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The game-theoretic framework for probability is simple. But to appreciate
it, you need mathematics and philosophy:

Mathematics Classical probability theorems can be made game-theoretic.

Philosophy The classical French interpretation of probability can be made
game-theoretic.
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My talk: Game-Theoretic Probability

Game-theoretic probability competes with measure-theoretic
probability.

It is an alternative formalization of classical probability.

Mathematics Classical probability theorems become theorems
in game theory (someone has a winning strategy).

Philosophy Cournot’s principle, the classical French
interpretation of probability (events of small probability do
not happen) becomes game-theoretic (you do not get rich
without risking bankruptcy).
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Professor Vovk’s talk: Defensive Forecasting

Game-theoretic probability produces something radically new,

which exists neither in classical nor in measure-theoretic

probability.

Even if reality plays against you,

• You can give valid sequential probabilities.

• You can use them to make optimal decisions.

3



Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville

2. The strong law of large numbers

3. The weak law of large numbers

4. The central limit theorem

5. The
√

dt effect

Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob

5. Making Cournot’s principle game-theoretic: Ville
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Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville. Pascal assumed no
arbitrage (you cannot make money for sure) in a sequential
game. Ville added Cournot’s principle (you will not get rich
without risking bankruptcy).

2. The strong law of large numbers

3. The weak law of large numbers

4. The central limit theorem

5. The
√

dt effect
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Blaise Pascal (1623–1662),
as imagined in the 19th
century by Hippolyte
Flandrin.

Pascal: Fair division

Peter and Paul play for $100. Paul is

behind. Paul needs 2 points to win,

and Peter needs only 1.

$?

$0Peter

Peter

Paul

Paul

$0

$100

If the game must be broken off, how

much of the $100 should Paul get?
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It is fair for players to put

up equal stakes if the winner

takes all.

So it is fair for Paul to pay

$a in order to get $2a if he

defeats Peter and $0 if he

loses to Peter.

$0

$a

$2a

So Paul should get $25.

$25

$0Peter

Peter

Paul

Paul

$50

$0

$100

Modern formulation: If the game

on the left is available, the prices

above are forced by the principle

of no arbitrage.
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Binary probability game.
(Here Kn is Skeptic’s capital and sn is the total stakes.)
K0 := 1.
FOR n = 1,2, . . . :
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − pn).

No Arbitrage: If Forecaster announces a strategy in advance,
the strategy needs to obey the rules of probability in order to
keep Skeptic from making money for sure.

In other words, the pn should be conditional probabilities from
some probability distribution for y1, y2, . . . .

Synonyms for no arbitrage: coherence, no Dutch book
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The lesson from Pascal

Probability is about fair prices in a sequential game.

Pascal’s concept of fairness: no arbitrage.

The lesson from Ville

Jean Ville developed a second concept of fairness: you will not

get rich without risking bankruptcy.
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Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

In 1939, Ville showed that the laws

of probability can be derived from a

principle of market efficiency:

If you never bet more than

you have, you will not get in-

finitely rich.

As Ville showed, this is equivalent

to the principle that events of small

probability will not happen. We call

both principles Cournot’s principle.
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Binary probability game when Forecaster uses the strategy

given by a probability distribution P.

K0 := 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − P{Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1}).

Restriction on Skeptic: Skeptic must choose the sn so that

Kn ≥ 0 for all n no matter how Reality moves.
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Summary

Two aspects of fairness in game-theoretic probability.

Pascal No arbitrage: You canot make money for sure.

Ville Cournot’s principle: You will not get rich without risking

bankruptcy.
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Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville

2. The strong law of large numbers (Borel). The classic
version says the proportion of heads converges to 1

2 except
on a set of measure zero. The game-theoretic version says
it converges to 1

2 unless you get infinitely rich.

3. The weak law of large numbers

4. The central limit theorem

5. The
√

dt effect
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Fair-coin game. (Skeptic announces the amount Mn he risks

losing rather than the total stakes sn.)

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 0 or limn→∞Kn = ∞.

Otherwise Reality wins.

Theorem Skeptic has a winning strategy.
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Who wins? Skeptic wins if (1) Kn is never negative and (2)

either

lim
n→∞

1

n

n∑

i=1

yi = 0 or lim
n→∞Kn = ∞.

So the theorem says that Skeptic has a strategy that (1) does

not risk bankruptcy and (2) guarantees that either the average

of the yi converges to 0 or else Skeptic becomes infinitely rich.

Loosely: The average of the yi converges to 0 unless Skeptic

becomes infinitely rich.
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The Idea of the Proof

Idea 1 Establish an account for betting on heads. On each

round, bet ε of the account on heads. Then Reality can keep

the account from getting indefinitely large only by eventually

holding the cumulative proportion of heads at or below 1
2(1+ ε).

It does not matter how little money the account starts with.

Idea 2 Establish infinitely many accounts. Use the kth account

to bet on heads with ε = 1/k. This forces the cumulative

proportion of heads to stay at 1/2 or below.

Idea 3 Set up similar accounts for betting on tails. This forces

Reality to make the proportion converge exactly to one-half.
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Definitions

• A path is an infinite sequence y1y2 . . . of moves for Reality.

• An event is a set of paths.

• A situation is a finite initial sequence of moves for Reality,
say y1y2 . . . yn.

• 2 is the initial situation, a sequence of length zero.

• When ξ is a path, say ξ = y1y2 . . . , write ξn for the situation
y1y2 . . . yn.
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Game-theoretic processes and martingales

• A real-valued function on the situations is a process.

• A process P can be used as a strategy for Skeptic: Skeptic

buys P(y1 . . . yn−1) of yn Skeptic in situation y1 . . . yn−1.

• A strategy for Skeptic, together with a particular initial

capital for Skeptic, also defines a process: Skeptic’s capital

process K(y1 . . . yn).

• We also call a capital process for Skeptic a martingale.
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Notation for Martingales

Skeptic begins with capital 1 in our game, but we can change
the rules so he begins with α.

Write KP for his capital process when he begins with zero and
follows strategy P: KP(2) = 0 and

KP(y1y2 . . . yn) := KP(y1y2 . . . yn−1) + P(y1y2 . . . yn−1)yn.

When he starts with α, his capital process is α +KP.

The capital processes that begin with zero form a linear space,
for

βKP = KβP and KP1 +KP2 = KP1+P2.

So the martingales also form a linear space.
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Convex Combinations of Martingales

If P1 and P2 are strategies, and α1 + α2 = 1, then

α1(1 +KP1) + α2(1 +KP2) = 1 +Kα1P1+α2P2.

—LHS is the convex combination of two martingales that each
begin with capital 1.

—RHS is the martingale produced by the same convex
combination of strategies, also beginning with capital 1.

Conclusion: In the game where we begin with capital 1, we can
obtain a convex combination of 1 +KP1 and 1 +KP2 by
splitting our capital into two accounts, one with initial capital
α1 and one with initial capital α2. Apply α1P1 to the first
account and α2P2 to the second.
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Infinite Convex Combinations: Suppose P1,P2, . . . are strategies
and α1, α2, . . . are nonnegative real numbers adding to one.

• If
∑∞

k=1 αkPk converges, then
∑∞

k=1 αkKPk also converges.

• ∑∞
k=1 αkKPk is the capital process from

∑∞
k=1 αkPk.

• You can prove this by induction on

KP(y1y2 . . . yn) := KP(y1y2 . . . yn−1) + P(y1y2 . . . yn−1)yn.

In game-theoretic probability, you can usually get an infinite convex
combination of martingales, but you have to check on the convergence of
the infinite convex combination of strategies. In a sense, this explains the
historical confusion about countable additivity in measure-theoretic
probability (see Working Paper #4).
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Forcing

A strategy P for Skeptic forces an event E if

KP(t) ≥ −1

for every situation t and

lim
n→∞K

P(ξn) = ∞
for every path ξ not in E.

This means P is a winning strategy in the game where Skeptic

starts with capital 1 and has E as his goal instead of

limn→∞ 1
n

∑n
i=1 yi = 0.
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Weak Forcing

• P forces E if KP(t) ≥ −1 for every situation t and

lim
n→∞K

P(ξn) = ∞
for every path ξ not in E.

• P weakly forces E if KP(t) ≥ −1 for every situation t and

sup
n
KP(ξn) = ∞

for every path ξ not in E.
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Equivalence of Forcing and Weak Forcing

The following lemma shows that forcing and weak forcing are

practically equivalent.

Lemma 1 If Skeptic can weakly force E, then he can force E.

Proof Suppose P weakly forces E. Choose a number larger than 1, say 2.
Starting with initial capital 1, Skeptic play P until the capital exceeds 2.

Set aside 1 and continue with a rescaled version of T , scaled down to the
reduced capital. (Multiply P’s moves on succeeding rounds by the factor by
which the capital has been reduced, thus assuring that the capital on
succeeding rounds is also multiplied by this factor.)

When the capital again exceeds 2, again set aside 1, and so forth. The
money set aside grows without bound.
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Combining Strategies that Force Events

Lemma 2 If Skeptic can weakly force each of a sequence
E1, E2, . . . of events, then he can weakly force

⋂∞
k=1 Ek.

Proof Suppose Pk weakly forces Ek. Then

|Pk(y1 . . . yn)| ≤ 1 +KPk(y1 . . . yn) ≤ 2n.

Skeptic bets Pk(y1 . . . yn) on round n + 1. When he makes this bet, he has
capital 1 +KPk(y1 . . . yn). The first inequality holds because he cannot bet
more than he has (he must avoid risking bankruptcy). The second
inequality holds because he cannot, consequently, do more than double his
money on each round.

Because for each y1 . . . yn there is a constant C (namely 2n) such that
Pk(y1 . . . yn) ≤ C for all k, a strategy Q can be defined by

Q :=
∞∑

k=1

2−kPk.

Since Pk weakly forces Ek, Q also weakly forces Ek. So Q weakly forces⋂∞
k=1Ek.
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Bounding Reality’s Average Move from Above

Lemma 3 Suppose ε > 0. Then Skeptic can weakly force

lim sup
n→∞

1

n

n∑

i=1

yi ≤ ε.

Proof: Suppose ε < 1
2
. Let P be the strategy that always buys εα of y,

where α is the current capital. Because y is never less than −1, this strategy
loses at most the fraction ε of the current capital, and hence the capital
process is nonnegative. It is given by 1 +KP(2) = 1 and

1 +KP(y1 . . . yn) = (1 +KP(y1 . . . yn−1))(1 + εyn) =
n∏

i=1

(1 + εyi) .

Let ξ = y1y2 . . . be a path such that supnKP(y1 . . . yn) < ∞. Then there exists
a constant Cξ > 0 such that

n∏

i=1

(1 + εyi) ≤ Cξ for all n.
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Taking logarithms of both sides of
∏n

i=1 (1 + εyi) ≤ Cξ, we find that

n∑

i=1

ln (1 + εyi) ≤ Dξ

for all n for some Dξ. Since ln(1+ t) ≥ t− t2 whenever t ≥ −1
2
, ξ also satisfies

ε

n∑

i=1

yi − ε2
n∑

i=1

y2
i ≤ Dξ,

ε

n∑

i=1

yi − ε2n ≤ Dξ,

ε

n∑

i=1

yi ≤ Dξ + ε2n,

or

1

n

n∑

i=1

yi ≤ Dξ

εn
+ ε

for all n and hence satisfies lim supn→∞ 1
n

∑n
i=1 yi ≤ ε. Thus P weakly forces

this event.
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Bouding Reality’s Average Move from Below

The same argument, with −ε in place of ε, establishes the

following complementary lemma.

Lemma 4 Suppose ε > 0. Then Skeptic can weakly force

lim inf
n→∞

1

n

n∑

i=1

yi ≥ −ε.
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Proof of the Game-Theoretic Strong Law

According to Lemma 1, it suffices to show he can weakly force

lim
n→∞

1

n

n∑

i=1

yi = 0.

Consider the events

lim sup
n→∞

1

n

n∑

i=1

yi ≤ ε and lim inf
n→∞

1

n

n∑

i=1

yi ≥ −ε

for ε = 2−k, where k ranges over all natural numbers. By

Lemmas 3 and 4, Skeptic can weakly force each of these

events. By Lemma 2, he can therefore weakly force their

intersection.
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The greater power of game-theoretic probability

Instead of a probability distribution for y1, y2, . . . , maybe you have only a few
prices. Instead of giving them at the outset, maybe your make them up as
you go along. Instead of

Skeptic announces Mn ∈ R.
Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

use

Skeptic announces Mn ∈ R.
Reality announces yn ∈ [−1,1].
Kn := Kn−1 + Mnyn.

or

Forecaster announces mn ∈ R.
Skeptic announces Mn ∈ R.
Reality announces yn ∈ [mn − 1, mn + 1].
Kn := Kn−1 + Mn(yn −mn).
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Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville

2. The strong law of large numbers. Infinite and impractical:
You will not get infinitely rich in an infinite number of trials.

3. The weak law of large numbers. Finite and practical: You
will not multiply your capital by a large factor in N trials.

4. The central limit theorem

5. The
√

dt effect
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The weak law of large numbers (Bernoulli)

K0 := 1.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

Winning: Skeptic wins if Kn is never negative and either

KN ≥ C or |∑N
n=1 yn/N | < ε.

Theorem. Skeptic has a winning strategy if N ≥ C/ε2.
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Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville

2. The strong law of large numbers

3. The weak law of large numbers

4. The central limit theorem. This is about the price of a
payoff that depends on the outcomes of a large number of
trials.

5. The
√

dt effect

33



Pricing variables

K0 := α.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

• A sequence y1, . . . , yN of moves by Reality is a path.

• The set of all paths is the sample space.

• A function on the sample space is a variable.

34



Upper Price for a Variable z:

E z := smallest initial stake Skeptic can parlay
into z or more at the end of the game

= inf{K(2)|K is a martingale and
K(y1, . . . , yN) ≥ z(y1, . . . , yN)}.

This is Skeptic’s minimum selling price for z. He can replicate z

at this price with no risk of loss.

Lower Price for a Variable z:

E z := −E[−z].

Buying z for α is the same as selling −z for −α. So E z is Skeptic’s

maximum buying price for z.
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K0 := α.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

Given a process P, we write ∆Pn for its nth increment:

∆Pn := P(y1, . . . , yn)− P(y1, . . . , yn−1).

In the case of a martingale K,

∆Kn = Mnyn,

where Mn is the move specified by the strategy. Notice that Mn

is a function of y1, . . . , yn−1.
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The central limit theorem

We consider only coin-tossing (DeMoivre’s theorem). For
simplicity, we now score Heads as 1/

√
N and Tails as −1/

√
N .

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {− 1√
N

, 1√
N
}.

Kn := Kn−1 + Mnyn.

Set Sn :=
∑n

i=1 yi.

Consider a smooth function U .

De Moivre’s Theorem For N sufficiently large, both EU(SN)
and EU(SN) are arbitrarily close to

∫∞−∞U(z)N0,1(dz).
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How do we prove De Moivre’s theorem?

Sn :=
∑n

i=1 yi.

We want to know the price at time 0 of the payoff U(SN) at
time N . Let us also consider its price at time n. Intuitively, this
should depend on Sn, the value of the sum so far. Assume,
optimistically, that the price at time n is given by a function of
two variables, U(s, D): the price at time n is U(Sn, N−n

N ).

Successive prices are

U(0,1), U(S1, N−1
N ), . . .

. . . , U(SN−1, 1
N ), U(SN ,0),

These must be the successive values of a martingale.
• U(SN ,0) must equal U(SN).

• U(0,1) is the price that interests us.
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A martingale is a process Kn with increments of the form

∆Kn = Mnyn.

Our task: given U , choose U(s, D) so that

(1) U(Sn, N−n
N ) is a martingale, and

(2) U(SN ,0) = U(SN).

Consider the increments in s, D, and U :

• ∆sn = yn = ± 1√
N

.

• ∆Dn = − 1
N .

• ∆Un = U(Sn, N−n
N )− U(Sn−1, N−n+1

N ).

Use a Taylor expansion:

∆U ≈ ∂U

∂s
∆s +

∂U

∂D
∆D +

1

2

∂2U

∂s2
(∆s)2 =

∂U

∂s
y − (

∂U

∂D
− 1

2

∂2U

∂s2
)
1

N
.
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∆Kn = Mnyn

∆Un ≈ ∂U
∂s yn − (∂U

∂D − 1
2

∂2U
∂s2

) 1
N

We need the second term to go away, which requires

∂U

∂D
=

1

2

∂2U

∂s2

Then we obtain the desired martingale by buying ∂U
∂s y-tickets

on the nth round. In other words, we set

Mn := ∂U
∂s (Sn−1, N−n+1

N ).
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Laplace showed that the solution of the heat equation

∂U

∂D
=

1

2

∂2U

∂s2

with the initial condition U(s,0) = U(s) is

U(s, D) =
∫ ∞
−∞

U(z)Ns,D(dz).

So the initial price U(0,1) is
∫ ∞
−∞

U(z)N0,1(dz).
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Part I. The Mathematics of Game-Theoretic Probability

1. Basic framework: Pascal & Ville

2. The strong law of large numbers

3. The weak law of large numbers

4. The central limit theorem.

5. The
√

dt effect. How to make money if price changes to do

scale with the square root of the time interval.
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The
√

dt effect

Changes in market prices over an interval of time of length dt

scale as
√

dt.

When shares are traded 252 days a year, for example, the

typical annual price change is
√

252 = 16, times as large as the

typical daily change.

Why?
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Stochastic explanation

• Assume price changes are stochastic.

• Successive changes must be uncorrelated; otherwise you

could devise a trading strategy with positive expected value.

• Uncorrelatedness of 252 daily changes implies that their

sum has standard deviation
√

252 times as large.
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Purely game-theoretic explanation

K0 := 1.

Market announces y0 ∈ R.

FOR n = 1,2, . . . , N :

Investor announces sn ∈ R.

Market announces yn ∈ R.

Kn := Kn−1 + sn(yn − yn−1).

Restriction on Investor: Investor must choose the sn so that

Kn ≥ 0 for all n no matter how Market moves.

As it turns out, Investor can make a lot of money in this game

unless Market obeys the
√

dt effect.
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Compare the typical daily change
√√√√√ 1

N

N∑

n=1

(yn − yn−1)
2 (1)

to the change over the whole game,

max
0<n≤N

|yn − y0|. (2)

The
√

dt effect says (2) should have order of magnitude
√

N

times that of (1):

N∑

n=1

(yn − yn−1)
2 ∼ max

0<n≤N
(yn − y0)

2.
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Average a momentum strategy (hold Cyn−1 shares) and a

contrarian strategy (hold −Cyn−1 shares). The resulting

strategy makes money if

N∑

n=1

(yn − yn−1)
2 ∼ max

0<n≤N
(yn − y0)

2

is violated.

1. If Investor can count on
∑

(yn − yn−1)2 ≤ E and max(yn − y0)2 ≥ D, he
can choose C so that the momentum strategy turns $1 into $D/E or
more for sure.

2. If Investor can count on
∑

(yn − yn−1)2 ≥ E and max(yn − y0)2 ≤ D, he
can choose C so that the contrarian strategy turns $1 into $E/D or
more for sure.
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Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob

5. Making Cournot’s principle game-theoretic: Ville
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Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot. Pascal
was concerned only with fairness. Bernoulli wanted to
connect probabilities with what happens in the world.

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob

5. Making Cournot’s principle game-theoretic: Ville
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Bernoulli introduced mathematical probability is his celebrated
Ars Conjectandi (1713).

Jakob Bernoulli

1654–1705

“Something is morally certain if its

probability is so close to certainty

that the shortfall is imperceptible.”

“Something is morally impossible if

its probability is no more than the

amount by which moral certainty

falls short of complete certainty.”
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How Bernoulli connected probability with the world:

“Because it is only rarely possible to obtain full certainty,

necessity and custom demand that what is merely morally

certain be taken as certain. It would therefore be useful if fixed

limits were set for moral certainty by the authority of the

magistracy—if it were determined, that is to say, whether

99/100 certainty is sufficient or 999/1000 is required. . . ”

In other words, an event with very small probability will not

happen.

51



Antoine Cournot

1801–1877

Maurice Fréchet, 1878–1973,
proposed the name Cournot’s
principle.

Cournot discussed both moral im-

possibility (very small probabil-

ity) and physical impossibility (in-

finitely small probability).

A physically impossible event

is one whose probability is in-

finitely small. This remark alone

gives substance—an objective and

phenomenological value—to the

mathematical theory of probabil-

ity.
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Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov.

Lévy articulated the idea best.

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob

5. Making Cournot’s principle game-theoretic: Ville
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Paul Lévy was emphatic: Cournot’s principle is the only

connection between probability and the empirical world. This

became a consensus among the classical French probabilists.

Paul Lévy

1886–1971

In 1925, Lévy explained that proba-

bility is based on two principles:

• The principle of equally likely

events, which is the foundation

for mathematics.

• The principle of the very unlikely

event, which is the basis of ap-

plications.
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Andrei Kolmogorov

1903–1987

The Soviet Euler

In his Grundbegriffe (1933), Kol-

mogorov gave two principles for con-

necting probability with the empirical

world:

Principle A: Over many trials, the

frequency with which E happens

will approximate P(E).

Principle B: On a single trial, if

P(E) very small, we can be prac-

tically certain E will not happen.

According to the weak law of large

numbers, B implies A.
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Richard von Mises

1883-1953

Von Mises invented the
theory of collectives

Kolmogorov acknowledged the influ-

ence of Richard von Mises’s frequen-

tism. Von Mises said a sequence of

trials is random if we not know how

to select a subsequence of trials that

will be different.

Kolmogorov connected this with

Cournot’s principle. If an event does

not usually happen (because it has

small probability), and there is noth-

ing that marks next trial as different,

then we can assume the event will

not happen on the next trial.
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Émile Borel

1871–1956

Inventor of measure theory

Minister of the French
navy in 1925

By 1910, Borel was already the uncontested
leader of classical French probability. But
only in the 1940s was he as clear as Lévy
about Cournot’s principle being the only link
between probability and the world.

Borel’s way of saying it: The prin-

ciple that an event with very small

probability will not happen is the only

law of chance.

• Impossibility on the human

scale: p < 10−6.

• Impossibility on the terrestrial

scale: p < 10−15.

• Impossibility on the cosmic

scale: p < 10−50. 57



Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism. The Germans

were too Kantian; the English were too practical.

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob.

5. Making Cournot’s principle game-theoretic: Ville
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The Germans had no use for Cournot’s principle.

Hans Reichenbach

1891–1953

Whereas the French and the Russian

mathematicians did their own philos-

ophy in the late 18th and early 19th

centuries, the Germans had already

established a modern division of la-

bor.

For the German philosophers, the

guide was Emmanuel Kant, and

the probabilistic truths about the

world were synthetic. In this optic,

Cournot’s principle made no sense.
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The English had no use for Cournot’s principle.

Ronald Fisher

1890–1962

The British statisticians saw little

substance in French theorizing. Why

start with something purely notional

(equally likely cases) and then try to

relate it to the world? Start with

what you see in the world!

For Fisher, a probability was a rel-

ative frequency in a large (infinitely

large!) population. End of story.
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Not all the British were frequentists. Some (Jevons,

Edgeworth, Jeffreys) were subjectivists.

What they had in common was their idea that probability

should model something in the world (frequency or belief)

directly.
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Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler Stalin & Doob. Why

did it disappear?

5. Making Cournot’s principle game-theoretic: Ville
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Why did Cournot’s priniciple disappear in the second half of the

20th century?

Two monsters:

• Adolf Hitler (1889–1945)

• Joseph Stalin (1879–1953)

A great mathematician:

• Joseph Doob (born 1910)
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The great destroyer

Adolf Hitler

1889–1945

World War II and the Holo-

caust destroyed the primacy

of the Parisian school of

probability.

Driven out of Vienna by

Hitler, Reichenbach and Car-

nap settled in the USA.

There they set the frame-

work for postwar philoso-

phy of probability, without

Cournot’s principle.
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The great silencer

Joseph Stalin

1879–1953

Connectomg probability the-

ory with the real world

(statistics) was dangerous

under Stalin.

So Kolmogorov stated his

philosophy seldom and

tersely. Western readers

often concluded that he had

no philosophy.

Probability is measure, and

there is nothing more to say.
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The champion of measure theory

Joseph Doob, 1910–2004,

receiving the National

Medal of Science from

President Carter in 1979.

Picking up where Kolmogorov

left off, Doob showed how

continuous random processes

(e.g., Brownian motion) can be

put in the measure-theoretic

framework.

He borrowed the idea of a

martingale from Ville and made

it measure-theoretic.
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Martingales

One of Doob’s great contributions was to fit martingales into

the measure-theoretic framework.

Intuitively, a martingale is the path followed by a gambler’s

wealth as he makes successive bets.

Doob showed that if the gambler does not risk bankruptcy, then

the martingale becomes infinitely large with probability zero.

Intuitively,

event of probability zero

will not happen
⇔ martingale will not be-

come infinitely large
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Doob’s problem

The philosophical foundation for probability espoused by the

French and by Kolmogorov (Bernoulli’s theorem + Cournot’s

principle) breaks down for stochastic processes.

Bernoulli’s theorem does not apply because we are not

repeating the same random experiment over and over.

Doob, the practical American, resolved the problem by

belittling philosophy altogether.
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Neyman’s solution

After Doob, those who preferred an objective interpretation of

probability were less enamored with “probability=frequency”.

Often they instead located the meaning of probabilities in their

role in generating outcomes.

As Jerzy Neyman explained in a famous article in 1960,

• Laws are needed to produce deterministic phenomena.

• Probabilities are needed to produce indeterministic phenomena.

Indeterministic phenomena exist. Therefore objective probabilities exist.
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Part II. The History of Cournot’s Principle

1. Inventing Cournot’s principle: Bernoulli & Cournot

2. Making it the meaning of probability: Lévy & Kolmogorov

3. English indifference & German skepticism

4. Liquidating Cournot’s principle: Hitler, Stalin & Doob.

5. Making Cournot’s principle game-theoretic: Ville. Although
Ville’s work was neglected, it is the basis of game-theoretic
probability.
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Ville’s Theorem

Consider binary Y1, Y2, . . . with joint probability distribution P.

Binary Probability Protocol

K0 := 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − P{Yn = 1|Y1 = y1, . . . , Yn−1 = yn−1}).

Restriction on Skeptic: Skeptic must choose the sn so that

Kn ≥ 0 for all n no matter how Reality moves.
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Ville showed that Skeptic’s getting rich in this protocol is equivalent to an
event of small probability happening, in the following sense:

1. When Skeptic follows a measurable strategy (a rule that gives sn as a
function of y1, . . . , yn−1),

P{sup
n
Kn ≥ 1

ε
} ≤ ε (3)

for every ε > 0. (This is because the capital process K0,K1, . . . is a
non-negative martingale; Equation (3) is sometimes called Doob’s
inequality.)

2. If A is a measurable subset of {0,1}∞ with P(A) ≤ ε, then Skeptic has a
measurable strategy that guarantees

lim inf
n→∞

Kn ≥ 1

ε

whenever (y1, y2, . . . ) ∈ A.

Loosely: Skeptic’s being able to multiply his capital by a factor of 1/ε or
more is equivalent to the happening of an event with probability ε or less.
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Ville made the generality of his ideas clear. They apply

whenever prices are regular conditional expected values for a

known joint probability distribution P for a sequence of random

variables Y1, Y2, . . . :

K0 := 1.
FOR n = 1,2, . . . :

Skeptic announces sn : R→ R such that
E(sn(Yn)|Y1 = y1, . . . , Yn−1 = yn−1) exists.

Reality announces yn ∈ R.
Kn := Kn−1 + sn(yn)− E(sn(Yn)|Y1 = y1, . . . , Yn−1 = yn−1).

Restriction on Skeptic: Skeptic must choose the sn so that Kn ≥ 0 for all n
no matter how Reality moves.
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Cournot’s principle in game-theoretic terms:

Finitary. Instead of saying that an event of small probability

singled out in advance will not happen, we say that a

strategy chosen by Skeptic, if it avoids risk of bankruptcy,

will not multiply his capital by a large factor.

Infinitary. Instead of saying that an event of zero probability

singled out in advance will not happen, we say that a

strategy chosen by Skeptic, if it avoids risk of bankruptcy,

will not make him infinitely rich.
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Like Kolmogorov, Ville was inspired by von Mises.

Von Mises considered a sequence y1, y2, . . . of 0s and 1s

random if no subsequence with a different frequency of 1s can

be picked out by a gambler to whom the ys are presented

sequentially. This would keep the gambler from getting rich by

deciding when to bet.

Ville showed that von Mises’s condition is insufficient. It does

not rule out the gambler’s getting rich by varying the direction

and amount to bet.
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The best source of information on game-theoretic probability in

English is www.probabilityandfinance.com.

• Excerpts from our 2001 book.

• Reviews and responses.

• Working papers on
√

dt, history of Cournot’s principle, and

defensive forecasting.

We need to add references to Japanese work!
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