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Abstract

We derive formulas for the performance of capital assets in continuous time
from an efficient market hypothesis, with no stochastic assumptions and no
assumptions about the beliefs or preferences of investors. Our efficient market
hypothesis says that a speculator with limited means cannot beat a particular
index by a substantial factor. Our results include a formula that resembles the
classical CAPM formula for the expected simple return of a security or portfolio.

This version of the article was essentially written in December 2001 but
remains a working paper.
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In this article, we use an efficient market hypothesis to derive formulas for
the performance of capital assets in continuous time. Our efficient market hy-
pothesis says that a speculator with limited means cannot beat a particular
market index m by a substantial factor. From this hypothesis, we derive two
results concerning the average returns of a security or portfolio s:

• The average simple return for s will fall short of the average simple re-
turn for m by an amount equal to the difference between the variance
of m’s simple returns and the covariance of m’s and s’s simple returns.
(See the formula in Proposition 1.) This agrees with the classical capital
asset pricing model, except that the classical model relates theoretical cen-
tered moments of a probability distribution, whereas our result is about
empirical uncentered moments.

• The average logarithmic return for s will fall short of the average loga-
rithmic return for m by an amount equal to one-half the variance of the
difference between the simple returns. (See the formula in Proposition 2.)

These results follow from the efficient market hypothesis alone, with no stochas-
tic assumptions and no assumptions about the beliefs or preferences of investors.

Our results are for continuous time and use nonstandard analysis. They
parallel the results for discrete time (with explicit error bounds) in our article
[3]. That article gives more detail on motivation and possible applications. For
an alternative treatment of continuous time (more traditional and not using
nonstandard analysis), see [4] and [5].

1 Definitions

Our results depend on the explicit formulation of a game. Here we begin by
describing the game informally. Then, after introducing notation for the mo-
ments of s and m’s returns, we state the protocol for the game formally and
explain how it can be used to formalize the implications of our efficient market
hypothesis.

1.1 The Basic Capital Asset Pricing Game

The capital asset pricing game has two principal players, Speculator and Mar-
ket, who alternate play. On each round, Speculator decides how much of each
security in the market to hold (and possibly short), and then Market determines
Speculator’s gain by deciding how the prices of the securities change. Allied with
Market is a third player, Investor, who also invests each day. The game is a
perfect-information game: each player sees the others’ moves.

We assume that there are K + 1 securities in the market and N rounds
(trading periods) in the game. We number the securities from 0 to K and the
rounds from 1 to N , and we write xkn for the simple return on security k in
round n. For simplicity, we assume that −1 < xkn < ∞ for all k and n; a
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security price never becomes zero. We write xn for the vector (x0n, . . . , x
K
n ),

which lies in (−1,∞)K+1. Market determines the returns; xn is his move on
the nth round.

We assume that the first security, indexed by 0, is our market index m. If
m is a portfolio formed from the other securities, then x0n is an average of the
x1n, . . . , x

K
n , but we do not insist on this.

We write Mn for the capital at the end of round n resulting from investing
one monetary unit in m at the beginning of the game:

Mn :=

n∏
i=1

(1 + x0i ).

Thus MN is the final capital resulting from this investment.
Investor begins with capital equal to one monetary unit and is allowed to

redistribute his current capital across all K + 1 securities on each round. If we
write Gn for his capital at the end of the nth round, then

Gn :=

n∏
i=1

K∑
k=0

gki (1 + xki ),

where gki is the fraction of his capital he holds in security k during the ith round.
The gki must sum to 1 over k, but gki may be negative for a particular k (in this
case Investor is selling k short). Investor’s final capital is GN .

We call the set of all possible sequences (g1, x1, . . . , gN , xN ) the sample space
of the game, and we designate it by Ω:

Ω :=
(
RK+1 × (−1,∞)K+1

)N
.

We call any subset of Ω an event. Any statement about Investor’s returns
determines an event, as does any comparison of Investor’s and Market’s returns.

Speculator also starts with one monetary unit and is allowed to redistribute
his current capital across all K + 1 securities on each round. We write Hn for
his capital at the end of the nth round:

Hn :=

n∏
i=1

K∑
k=0

hki (1 + xki ),

where hki is the fraction of his capital he holds in security k during the ith
round. The moves by Speculator are not recorded in the sample space; they do
not define events.

Our results use non-standard analysis. We assume that the number N of
rounds of the game is infinitely large. The game begins at time 0. Each round
takes an infinitesimal amount of time dt, and play ends at time T , which is an
infinitely large positive real number: T = Ndt. A brief summary of nonstandard
analysis, sufficient for our purposes, is provided in [2], §11.5; further details can
be found in [1].
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1.2 Notation for Moments

Let us write sn for Investor’s simple return on round n, and mn for the simple
return of the market index m on round n:

sn :=
Gn − Gn−1

Gn−1
=
∑
k

gknx
k
n,

and
mn := x0n.

For every play of the game we define the following nonstandard numbers:

µs =
1

N

N∑
n=1

sn
dt

=
1

T

N∑
n=1

sn

(this is the average rate of increase in Investor’s capital),

σ2
s =

1

N

N∑
n=1

s2n
dt

=
1

T

N∑
n=1

s2n

(σs is the empirical volatility of Investor’s capital),

µm =
1

N

N∑
n=1

mn

dt
=

1

T

N∑
n=1

mn, σ2
m =

1

N

N∑
n=1

m2
n

dt
=

1

T

N∑
n=1

m2
n

(analogous quantities for the index). We also set

σsm =
1

N

N∑
n=1

snmn

dt
=

1

T

N∑
n=1

snmn,

σ2
s−m =

1

N

N∑
n=1

(sn −mn)2

dt
=

1

T

N∑
n=1

(sn −mn)2

and

λs =
1

N

N∑
n=1

ln(1 + sn)

dt
=

1

T

N∑
n=1

ln(1 + sn),

λm =
1

N

N∑
n=1

ln(1 +mn)

dt
=

1

T

N∑
n=1

ln(1 +mn)

(the last two are the average logarithmic rates of growth). Notice that exp(λsT )
is the total relative increase GN in Investor’s capital and exp(λmT ) is the total
relative increase MN in the value of the index; therefore, λs and λm are direct
measures of Investor’s and the index’s performance.
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As a simple example, consider the case where Investor always holds one
share of a security whose price St is generated by Market using the stochastic
differential equation

dSt
St

= µdt+ σdWt,

where Wt is a Brownian motion. In this case, µs will be infinitely close to µ
almost surely, and σs will be infinitely close to σ almost surely.

1.3 The Protocol

We can now state precisely the protocol for the game involving Investor, Market,
and Speculator:

Basic Capital Asset Pricing Protocol (Basic CAP Protocol)
Players: Investor, Market, Speculator
Parameters:

Natural number K (number of non-index securities in the market)
Infinite natural number N (number of rounds or trading periods)

Protocol:
G0 := 1.
H0 := 1.
M0 := 1.
FOR n = 1, 2, . . . , N :

Investor selects gn ∈ RK+1 such that
∑K
k=0 g

k
n = 1.

Speculator selects hn ∈ RK+1 such that
∑K
k=0 h

k
n = 1.

Market selects xn ∈ (−1,∞)K+1.

Gn := Gn−1

∑K
k=0 g

k
n(1 + xkn).

Hn := Hn−1

∑K
k=0 h

k
n(1 + xkn).

Mn :=Mn−1(1 + x0n).
Restriction:
Market and Investor are required to make σ2

s and σ2
m finite and to make

maxn |sn| and maxn |mn| infinitesimal.

The condition that maxn |sn| and maxn |mn| be infinitesimal is a continuity
condition, but there is a slight complication arising from the fact that T is
infinite: if T is extremely large as compared with 1/dt, the largest of the huge
number of increments might become nonnegligible. This, however, would be an
extreme situation: e.g., for the usual diffusion processes the condition lnT ≤
(dt)−1/2 is more than sufficient for the largest increment to be negligible.

1.4 Predictions from the EMH for m

We now adopt an efficient market hypothesis: Market will not allow Speculator
to become very rich relative to the index m. Intuitively, this sometimes implies
that a certain event A will happen. To formalize this intuition, let us say that
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the efficient market hypothesis for m predicts A at level α > 0 if Speculator
has a strategy S in the basic CAP protocol that ensures the following: Hn ≥ 0
for n = 1, . . . , N and either (1) HN ≥ 1

αMN or (2) (g1, x1, . . . , gN , xN ) ∈ A.
(It will be convenient to say that such a strategy S witnesses that the efficient
market hypothesis predicts A at level α.)

For brevity, we will abbreviate “efficient market hypothesis for m” to “EMH
for m”. As the reader may have noticed, “EMH for m” is not a mathematical
concept for us; we have not given it a precise definition. We have, however,
provided a precise definition for the phrase “the EMH for m predicts A at level
α > 0”.

Our confidence that Speculator will not beat the market by 1
α is greater

for smaller α. So a prediction of A at level α becomes more emphatic as α
decreases. The most emphatic prediction arises in the limit, when the EMH for
m predicts A at every level α > 0. In this case, we say simply that the EMH
for m predicts A.

2 Results

Proofs of the propositions in this section will be provided in §3.

2.1 Capital Asset Pricing Model

Proposition 1. For any ε > 0, the EMH for m predicts∣∣µs − µm + σ2
m − σsm

∣∣ < ε(1 + σ2
s−m).

If it is known a priori that σ2
s−m < C for some positive constant C, then

for every ε > 0, the EMH for m predicts that∣∣µs − µm + σ2
m − σsm

∣∣ < ε.

This is analogous to the capital asset pricing model (CAPM) of the established
theory. Remarkably, we get the result without the strong assumptions of that
theory. We assume nothing about Investor’s beliefs or preferences, and we do
not assume that Market chooses his prices stochastically.

2.2 Theoretical Performance Deficit

The next proposition justifies calling σ2
s−m/2 the “theoretical performance

deficit”.

Proposition 2. For any ε > 0, the EMH for m predicts that∣∣∣∣λs − λm +
1

2
σ2
s−m

∣∣∣∣ < ε(1 + σ2
s−m).
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Again if it is known a priori that σ2
s−m < C for some positive constant C,

then for every ε > 0 the EMH for m predicts that∣∣∣∣λs − λm +
1

2
σ2
s−m

∣∣∣∣ < ε.

This result suggests that an analysis of the variance of the vector of differences
(s1−m1, . . . , sN −mN ) might give insight into the performance of the portfolio
s.

3 Proofs

Proof of Proposition 1. When x > −1, we can expand ln(1 + x) in a Taylor’s
series with remainder:

ln(1 + x) = x− 1

2
x2 +

1

3
x3

1

(1 + θx)3
, (1)

where θ, which depends on x, satisfies 0 ≤ θ ≤ 1. Since

γ(x) ≤ 1

3
x3

1

(1 + θx)3
≤ Γ(x),

where the functions γ and Γ are defined by

γ(x) :=
1

3

(
x

1 + x

)3

, Γ(x) :=
1

3
x3,

we can see that (1) implies

ln(1 + x) ≤ x− 1

2
x2 + Γ(x)

and

ln(1 + x) ≥ x− 1

2
x2 + γ(x).

Notice that the functions Γ and γ are monotonically increasing.
On a few occasions we will use the identity

σ2
s−m
2

=
σ2
s

2
+
σ2
m

2
− σsm.

Now we are ready to start proving the proposition. First we split it into two:
we will prove separately that the EMH for m predicts

µs − µm + σ2
m − σsm < ε(1 + σ2

s−m) (2)

and that the EMH for m predicts

µs − µm + σ2
m − σsm > −ε(1 + σ2

s−m). (3)
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Indeed, if Speculator has a strategy witnessing that the EMH for m predicts (2)
at level α/2 and a strategy witnessing that the EMH for m predicts (3) at level
α/2, the combination of these strategies (i.e., splitting his money equally into
two accounts and letting the first account be managed according to the first
strategy and the second account be managed according to the second strategy)
witnesses that the EMH for m predicts the conjunction of (2) and (3) at level
α. (This argument is essentially an implicit application of the inequality

P(A ∩B) ≥ P(A) + P(B)− 1

from [2], Proposition 8.10.3 on p. 186.)
First we prove (2). Without loss of generality, assume 0 < ε < 1. For any

α > 0, Speculator has a trivial strategy witnessing that the EMH for m predicts

N∏
n=1

(1 + εsn + (1− ε)mn) <
1

α

N∏
n=1

(1 +mn) (4)

at level α: On each round, he invests ε of his capital in s (Investor’s portfolio)
and 1− ε of his capital in m. But we can rewrite (4) as

N∑
n=1

(
ln (1 + εsn + (1− ε)mn)− ln (1 +mn)

)
< ln

1

α
.

This implies

N∑
n=1

(
εsn + (1− ε)mn −

1

2
ε2s2n −

1

2
(1− ε)2m2

n − ε(1− ε)snmn

+ γ(εsn + (1− ε)mn)−mn +
1

2
m2
n − Γ(mn)

)
< ln

1

α

or

N∑
n=1

(
ε
(
sn −mn +m2

n − snmn

)
− 1

2
ε2
(
s2n +m2

n − 2snmn

)
+ γ(sn ∧mn)− Γ(mn)

)
< ln

1

α

or

ε
(
µs − µm + σ2

m − σsm
)
− 1

2
ε2
(
σ2
s + σ2

m − 2σsm
)

<
1

T

N∑
n=1

|γ(sn)|+ 1

T

N∑
n=1

|γ(mn)|+ 1

T

N∑
n=1

Γ(mn) +
1

T
ln

1

α

or
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µs − µm + σ2
m − σsm <

1

2
εσ2
s−m

+
1

3ε
σ2
s max

n

|sn|
|1 + sn|3

+
1

3ε
σ2
m max

n

|mn|
|1 +mn|3

+
1

3ε
σ2
m max

n
|mn|+

1

Tε
ln

1

α
.

This completes the proof of (2) since maxn |sn| and maxn |mn| are infinitesimal
and T is infinite.

Now we prove (3). Without loss of generality, assume ε < 1/3. Consider a
strategy for Speculator that calls for investing −ε of his capital in s and investing
1 + ε of his capital in m on every round. Using the inequalities mn ≥ −1/2 and
sn ≤ 1 (remember that maxn |mn| and maxn |sn| are infinitesimal), we can see
that this strategy’s return on round n is

−εsn + (1 + ε)mn ≥ −ε+ (1 + ε)

(
−1

2

)
> −1

and so it does not risk bankruptcy for Speculator. It witnesses that the EMH
for m predicts

N∏
n=1

(1− εsn + (1 + ε)mn) <
1

α

N∏
n=1

(1 +mn) (5)

at level α, and (5) can be transformed (analogously to (4) with ε replaced by
−ε) as follows:

N∑
n=1

(
ln (1− εsn + (1 + ε)mn)− ln (1 +mn)

)
< ln

1

α
;

N∑
n=1

(
−εsn + (1 + ε)mn −

1

2
ε2s2n −

1

2
(1 + ε)2m2

n + ε(1 + ε)snmn

γ(−εsn + (1 + ε)mn)−mn +
1

2
m2
n − Γ(mn)

)
< ln

1

α
;

N∑
n=1

(
−ε
(
sn −mn +m2

n − snmn

)
− 1

2
ε2
(
s2n +m2

n − 2snmn

)
+γ (mn ∧ (2mn − sn))− Γ(mn)

)
< ln

1

α
;

−ε
(
µs − µm + σ2

m − σsm
)
− 1

2
ε2σ2

s−m

<
1

T

N∑
n=1

|γ(mn)|+ 1

T

N∑
n=1

|γ(2mn − sn)|+ 1

T

N∑
n=1

Γ(mn) +
1

T
ln

1

α
;

µs − µm + σ2
m − σsm > −1

2
εσ2
s−m

− 1

3ε
σ2
m max

n

|mn|
|1 +mn|3

− 1

3ε
σ2
2m−s max

n

|2mn − sn|
|1 + 2mn − sn|3

− 1

3ε
σ2
m max

n
|mn|
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− 1

Tε
ln

1

α

(we have used the obvious notation σ2
2m−s). This proves (3).

Proof of Proposition 2. We can bound the left-hand side of the inequality in
Proposition 2 from above as follows:

λs − λm +
1

2
σ2
s−m

≤

(
µs −

1

2
σ2
s +

1

T

N∑
n=1

Γ(sn)

)
−

(
µm −

1

2
σ2
m +

1

T

N∑
n=1

γ(mn)

)

+
σ2
s

2
+
σ2
m

2
− σsm

≤ µs − µm + σ2
m − σsm +

1

T

N∑
n=1

Γ(sn) +
1

T

N∑
n=1

|γ(mn)| ;

combining this with Proposition 1, we can see that the EMH for m predicts

λs − λm +
1

2
σ2
s−m < ε(1 + σ2

s−m),

for any ε > 0.
In the same way, we can bound the left-hand side of the inequality in Propo-

sition 2 from below:

λs − λm +
1

2
σ2
s−m

≥

(
µs −

1

2
σ2
s +

1

T

N∑
n=1

γ(sn)

)
−

(
µm −

1

2
σ2
m +

1

T

N∑
n=1

Γ(mn)

)

+
σ2
s

2
+
σ2
m

2
− σsm

≥ µs − µm + σ2
m − σsm −

1

T

N∑
n=1

|γ(sn)| − 1

T

N∑
n=1

Γ(mn);

combining this with Proposition 1, we can see that the EMH for m predicts

λs − λm +
1

2
σ2
s−m > −ε(1 + σ2

s−m),

for any ε > 0. This completes the proof.
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