposition that resembled the 
celebrated Weyl theorem (the terms of the sequence {nx} where x is 
irrational and n = 1, 2, … and the braces mean drop the integral part 
are uniformly distributed on a unit interval). The place of a planet in 
space is only known with a certain error, and the number of all 
possible arrangements of the asteroids on the ecliptic can therefore be 
assumed finite whereas the probabilities of the changes of these 
arrangements during time period [t; t + 1] do not depend on t. The 
uniform distribution of the asteroids might therefore be justified by the 
ergodic property of homogeneous Markov chains having a finite 
number of possible states. 
    b) The game of roulette. A circle is alternately divided into a large 
number of congruent red and black sectors. A needle is whirled with 
force along the circumference of the circle, and, after a great number 
of revolutions, stops in one of the sectors. Experience proves that the 
probabilities of red and black coincide and Poincaré (p. 148) 
attempted to justify that fact. Suppose that the needle stops after 
travelling a distance s (2π < s < A). Denote the corresponding density 
by φ(x), a function continuous on [2π; A] with a bounded derivative on 
the same interval. Then, as Poincaré demonstrated, the difference 
between the probabilities of red and black tended to zero as the length 
of each red (and black) arc became infinitesimal (or, which is the 
same, as s became infinitely large). He based his proof on the method 
of arbitrary functions (Khinchin 1961/2004, pp. 421 – 422; von Plato 
1983) and sketched its essence. Poincaré also indicated that the 
rotation of the needle was unstable: a slight change in the initial thrust 
led to an essential change in the travelled distance (and, possibly, to a 
change from red to black or vice versa). 
    c) Shuffling a deck of cards (p. 301). In an extremely involved 
manner, by applying hypercomplex numbers, Poincaré proved that 
after many shuffling all the possible arrangements of the cards tended 
to become equally probable.  
    6) Mathematical treatment of observations. In a posthumously 
published Résumé of his work, Poincaré (1921/1983, p. 343) indicated 
that the theory of errors naturally was his main aim in the theory of 
probability. His statement reflected the situation in those times. In his 
treatise he (pp. 169 – 173) derived the normal distribution of 
observational errors mainly following Gauss; then, like Bertrand, he 
changed the derivation by assuming that not the most probable value 
of the estimator of the [location parameter] coincided with the 
arithmetic mean, but its mean value. He (pp. 186 – 187) also noted 
that, for small absolute errors x1, x2, …, xn, the equality of f(z) to the 
mean value of f(xi), led to z, the estimate of the real value of the 
constant sought, being equal to the arithmetic mean of xi. It seemed to 
him that he thus corroborated the Gauss postulate. In the same context 
Poincaré (p. 171) argued that everyone believed that the normal law 
was universal: experimenters thought that that was a mathematical 
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fact and mathematicians believed that it was experimental. Poincaré 
referred to the oral statement of Lippmann, an author of a treatise on 
thermodynamics. 
    Finally, Poincaré (p. 188) indicated that the [variance] of the 
arithmetic mean tended to zero with the increase in the number of 
observations and referred to Gauss (who nevertheless had not stated 
anything at all about the case of n → ∞ . Nothing, however, followed 
since other linear means had the same property, as Markov 
(1899/1951, p. 250) stated. Poincaré himself (pp. 196 – 201 and 217) 
twice proved the [consistency] of the arithmetic mean. In the second 
case he issued from a characteristic function of the type of (5) and (6) 
and passed on to the characteristic function of the arithmetic mean. He 
noted that, if that function cannot be represented as (6), the 
consistency of the arithmetic mean was questionable, and he 
illustrated that fact by the Cauchy distribution. Perhaps because of all 
this reasoning on the mean Poincaré (p. 188) declared that Gauss’ 
rejection of his first substantiation of the MLSq was assez étrange and 
corroborated this conclusion by remarking that the choice of the 
[parameter of location] should not be made independently from the 
distribution. Gauss (1823b) came to the opposite conclusion, but he 
restricted his attention to practically occurring distributions.  
    Poincaré (pp. 217 – 218) also stated that very small errors made it 
impossible to obtain absolute precision as n → ∞ . More properly, this 
fact is explained by the non-evenness of the law of distribution, the 
variability of that law and some interdependence of the observations. 
    7) Randomness. See § 7.6.2.  
    Poincaré’s almost total failure to refer to his predecessors except 
Bertrand testifies that he was not duly acquainted with their work. 
Furthermore: in 1912 he was already able to, but did not apply 
Markov chains. At the same time, however, he became the author of a 
treatise that for about 20 years had remained the main writing on 
probability in Europe. Le Cam’s declaration (1986, p. 81) that neither 
Bertrand, nor Poincaré appeared to know the theory was unjust: he 
should have added that, at the time, Markov was apparently the only 
one who did master probability.  
    7.6. Supplement to § 7.4. I still ought to discuss Bertrand’s 
problem about the random chord and I seize the opportunity to 
introduce geometric probability (Sheynin 2003) and the notion of 
randomness (Sheynin 2011). 
    7.6.1. Geometric Probabilities. These were decisively introduced 
in the 18th century although the definition of the notion itself only 
occurred in the mid-19th century. Newton (§ 2.4.3) was the first to 
think about geometric probability. Beginning with Niklaus Bernoulli 
(1709/1975, pp. 296 – 297), see also Todhunter (1865, pp. 195 – 196), 
each author dealing with continuous laws of distribution effectively 
applied geometric probability. The same can be said about Boltzmann 
(1868/1909, p. 49) who defined the probability of a system being in a 
certain phase as the ratio of the time during which it is in that time to 
the whole time of the motion. Ergodic theorems can be mentioned, but 
they are beyond our boundaries.  



152 
 

    However, it was Buffon who expressly studied the new notion. The 
first report on his work likely written by him himself was Anonymous 
(1735). Here is his main problem: A needle of length 2r falls 
randomly on a set of parallel lines. Determine the probability P that it 
intersects one of them. It is seen that 
 
    P = 4r/πa                                                                               (7) 
 
where a > 2r is the distance between adjacent lines. Buffon himself 
had, however, only determined the ratio r/a for P = 1/2. His main aim 
was (Buffon 1777/1954, p. 471) to put geometry in possession of its 
rights in the science of the accidental. Many commentators described 
and generalized the problem above. The first of them was Laplace 
(1812/1886, p. 366) who noted that formula (7) enabled to determine 
[with a low precision] statistically the number π.  
    A formal definition of the new concept was only due to Cournot 
(1843, § 18). More precisely, he offered a general definition for a 
discrete and a continuous random variable by stating that probability 
was the ratio of the étendue of the favourable cases to that of all the 
cases. Now we replace étendue by measure (in particular, by area). 
    Michell (1767) attempted to determine the probability that two stars 
were close to each other. By applying the Poisson distribution, 
Newcomb (1859 – 1861, 1860, pp. 137 – 138) calculated the 
probability that some surface with a diameter of 1° contained s stars 
out of N scattered “at random” over the celestial sphere and much later 
Fisher (Hald 1998, pp. 73 – 74) turned his attention to that problem. 
Boole (1851/1952, p. 256) reasoned on the distinction between a 
uniform and any other law of distribution:  
    A random distribution meaning thereby a distribution according to 
some law or manner, of the consequences of which we should be 
totally ignorant; so that it would appear to us as likely that a star 
should occupy one spot of the sky as another. Let us term any other 
principle of distribution an indicative one. 
    His terminology is now unsatisfactory, but his statement shows that 
Michell’s problem had indeed led to deliberations of a general kind.  
    Determine the probability that a random chord of a given circle is 
shorter than the side of an inscribed equilateral triangle (Bertrand 
1888, p. 4). This celebrated problem had been discussed for more than 
a century and several versions of uniform randomness were studied. 
Bertrand himself offered three different solutions, and it was finally 
found out that, first an uncountable number of solutions was possible, 
and, second, that the proper solution was probability equals 1/2 and I 
note that it corresponded to la perfaite perplexité de notre esprit (§ 5). 
Thus failed the protracted discussion. 
    For a modern viewpoint on geometric probability see Kendall & 
Moran (1963); in particular, following authors of the 19th century 
(e.g., Crofton 1869, p. 188), they noted that it might essentially 
simplify the calculation of integrals. Then, Ambartzumian (1999) 
indicated that geometric probability and integral geometry are 
connected with stochastic geometry. 
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    7.6.2. Randomness is a fundamental notion which inevitably enters 
statistics. For a popular discussion of recent mathematical efforts to 
define it, see Chaitin (1975). The history of that notion begins in 
antiquity; Aristotle and other early scientists and philosophers 
attempted to define, or at least to throw light upon randomness. His 
examples of random events are a sudden meeting of two 
acquaintances (Phys. 196b30) and a sudden unearthing of a buried 
treasure (Metaphys. 1025a). In both cases the event occurred without 
being aimed at and in addition they illustrate one of Poincaré’s 
explanations (interpretations) of randomness (1907), then incorporated 
in his popular book (1908) and in his treatise (1912/1987, p. 4): if 
equilibrium is unstable,  
    A very small cause which escapes us determines a considerable 
effect […] and we say that that effect is due to chance. 
    Many authors had been repeating Aristotle’s first example and 
Cournot’s (1843, § 40) explanation can also be cited: 
    Events occurring as a combination or meeting of phenomena which 
apparently belong to independent series [but] happening as ordered 
by causality, are called fortuitous, or results of hazard. 
    Poincaré could have mentioned a coin toss. His deliberations (also 
see below) heralded the beginning of the modern period of studying 
randomness. However, Poincaré certainly had predecessors who only 
failed to mention directly randomness. Among them was the ancient 
physician Galen (1951, p. 202): In old men even the slightest causes 
produce the greatest change; Pascal (1669/2000, p. 675): Had 
Cleopatra’s nose been shorter, the whole face of the Earth would have 
changed; and Maxwell (1873a/1882, p. 364) who referred to the 
unstable refraction of rays within biaxial crystals. Elsewhere he 
(1859/1890, pp. 295 – 296) left a most interesting statement:  
    There is a very general and very important problem in Dynamics. 
[...] It is this: Having found a particular solution of the equations of 
motion of any material system, to determine whether a slight 
disturbance of the motion indicated by the solution would cause a 
small periodic variation, or a total derangement of the motion. 
    Given a large number of births, regularities of such mass random 
events will, however, certainly reveal themselves but Aristotle did not 
connect such events with randomness. Corruption of, or deviation 
from laws of nature also means randomness, and this idea can be 
traced at least until Lamarck who stated that the deviations from the 
divine lay-out of the tree of animal life had been occasioned by a 
cause accidentelle (Lamarck 1815, p. 133). 
    There also, on p. 173, he indicated that the spontaneous generation 
of organisms was caused by a très-irrégulière force but did not 
mention randomness. When considering the state of the atmosphere, 
Lamarck (1800 – 1811/1800, p. 76) stated that it was disturbed by two 
kinds of causes, including variables, inconstantes et irrégulières. 
Again, no mention of randomness, but then he (1810 – 1814/1959, p. 
632) denied it: no part of nature disobeys invariable laws; therefore 
that, which is called chance, does not exist.  
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    Louis Pasteur definitively disproved spontaneous generation, but 
until then it was apparently always considered random. Witness 
indeed Harvey (1651/1952, p. 338): 
    Creatures that arise spontaneously are called automatic […] 
because they have their origin from accident, the spontaneous act of 
nature. 
    Harvey did not say anything about the essence of accidents, but it 
seems that he thought them aimless, identified them with lack of law. 
Many other scientists denied randomness as Lamarck did. 
    I will now mention Laplace (1814/1995, p. 9) who stated that the 
arrangement of printed letters in the word Constantinople is not due to 
chance; all arrangements are equally unlikely, but that word has a 
meaning and it is incomparably more probable that someone had 
written it on purpose. He equated randomness with lack of purpose. 
This example shows that human judgement is needed for 
supplementing mathematical reasoning about randomness; 
intersection of events (above) can be additionally interpreted as lack 
of purpose.  
    Poincaré (1896/1912, p. 1) also formulated a dialectical statement 
about determinism and randomness much broader than the one 
following from deviation from laws of nature: it legitimizes 
randomness and indirectly defines it but does not say anything about 
regularities of mass random events: 
   In no field [of science] do exact laws decide everything, they only 
trace the boundaries within which randomness is permitted to move.  
According to this understanding, the word randomness has a precise 
and objective meaning. 
    He thus restricted the action of his pattern small cause – 
considerable effect. Exact laws tolerate randomness, cf. Newton’s 
statement about the system of the world (§ 2.4.3). He recognized 
randomness, although this time only in its uniform version as 
witnessed by the expression blind fate. Whether in English, or in 
equivalent French and German terms, scientists of the 17th and 18th 
centuries, if discussing randomness, mostly understood it in this sense. 
For example, Arbuthnot (§ 1.3.1-1), only compared Design with a 
discrete uniform distribution of the sexes of the new born babies. 
Maupertuis (1745/1756, pp. 120 – 121) indicated that the seminal 
liquid of chaque individu most often contained parties similar to those 
of their parents, but he (p. 109) also mentioned rare cases of a child 
resembling one of his remote ancestors as well as mutations (p. 121, a 
later term). It seems that Maupertuis thus recognized randomness with 
a multinomial distribution, but, when discussing the origin of eyes and 
ears in animals, he (1751/1756, p. 146) only compared une attraction 
uniforme & aveugle [blind] and quelque principe d’intelligence (and 
came out in favour of design). 
    A chaotic process engendered by a small corruption of the initial 
conditions of motion can lead to its exponential deviation. Only in a 
sense this may be understood as an extension of Poincaré’s pattern 
small cause – considerable effect. However complicated and 
protracted is a coin toss, it has a constant number of outcomes whose 
probabilities persist, whereas chaotic motions imply rapid increase of 
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their instability with time and countless positions of their possible 
paths. Their importance in mechanics and physics is unquestionable. 
My explanation of the comparatively new concept is only qualitative, 
but I have not seen any better. 
    In statistics, a random variable should be statistically stable, but in 
natural science this restriction is not necessary. Lamarck (see above) 
provided a good example of the latter phenomena: the deviations from 
the divine lay-out of the tree of animal life. Kolmogorov (1983/1992, 
p. 515) properly stated: 
    We should distinguish between randomness in the wider sense 
(absence of any regularity) and stochastic random events (which 
constitute the subject of probability theory). 
    There seems to be no quantitative criteria of statistical stability 
which apparently characterizes observations belonging to a single law 
of distribution, to a single population. However, practice often has to 
work in its absence; example: sampling estimation of the content of 
the useful component in a deposit. Choose other sample points, and it 
will be unclear whether they possess the same statistical properties 
(Tutubalin 1972, p. 7). But, according to scientific folklore, pure 
science achieves the possible by rigorous methods, whereas 
applications manage the necessary by possible means. 
    I provide now an example of a false conclusion caused by lack of 
statistical stability of the considered deviations. William Herschel 
(1817/1912, p. 579), who certainly knew nothing either about the size 
of stars or of their belonging to different spectral classes, decided that 
the size of a randomly chosen star will not much differ from the mean 
size of all of them. The sizes of stars are enormously different and 
their mean size is a purely abstract notion. There are stars whose radii 
are greater than the distance between the Sun and the Earth. Again, ex 
nihilo nihil fit. 
    Earlier, De Moivre (1733/1756, pp. 251 – 252) refused to admit 
randomness in the wide sense:  

Absurdity follows, if we should suppose the Event not to happen 
according to any Law, but in a manner altogether desultory and 

uncertain; for then the Event would converge to no fixt Ratio at all. 
8. The First Half of the 20

th
 Century 

    8.1. Karl Pearson (1857 – 1936) was an applied mathematician 
and philosopher and the creator of biometry, the main branch of what 
later became mathematical statistics.  
    Pearson studied physics on which he expressed some extremely 
interesting ideas. Thus, negative matter exists in the universe (1891, p. 
313); all atoms in the universe of whatever kind appear to have begun 
pulsating at the same instant (1887, p. 114) and physical variations 
effects were perhaps due to the geometrical construction of our space 
(Clifford 1885/1886, p. 202). He did not, however, mention 
Riemannian spaces whereas it is nowadays thought that the curvature 
of space-time is caused by forces operating in it. Remarkable also was 
Pearson’s idea (1892, p. 217) about the connection of time and space 
subjectively expressed as: 
    Space and time are so similar in character, that if space be termed 
the breadth, time may be termed the length of the field of perception. 
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    Mach (1897), in his Introduction, mentioned K. P. in the first 
edition of his book which appeared after 1892:  
   The publication [of the Grammar of Science] acquainted me with a 
researcher whose erkenntnisskritischen [Kantian] ideas on every 
important issue coincide with my own notions and who knows how to 
oppose, candidly and courageously, extra-scientific tendencies in 
science. 
    Again in the same contribution we find Pearson’s celebrated maxim 
(1892, p. 15): The unity of all science consists alone in its method, not 
in its material. I return to this statement in § 9. Here, I indicate that 
Pearson, a Fellow of the Royal Society since 1896, was unable to take 
up the invitation of Newcomb, the president of the forthcoming 
International Congress of Arts and Sciences (St. Louis, 1904), to 
deliver there a talk on methodology of science (Sheynin 2002, p. 163, 
note 8). 
At the very end of the 19th century, by founding the celebrated 
Biometrika, Galton, Pearson and Weldon (who died in 1906) 
established the Biometric school which aimed at the creation of 
methods of treating biological observations and of studying statistical 
regularities in biology. Pearson became the chief (for many years, the 
sole) editor of that periodical and. In the Editorial, in its first issue of 
1902, we find a reference to Darwin: 
    [E]very idea of Darwin – variation, natural selection […] – seems 
at once to fit itself to mathematical definition and to demand 
statistical analysis.  
    K. P. compiled contributions on Weldon (1906) and on Galton’s life 
and achievements, a fundamental and most comprehensive tribute to 
any scholar ever published (1914 – 1930). Incidentally, Chr. Bernoulli 
(1841, p. 389) had coined the word Biometric (in German) which 
referred to mass observations. The speedy success of the Biometric 
school had been to a large extent prepared by the efforts of Edgeworth 
(1845 – 1926); his collected writings appeared in 1996. 
    The immediate cause for establishing Biometrika seems to have 
been scientific friction and personal disagreement between Pearson 
and Weldon on the one hand, and biologists, especially Bateson, on 
the other hand, who exactly at that time had discovered the unnoticed 
Mendel. It was very difficult to correlate Mendelism and biometry: the 
former studied discrete magnitudes while the latter investigated 
continuous quantitative variations. However, in 1926 Bernstein 
(Kolmogorov 1938, § 1) proved that under wide assumptions the 
Galton law of inheritance of quantitative traits was a corollary of the 
Mendelian laws. 
    Pearson’s results in statistics include the development of the 
elements of correlation theory and contingency; introduction of the 
Pearsonian curves for describing empirical distributions; and a 
derivation of a most important chi-squared test for checking the 
correspondence of experimental data with one or other law of 
distribution, as well as the compilation of many important statistical 
tables. 
    Pearson’s posthumously published lectures (1978) examined the 
development of statistics in connection with religion and social 
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conditions of life. On the very first page we find the statement about 
the importance of the history of science: I do feel how wrongful it was 
to work for so many years at statistics and neglect its history. 
However, he provided a false appraisal of the Bernoulli LLN (§ 2.4.5).  
    Pearson attempted, often successfully, to apply the statistical 
method, and especially correlation theory, in many branches of 
science. Here is his interesting pronouncement (1907, p. 613):  
    I have learnt from experience with biologists, craniologists, 
meteorologists, and medical men (who now occasionally visit the 
biometricians by night!) that the first introduction of modern 
statistical method into an old science by the layman is met with 
characteristic scorn; but I have lived to see many of them tacitly 
adopting the very processes they began by condemning. 
    It is instructing to note the different views held of K. P. by other 
scientists. Kolmogorov (1947, p. 63) stated that 
    The modern period in the development of mathematical statistics 
began with the fundamental works of English statisticians (K. 
Pearson, Student, Fisher) which appeared in the 1910s, 1920s and 
1930s. Only in the contributions of the English school did the 
application of probability theory to statistics cease to be a collection 
of separate isolated problems and became a general theory of 
statistical testing of stochastic hypotheses (i. e., of hypotheses about 
laws of distribution) and of statistical estimation of parameters of 
these laws.  
    Kolmogorov (p. 64 of same paper) had not then duly appreciated 
Fisher, and here is his possible explanation: 
    The investigations made by Fisher, the founder of the modern 
British mathematical statistics, were not irreproachable from the 
standpoint of logic. The ensuing vagueness in his concepts was so 
considerable, that their just criticism led many scientists (in the Soviet 
Union, Bernstein) to deny entirely the very direction of his research. 
    A year later Kolmogorov (1948b/2002, p. 68) criticized the 
Biometric school:  
    Notions held by the English statistical school about the logical 
structure of the theory of probability which underlies all the methods 
of mathematical statistics remained on the level of the eighteenth 
century.  
    Fisher (1922, p. 311) expressed similar criticisms as did Chuprov 
(Sheynin 1990/2011, p. 149); Chuprov (Ibidem) informed his 
correspondents that Continental statisticians (especially Markov) did 
not wish to recognize Pearson.  
    Here are some other opinions about Pearson. 
    1) Bernstein (1928/1964, p. 228), when discussing a new cycle of 
problems in the theory of probability which comprises the theories of 
distribution and of the general non-normal correlation, wrote: 
    From the practical viewpoint the Pearsonian English school is 
occupying the most considerable place in this field. Pearson fulfilled 
an enormous work in managing statistics; he also has great 
theoretical merits, especially since he introduced a large number of 
new concepts and opened up practically important paths of scientific 
research. The justification and criticism of his ideas is one of the 
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central problems of current mathematical statistics. Charlier and 
Chuprov, for example, achieved considerable success here whereas 
many other statisticians are continuing Pearson’s practical work, 
definitely losing touch with probability theory … 
    2) Fisher, letter of 1946 (Edwards 1994, p. 100):  
    He was singularly unreceptive to and often antagonistic to 
contemporary advances made by others in [his] field. [Otherwise] the 
work of Edgeworth and of Student, to name only two, would have 
borne fruit earlier. 
    Fisher (1937, p. 306) also accused Pearson: his plea of 
comparability [between the methods of moments and maximum 
likelihood] is […] only an excuse for falsifying the comparison […]. 
Pearson died in 1936, but his son, Egon, kept silent. 
    3) But there are also testimonies of a contrary nature: Mahalanobis, 
in a letter of 1936 (Ghosh 1994, p. 96): he always looked upon [K. P.] 
as his master, and upon himself, as one of his humble disciples. And 
Newcomb, who had never been Pearson’s student, wrote in a letter of 
1903 to him (Sheynin 2002, p. 160):  
    You are the one living author whose production I nearly always 
read when I have time and can get at them, and with whom I hold 
imaginary interviews while I am reading. 
    4) Hald (1998, p. 651) offered a reasonable general description of 
one aspect of the Biometric school:  
    Between 1892 and 1911 he [Pearson] created his own kingdom of 
mathematical statistics and biometry in which he reigned supremely, 
defending its ever expanding frontiers against attacks. […] He was 
not a great mathematician, but he effectively solved the problems 
head-on by elementary methods.  
    5) Fisher (1956/1990, p. 3), however, ungenerously criticized 
Pearson for the weakness of his mathematical and scientific work.  
    In Russia, Chuprov and Slutsky defended Pearson's work against 
Markov's opposition (Sheynin 1990/2011, §§ 7.4 and 7.6). Chuprov 
wished to unite the Continental direction of statistics with biometry, 
but did not achieve real success. 
    Lenin’s criticism of Pearson was in itself a sufficient cause of the 
negative Soviet attitude towards Pearson. Maria Smit’s statement 
(1934, pp. 227 – 228) was its prime example: his curves are based  
    On a fetishism of numbers, their classification is only mathematical. 
Although he does not want to subdue the real world as ferociously as 
it was attempted by […] Gaus [Smit’s spelling], his system 
nevertheless only rests on a mathematical foundation and the real 
world cannot be studied on this basis at all.  
    In 1931 this troglodyte (Corresponding member of the Soviet 
Academy of Sciences since 1939!) declared: The crowds of arrested 
saboteurs are full of statisticians (Sheynin 1998, p. 533, literal 
translation). She likely participated in enlarging that crowd.  
    However, the tone of the item Pearson, in the third edition of the 
Great Sov. Enc. (vol. 19, 1975/English edition: same volume, 1978, p. 
366) was quite different: he considerably contributed to the 
development of mathematical statistics and Lenin had only criticized 
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his subjective-idealistic interpretation of the nature of scientific 
knowledge. 
    8.2. Markov is known to have opened up a new direction of 
probability theory dealing with dependent events, and in particular, to 
have introduced the Markov chains. At the same time, he refused to 
apply his chains to problems in natural sciences, did not apply the 
allegedly meaningless term random magnitude (as it is still called in 
Russia) and, similarly, the expressions normal law and coefficient of 
correlation were absent in his works. Like a student of Chebyshev that 
he was, he underrated the then emerging axiomatic approach to 
probability as well as the theory of functions of a complex variable 
(A. A. Youshkevich 1974, p. 125). 
    During his last years, in spite of extremely difficult conditions of 
life in Russia and his worsened health, he completed (perhaps not 
entirely) the last posthumously published edition of his Treatise but 
insufficiently described there the findings of the Biometric school; 
such scholars as Yule and Student (Gosset) were not mentioned and 
he (1900/1924, pp. 10, 13 – 19 and 24) even wrongly stated that he 
transferred probability to the realm of pure mathematics just by 
proving the addition and multiplication theorems. Actually, to some 
extent he became a victim of his own rigidity; he failed, or did not 
wish to notice the new tide of opinion in statistics, or even probability 
theory, see also Sheynin (2006).  
    Markov (1888) compiled a table of the normal distribution which 
gave it to 11 digits for the argument x = 0 (0.001) 3 (0.01) 4.8. Two 
such tables, one of them Markov’s, and the other, published ten years 
later, remained beyond compare up to the 1940s (Fletcher et al 
1946/1962). 
    Markov included some innovations in the last edition of his 
Treatise: a study of statistical series, linear correlation. He determined 
the parameters of lines of regression, discussed random variables 
possessing certain densities and included a reference to Slutsky 
(1912), whom he previously barely recognized, but paid no attention 
either to the chi-squared test or to the Pearsonian curves. 
The so-called Gauss – Markov theorem invented by Lehmann (1951), 
who followed Neyman’s mistake (which Neyman himself later 
acknowledged), is a misnomer since it was due to Gauss alone.  
    8.3. The Continental Direction of Statistics. At the end of the 
19th, and in the beginning of the 20th century, statistical investigations 
on the Continent were chiefly restricted to the study of population 
whereas in England scientific statistics was mostly applied to biology. 
    The so-called Continental direction of statistics originated as the 
result of the work of Lexis whose predecessors had been Poisson, 
Bienaymé, Cournot and Quetelet. Poisson and Cournot examined the 
significance of statistical discrepancies for a large number of 
observations without providing examples. Cournot also attempted to 
reveal dependence between the decisions reached by judges (or 
jurors). Bienaymé (1839) was interested in the change in statistical 
indicators from one series of trials to the next one and Quetelet (§ 7.1) 
investigated the connections between causes and effects in society, 
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attempted to standardize statistical data worldwide and, following 
Süssmilch (§ 1.3), created moral statistics.  
    At the same time statisticians held that the theory of probability was 
only applicable to statistics if equally possible cases were in existence, 
and the appropriate probability remained constant (§ 2.4.5). 
    8.3.1. Lexis (1879) proposed a distribution-free test for the equality 
of probabilities in different series of observations; or, a test for the 
stability of statistical series. Suppose that there are m series of ni 
observations, i = 1, 2, …, m, and that the probability of success p was 
constant throughout. If the number of successes in series i was ai, the 
variance of these magnitudes can be calculated by two independent 
formulas (Lexis 1879, § 6) 
 
    σ1

2 = pqn, σ2
2 = [vv]/(m – 1)                                                     (1; 2) 

 
where n was the mean of ni, vi, the deviations of ai from their mean, 
and q = 1 – p. Formula (2) was due to Gauss (§ 6); he also knew 
formula (1), see Gauss, W-8, p. 133. The frequencies of success can 
also be calculated twice. Note however that Lexis applied the probable 
error rather than the variance and mistakenly believed that the relation 
between the mean square error and the probable error was 
distribution-free. He (§ 11) called the ratio 
 
    Q = σ2/σ1  
 
the coefficient of dispersion. For him, the case Q = 1 corresponded to 
normal dispersion (with admissible random deviations from unity); he 
called the dispersion supernormal, and the stability of the observations 
subnormal if Q > 1 (and indicated that the probability p was not then 
constant); finally, Lexis explained the case Q < 1 by dependence 
between the observations, called the appropriate variance subnormal, 
and the stability, supernormal. He did not, however, pay attention to 
this possibility. His coefficient was the ratio of the appearance of the 
studied event as calculated by the Gauss formula to that peculiar to the 
binomial distribution. 
    Lexis hardly thought about calculating the mean value and variance 
of Q (and in any case that was a serious problem). In 1916, both 
Markov, and, much better, Chuprov derived EQ and, in a manuscript 
of 1916 or 1917, Chuprov derived the mean square error of Q.  
    8.3.2. In 1910 Markov and Chuprov, in their letters to each other 
(Ondar 1977), proved that some of the Lexian considerations were 
wrong. Then, in 1918 – 1919, Chuprov formulated the shortcomings 
of Q as a criterion but, strangely enough, he somehow kept to the 
Lexian theory until 1921. Indeed, in a letter of 30 Jan. 1921 to a friend 
Chuprov wrote:  
    One of the most important doctrines of theoretical statistics, which I 
until now entirely accepted and professed, the Lexian theory of 
stability of statistical figures is to a large extent based on a  
mathematical misunderstanding. 
    Concerning this paragraph see Sheynin (1990/2011, pp. 140 – 143).  
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The refutation of those Lexian considerations was apparently barely 
noticed. Bernstein (1928/1964, p. 224) called them the first important 
step of the scientific treatment of statistical materials and even much 
later Särndal (1971, pp. 376 – 377) who described this subject did not 
mention any criticisms of Lexis. As it seems, Bernstein also positively 
although obliquely referred to the non-existing Bortkiewicz’ law of 
small numbers (1898): Poisson’s investigations had been recently 
specified and essentially supplemented.  
    Yes, Lexis thought of basing statistical investigations on a 
stochastic foundation (although so did Jakob Bernoulli), and he also 
made a forgotten attempt to define stationarity and trend. In a paper 
devoted to the application of probability theory to statistics, Lexis 
(1886, pp. 436 – 437) stated that the introduction of equipossibility led 
to the subjectivity of the theory of probability. He did not say that the 
existence of equally possible cases was not necessary. This point 
haunted him (Lexis 1913, p. 2091). 
    8.3.3. Bortkiewicz had introduced his own test, Q′, not coinciding 
with the Lexian Q, and equal to the ratio of two dependent random 
variables, call them ξ and η. Unlike Q, Q′ cannot be less than 1 (1898, 
p. 31). Later Bortkiewicz (1904, p. 833) noted that EQ = Q′ but 
mistakenly justified this equality by believing that, for those 
dependent variables, Eξ/η = Eξ/Eη. Then, he (1918, p. 125n) 
unjustifiably admitted that the equality was only insignificantly 
approximate. Chuprov (1922) devoted a paper to that subject. 
See my discussion (1990/2011, pp. 59 – 62) of the Lexian innovation. 
In particular, I quoted Bortkiewicz’ letter to Chuprov of 29 March 
1911: Poisson cannot at all be considered the own father of the law of 
small numbers since he, Bortkiewicz, did not regard a low level of the 
probability of the studied event as the decisive point. Rarity, he 
continued, can mean a small number of occurrences of that event 
when the number of trials was also small. He thus undermined his 
alleged law! Delicate Chuprov did not comment. 
    8.3.4. The Two Statistical Streams. Bauer (1955, p. 26) 
investigated how the Biometric school and the Continental direction 
of statistics had been applying analysis of variance and concluded (p. 
40) that their work was going on side by side but did not tend to 
unification. For more details about Bauer`s study see Heyde & Seneta 
(1977, pp. 57 – 58) where it also correctly indicated that, unlike the 
Biometric school, the Continental direction had concentrated on 
nonparametric statistics. Chuprov can be certainly mentioned here. He 
achieved some important results; for example, he discovered finite 
exchangeability (Seneta 1987). 
    However, his formulas, being of considerable theoretical interest, 
were almost useless due to complicated calculations involved 
(Romanovsky 1930, p. 216). In addition, he had not paid due attention 
to notation. Thus, in one case he (1923, p. 472) applied two-storey 
superscripts and two-storey subscripts in the same (five-storey!) 
formula. Hardly has any other author (not even Bortkiewicz) allowed 
himself to take such liberties, to expect his readers to digest suchlike 
monsters.  
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    For his part, Bortkiewicz just had not respected his readers. Winkler 
(1931, p. 1030) quoted his letter (but did not provide its date) in which 
Bortkiewicz mentioned that he expected to have five readers of his 
(unnamed by Winkler) publication. Statisticians had not been 
mathematically educated and despised mathematics; for them, 
Bortkiewicz remained an alien body. 
    I myself (Gnedenko & Sheynin 1978/2001, p. 275), probably 
following other authors, suggested that mathematical statistics 
properly originated as the coming together of the two streams. 
However, now I correct myself. At least until the 1920s, say, British 
statisticians had continued to work all by themselves. E. S. Pearson 
(1936 – 1937), in his study of the work of his father, had not 
commented on Continental statisticians and the same is true about 
other such essays (Mahalanobis 1936; Eisenhart 1974). I believe that 
English, and then American statisticians for the most part only 
accidentally discovered some findings already made by the 
Continental school. Furthermore, the same seems to happen nowadays 
as well. Even Hald (1998) called his book History of Mathematical 
Statistics, but barely studied the work of that school. 
    In 1919 there appeared in Biometrika an editorial entitled 
Peccavimus! (we were guilty). Its author, Pearson, corrected his 
mathematical and methodological mistakes made during several years 
and revealed mostly by Chuprov (Sheynin 1990a/2011, p. 75) but he 
had not taken the occasion to come closer to the Continental 
statisticians. In 2001, five essays were published in Biometrika, vol. 
88, commemorating its centenary. They were devoted to important 
particular issues, but nothing was said in that volume about the history 
of the Biometric school, and certainly nothing about Continental 
statisticians. 
    8.3.5. Statistics and Sociology in the Soviet Union. Concerning 
the general situation there, see Sheynin (1998). 
    Sociology studies society, its institutions, population, existing 
tendencies and attempts to discern possible developments. Statistics 
naturally essential for such investigations, and many statisticians from 
Graunt to Quetelet to modern specialists can be cited here. Here, I am 
only concerned with the year 1954 and begin by quoting two authors 
(Schlözer 1804, p. 51) and Truesdell (1981/1984, pp. 115 – 117) who 
invented two terms, plebiscience which describes modern times and 
prolescience of the future:  
    Statistics and despotism are incompatible.  
    Prolescience will confirm and comfort the proletariat in all that will 
by then have been ordered to believe. […] That will be mainly social 
science. 
    Süssmilch attempted to reveal divine order in demography, but 
official Soviet statistics regarded statistics as a discipline reduced to 
corroborate quantitatively Marxist propositions. Many participants in 
a statistical conference held in Moscow in 1954 voiced that opinion 
(Anonymous 1954; see also Kotz 1965; Sheynin 1998, pp. 540 – 541).  
Only the revolutionary Marxist theory is the basis for developing 
statistics as a social science (p. 41); statistics does not study mass 
random phenomena (p. 61) which anyway possess no special features 
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(p. 74); the LLN is not a mathematical proposition (p. 64); probability 
is not the necessary basis of statistics, the theory of stability of 
statistical series is a bourgeois theory and even honest bourgeois 
statisticians are compelled to violate their professional duty (p. 46, the 
notorious and immortal Maria Smit, see § 8.1). 
    K. V. Ostrovitianov (p. 82), the vice-president of the Academy of 
Sciences, ignorantly declared that Lenin had completely subordinated 
[adapted] the statistical methods of research […] to the class analysis 
of the rural population. And, as he menacingly continued, the same 
scientific methods cannot be used in astronomy and economics. 
His latter statement directly contradicted Kolmogorov’s (pp. 46 – 47) 
definition of mathematical statistics who also mentioned several safe 
areas of application of the statistical method (studies of the work of 
telephone exchanges, management of life insurance, determination of 
necessary stocks of foodstuffs) but omitted population statistics. This 
subject was dangerous. The census of 1937 was proclaimed worthless 
and followed by a decimation of the Central Statistical Directorate: it 
revealed a demographic catastrophe occasioned by arbitrary rule, 
uprooting of millions, mass hunger and savage witch-hunt. And the 
war losses had to be hushed up. 
    Much later, still in accord with the resolution of the conference, 
Riabushkin (1980, p. 498) argued that statistical descriptions should 
be inseparably bound with life’s qualitative content, i. e., with 
Marxism. In itself, that requirement was not new at all, see 
Buniakovsky (1866, p. 154); Chuprov (1903/1960, p. 42); Fisher 
(1935, p. 1).Ten more years had to pass before Orlov (1990) rejected 
the decisions of that conference, revealed the falsifications of Soviet 
statistics and its backwardness (certainly known abroad).  

9. The Unity of Statistics Consists Alone in Its Method, 

in Mathematical Statistics 
    Schlözer (1804) called his book Theory of statistics, but it did not 
contain any theory in our sense. Bearing in mind other authors of the 
first half of the 19th century, I believe that in those times theory of 
statistics meant a systematic arrangement of statistical data according 
to reasonably chosen indicators. Schlözer had not mentioned either 
political arithmetic or Jakob Bernoulli, did not clearly define the 
interrelations of statistics, politics and history, and his bibliographic 
indications were often barely useful. I consider his book 
unsatisfactory.  
    Even Achenwall had a theory (of Staatswissenschaft) in that same 
sense, and, as it seems, so did Delambre (1819, p. LXVII) and Fourier 
(1821, pp. iv – v) and the London Statistical Society (Anonymous 
1839, p. 1). Delambre argued that statistics ought not to engage in 
discussions or conjectures or to aim at perfecting theories, and that 
Society declared that statistics does not discuss causes nor reason 
upon probable effects. True, these absurd restrictions have been 
necessarily disregarded (Woolhouse 1873, p. 39), − I would say, they 
became obsolete, but no theory of statistics had yet emerged.  
    The very title of Dufau (1840) called statistics the theory of 
studying the laws according to which the social events are developing. 
And, without mentioning any theories, a kindred idea was pronounced 
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much earlier (Gatterer 1775, p. 15): Just as in history it is necessary to 
investigate not only the Pourquoi, but also the Pourquoi of the 
Pourquoi, so it is necessary in statistics to explain the present state of 
a nation by its previous states. 
    This Pourquoi of the Pourquoi likely came from Sophie Charlotte, 
Queen of Prussia, apparently from her letter to Leibniz (Krauske 1892, 
p. 682). Cf. Cournot (1843, § 106):  
    The essential goal of the statistician, just like of any other observer, 
is to penetrate as deeply as possible into the knowledge of the essence 
of things. 
    Perhaps Cauchy (1845/1896, p. 242) can also be cited: statistics was 
infallible in judging doctrines and institutions. 
    Here is how Chuprov’s student and the last representative of the 
Continental direction, Anderson (1932, p. 243), described the previous 
situation of the application of probability in statistics: 
    Our (younger) generation of statisticians is hardly able to imagine 
that mire in which the statistical theory had got into after the collapse 
of the Queteletian system, or the way out of it which only Lexis and 
Bortkiewicz have managed to discover. 
    But did they (or Chuprov, whom Anderson later added to them) 
really overcome the occurring difficulty? Did they convince 
statisticians? In any case, the situation changed only gradually. Only 
in the mid-20th century Neyman (1950, p. 4), Mises (1964a, 
posthumous, p. 1) and Kendall (1978, p. 1093) stated that 
mathematical statistics (a section of the theory of probability, as the 
two first authors held) was the mathematical theory of statistics. The 
relations between probability theory and mathematical statistics does 
not directly bear on statistics and I only note that Kolmogorov (1948a, 
p. 216) thought that the theory of probability must be considered the 
structural part of mathematical statistics, but that (p. 218) statistics 
only gradually ceases to be the applied theory of probability. And (p. 
216) mathematical statistics is a science of the mathematical methods 
of studying mass phenomena. 
    Later, however, Kolmogorov (Anonymous 1954, pp. 46 – 47) only 
declared that mathematical statistics is not an applied theory of 
probability. Then, mass phenomena is too restrictive. Anyway, much 
later Kolmogorov provided quite another definition of mathematical 
statistics, see below.  
    The following two definitions should perhaps be altered by 
substituting theory of statistics instead of statistics and statistical data 
instead of mass observations; they both will then be in line with the 
definitions above. 
    Fisher (1925, p. 1) argued that statistics is a branch of applied 
mathematics and may be regarded as mathematics, applied to 
observational data. K. Pearson (1978, p. 3) stated that statistics is the 
application of mathematical theory to the interpretation of mass 
observations. 
    Alph. De Candolle (1833, p. 334) and Chaddock (1925, p. 26) 
thought that statistics is a branch of mathematics. Here also, this rather 
incomplete definition can be altered to conform to those of Neyman, 
Mises and Kendall.  
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    According to the comparatively new definition of Kolmogorov & 
Prokhorov (1988/1990, p. 138),  
    Mathematical statistics is a branch of mathematics devoted to 
systematizing, processing and utilizing statistical data, or information 
on the number of objects in some more or less extensive collection that 
have some specific properties.  
    They (p. 139) also argued that the method of research, 
characterized as the discussion of statistical data, […] is called 
statistical and consists in calculating the number of objects in some 
group or other, in discussing the distribution of quantitative 
indicators, applying the method of sampling and estimating the 
adequacy of the number of observations etc. (p. 139). 
    Kolmogorov & Prokhorov’s definition apparently excluded the 
theory of errors and in addition it remains unclear whether the 
information was raw or corrected, either initially or during 
systematization by means of exploratory data analysis, − whether they 
incorporated that stage of work into mathematical statistics. See § 7.2 
on the difference between mathematical and theoretical statistics. 
    Many definitions are more or less akin to theirs, although their 
authors sometimes discuss statistics instead of theory of statistics or 
mathematical statistics. Thus (Butte 1808, p. XI), 
   Statistics is a science of the art [science and art] of the knowledge 
and due estimation of statistical data, of their collection and 
systematic analysis. 
    Zhuravsky (1846, p. 173): statistics is a calculus of categories, 
which distributes objects among the categories and counts them in 
each category. He thought that statistics is a special and very wide 
science. Maxwell (1871/1890, vol. 2, p. 253; 1877, p. 242) defined the 
statistical method as an estimation of an average condition of a group 
of atoms, as a study of the probable number of bodies in each group 
under investigation.  
    Some modern definitions have been offered by Egon Pearson 
(Bartholomew 1995, p. 7), Kendall (1950, p. 130), Kendall & 
Buckland (1971), Marriot (1991), Bancroft (1966, p. 530), Kruskal 
(1978, p. 1072), Wilks (1968, p. 162), anonymous authors (1968, p. 
166; 1985, p. 230) and Dodge (2003, p. 388). 
    The first two definitions are rather abstract as also, to a lesser 
extent, is the fourth one; the others have much in common with 
Kolmogorov & Prokhorov’s. And here is Dodge:  
    Statistics is a science of collecting, analysing and interpreting the 
data (the numerical information relating to an aggregate of 
individuals). 
    Several authors have preferred a narrower and therefore hardly 
sufficient definition of statistics. Chuprov, in his unpublished thesis of 
1896 (Sheynin 1990/2011, p. 118), as well as Lindley (1984, p. 360) 
and Stigler (1986, p. 1) believed that it measures our ignorance or 
uncertainty. And Chernoff & Moses (1959, p. 1) even stated that  
    Today’s statistician will be more likely to say that statistics is 
concerned with decision making in the face of uncertainty (than with 
processing of data). 
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    Cf. Mahalanobis’ statement of 1950 (Rao 1993, p. 339): The aim of 
statistics is to reach a decision on a probabilistic basis, on available 
evidence. And Bancroft (1966), remarked that statistical inferences 
are made in the face of uncertainty. 
    Several authors held that statistics is only a method (Fox 1860, p. 
331; Miklashevsky 1901, p. 476). Alph. De Candolle (1873, p. 12) 
reversed his own much earlier opinion, agreed with that statement and 
even contrasted statistics with mathematics mistakenly arguing that 
the latter (only) provided deterministic conclusions.  
    It is time to formulate my own conclusions. 
    1. Statistics and statistical method: in § 1.3 I noted that these terms 
are (sometimes) understood as synonyms. More precisely, the 
statistical method is almost the same as mathematical statistics or 
theory of statistics. 
    2. Such expressions as stellar or medical statistics mean the 
application of the statistical method to stellar astronomy or medicine. 
    3. Statistical theory or mathematical statistics rather than statistics 
as a whole may perhaps be likened to a statistical method or a series of 
statistical procedures. 
    4. Sociology or the science of the life of groups of men in a society 
naturally applies the statistical method. 
    5. The stochastic theory of errors is the application of the statistical 
method to the treatment of observations. This statement contradicts 
the definition of Kolmogorov & Prokhorov, but I believe that their 
understanding of statistical data may well be generalized to include 
results of observations or measurements. 
    6. K. Pearson (§ 8.1) stated that the unity of all science consists 
alone in its method … To a certain extent this maxim is borne out by 
the essence of statistical method. Kruskal (1978, p. 1082) thought that 
statistics has a neighbourly relation with philosophy of science, but I 
will argue that statistics ought to be replaced here by statistical 
method. Recall also Achenwall (beginning of § 1.1): statistics belongs 
to a well digested philosophy. Only mathematical statistics can be 

the theory of that discipline. Cf. Items 1 and 3.  
    7. An afterthought: For statistics, the axiomatized theory of 
probability is useless.  
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