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My plan:

• Game-theoretic vs. measure-theoretic probability (the

difference demonstrated on SLLN)

• Defensive forecasting: game-theoretic laws of probability 7→
forecasting algorithms

• Implementation (result only): WLLN 7→ K29

• K29 in function spaces

• Properties of K29: calibration and resolution

• Use for decision making

2



Glenn’s talk: there are 2 main ways to formalize probability,

measure (Borel / · · · / Kolmogorov) vs. gambling (von Mises /

Ville / Kolmogorov).

To see the difference (important in defensive forecasting),

consider the simplest martingale SLLN. Let y1, y2, . . . be

random variables s.t. yn ∈ {0,1} for all n; let pn be the

conditional probability that yn = 1. Then

lim
N→∞

1

N

N∑

n=1

(yn − pn) = 0

with probability 1.
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Game-theoretic SLLN for binary observations

Forecasting protocol:

K0 := 1.
FOR n = 1,2, . . .:

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − pn).

END FOR.

Kn: Skeptic’s capital.

xn: datum (all relevant information, may include some of the
previous yi); yn: observation.
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Proposition (game-theoretic SLLN) Skeptic has a strategy

which guarantees that

• Kn is never negative

• either

lim
N→∞

1

N

N∑

n=1

(yn − pn) = 0

(pn are unbiased) or

lim
n→∞Kn = ∞.
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The measure-theoretic SLLN follows easily: if Reality is
oblivious (does not pay attention to what her opponents do)
and uses a randomized strategy (probability measure P on the
sequences of Reality’s moves) and Forecaster computes his
moves as conditional expectations w.r. to P : Kn is a
non-negative martingale, and so Kn →∞ with probability 0.

Game-theoretic SLLN:

• Reality need not be oblivious (or even follow a strategy)

• Forecaster need not ignore Skeptic (this is what makes
defensive forecasting possible)

Caveat: I assumed that Skeptic’s strategy was measurable.
Empirical fact: for all kinds of limit theorems, Skeptic’s
strategy we construct is measurable; moreover, it is continuous.
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Recent (2004) observation: this approach can be used for

designing forecasting algorithms.

For any continuous strategy for Skeptic there exists a strategy

for Forecaster that does not allow Skeptic’s capital to grow.
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The difficulty with forecasting

There is no forecasting algorithm that “works” for every

sequence. Dawid’s (1985) example:

yn :=




1 if pn < 1/2

0 otherwise.

This sequence looks computable and so can be predicted

perfectly. But the algorithm producing pn is always wrong!
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Two very natural “cheats”:

Continuity: consider only continuous strategies for Skeptic.

Goes back to Kolmogorov’s school of the foundations of

probability (Levin 1976).

Randomness: allow Forecaster to use randomization (Foster

& Vohra 1998 and many followers).

We are using the first cheat. Brouwer’s principle: computable

functions are always continuous.
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Modified protocol:

K0 := 1.

FOR n = 1,2, . . .:

Reality announces xn ∈ X.

Skeptic announces continuous Sn : [0,1] → R.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

END FOR.

Theorem 1 (Takemura) Forecaster has a strategy that

ensures K0 ≥ K1 ≥ K2 · · · .
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Proof

• choose pn so that Sn(pn) = 0

• if the equation Sn(p) = 0 has no roots (in which case Sn

never changes sign),

pn :=




1 if Sn > 0

0 if Sn < 0

QED

Can be easily generalized; Intermediate Value Theorem 7→
numerous fixed point and minimax theorems in topological

vector spaces.
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Research program I (forecasting)

• Decide which property (such as LLN, CLT, LIL, Hoeffding’s

inequality,. . . ) you want Forecaster’s moves to satisfy.

• Prove the corresponding game-theoretic result.

• Apply Theorem 1.

• If necessary, streamline the resulting forecasting algorithm.
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What does it give in the case of LLN?

In fact, nothing interesting: Forecaster performs his task too

well. E.g., he can choose

pn :=




1/2 if n = 1

yn−1 otherwise,

ensuring
∣∣∣∣∣∣

n∑

i=1

(yi − pi)

∣∣∣∣∣∣
≤ 1/2

for all n (much better than using the true probabilities).
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We need a “convoluted” LLN. Suppose Φ : [0,1]×X → H

(feature mapping to an inner product space) and

cΦ := sup
p,x

‖Φ(p, x)‖ < ∞.

The convoluted LLN: for any δ ∈ (0,1),
∥∥∥∥∥∥
1

N

N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥∥
≤ cΦ√

Nδ

with probability at least 1− δ. An easy modification of the

standard statement (Φ ≡ 1, Kolmogorov 1929). True both

measure-theoretically (with Φ measurable) and

game-theoretically.
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Let

k((p, x), (p′, x′)) =
〈
Φ(p, x),Φ(p′, x′)

〉

(the kernel). Suppose k is continuous in p. Applying Theorem

1 to Kolmogorov’s proof: there exists a forecasting strategy

(the K29 algorithm with parameter k) that guarantees

∀N :

∥∥∥∥∥∥
1

N

N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥∥
≤ cΦ√

N

(somewhat better than when using the true probabilities, esp.

in view of the LIL).
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Problem with Research Program I in the binary case: works too

well. Already in response to WLLN, Theorem 1 produces

predictions that satisfy most other laws. Might be interesting

for unbounded yn (connections with empirical processes).
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The K29 algorithm with parameter k

FOR n = 1,2, . . .:

Read xn ∈ X.

Set Sn(p) :=
∑n−1

i=1 k((p, xn), (pi, xi))(yi − pi) for p ∈ [0,1].

Output any root p of Sn(p) = 0 as pn;

if there are no roots, pn := (1 + signSn)/2.

Read yn ∈ {0,1}.
END FOR.

Since Sn is continuous, signSn is well defined in this context.

Intuition: pn is chosen so that pi are unbiased forecasts for yi on

the rounds i = 1, . . . , n− 1 for which (pi, xi) is similar to (pn, xn).
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A reproducing kernel Hilbert space (RKHS) on Z (such as X or

[0,1]×X) is a Hilbert space F of real-valued functions on Z

such that the evaluation functional f ∈ F 7→ f(z) is continuous

for each z ∈ Z. By the Riesz–Fischer theorem, for each z ∈ Z

there exists a function kz ∈ F such that

f(z) = 〈kz, f〉F , ∀f ∈ F .

Let

cF := sup
z∈Z

‖kz‖F ;

we will be interested in the case cF < ∞.
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The corresponding kernel:

k(z, z′) := 〈kz,kz′〉F ;

cF can be equivalently defined as supz k(z, z). The K29

property stated earlier implies (when applied to Φ(p, x) := kp,x):

Theorem 2 Let F be a RKHS on [0,1]×X. K29 with the

kernel k ensures
∣∣∣∣∣∣
1

N

N∑

n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣∣
≤ cF ‖f‖F√

N

for all N and f .
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Examples

A “Sobolev norm” ‖f‖S of f : [0,1] → R is defined by

‖f‖2S :=

(∫ 1

0
f(t) dt

)2

+
∫ 1

0

(
f ′(t)

)2
dt

(∞ if f is not absolutely continuous etc.).

Its kernel is

k(x, x′) =
1

2
min2(x, x′) +

1

2
min2(1− x,1− x′) +

5

6

(Craven and Wahba 1979); so cS = 4/3.
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For functions on R:

‖f‖2S ′ :=
∫ ∞
−∞

f2(t) dt +
∫ ∞
−∞

(
f ′(t)

)2
dt

with kernel

k(x, x′) =
1

2
exp

(
−

∣∣∣x− x′
∣∣∣
)

(Thomas-Agnan 1996).

In [0,1]K or RK: tensor products (also popular: thin-plate

splines).

Moving between kernels and norms (≈ inner products):

non-trivial. Kernels: used in algorithms; norms: in stating their

properties.
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Calibration and resolution (informal discussion)

The forecasts pn, n = 1, . . . , N , are well calibrated if, for any

p∗ ∈ [0,1],
∑

n=1,...,N :pn≈p∗ yn∑
n=1,...,N :pn≈p∗ 1

≈ p∗

provided
∑

n=1,...,N :pn≈p∗ 1 is not too small.

Can be rewritten as
∑

n=1,...,N :pn≈p∗(yn − pn)∑
n=1,...,N :pn≈p∗ 1

≈ 0.
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The forecasts pn, n = 1, . . . , N , have good resolution if, for any

x∗ ∈ X,
∑

n=1,...,N :xn≈x∗(yn − pn)∑
n=1,...,N :xn≈x∗ 1

≈ 0

provided the denominator is not too small.

The forecasts pn, n = 1, . . . , N , have good

calibration-cum-resolution if, for any (p∗, x∗) ∈ [0,1]×X,
∑

n=1,...,N :(pn,xn)≈(p∗,x∗)(yn − pn)
∑

n=1,...,N :(pn,xn)≈(p∗,x∗) 1
≈ 0

provided the denominator is not too small.
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For concreteness: calibration.

To make sense of the ≈, consider a “soft neighborhood” f ∈ S
of p∗: f(p∗) = 1 and f(p) = 0 unless p is close to p∗.

The K29 forecasts will be well calibrated,
∑

n=1,...,N f(pn)(yn − pn)∑
n=1,...,N f(pn)

≈ 0,

if ‖f‖S is not large and

N∑

n=1

f(pn) À
√

N.
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Competitive on-line prediction: we are given a pool of decision

strategies and our goal is to perform almost as well as the best

strategy in the pool. No assumptions about the reality.

Defensive forecasting 7→ a new proof technique in competitive

on-line prediction.

This talk: prediction 7→ forecasting or decision making.
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Decision-making protocol:

Loss0 := 0.

FOR n = 1,2, . . .:

Reality announces xn ∈ X.

Decision Maker announces γn ∈ Γ.

Reality announces yn ∈ {0,1}.
Lossn := Lossn−1 + λ(yn, γn).

END FOR.

λ: the loss function.
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The difference between the two protocols

• In the forecasting protocol, our goal to produce

probabilistic statements (in principle, they can be falsified:

turn out to be false).

• In the decision-making protocol, we are merely minimizing

our loss.
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Decision rule D : X → Γ.

We want to compete against decision rules that are not too

irregular with no assumptions about Reality. Let X = [0,1] at

first. Irregularity is measured with the Sobolev norm.
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Proposition Suppose X = Γ = [0,1] and λ(y, γ) = |y − γ|.
Decision Maker has a strategy that guarantees

1

N

N∑

n=1

λ(yn, γn) ≤ 1

N

N∑

n=1

λ(yn, D(xn)) +
‖2D − 1‖S + 1√

N

for all N and D.
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When is Decision Maker competitive with D? Let

f := 2D − 1 ∈ [−1,1]

(“symmetrized” D).

We have

‖f‖S ≤
∣∣∣∣∣
∫ 1

0
f(t) dt

∣∣∣∣∣ +
√∫ 1

0

(
f ′(t)

)2
dt ≤ 1 + “mean slope of f”.

OK if the mean slope ¿ √
N . Especially simple case:

continuous piece-wise linear functions (dense in C([0,1])).
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No upper bound on ‖f‖S, so we have universal consistency: for

any continuous prediction rule D,

lim sup
N→∞


 1

N

N∑

n=1

λ(yn, γn)− 1

N

N∑

n=1

λ(yn, D(xn))


 ≤ 0.

This is a minimal property.
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Research program II (decision making)

• Choose a goal that could be achieved if you knew the true

probabilities generating the observations.

• Construct a decision strategy provably achieving your goal.

• Isolate a continuous law of probability on which the proof

depends.

• Use defensive forecasting to get rid of the true probabilities.
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The goal should be:

1. in terms of observables;

2. achievable regardless of what the true probabilities are.

The goal has to be relative.
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Fix a choice function G : [0,1] → Γ:

G(p) ∈ argmin
γ∈Γ

λ(p, γ),

where

λ(p, γ) := pλ(1, γ) + (1− p)λ(0, γ).

For the “square” and “log loss” functions one can take

G(p) := p.

The exposure of G:

ExpG(p) := λ(1, G(p))− λ(0, G(p))

(assumed continuous; a modification of this definition also

works for the absolute loss function).
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The exposure of a decision rule D : X → Γ:

ExpD(x) := λ(1, D(x))− λ(0, D(x)).

Informal statement Suppose ‖ExpG‖S is not large. The

decisions γn := G(pn) (“ELM principle”), with pn output by

ALN with a Sobolev kernel, satisfy

1

N

N∑

n=1

λ(yn, γn) / 1

N

N∑

n=1

λ(yn, D(xn))

for all N and all decision rules D with ‖ExpD‖S not too large.
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Proof Subtracting

λ(p, γ) = pλ(1, γ) + (1− p)λ(0, γ)

from

λ(y, γ) = yλ(1, γ) + (1− y)λ(0, γ)

gives

λ(y, γ)− λ(p, γ) = (y − p)
(
λ(1, γ)− λ(0, γ)

)
.
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In conjunction with Theorem 2:

N∑

n=1

λ(yn, γn) =
N∑

n=1

λ(yn, G(pn))

=
N∑

n=1

λ(pn, G(pn)) +
N∑

n=1

(
λ(yn, G(pn))− λ(pn, G(pn))

)

=
N∑

n=1

λ(pn, G(pn)) +
N∑

n=1

(yn − pn)
(
λ(1, G(pn))− λ(0, G(pn))

)

/
N∑

n=1

λ(pn, G(pn))
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≤
N∑

n=1

λ(pn, D(xn))

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(
λ(yn, D(xn))− λ(pn, D(xn))

)

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(yn − pn)
(
λ(1, D(xn))− λ(0, D(xn))

)

/
N∑

n=1

λ(yn, D(xn)).
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Summary of the proof technique: to show that the actual loss

of our decision strategy does not exceed the actual loss of a

decision rule D by much, we notice that

• the actual loss
∑N

n=1 λ(yn, G(pn)) of our decision strategy is

approximately equal, by Theorem 2, to the (one-step-ahead

conditional) expected loss
∑N

n=1 λ(pn, G(pn)) of our

strategy;

• since we used the Expected Loss Minimization principle, the

expected loss of our strategy does not exceed the expected

loss of D;

• the expected loss of D is approximately equal to its actual

loss (again by Theorem 2).
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Theorem 3 (special cases: specific loss functions and the

Sobolev space S ′ on R) Let Γ = [0,1] and X = R. Suppose

λ(y, γ) = (y − γ)2. Decision Maker has a strategy that

guarantees

N∑

n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) +
3

8

(‖2D − 1‖S ′ + 1
)√

N

for all N and D.

Suppose λ(y, γ) = |y − γ|. Decision Maker has a strategy that

guarantees

N∑

n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) +

√
6

4

(‖2D − 1‖S ′ + 1
)√

N

for all N and D.
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Suppose

λ(y, γ) = −y ln γ − (1− y) ln(1− γ).

Decision Maker has a strategy that guarantees

N∑

n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) + 0.7
(∥∥∥∥ln

D

1−D

∥∥∥∥S ′
+ 1

)√
N

for all N and D.

General theorem: any RKHS in pace of S ′; convex loss

functions (if unbounded, the tails must decay faster than 1/t;

in the log loss game, they decay exponentially fast).

Natural developments: extend to non-convex loss functions

(with a little randomization) and loss functions depending on

several future observations.
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Limitations of defensive forecasting

Competitive on-line prediction: its goal implicitly assumes a

small decision maker.

Remember a typical guarantee:

N∑

n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) +
(‖2D − 1‖S + 1

)√
N.
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Ideal probability forecasts (actual) are not enough in big

decision making!

Simple example: Γ = {0,1}, λ is given by the matrix

Decision Maker

Reality

0 1

0 1 2

1 2 0

Reality’s strategy: yn := γn. Decision Maker’s theory: Reality

always chooses yn = 0.
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Decision Maker’s mistake: he was being greedy (concentrated

on exploitation and completely neglected exploration). But:

• he acted optimally given his beliefs,

• his beliefs have been verified by what actually happened.

We have to worry about what would have happened if we had

acted in a different way.
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My hope: game-theoretic probability has an important role to

play in big decision making as well. A standard picture in the

philosophy of science (Popper, Kuhn, Lakatos,. . . ): science

progresses via struggle between (probabilistic) theories. It is

possible that something like this happens in individual (human

and animal) learning as well. Testing of probabilistic theories is

crucial. The game-theoretic version of Cournot’s principle:

more flexible; at each time we know to what degree a theory

has been falsified.
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Small decision making is important; two popular examples in

learning theory: prediction (evaluated with a loss function) and

portfolio selection.

Big decision making: might be even more important in practice,

but also might be mathematically less elegant (cf. PDE).
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Related literature

Levin (1976): explained by Gacs (2005). (No computability.)

Randomization approach to calibration: Foster and Vohra
(1998); Fudenberg, Levine, Lehrer, Sandroni, Smorodinsky,. . . .
(Asymptotic results.)

Continuity approach rediscovered by Kakade and Foster
(2004). (Asymptotic results.)

Hannan 1957: the beginning of competitive on-line prediction.

Littlestone, Warmuth, Vovk, Cesa-Bianchi, Freund,
Schapire,. . . (from 1989): “prediction with expert advice”,
with numerous applications to competitive on-line prediction.
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Further details

Game-theoretic probability:

Glenn Shafer and Vladimir Vovk, Probability and finance: it’s

only a game, New York: Wiley, 2001

Defensive forecasting:

http://www.probabilityandfinance.com, Working Papers 8, 10,

13–16.

48


